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ABSTRACT                                                                                                 

Article History: 
The Secret Sharing Scheme (SSS) based on the Chinese Remainder Theorem (CRT) is a 

crucial method for safeguarding confidential information. However, this scheme is 

vulnerable to collaborative cheating involving multiple participants. This study aims to 

modify the Asmuth-Bloom scheme by introducing two detection mechanisms: Threshold 

Range Detection and Detection Parameter Verification, to identify and prevent collaborative 

fraudulent activities. The research design is based on mathematical algorithms and tests the 

effectiveness of detection against predetermined cheating scenarios using structured 

parameters. The results indicate that the proposed modifications can accurately detect the 

manipulation of secret fragments, even in cases involving participant collusion. This 

robustness is achieved through the mathematical structure of the CRT, which enables the 

detection of inconsistencies during the secret reconstruction process. In addition to 

maintaining the efficiency of the original Asmuth-Bloom scheme, these modifications 

enhance the reliability of the scheme in protecting sensitive data. The study concludes that 

the implementation of dual detection mechanisms significantly strengthens the security of 

the SSS, particularly in applications prone to dishonest participant collaboration. Future 

research is recommended to explore computational efficiency and the implementation of this 

scheme in real-world environments, such as financial systems and blockchain technology. 
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1. INTRODUCTION 

Mathematics plays a crucial role in supporting information security [1], [2], one of which is through 

the Secret Sharing Scheme (SSS) [3]–[5]. SSS is a method that divides confidential information into smaller 

parts (shares), which are then distributed among a number of participants [6], [7]. Through this approach, 

only a specific group of participants that meet the criteria in the access structure can reconstruct the secret, 

while others gain no information about it [8], [9]. One of the most popular variants of SSS is the threshold 

access structure, where a secret can be reconstructed if at least k out of n shares are combined [10], [11]. The 

mathematical approaches in SSS can be categorized into three main types: polynomial-based, hyperplane 

geometry-based, and Chinese Remainder Theorem (CRT)-based methods [12]–[14]. Among these 

approaches, this study focuses on CRT-based SSS, particularly the Asmuth-Bloom scheme. This scheme is 

renowned for its efficiency in dividing and reconstructing secrets using modulus numbers. Such an approach 

allows for more efficient and secure management of confidential data, making it attractive for various 

information security applications. Previous studies have examined the implementation of CRT-based SSS, 

including simulations and analyses of potential cheating in schemes such as the Mignotte (k, n) and Asmuth-

Bloom (k, n) models. Researchers have shown that participants attempting to manipulate shares randomly 

often fail, as the reconstruction process still results in the correct secret [9], [15]. However, most of these 

studies focus on single-cheater scenarios, where only one participant attempts to manipulate the system. The 

identified gap lies in the lack of in-depth research on collaborative cheating scenarios, where multiple 

participants work together to deceive the system. Such collaboration among malicious participants is 

significantly more dangerous, as it increases the likelihood of successfully manipulating the secret and 

undermining the system's integrity. Moreover, effective fraud detection methods for these collaborative 

scenarios have not been systematically explored. Research on collaborative cheating involving multiple 

participants remains limited, despite its higher complexity and the substantial threats it poses. 

The main gap lies in the lack of in-depth analysis of collaborative cheating and its impact on system 

integrity. In collaborative scenarios, multiple dishonest participants can work together to deceive others, 

thereby increasing the threat to system reliability [16], [17]. Moreover, effective cheating detection methods 

for such collaborative scenarios have yet to be extensively explored. This study shares some similarities with 

previous research but also offers significant distinctions. Like Chattopadhyay et al., this research discusses 

SSS methods to protect information confidentiality and address potential single-point-of-failure issues [13]. 

However, this study is more specific to the issue of cheating in CRT-based schemes. Compared to Ghamdi 

et al., this research not only addresses security improvements in secret sharing processes but also introduces 

a novel approach to detecting collaborative cheating [18]. In contrast to Hakeem & Kim, which focuses on 

key management in communication systems, this study modifies the (k, n)-Asmuth-Bloom scheme to detect 

cheating [19]. 

This research aims to broaden the understanding of cheating processes in CRT-based SSS, particularly 

in collaborative cheating scenarios. Additionally, it proposes modifications to the Asmuth-Bloom scheme to 

effectively detect cheating even when committed by multiple participants. By understanding the complexities 

of collaborative cheating and developing relevant detection methods, this study aims to enhance the reliability 

of SSS in information security applications. The main modification in the Asmuth-Bloom scheme lies in the 

structure of the initial value that is shared, known as the pre-share. In the original version of this scheme, the 

pre-share is formed by summing the secret with the product of a positive integer and an initial modulus value, 

denoted as 𝑚₀, which precedes the first element in the Asmuth-Bloom sequence (𝑚₁). The value of 𝑚₀ is 

chosen such that it satisfies certain conditions related to the product of the moduli sequence used. In this 

context, the secret lies within a specific value space that is bounded by the ratio of the product of several 

moduli to the product of other selected moduli. In the modified scheme, the pre-share is restructured into a 

combination of the value A (representing the hidden secret), a positive integer gamma, a distinguishing 

parameter D, the initial modulus value 𝑚₀, and an additional random value r. All of these parameters are 

explained in detail in Section 3.1. This modification aims to enable the implementation of a cheating detection 

mechanism during the secret reconstruction process. One of the core mechanisms is the computation of a 

specific value, referred to as R, which is derived by manipulating the pre-shares received by the participants. 

This R value is used to identify inconsistencies or potential cheating that may arise from dishonest 

collaboration among participants. Additionally, this study introduces two supplementary mechanisms for 

fraud detection, namely Threshold Range Detection and Detection Parameter Verification. These 

mechanisms are designed to enhance the effectiveness of the scheme in identifying malicious behavior, 

including collusion. The modifications are applied starting from the pre-sharing phase, where the scheme is 
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constructed using a linear structure with additional verification parameters to ensure the integrity of the 

reconstructed secret.  

During the reconstruction phase, the Threshold Range Detection method is used to verify whether the 

reconstruction result falls within a predetermined range, while Detection Parameter Verification evaluates 

parameter values against reference values established during the initial scheme design phase. Through this 

approach, any manipulation of secret shares by dishonest participants will result in mathematical 

inconsistencies that are detectable during the reconstruction phase. By addressing the complexities of 

collaborative cheating and developing effective detection mechanisms, this research aims to improve the 

reliability of the Asmuth-Bloom-based SSS in information security applications, especially in environments 

prone to manipulation by multiple actors. The uniqueness of this research lies in the development and 

expansion of the concept of cheating in CRT-based SSS, specifically involving more than one cheater. It also 

offers an innovative solution in the form of modifications to the (k, n)-Asmuth-Bloom scheme to detect and 

prevent collaborative cheating. The expected outcomes include the development of a robust cheating 

detection system against threats from collaborative dishonest participants, as well as enhanced data security 

protection in various fields such as banking, cryptography, and digital security applications. Thus, this 

research contributes both theoretically and practically to the literature on CRT-based SSS. 

2. RESEARCH METHODS 

This study employed an operational research design based on mathematical algorithms, focusing on 

the development and testing of a modified (k, n)-Asmuth-Bloom Secret Sharing Scheme (SSS) algorithm for 

cheating detection.  

2.1 Asmuth-Bloom SSS 

An (𝑘, 𝑛)-Asmuth-Bloom Scheme uses a special sequence of integers, which in this paper will referred 

to as the (𝑘, 𝑛)-Asmuth-Bloom’s sequence. An (𝑘, 𝑛)-Asmuth-Bloom’s sequence 𝑚𝑗, 𝑗 ∈ {0,1, ⋯ , 𝑛}, with 

𝑛 ≤  2; 2 ≤  𝑘 ≤  𝑛; and 𝑚0 < 𝑚1 < 𝑚2 < ⋯ < 𝑚𝑘, is a pairwise coprime integer which satisfies 𝑚0 ⋅ 𝛽 <

𝛼, with 𝛽 = ∏ 𝑚𝑛−𝑖
𝑘−2
𝑖=0  and 𝛼 = ∏ 𝑚𝑖

𝑘
𝑖=1 . 

Construction Phase 

 

 

Figure 1. Construction Phase 

The dealer performs the following operations: 

Step 1. Generate an (𝑘, 𝑛)-Asmuth-Bloom’s sequence according to the number of participants 𝑛 and the 

threshold 𝑘. 

Step 2. Choose a secret 𝑆 ∈ ℤ𝑚0
; 𝛾 ∈ ℤ such that 𝑇𝐴𝑠𝑚 ∈ ℤ𝛽,𝛼, with 𝑇𝐴𝑠𝑚 = 𝑆 + 𝛾 ⋅ 𝑚0. In this paper: 

a. the symbol 𝑇 will referred to as pre-share 

b. ℤ𝛽,𝛼 is called threshold range, 𝑇𝐴𝑠𝑚 ∈ ℤ𝛽,𝛼 means 𝛽 < 𝑇𝐴𝑠𝑚 < 𝛼 

Step 3. Generating share 𝐼𝑗 as 𝐼𝑗 = 𝑇𝐴𝑠𝑚 mod 𝑚𝑗 

Step 4. Distribute pairs (𝑚𝑗 , 𝐼𝑗) to each 𝑗th-participant 
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𝑆 ∈ ℤ𝑚0
 and 

find the value 
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(𝑚𝑗 , 𝐼𝑗) ke to 

each participant 

End 
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Reconstruction Phase 

 

Figure 2. Reconstruction Phase 

Suppose a group of 𝑘 participants collect their pairs (𝑚𝑗 , 𝐼𝑗) to the combiner in order to 

recover/reconstruct the secret 𝑆. The combiner, then, performs the following operations: 

Step 1. Computing the solution of the following system of congruences: 

𝑥 ≡ 𝐼𝑗1
mod 𝑚𝑗1

 

𝑥 ≡ 𝐼𝑗2
mod 𝑚𝑗2

 

⋮ 

𝑥 ≡ 𝐼𝑗𝑘
mod 𝑚𝑗𝑘

 

using CRT, which gives the result 𝑥 as 𝑥 ≡ 𝑇𝐴𝑠𝑚 mod ∏ 𝑚𝑗𝑖

𝑘
𝑖=1 ,  

Step 2. Obtaining the secret 𝑆 as 𝑆 = 𝑇𝐴𝑠𝑚 mod 𝑚0. 

2.2 Cheating on CRT-Based (𝒌, 𝒏)-Threshold Secret Sharing 

Figure 3. Cheating Detection Flow in Modified CRT-Based SSS 

Suppose a group of 𝑘 participants collect their pairs (𝑚𝑗 , 𝐼𝑗) in order to recover the secret 𝑆. If 𝐼𝑗 =

𝑇 mod 𝑚𝑗 , with 𝑇 ∈ ℤ𝛽,𝛼 then, by using CRT a unique solution 𝑥 ∈ ℤ𝑚1×⋯×𝑚𝑘
 can be obtained as a result of 

solving the system of congruences 𝑥 ≡ 𝐼𝑗 mod 𝑚𝑗 as 𝑥 ≡ 𝑇 mod(∏ 𝑚𝑗
𝑘
𝑗=1 ). Pre-share 𝑇 has the form 𝑇 =

𝑤𝜆 + 𝑞 with 𝑤 ∈ ℤ𝑚1
; 𝜆 = ∏ 𝑚𝑗

𝑘
𝑗=2 ; and 𝑞 ∈ ℤ𝑚2×⋯×𝑚𝑘

; with 𝑞 is an unique solution of the system of 

congruences 𝑥 ≡ 𝑇 mod(∏ 𝑚𝑗
𝑘
𝑗=2 ). Suppose 𝑇′ mod(∏ 𝑚𝑗

𝑘
𝑗=1 ), such that 𝑇′ ∈ ℤ𝛽,𝛼 and 𝑇′ ≠ 𝑇, are 

solutions to the system of congruences: 

𝑥 ≡ 𝐼1
′ mod 𝑚1

𝑥 ≡ 𝐼2 mod 𝑚2

⋮
𝑥 ≡ 𝐼𝑘 mod 𝑚𝑘

(1) 

with 𝐼1
′ ≠ 𝐼1. Similar to pre-share 𝑇, pre-share 𝑇′ has the form  𝑇′ = 𝑤′𝜆 + 𝑞 such 𝑤′ ≠ 𝑤. Since 𝐼1

′ =
𝑇′ mod 𝑚1, then 𝐼1

′ = (𝑤′𝜆 + 𝑞) mod 𝑚1. If we defined 𝑤′ = 𝑤 + 𝛿, 𝛿 ∈ ℤ then we get 𝐼1
′ =

[(𝑤 + 𝛿)𝜆 + 𝑞] mod 𝑚1 = (𝑤𝜆 + 𝑞 + 𝛿𝜆) mod 𝑚1 = (𝐼1 + 𝛿𝜆) mod 𝑚1 .  

It can be seen that in scenario of cheating on CRT-based SSS with one cheater, if we take for example 

participant-1 as a cheater, his share 𝐼1 must be changed to 𝐼1
′  with 𝐼1

′ = (𝐼1 + 𝛿𝜆) mod 𝑚1 so that a unique 

solution 𝑇′ is obtained from reconstruction phase that deceives other honest participants. 

The above scenario can be expanded to cheating scenario of 𝑐 cheaters, with 𝑐 ≥ 1, to deceives 𝑛 − 𝑐 

honest participants. We defined: 
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𝑥 ≡

𝑇𝐴𝑠𝑚 mod ∏ 𝑚𝑗
𝑘
𝑖=1

, 
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End 
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1. ℑD = {𝐼𝑑𝑗
}, 1 ≤ 𝑗 ≤ 𝑐; with 𝐼𝑑𝑗

 as the share owned by the 𝑗-th cheaters. 

2. ℳD = {𝑚𝑑𝑗
}, 1 ≤ 𝑗 ≤ 𝑐; with 𝑚𝑑𝑗

 as the 𝑚 owned by the 𝑗-th cheaters. 

3. ℑH = {𝐼ℎ𝑗
}, 1 ≤ 𝑗 ≤ 𝑘 − 𝑐; with 𝐼ℎ𝑗

 as the share owned by the 𝑗-th honest participants. 

4. ℳH = {𝑚ℎ𝑗
}, 1 ≤ 𝑗 ≤ 𝑘 − 𝑐; with 𝑚ℎ𝑗

 as the 𝑚 owned by the 𝑗-th honest participants. 

Suppose a group of 𝑘 participants collect their pairs (𝑚𝑗 , 𝐼𝑗) in order to recover the secret 𝑆, that 𝑐 

participants among them are cheaters, but the cheaters have not changet their shares 𝐼𝑑𝑗
. The system of 

congruences constructed using the collected pairs (𝑚𝑗 , 𝐼𝑗) gives: 

𝑥 ≡ 𝐼𝑑1
mod 𝑚𝑑1

 

⋮ 

𝑥 ≡ 𝐼𝑑𝑐
mod 𝑚𝑑𝑐

(2) 

𝑥 ≡ 𝐼ℎ1
mod 𝑚ℎ1

 

⋮ 

𝑥 ≡ 𝐼ℎ𝑘−𝑐
mod 𝑚ℎ𝑘−𝑐

 

with unique solutions 𝑥 ≡ 𝑇 mod (∏ 𝑚𝑑𝑗

𝑐
𝑗=1 × ∏ 𝑚ℎ𝑗

𝑘−𝑐
𝑗=1 ) Pre-share 𝑇 can be written in the form 𝑇 =

𝑤𝐷𝑀𝐻 + 𝑞 with 𝑤𝐷 ∈ ℤ𝑚𝑑1×⋯×𝑚𝑑𝑐
; 𝑀𝐻 = ∏ 𝑚ℎ𝑗

𝑘−𝑐
𝑗=1 ; and 𝑞 ∈ ℤ𝑀𝐻

; with 𝑞 is the unique solution of the 

system of congruences 𝑥 ≡ 𝑇 mod 𝑚ℎ𝑗
. If the cheaters replace the shares 𝐼𝑑1

, ⋯ , 𝐼𝑑𝑐
 to 𝐼′𝑑1

, ⋯ , 𝐼′𝑑𝑐
such that 

𝐼𝑑𝑗
≠ 𝐼′

𝑑𝑗
, 1 ≤ 𝑗 ≤ 𝑐, then a system of congruences can be constructed as 

𝑥 ≡ 𝐼′𝑑1
mod 𝑚𝑑1

 

⋮ 

𝑥 ≡ 𝐼′
𝑑𝑐

mod 𝑚𝑑𝑐
(3) 

𝑥 ≡ 𝐼ℎ1
mod 𝑚ℎ1

 

⋮ 

𝑥 ≡ 𝐼ℎ𝑘−𝑐
mod 𝑚ℎ𝑘−𝑐

 with a unique solution 

𝑥 ≡ 𝑇𝑓𝑎𝑘𝑒 mod (∏ 𝑚𝑑𝑗

𝑐
𝑗=1 × ∏ 𝑚ℎ𝑗

𝑘−𝑐
𝑗=1 ). 𝑇𝑓𝑎𝑘𝑒  can be written in the form 𝑇𝑓𝑎𝑘𝑒 = 𝑤′𝐷𝑀𝐻 + 𝑞 with 

𝑤′𝐷 ∈ ℤ𝑚𝑑1×⋯×𝑚𝑑𝑐
; 𝑤′𝐷 ≠ 𝑤𝐷; 𝑀𝐻 = ∏ 𝑚ℎ𝑗

𝑘−𝑐
𝑗=1 ; and 𝑞 ∈ ℤ𝑀𝐻

. Since 𝐼𝑑𝑗

′ = 𝑇𝑓𝑎𝑘𝑒 mod 𝑚𝑑𝑗
, then 𝐼𝑑𝑗

′ =

(𝑤𝐷
′ 𝑀𝐻 + 𝑞) mod 𝑚𝑗. If we defined 𝑤𝐷

′ = 𝑤𝐷 + 𝛿, 𝛿 ∈ ℤ then we obtained  

𝐼𝑑𝑗

′ = [(𝑤𝐷 + 𝛿)𝑀𝐻 + 𝑞] mod 𝑚𝑐𝑖
= (𝑤𝐷𝑀𝐻 + 𝑞 + 𝛿𝑀𝐻) mod 𝑚𝑑𝑗

= (𝐼𝑑𝑗
+ 𝛿𝑀𝐻) mod 𝑚𝑑𝑗

. 

Cheating is successful if the altered shares 𝐼′𝑑𝑗
 created by the cheaters lead the honest participants to 

reconstruct the false secret 𝑆𝑓𝑎𝑘𝑒  during the reconstruction phase. In the Asmuth-Bloom’s SSS, cheating is 

successful if the reconstruction phase gives: (1) 𝑇𝑓𝑎𝑘𝑒 ∈ ℤ𝛽,𝛼 and; (2)  𝑆𝑓𝑎𝑘𝑒 ≠ 𝑆. Since in Asmuth-Bloom’s 

SSS we defined 𝑆 = 𝑇 mod 𝑚0, point (2) can be written as 𝑇𝑓𝑎𝑘𝑒 mod 𝑚0 ≠ 𝑇 mod 𝑚0. This could be 

satisified by choosing 𝛿 at 𝐼𝑑𝑗

′ = (𝐼𝑑𝑗
+ 𝛿𝑀𝐻) mod 𝑚𝑑𝑗

 such that 𝑇𝑓𝑎𝑘𝑒 ≠ 𝑇 + 𝑦𝑚0, with 𝑦 ∈ ℤ. 

2.3 Asmuth-Bloom Sequence Generator 

We define: 

1. 𝑑1 as lower limit; 𝑑2 as an upper limit; 𝑛 as the sum of the numbers in a number sequence; 𝑛𝑚0
 

as the quantitiy of numbers 𝑚0; and 𝑘 as threshold; with all all of them are integers that satisfy 

𝑑1 < 𝑑2 and 2 ≤ 𝑘 ≤ 𝑛 

2. 𝑚𝑖𝑛𝑖𝑡 as the largest number in a sequence of numbers as 𝑚𝑖𝑛𝑖𝑡 = 𝑑2 − 1. 
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3. 𝐿𝑠𝑒𝑞 as a set of sequences of pair-wise coprime integers 

4. 𝐿𝑝𝑓 as a set of the prime factorization of 𝐿𝑠𝑒𝑞 

5. 𝐿𝑚0
as a set of possible values of 𝑚0 

6. 𝑚∗ as a temporary integer before being inserted into 𝐿𝑠𝑒𝑞. 

7. 𝑚0
∗  as a temporary integer before being inserted into 𝐿𝑚0

. 

8. 𝐹𝑚
∗  as a temporary set of prime factors of 𝑚∗ 

9. 𝐹𝑚0
∗  as a temporary set of prime factors of 𝑚0

∗  

10. 𝑟1and 𝑟2 as a counter variable 

Algorithm 1 Choose 𝑑1𝑑1, 𝑑2, 𝑛 and 𝑛𝑚0
 that satisfies the above definition. The algorithm proceed as 

follows: 

1. Set 𝑚∗ = 𝑚𝑖𝑛𝑖𝑡. 

2. Set 𝑟1 = 0. 

3. For 𝑑2 < 𝑚∗, the loop is performed as follows: 

a. If 𝐹𝑚
∗ ∩ 𝐿𝑝𝑓 = ∅, then 𝐿𝑝𝑓 = 𝐿𝑝𝑓 ∪ 𝐹𝑚

∗ ; 𝐿𝑠𝑒𝑞 = 𝐿𝑠𝑒𝑞 ∪ 𝑚∗; and 𝑟1 = 𝑟1 + 1. If 𝐹𝑚
∗ ∩ 𝐿𝑝𝑓 ≠

∅, proceed to the next step 

b. 𝑚∗ = 𝑚∗ − 1 

c. If 𝑟1 ≮ 𝑛, stop looping. 

4. Check the truth of the statement 𝛽 < 𝛼: 

a. If 𝛽 < 𝛼, proceed to step e. 

b. If 𝛽 ≮ 𝛼, repeat from step a with 𝑑2 = 𝑑2 − 1 

5. Set 𝑚0
∗ = (𝛼/𝛽) − 1; with 𝛼 and 𝛽 obtained from data 𝐿𝑠𝑒𝑞 and 𝑘 

6. Set 𝑟2 = 0. 

7. For 𝑟2 < 𝑛𝑚0
, the loop is performed as follows: 

a. If 𝐹𝑚0
∗ ∩ 𝐿𝑝𝑓 = ∅, then 𝐿𝑚0

= 𝐿𝑚0
∪ 𝑚0

∗ ; and 𝑟2 = 𝑟2 + 1. If 𝐹𝑚0
∗ ∩ 𝐿𝑝𝑓 ≠ ∅, proceed to the 

next step 

b. 𝑚0
∗ = 𝑚0

∗ − 1 

c. If 𝑟2 ≮ 𝑛𝑚0
, stop looping. 

8. If 𝐿𝑚0
= ∅, repeat from step a with 𝑑2 = 𝑑2 − 1 

9. If 𝐿𝑚𝑜
≠ ∅, proceed to step j 

10. 𝐿𝑠𝑒𝑞 is obtained as the set of Asmuth-Bloom sequences (𝑘, 𝑛); 𝐿𝑝𝑓 as the set of prime factors; and 

𝑚0 is picked randomly from 𝐿𝑚0
. 

3. RESULTS AND DISCUSSION 

To support the claim of enhanced security against collaborative cheating, an initial test was conducted 

by comparing the secret reconstruction process between the original Asmuth-Bloom scheme and the modified 

scheme. Preliminary results show that in the original scheme, value manipulation by two participants can still 

produce a false secret without being detected. In contrast, the modified scheme successfully detects such 

alterations through a parameter verification method. This indicates an improvement in the effectiveness of 

fraud detection from the early stages of reconstruction. 
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3.1 The Proposed Scheme 

Here, we present a proposed scheme as a form of modification of Asmuth-Bloom SSS in which 

contains cheating detection method. 

Construction Phase 

An (𝑘, 𝑛)-Asmuth-Bloom’s sequence is used by dealers in calculating pre-share 𝑇 as: 

𝑇 = 𝐴 + 𝛾 ⋅ 𝐷 ⋅ 𝑚0 + 𝑟 

such 𝑇 ∈ ℤ𝛽,𝛼 and 𝑇 mod 𝑚0 ≠ 0. Such conditions are fulfilled by choosing 𝐴, 𝛾, 𝐷, and 𝑟 satisfy the 

following: 

𝐴 ∈ {𝛽 + 1 , ⋯ , 𝛼 − 2(1 + 𝑚0 + 𝑚1)} ;  

𝛾 ∈ {
1 + 𝑚1

𝑚0
+ 1, ⋯ ,

𝛼 − 𝐴

2𝑚0
− 1} ; 

𝑟 ∈ {𝛾𝑚0 − 𝑚1 + 1, ⋯ , 𝛾𝑚0 − 1};  

𝐷 ∈ {1, ⋯ ,
𝛼 − 𝐴 + 𝑚1

𝛾𝑚0
− 2}. 

After pre-share 𝑇 is obtained, the dealer then constructs the shares 𝐼𝑗 for each 𝑗-th participant, 1 ≤ 𝑗 ≤

𝑛, using the formula: 

𝐼𝑗 = 𝑇 mod 𝑚𝑗 

The constructed shares 𝐼𝑗 are distributed to each 𝑗-th participant in the form of pairs (𝑚𝑗 , 𝐼𝑗). The 

proposed pre-share differs from the pre-share defined in the original Asmuth-Bloom scheme, which is in the 

form of = 𝑆 + 𝛾 ⋅ 𝑚0. The advantage of the proposed pre-share is that it can be used to detect fraud/cheating 

in the fraud detection method implemented during the Reconstruction Phase. 
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Figure 4. The Proposed Scheme 
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Reconstruction Phase 

Suppose a group of 𝑘 participants collect their pairs (𝑚𝑗 , 𝐼𝑗) to the combiner in order to 

recover/reconstruct the secret 𝑆. The combiner, then, performs the following operations: 

Step 1. Computing the solution of the following system of congruence: 

𝑥 ≡ 𝐼𝑗1
mod 𝑚𝑗1

 

𝑥 ≡ 𝐼𝑗2
mod 𝑚𝑗2

 

⋮ 

𝑥 ≡ 𝐼𝑗𝑘
mod 𝑚𝑗𝑘

 

using CRT, which gives the result 𝑥 as 𝑥 ≡ 𝑇′ mod ∏ 𝑚𝑗𝑖

𝑘
𝑖=1 ,  

Step 2. Run cheating detection method as follows: 

1. Detection-1 (Threshold Range Detection ℤ𝛽,𝛼) 

a. Check whether the statement 𝑇′ ∈ ℤ𝛽,𝛼 is true. 

b. If it’s not, then the cheating within the scheme is detected. 

c. If it’s true, then there are two possibilities: 

i. no cheating occurs 

ii. cheatings occurred, but was not detected by Detection-1 

Therefore, the verification is continued to Detection-2. 

2. Detection-2 (Detection Parameter Detection 𝐷) 

a. Check whether the statement 𝑅 = 𝐷 is true, with 𝑅 = ⌊
𝑇′−𝐴

𝛾⋅𝑚0
⌋. 

b. If 𝑅 ≠ 𝐷, then cheating is detected. 

c. If 𝑅 = 𝐷, then there is no cheating occurs within the scheme. 

Step 3. If there’s no cheating, then the secret 𝑆 is obtained as 𝑆 = 𝑇′ mod 𝑚0. 

3.2. Results 

Experimental result of the study is presented as a numerical simulation of an Asmuth-Bloom’s SSS 

being attacked by 𝑐 cheaters simulated using Python programming. The simulation is executed with data 

input as 𝑑1 = 215 = 32768; 𝑑2 = 216 = 65536; 𝑛 = 20; 𝑘 = 7; 𝑛𝑚0
= 10. 

Construction Phase 

Given the data input, the dealer uses Algorithm 1 to generate an Asmuth-Bloom’s sequence that gives: 

1. 𝐿𝑚0
={64913, 64919, 64921, 64927, 64937, 64943, 64949, 64951, 64963, 64969}. Then 𝑚0 

randomly chosen from 𝐿𝑚0
 and assigned 𝑚0 as 𝑚0 = 64913. 

2. 𝐿𝑠𝑒𝑞 ={65431, 65437, 65447, 65449, 65453, 65459, 65473, 65477, 65479, 65483, 65489, 65491, 

65497, 65509, 65519, 65521, 65531, 655 33, 65534, 65535} 

3. 𝐿𝑝𝑓 ={2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 59, 61, 67, 71, 79, 109, 151, 233, 257, 281, 

601, 829, 977, 1109, 1523, 1597, 3449, 5953, 65437, 65447, 65449, 65479, 65497, 65519, 65521} 

4. 𝛼 =5144709558348659684312671595284211 

5. 𝛽 =79176190656335119265549852130 

Then, the dealer can choose 𝐴, 𝛾, 𝐷 and 𝑟 as follows: 

1. 𝐴 =79176190656335119265549852131 
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2. 𝛾 =39627119237733607 

3. 𝑟 =2572315191079001598475 

4. 𝐷 =285714285714 

Given the data 𝐴, 𝛾, 𝐷 and 𝑟, pre-share 𝑇 can be computed and gives 𝑇 as 𝑇 = 𝐴 + 𝛾 ⋅ 𝐷 ⋅ 𝑚0 +
𝑟 =735026373643637026310321979555980; and the secret 𝑆 as 𝑆 = 𝑇 mod 𝑚0 = 49702. 

The dealer then computes the share 𝐼𝑗 for each 𝑗-th participant as 𝐼𝑗 = 𝑇 mod 𝑚𝑗. This gives a set of 

pairs (𝑚𝑗 , 𝐼𝑗) for each 𝑗-th participant as: 𝐿𝑝𝑎𝑖𝑟 ={(65431, 16455), (65437, 21684), (65447, 59316), (65449, 

13238), (65453, 48209), (65459, 60987), (65473, 13291), (65477, 62855), (65479, 14465), (65483, 49006), 

(65489, 50455), (65491, 12286), (65497, 452), (65509, 40853), (65519, 13759), (65521, 16236), (65531, 

27933), (65533, 43783), (65534, 8400), (65535, 43760)}.  

 

Reconstruction Phase 

Suppose a group of 𝑘 participants collect their pairs (𝑚𝑗 , 𝐼𝑗) to the combiner in order to 

recover/reconstruct the secret 𝑆 that the collected pairs is a set 𝐿𝑝𝑜𝑜𝑙  as 𝐿𝑝𝑜𝑜𝑙 ={ (65447, 59316), (65473, 

13291), (65483, 49006), (65489, 50455), (65509, 40853), (65521, 16236), (65533, 43783)}. The combiner 

then compute the solution using CRT of the system of congruence composed by the collected pairs (𝑚𝑗 , 𝐼𝑗) 

as follows: 

𝑥 ≡  59316 mod 65447 
𝑥 ≡  13291 mod 65473 
𝑥 ≡  49006 mod 65483 
𝑥 ≡  50455 mod 65489 
𝑥 ≡  40853 mod 65509 
𝑥 ≡  16236 mod 65521 
𝑥 ≡  43783 mod 65533 

that gives the solution as 𝑇′ =735026373643637026310321979555980. Next, the combiner compute 

the secret 𝑆′ as 𝑆′ = 𝑇′ mod 𝑚0 =49702. 

 

Scenario of Cheating 

Suppose that among 𝑘 participants in  𝐿𝑝𝑜𝑜𝑙  there is a group of cheaters   who owned pairs 

(𝑝𝑑1
, 𝐼𝑑1

), ⋯ , (𝑝𝑑𝑐
, 𝐼𝑑𝑐

) as 𝐿𝐶 ={(65447, 59316), (65489, 50455), (65509, 40853))}. Each of the cheaters can 

change their share 𝐼𝑑𝑗
to 𝐼𝑑𝑗

′  as 𝐼𝑑𝑗

′ = (𝐼𝑑𝑗
+ 𝛿𝑀𝐻) mod 𝑚𝑑𝑗

. 

Given 𝐿𝑝𝑜𝑜𝑙  and 𝐿𝐶 , 𝑀𝐻 can be computed as 𝑀𝐻 = ∏ 𝑚ℎ𝑗

𝑘−𝑐
𝑗=1 = ∏ 𝑚ℎ𝑗

4
𝑗=1 = 

65473×65483×65521×65533 = 18409049924610575087. By choosing 𝛿 =1458, the share 𝐼𝑑𝑗

′ for each 

cheater in the form of a pair (𝑚, 𝐼) as 𝐿′𝐶 = {(65447, 44212), (65489, 39668), (65509, 29782)}. 

When cheaters execute the attack, the collection of pair 𝐿𝑝𝑜𝑜𝑙  changed to 𝐿𝑝𝑜𝑜𝑙
′  as 𝐿′𝑝𝑜𝑜𝑙 ={(65447, 

44212), (65473, 13291), (65483, 49006), (65489, 39668), (65509, 29782), (65521, 16236), (65533, 43783)}. 

A system of congruences composed by pair (𝑚𝑗 , 𝐼𝑗) from 𝐿𝑝𝑜𝑜𝑙
′  gives: 

𝑥 ≡  44212 mod 65447 
𝑥 ≡  13291 mod 65473 
𝑥 ≡  49006 mod 65483  
𝑥 ≡  39668 mod 65489 
𝑥 ≡  29782 mod 65509 
𝑥 ≡  16236 mod 65521 
𝑥 ≡  43783 mod 65533 

which gives solution 𝑇′′ =735026373670348557750931924007217. 

With the obtained pre-share 𝑇′′, the combiner can run cheating detection method as follows: 

1. Detection-1 (Threshold Range Detection ℤ𝛽,𝛼) 
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a. Check whether the statement 𝑇′′ ∈ ℤ𝛽,𝛼 is true 

b. Check whether the statement 𝑇′′ ∈ ℤ𝛽,𝛼 (𝛽 < 𝑇′′ < 𝛼) is true, given: 

i. 𝛼 = 5144709558348659684312671595284 211 

ii. 𝛽 = 79176190656335119265549852130 

c. It can be seen that the statement 𝑇′′ ∈ ℤ𝛽,𝛼 is true, so the process continues to Detection-2. 

2. Detection-2 (Detection Parameters Detection 𝐷) 

a. Check whether the statement 𝑅 = 𝐷 is true, with 𝑅 = ⌊
𝑇′′−𝐴

𝛾⋅𝑚0
⌋, given: 

i. 𝐴 = 79176190656335119265549852131 

ii. 𝛾 = 39627119237733607 

iii. 𝑚0 =64913 

iv. 𝐷 =285714285714 

b. Therefore 𝑅 = ⌊
𝑇′′−𝐴

𝛾⋅𝑚0
⌋ =285714285725 ≠ 𝐷 =285714285714, it can be concluded that 

cheating has occurred. 

3.3 Discussion 

It can be seen in simulation, that the act of cheating is prevented by the cheating detection method 

conducted by the combiner. Without such a method, honest participant can be fooled by retrieving the false 

secret 𝑆′′ = 𝑇′′ mod 𝑚0 = 10281.In the proposed scheme, since 𝑇 = 𝐴 +  𝛾𝐷𝑚0 +𝑟 ∈ ℤ𝛽,𝛼 then, as with 

the original Asmuth-Bloom’s SSS, the secret 𝑆, with 𝑆 = 𝑇 mod 𝑚0, is guaranteed to be: (1) obtainable from 

a secret reconstruction with data (𝑚, 𝐼) from at least 𝑘 participants; (2) not obtainable from a secret 

reconstruction with data (𝑚, 𝐼) from fewer than 𝑘 participants. However, compared to the original Asmuth-

Bloom scheme, the proposed scheme demonstrates improvements in terms of security metrics, particularly 

in cheating detectability. This scheme significantly enhances the ability to detect manipulations of secret 

fragments, even when carried out collaboratively by multiple participants. Detection is performed through 

two stages: Threshold Range Detection and Detection Parameter Verification, which mathematically ensure 

that any deviation in the secret reconstruction result due to data manipulation can be identified. Consequently, 

the improved metrics include robustness against collusion, accuracy of fraud detection, and reliability of 

reconstruction, making the scheme more secure and dependable for real-world applications prone to 

participant collusion 

Suppose there are 𝑘 − 1 participants gathers and perform secret reconstruction with their own pairs 

(𝑚, 𝐼). Then, with CRT, a unique solution can be obtained in the form of 𝑥′′ = 𝑇′′ mod(∏ 𝑚𝑖𝑗

𝑘−1
𝑗=1 ). It is 

known that for 𝑘 participants, secret reconstruction gives a unique solution in the form of 𝑥 =

𝑇 mod(∏ 𝑚𝑖𝑗

𝑘
𝑗=1 ) which follows the relation 𝑥 = 𝜀 ⋅ ∏ 𝑚𝑖𝑗

𝑘−1
𝑗=1 + 𝑥′′. With the right value of 𝜖, 𝜖 ∈ ℕ, 𝑘 − 1 

participants can obtain 𝑇. The value of ε is not fixed (non-unique) for each reconstruction involving k−1 

participants, resulting in potentially different values of x. Therefore, information about T cannot be 

determined from the reconstruction with only k−1 participants. This reinforces the threshold property of the 

Asmuth-Bloom scheme, in which the secret can only be validly reconstructed if at least k participants are 

involved. However, it has been shown by Harn & Fuyou that the possibility of the value 𝜖 is greater than the 

possibility of the value 𝑆, so there is no information about 𝑆 that can be obtained when 𝑘 − 1 participants 

perform secret reconstruction [20]. 

An act of cheating in an Asmuth-Bloom’s SSS will be successful if the cheaters knows the values 𝑚0 

and 𝑇. The pre-share value 𝑇 can be obtained by knowing all the value of shares owned by each participant 

in a secret reconstrution session. It is impossible for cheaters to obtain 𝑚0 in an Asmuth-Bloom’s SSS other 

than using a random guess attack between the values 0 and 
𝛼

𝛽
. 

If somehow the cheaters manages to obtain the values 𝑇 and 𝑚0, in the original Asmuth-Bloom’s SSS, 

then the cheating can be carried out successfully as demonstrated by Pasailă et al. in their study. This does 
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not apply to the proposed scheme [21]. In the proposed scheme, since pre-share 𝑇 has the form 𝑇 = 𝐴 +

𝛾𝐷𝑚0 + 𝑟 and since there exist a cheating detection method with Detection-2 in the form of 𝑅 = ⌊
𝑇′−𝐴

𝛾⋅𝑚0
⌋, we 

can see that, 

𝑅 = ⌊
𝑇′ − 𝐴

𝛾 ⋅ 𝑚0
⌋ = ⌊

(𝑇 + 𝑦 ⋅ 𝑀𝐻) − 𝐴

𝛾 ⋅ 𝑚0
⌋ = ⌊𝐷 +

𝑟 + 𝑦 ⋅ 𝑀𝐻

𝛾 ⋅ 𝑚0
⌋ . 

Since 𝑟 ∈ {𝛾𝑚0 − 𝑚1 + 1, ⋯ 𝛾𝑚0 − 1}; 𝑦𝑚𝑖𝑛 = 1; and 𝑀𝐻𝑚𝑖𝑛
= 𝑚1, we obtain: 

𝑟 + 𝑦 ⋅ 𝑀𝐻

𝛾 ⋅ 𝑚0
> 1 ; 

so that 

𝑅 ≠ 𝐷 

It is shown that with the parameters set in the proposed SSS the cheating detection method is 

guaranteed to detect cheating within scheme. 

This study found that the modifications to the (k, n)-Threshold Secret Sharing Scheme (SSS) based on 

the Chinese Remainder Theorem (CRT) successfully detected cheating attempts, including collaborative 

cheating carried out by multiple participants. By integrating Threshold Range Detection and Detection 

Parameter Verification steps, the method demonstrated high accuracy in identifying cheating scenarios. 

Theoretically, these findings are supported by the fundamental principles of CRT, which enable the 

decomposition of secrets into unique interrelated fragments. Any alteration or manipulation of a single 

fragment can be detected through inconsistencies in the reconstructed secret. This aligns with modern 

cryptographic information security theories, which assert that the success of a secret sharing scheme relies 

on its resilience to manipulation by participants [21], [23]. Simulation experiments using numerical data 

showed that the system effectively prevents secret manipulation and the disclosure of false secrets, ensuring 

the scheme's reliability in safeguarding information confidentiality, even under the threat of participant 

collusion. The success of cheating detection in this study was influenced by careful parameter selection during 

the construction phase and the implementation of an effective algorithm for generating coprime numbers. 

Additionally, the use of precise Python simulations provided empirical validation for the proposed scheme. 

A deep understanding of the mathematical structure of the Chinese Remainder Theorem (CRT) was also a 

crucial factor in ensuring accurate cheating detection. 

The primary advantage of this study is its development of an innovative and comprehensive cheating 

detection method, which includes scenarios involving collaboration among cheaters. The study also retained 

the efficiency of the original scheme while enhancing its security. However, the limitation lies in the added 

complexity of implementation, such as the need for additional parameter calculations, which may increase 

execution time in scenarios with a large number of participants. The findings of this study align with 

Chattopadhyay et al., which also discussed SSS methods for addressing single points of failure in systems 

[13]. However, this study differs by focusing on collaborative cheating detection, a topic not extensively 

covered in Chattopadhyay's research. The strength of the proposed method lies in the integration of two 

detection stages—Threshold Range Detection and Detection Parameter Verification—which enables the 

identification of manipulation even when carried out by multiple participants. This approach enhances the 

accuracy of fraud detection compared to conventional methods that rely solely on verifying the reconstructed 

secret values. Compared to Ghamdi et al., the approach in this study is broader, as it not only improves 

security during the secret sharing process but also incorporates a collaborative fraud detection mechanism, 

which has not been widely implemented in CRT-based schemes [18]. Furthermore, simulation results indicate 

that the modified algorithm maintains computational efficiency equivalent to the original Asmuth-Bloom 

scheme, while offering significant added verification capabilities. In contrast, Hakeem & Kim, focused on 

key management and authentication aspects in communication systems, whereas this study emphasizes 

modifying the mathematical structure of the Asmuth-Bloom scheme to prevent and detect fraud based on 

modulus value manipulation during secret reconstruction [19]. Therefore, the proposed method makes a 

tangible contribution to enhancing cryptographic security in scenarios involving participant collusion. This 

study provides a theoretical contribution by developing a robust cheating detection method resilient to 

collaboration among dishonest participants, thereby expanding the literature on CRT-based security schemes. 

Practically, the findings can be implemented in various fields, such as banking, cryptography, and other 

digital security applications, to enhance the protection of sensitive data. By integrating this cheating detection 
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method, SSS-based applications can improve their reliability and security in increasingly complex real-world 

scenarios. 

4. CONCLUSIONS 

This study concludes that cheating in Secret Sharing Schemes (SSS) based on the Chinese Remainder 

Theorem (CRT), particularly in cases involving collaboration among multiple malicious parties, is conducted 

by manipulating secret shares to reconstruct a false secret. The proposed modification to the Asmuth-Bloom 

SSS is capable of detecting and preventing collaborative cheating through two mechanisms: Threshold Range 

Detection and Detection Parameter Verification. The effectiveness of the scheme was validated through 

numerical simulations using Python and theoretical analysis of the CRT structure. Two key metrics were 

used: (a) the consistency of the pre-share reconstruction results with the initial parameters, and (b) parameter 

verification to identify any manipulation. In scenarios without cheating, the reconstruction results fall within 

the valid range and yield an integer when divided by the parameter m₀. In contrast, manipulations lead to 

deviations in the results, which are detected by the dual mechanisms. Simulations demonstrated that even if 

a manipulated reconstruction falls within the valid range (passing the first detection mechanism), parameter 

inconsistencies will be identified by the second mechanism. This highlights the system’s resilience against 

collaborative manipulation, reinforced by the theoretical foundation of CRT, which guarantees the uniqueness 

of solutions in a system of congruences—making even minor alterations detectable. This mechanism 

enhances the reliability of CRT-based SSS in securing sensitive information without sacrificing efficiency. 

Future research may focus on optimizing computational efficiency and implementing this scheme in real-

world systems such as financial transactions, distributed databases, or blockchain technology. Further 

analysis of alternative mathematical approaches in SSS could also expand contributions to cryptographic 

security. 
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