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ABSTRACT

Let R be a commutative ring with identity and 1 is an identity element of R. The triple
identity graph of the ring R, represented by TE (R), is an undirected simple graph with
the vertex set R — {0,1}. In TE(R), two different vertices x and y is called adjacent if
there is an element z € R — {0,1}such that x.y # 1,x.z # 1,y.z # 1,and x.y.z =
1. The triple identity graph of the ring of integers modulo n, represented by TE (Z,,), is
the subject of this study. We obtain several results regarding the properties of the graph
TE(Z,), which are summarized as follows. The graph TE (Z,,) is a connected graph if
and only if nis prime and n > 5. If TE(Z,,) is connected, then diam(TE (Z,,)) = 2 and
gr(TE(Z,)) = 3. Furthermore, TE (Z,,) is a Hamiltonian graph if n is a prime number
andn >7.
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1. INTRODUCTION

Algebraic graph theory is a branch of mathematics that has developed rapidly in recent decades,
especially in the relationship between algebraic structures and graph theory. Since the introduction of zero
divisor graphs by Beck [1] in 1988, some research has been carried out to explore the properties of these
graphs and their applications in various fields. A zero-divisor graph is a graph in which the vertices are the
set of zero-divisors of a ring, and two distinct vertices are connected if their product is zero. This research
has been the starting point for many further researchers, such as Anderson & Livingston [2], Sinha and Kaur
[3], Lee and Varmazyar [4], and Nikmehr et al.[5].

Since zero-divisor graphs were introduced, many researchers have explored various aspects of these
graphs, including connectivity, diameter, and girth. Sinha and Kaur [3] showed that zero-divisor graphs are
always connected and have small diameters and girths, which indicates that this graph structure has interesting
properties for further research. In addition, Dhorajia [6] emphasizes the importance of relating graph structure
to ideals in rings, which allows the analysis of algebraic properties through the lens of graph theory. This
research shows that graphs associated with rings can provide deeper insight into the algebraic and topological
properties of the rings. Research by Nazim [7] shows how the Laplacian spectrum of a zero-divisor graph
can provide insight into the underlying ring structure. Additionally, research by Reddy et al. [8] explored the
vertex and edge connectivity of a zero-divisor graph, which provides important information about the
topological properties of the graph. This research shows that spectral analysis can be a powerful tool for
understanding the algebraic properties of rings.

The importance of investigating the graph properties of rings, such as connectivity, girth, diameter,
and Hamiltonian properties, cannot be ignored because these properties not only provide information about
the structure of the graph itself but also about the algebraic structure of the underlying ring. Connectivity
measures how well a graph can be connected, while girth, which is the length of the shortest cycle in a graph,
provides information about the complexity of the graph's structure [9]. On the other hand, the diameter
indicates the maximum distance between two vertices in a graph, which can have implications for the
efficiency of algorithms used in practical applications [10]. Research by Samei [11] shows that the diameter
and girth of a graph can provide insight into the commutative properties of rings. Hamiltonian properties,
which relate to the existence of Hamiltonian cycles in graphs, are also a main focus because they relate to
optimization problems that often arise in various applications [12].

The applications of this research are very broad. Algebraic graphs are relevant not only in pure
mathematics but also in other fields such as computer science, physics, and even biology. For example, graph
concepts can be applied in network analysis, where graph structures are used to model interactions between
various entities. Research by Wang et al. [13] showed how graph-related topological indices can be used to
understand the physicochemical properties of organic compounds. These graphs also have applications in the
fields of network theory and cryptography [14].

Along with the development of algebraic graph theory, many researchers have contributed to
broadening the understanding of graphs related to rings. For example, research by Kumar and Prakash[15]
shows how zero-divisor graphs can be extended to include complementary graphs, which provides a new
perspective in graph analysis. Additionally, research by Nikandish et al.[5] highlighted the importance of
cozero-divisor graph coloring, paving the way for further exploration in the context of algebraic graphs. This
research shows that by studying cozero-divisor graphs, we can better understand how the elements in a ring
interact and how these interactions can influence the properties of the resulting graph. Additionally, research
by Toker [16] shows that zero-divisor graphs of Catalan monoids can provide new insights into the algebraic
structure of those monoids. This research not only broadens the understanding of the algebraic properties of
rings, but also paves the way for the exploration of more complex graphs such as the triple-zero graph of a
ring [17], the triple nilpotent graph of a ring [18], and type-II triple unit graph of a ring [19].

One of the important developments in algebraic graph theory was the introduction of idempotent
graphs by Akbari et al [20], which is a generalization of zero-divisor graphs. Cahyati [21] explains how
algebraic structures and graph theory can interact with each other and how idempotent graphs can be used to
study the algebraic properties of rings. This research shows that by studying idempotent graphs, we can better
understand how the elements in a ring interact with each other and how these interactions can affect the
properties of the resulting graph. Research by Patil and Momale [22] highlights the relationship between
idempotent graphs and zero-divisor graphs, as well as how the properties of these graphs can be used to
understand more complex ring structures. In the context of idempotent graphs, research by Razaghi and
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Sahebi [23] shows how these graphs can be used to explore the algebraic properties of rings, including
connectivity, diameter, and girth. This research developed into more complex graphs, such as triple
idempotent graphs from rings [24].

Recently, Kurniawan and Ekasiwi [25] introduced the triple identity graph of a ring and provided an
algorithm for constructing and investigating the properties of this graph. For a commutative ring R, the triple
identity graph of R denoted by TE(R) is a graph with the set of vertices R* = R — {0,1}. Two different
vertices x and y in TE(R) is called adjacent if there is an element z € R — {0,1} such that x.y # 1,x.z #
1,y.z # 1,and x.y.z = 1. The properties explored in their research are only conjectures that have not been
proven. This paper explores the properties of the triple idempotent graph of the ring Z,,. Important properties
such as connectivity, diameter, girth, and Hamiltonian properties are given in the results section. By
examining the properties of the triple idempotent graph of the ring Z,, it is hoped that this article can
significantly contribute to understanding the relationship between algebraic structures and graph theory.

2. RESEARCH METHODS

This study employs a qualitative approach that combines literature review, deductive axiomatic
methods, and mathematical pattern recognition techniques. The methodology begins with a literature review
by examining references from books, journals, and scientific articles related to algebraic graph theory, graph
theory, and algebraic structures, particularly the characteristics of identity elements in a commutative ring.

The literature review serves as a critical analysis of previous studies to identify research gaps,
theoretical perspectives, and methodologies used. It provides a solid foundation for the current study by
demonstrating how it builds upon or differs from existing work.

In addition, deductive and axiomatic methods are applied to analyze graph properties based on
algebraic structures, while pattern recognition techniques are used to group graphs with similar characteristics
to identify specific patterns. These combined methods support the formulation and proof of mathematical
theorems relevant to the study.

2.1 Research Steps

The following are the steps taken in this study.

1. Study literature related to algebraic graph theory.

2. Construct graphs according to the definition and algorithm given in [25].
3. Grouping graphs based on similar properties to identify certain patterns.
4

Analyze various graph properties, such as degree of vertices, distance between vertices,
connectedness, cycles, and Hamiltonian cycles.

5. Using mathematical proof techniques to prove theorems or propositions that relate the algebraic
properties of rings and topological properties of graphs.

The research process flowchart is shown in Figure 1.

Literature Study Construct Identify
the Graphs the Patterns
Conclude Prove the Analyze.
Theorems the Properties
A
End

Figure 1. The Flowchart of the Research Process
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2.2 Basic Concepts and Notations

In this section, we give some basic concepts of graphs and the definition of the triple identity graph of
aring. An empty graph isa graph G = (V, E) where E = @, meaning there are no edges between any pair of
vertices in V. For a graph G and a vertex v € V(G), the degree of v, denoted deg (v), is the number of edges
incident with v. The minimum degree of a graph G, denoted &6(G), is the least degree among all vertices in
G. A path in a graph is a sequence of distinct vertices such that each consecutive pair of vertices is connected
by an edge. A graph G is said to be connected if there exists a path between every pair of distinct vertices in
G. The distance between two vertices u and v in a graph G, denoted d (u, v), is the length of the shortest path
between u and v. The diameter of a graph G, denoted diam(G), is the maximum distance between any two
vertices in G. A cycle is a path in which the first and last vertices are the same. The girth of a graph
G,denoted gr(G), isthe length of the shortest cycle in G. A Hamiltonian cycle is a cycle that passes through
every vertex of a graph exactly once. A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The following definition and example of the triple identity graph of a commutative ring are taken from
[25].

Definition 1. Let R be a commutative ring with identity. The triple identity graph of R denoted by TE(R) is
a graph with the set of vertices R* = R — {0, 1}. Two different vertices x and y is called adjacent if there is
anelementz € R —{0,1}suchthatx.y # 1,x.z# 1,y.z# l,and x.y.z = 1.

Since element 0 will always be an isolated vertex in all TE (R), and element 1 will always be adjacent
to any vertex that has an inverse in TE (R), they are excluded from the vertex set of TE(R).

Example 1. Let Z5 be a ring of integer modulo 5. Where Zs = {0, 1, 2, 3,4}.

Table 1. Adjacency Table of V(TE(Zs))

X y z x.y Y.z X.Z X.y.zZ
3 4 3 2 2 4 1
2 4 2 3 3 4 1

By Definition 1, so we have the vertex set of TE(Zs) is V(TE(Zs)) = {2,3,4} and by the rule of
adjacency in TE (R) we obtained E(TE(Zs)) = {(2,4), (3,4)}. The TE(Zs) is shown in Figure 2.

Figure 2. The Triple Identity Graph of Zg

3. RESULTS AND DISCUSSION

In this study, the primary object of interest is the ring of integers modulo n, denoted Z,, . Throughout
the remainder of this discussion, all references to rings shall be understood to mean Z,, unless explicitly
stated otherwise. At the beginning, still related to the connectedness property, we give a condition where the
triple identity graph of the ring Z,, becomes an empty graph. This also means that the graph is disconnected
in this condition.

Theorem 1. If n = {3, 4, 6}, then TE (Z,,) is an empty graph.

Proof. By Definition 1, the vertex set of TE(R) is R* = R — {0, 1}. Hence, |V (TE(Z,))| = n — 2. Next, it
will be proved for 3 cases.

Case 1. Forn = 3.

Given the ring Zs. Since |V(TE(Z3))| = 1, so for TE(Z5) there is no edge or TE(Zs) is an empty graph.
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Case 2. Forn = 4.

Given the ring Z,. We get V(TE(Z,)) = {2,3}. If x = 2 and y = 3, we get xy = 2, then we cannot find the
element z € V(TE(Z,)) that satisfies the adjacency condition of TE(Z,) which is xyz = 1. There are two
possibilities. The first one is for z = 2, we get xyz = 0 # 1, so it does not satisfy the adjacency condition.
The second possibility is for z = 3. Because xyz = 2 # 1, it also does not satisfy the adjacency condition.
Therefore, TE (Z,) has no edges or TE(Z,) is an empty graph.

Case 3. Forn = 6.

Given the ring Z¢. We get V(TE(Zg)) = {2,3,4,5}. The following Table 2 is presented to show the
multiplication between vertices.

Table 2. Investigation of Adjacency between Vertices in TE(Zg)

Xy zZ Xy X.Z Y.Z XY.Z

2 3 2 0 4 0 0
2 3 3 0 0 3 0
2 3 4 0 2 0 0
2 3 5 0 4 3 0
2 4 2 2 4 2 4
2 4 4 2 2 4 2
2 4 5 2 4 2 4
2 5 2 4 4 4 2
2 5 5 4 4 1 2
3 3 3 0 0 0 0
3 4 4 0 0 4 0
3 55 0 0 2 0
3 3 3 3 3 3 3
3 55 3 3 1 3
4 4 4 2 2 2 2
4 5 5 2 2 1 4

Table 2 shows that for any two distinct vertices x and y, none of them fulfill the adjacency condition
of TE(Zy). Thus, TE(Z¢) is an empty graph because it has no edges. Based on the three cases above, it is
proven that TE (Zy,) is an empty graph for TE(Z,) withn = {3,4,6}. m

The construction graph of TE (Z,) withn = {3, 4, 6} are shown in Figure 3.

PN o
o
(a) TE(Zs) (b) TE (Z4)
o
o 2]
o
(0) TE (Ze)

Figure 3. Graph TE(Z,,) withn = {3, 4, 6}
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The following lemmas will be used to support the proof of Theorem 2. This lemma guarantees that
there is a vertex in TE (Z,,) that is connected to all other vertices if n is a prime number greater than or equal
to five.

Lemma 1. If nis prime and n = 5, then there exists avertexu = n — 1 € V(TE(Z,)) that is adjacent to any
other vertices in TE (Zy,).

Proof. Let v be any vertex in TE (Z,) where n is prime and n > 5. We will prove that v is adjacent to the
vertex u =n — 1 € V(TE(Zy)). By definition, two distinct vertices are adjacent if there is an element w €
R —{0,1}suchthatu.v # 1,u.w # 1,v.w # 1,and u.v.w = 1. Consider

W) =m-Dn-1)
=n?-2n+1
= 1(mod n)

Since the inverse of u = n — 1 is itself, it follows that uv # 1 if v # u. Therefore, the condition uv #
1 with u = n — 1 and v arbitrary is satisfied. Since n is a prime then Z,, is a field. Every element in Z,, has
an inverse so that w = (uv) ™! can be determined that satisfies

uvw = uv(uv)~! = 1.

Since uv # 1 and there exists w such that uvw = 1, so u and v are adjacent. It is proved that in the ring Z,
where n is a prime and n > 5 there exists a vertex u = n — 1 € V(TE(Z,,)) that is connected to any other
vertex. m

The following theorem provides necessary and sufficient conditions for the connectedness of the
graph TE(Z,,).

Theorem 2. The graph TE (Z,,) is a connected graph if and only if n is prime and n > 3.

Proof. Given Z,, with n primes and n > 3, it will be proved that TE'((Z,,)) is a connected graph. A graph G
is said to be connected if there exists a path between any two vertices of the graph G. Since TE((Z5)) is a
graph with only one vertex, it can be said that TE (Z3) is a connected graph. Next, by Lemma 1, the TE (Z,,)
with n prime and n = 5 must have a vertex that is adjacent to all other vertices, then it is proven that TE (Z,,)
with prime n and n > 5 is a connected graph.

Furthermore, the converse will be proved by contraposition, which is if n is not prime or n < 3, then
TE(Z,,) is not connected. Since TE (R) is a graph with the vertex set R* = R — {0, 1}, then TE (Z,,) withn <
3 will not form a graph. Let n be a composite number, then Z,, contains a non-unit element. Suppose u is a
non-unit element in Z,,, then for every v € Z,, it holds uv # 1. Suppose there exists w € Z,, that satisfies
uvw = 1, then vw is the inverse of u. This contradicts that u is a non-unit element, so there will be now €
Z,, that satisfies uvw = 1. So, vertex u cannot be adjacent to any other vertex or it can be called an isolated
vertex. Since there is an isolated vertex in TE(Z,), then TE(Z,,) with n is a composite is an unconnected
graph. Thus, it is proved that TE(Z,,) is a connected graph if and only if nisprimeandn > 3. m

Example 2. Given a ring Z,. In the TE(Z-), we obtain the vertex set V(TE(Z,)) = {2,3,4,5, 6}. Based on
LLemma 1, there is a vertex u = n — 1 connected to all other vertices. In TE(Z-), the vertex is u = 6. Since
vertex 6 is connected to all other vertices, there will always be a path between any two vertices in TE (Z-).
Therefore, TE (Z,) is a connected graph. The following Figure 4. shows the graph of TE (Z,).

Figure 4. Graph TE(Z)

Next, we provide an example of a graph TE (Z,,) where n is not a prime number.
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Example 3. Given the ring Zg. In the TE(Zg) graph, we get the vertex set V(TE(Zg)) = {2,3,4,5,6,7}.
Based on Theorem 2, for n that is not a prime number, there is a vertex u that is a hon-unit element so that
u isanisolated vertex. In TE (Zg), the vertices that are non-unit elements are {2, 4, 6} so that they are isolated
vertices. Since there are isolated vertices, TE (Zg) is an unconnected graph. The following Figure 5 shows

the graph of TE (Zg).
)

{4 o
Figure 5. Graph TE(Zg)

Having shown the sufficient and necessary conditions for the connectedness of the triple identity graph,
we next explore the properties associated with connected graphs such as girth and diameter. The following
theorem shows that if the graph TE(Z,,) is connected, then its girth is equal to 3.

Theorem 3. If TE(Zy,) is a connected graph, then gr(TE(Z,,)) = 3.

Proof. If TE (Z,,) is a connected graph, then at least there are two vertices, a and b, are adjacent to each other.
Therefore, there exists ¢ € V(TE(Z,)) such that ab # 1,ac # 1,bc # 1 and abc = 1. Thus, a, b, and ¢
satisfy the adjacency conditions so a is adjacent to b and c, b is adjacent to a and c, c is adjacent to a and b,
and the cycle is obtained a — b — ¢ — a. Therefore, the girth of the graph TE(Z,) is equal to 3 or
gr(TE(Z,))=3. m

The following example shows that a connected triple identity graph has a girth of 3.

Example 4. In Figure 4, it can be seen that there is a shortest cycle in the TE (Z-) graph which consists of at
least three vertices, one of which is the cycle 2 — 3 — 6 — 2. Next, an example with a higher degree of n is
given, namely TE(Z4,). The following Figure 6 presents the graph TE (Z11).

Figure 6. Graph TE(Z11)

Figure 6 also shows that there is a shortest cycle in the graph of TE (Z,,) which has at least 3 vertices,
one of which is the cycle 2 — 3 — 10 — 2. Based on the definition of girth, it can be concluded that the graph
has a girth equal to 3.

The following theorem shows that if the graph TE(Z,,) is connected, then the diameter of the graph
TE(Z,) is 2.

Theorem 4. If TE(Z,) is a connected graph, then diam(TE(Z,)) = 2.
Proof. If TE(Z,,) is a connected graph, then by Theorem 2, n is prime and n > 3. Based on Lemma 1, we
know that vertex u = n — 1 will always be adjacent to all the other vertices in TE(Zy,). Thus, the distance

between any two vertices a and b in TE(Z,) contains only two possibilities, d(a,b) = 1 or d(a,b) = 2.
Two distinct vertices will have a distance of one if they are adjacent or directly connected, and will have a
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distance of two if there is a path through the vertex u or they are not directly connected. Therefore, we obtain
diam(TE(Z,)) =2. =

Example 5. Given a TE (Z-) graph. In Figure 4 we can see that vertex 6 is connected to all other vertices in
TE(Z,). Thus, the distance between any two vertices a and b in TE (Z-) contains two possibilities, d(a, b) =
1 or d(a,b) = 2. The distance equals 1 if they are adjacent to each other, such as vertices 2 and 3. The
distance equals 2 if there is a path between two different vertices through vertex 6. For example between
vertices 2 and 4, we have a path 2 — 6 — 4. Thus, we can conclude that the TE (Z-) graph has a diameter
equal to 2.

The following theorem states that for Z,, with n prime and n = 7, the minimum degree of TE(Z,,) is
n—4.
Theorem 5. If nis prime and n > 7, then §(TE(Z,)) = (n — 4).

Proof. Let n be a prime number with n > 7, and consider the graph TE(Z,). We aim to show that the
minimum degree of vertices in this graph is §(TE(Z,)) = (n — 4). Since n is prime, all nonzero elements
have a unique multiplicative inverse. The vertex set of TE(Z,,) is Z,, — {0,1}, hence it has n — 2 vertices.
In graph TE (Z,,), two distinct vertices a and b are adjacent if and only there exists ¢ € V(TE(Z,)) such that
ab # 1,ac # 1,bc # 1 and abc = 1.

Now consider an arbitrary vertex u € V(TE(Z,)) whereu # n — 1. Clearly, u is not adjacent to itself
since the graph is simple. Next, let us show that u is also not adjacent to its multiplicative inverse u=1.
Suppose, for contradiction, that u and u~?! are adjacent. This implies uu! # 1 which is a contradiction.
Therefore, u and u~! are not adjacent.

We now show that all other vertices v € V(TE(Z,)) — {u,u'} are adjacent to u. Let v €
V(TE(Z,)) — {u,u'} . We construct c = (uv)~1. Hence, uvc = 1. Now check the other conditions. Since

v#eEu L, uv#1. Since vl uc=v1#1. Since u#1, vc =u"t % 1. Hence, all conditions are
satisfied and v is adjacent to u. Therefore, u has exactly n — 4 neighbors, and thus deg(u) = n — 4.

Furthermore, by Lemma 1, vertex w = (n — 1) is adjacent to all other vertices in TE(Z,). Hence,
vertex w has degree (n — 3) or deg(w) = (n — 3). Thus, deg(w) > deg(u). Therefore, we conclude that
the minimum degree in TE (Z,) withn primeandn >7isn—4. m

The following theorem gives the sufficient condition of TE (Z,,) become a Hamiltonian graph.
Theorem 6. If nis prime and n > 7, then TE (Z,,) is a Hamiltonian graph.

Proof. By Dirac’s Theorem (Corollary 6.2 on [26]), a sufficient condition for a simple graph G with k > 3
vertices to be a Hamiltonian graph is if the degree of each vertex in G is at least g By Theorem 5, it is shown
that the minimum degree of TE (Z,) with n prime and n > 7 is k — 2, where k is the number of vertices. It
will be shown for the number of vertices in TE (Z,) with n prime and n > 7 that the sufficient condition is
satisfied. The number of vertices or k is n — 2, so it can be written as k = n — 2. Since the smallest n in
TE(Zy,) withn prime and n > 7 is 7, then the smallest k is 5. So,
k
2
k <2k -4
4<k

The condition k/2 < k — 2 is satisfied when k > 4, while the smallest k in TE(Z,,) with n prime and
n = 7 is 5. Therefore, the graph TE(Z,) with n prime and n > 7 satisfies the sufficient condition of the
Hamiltonian graph. Thus, we obtain if n is a prime and n > 7, then TE(Z,,) is a Hamiltonian graph. =

<k-2

Example 6. Given a graph TE(Z4,), as shown in Figure 4.7. In TE(Z,), the number of vertices is k =
|V(TE(Z11))| = 9, so the minimum number of degrees in TE(Z,1) is k —2 =9 — 2 = 7. Furthermore,
based on Theorem 2.2.1, a sufficient condition for a simple graph G with k > 3 vertices to be a Hamiltonian
graph is if the degree of each vertex in G is at least k/2. It is obtained that k/2 in TE(Z) is 9/2. Since
7 = 9/2, TE(Z4,) satisfies the sufficient condition so that TE (Z,4) is a Hamiltonian graph. Next, we show
the Hamiltonian cycle contained in TE (Z44), presented in Figure 7.
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Figure 7. The Hamiltonian Cycle of the Graph TE(Z4)

The Hamiltonian cycles contained in the TE(Z,,) graphis2 -10-9-3-8—-6—-5—-4—-7 — 2.

4. CONCLUSION

This research explores the structural properties of the triple idempotent graph of the ring Z,,. Several
results have been established. In particular, when n = {3, 4, 6}, the graph TE (Z,,) is empty. Furthermore, we
show that TE (Z,,) is a connected graph if and only if n is prime and n > 5. In such cases, the diameter of the
graph is 2 and the girth is 3. We also prove that TE (Z,,) is Hamiltonian if n is a prime number and n > 7.

While the current work has focused on several foundational graph-theoretic properties such as
connectivity, diameter, girth, and Hamiltonicity, other important characteristics of TE(Z,), including
chromatic number, domination number, cliqgue number, and planarity, have not yet been investigated.
Additionally, although many structural results involve prime moduli, the behavior of the graph for general
composite values of n remains a rich area for further exploration.

Future research may consider extending this study by analyzing the triple idempotent graph of a
commutative ring R. Investigating the spectral properties and topological indices of the triple idempotent
graph of a commutative ring could also provide deeper insights into the symmetries and invariants of these
graphs.
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