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 ABSTRACT 

Article History: 
Let 𝑅 be a commutative ring with identity and 1 is an identity element of 𝑅. The triple 

identity graph of the ring 𝑅, represented by 𝑇𝐸(𝑅), is an undirected simple graph with 

the vertex set 𝑅 − {0,1}. In 𝑇𝐸(𝑅), two different vertices 𝑥 and 𝑦 is called adjacent if 

there is an element 𝑧 ∈ 𝑅 − {0,1} such that 𝑥. 𝑦 ≠ 1, 𝑥. 𝑧 ≠ 1, 𝑦. 𝑧 ≠ 1, and 𝑥. 𝑦. 𝑧 =
 1. The triple identity graph of the ring of integers modulo 𝑛, represented by 𝑇𝐸(ℤ𝑛), is 

the subject of this study. We obtain several results regarding the properties of the graph 

𝑇𝐸(ℤ𝑛), which are summarized as follows. The graph 𝑇𝐸(ℤ𝑛) is a connected graph if 

and only if 𝑛 is prime and 𝑛 ≥ 5. If 𝑇𝐸(ℤ𝑛) is connected, then diam(𝑇𝐸(ℤ𝑛)) = 2 and 

gr(𝑇𝐸(ℤ𝑛)) = 3. Furthermore, 𝑇𝐸(ℤ𝑛) is a Hamiltonian graph if 𝑛 is a prime number 

and 𝑛 ≥ 7. 
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1. INTRODUCTION 

Algebraic graph theory is a branch of mathematics that has developed rapidly in recent decades, 

especially in the relationship between algebraic structures and graph theory. Since the introduction of zero 

divisor graphs by Beck [1]  in 1988, some research has been carried out to explore the properties of these 

graphs and their applications in various fields. A zero-divisor graph is a graph in which the vertices are the 

set of zero-divisors of a ring, and two distinct vertices are connected if their product is zero. This research 

has been the starting point for many further researchers, such as Anderson & Livingston [2], Sinha and Kaur 

[3], Lee and Varmazyar [4], and Nikmehr et al.[5]. 

Since zero-divisor graphs were introduced, many researchers have explored various aspects of these 

graphs, including connectivity, diameter, and girth. Sinha and Kaur [3] showed that zero-divisor graphs are 

always connected and have small diameters and girths, which indicates that this graph structure has interesting 

properties for further research. In addition, Dhorajia [6] emphasizes the importance of relating graph structure 

to ideals in rings, which allows the analysis of algebraic properties through the lens of graph theory. This 

research shows that graphs associated with rings can provide deeper insight into the algebraic and topological 

properties of the rings. Research by Nazim [7] shows how the Laplacian spectrum of a zero-divisor graph 

can provide insight into the underlying ring structure. Additionally, research by Reddy et al. [8] explored the 

vertex and edge connectivity of a zero-divisor graph, which provides important information about the 

topological properties of the graph. This research shows that spectral analysis can be a powerful tool for 

understanding the algebraic properties of rings. 

The importance of investigating the graph properties of rings, such as connectivity, girth, diameter, 

and Hamiltonian properties, cannot be ignored because these properties not only provide information about 

the structure of the graph itself but also about the algebraic structure of the underlying ring. Connectivity 

measures how well a graph can be connected, while girth, which is the length of the shortest cycle in a graph, 

provides information about the complexity of the graph's structure [9]. On the other hand, the diameter 

indicates the maximum distance between two vertices in a graph, which can have implications for the 

efficiency of algorithms used in practical applications [10]. Research by Samei [11] shows that the diameter 

and girth of a graph can provide insight into the commutative properties of rings. Hamiltonian properties, 

which relate to the existence of Hamiltonian cycles in graphs, are also a main focus because they relate to 

optimization problems that often arise in various applications [12]. 

The applications of this research are very broad. Algebraic graphs are relevant not only in pure 

mathematics but also in other fields such as computer science, physics, and even biology. For example, graph 

concepts can be applied in network analysis, where graph structures are used to model interactions between 

various entities. Research by Wang et al. [13] showed how graph-related topological indices can be used to 

understand the physicochemical properties of organic compounds. These graphs also have applications in the 

fields of network theory and cryptography [14]. 

Along with the development of algebraic graph theory, many researchers have contributed to 

broadening the understanding of graphs related to rings. For example, research by Kumar and Prakash[15] 

shows how zero-divisor graphs can be extended to include complementary graphs, which provides a new 

perspective in graph analysis. Additionally, research by Nikandish et al.[5] highlighted the importance of 

cozero-divisor graph coloring, paving the way for further exploration in the context of algebraic graphs. This 

research shows that by studying cozero-divisor graphs, we can better understand how the elements in a ring 

interact and how these interactions can influence the properties of the resulting graph. Additionally, research 

by Toker [16] shows that zero-divisor graphs of Catalan monoids can provide new insights into the algebraic 

structure of those monoids. This research not only broadens the understanding of the algebraic properties of 

rings, but also paves the way for the exploration of more complex graphs such as the triple-zero graph of a 

ring [17], the triple nilpotent graph of a ring [18], and type-II triple unit graph of a ring [19]. 

One of the important developments in algebraic graph theory was the introduction of idempotent 

graphs by Akbari et al [20], which is a generalization of zero-divisor graphs. Cahyati [21] explains how 

algebraic structures and graph theory can interact with each other and how idempotent graphs can be used to 

study the algebraic properties of rings. This research shows that by studying idempotent graphs, we can better 

understand how the elements in a ring interact with each other and how these interactions can affect the 

properties of the resulting graph. Research by Patil and Momale [22] highlights the relationship between 

idempotent graphs and zero-divisor graphs, as well as how the properties of these graphs can be used to 

understand more complex ring structures. In the context of idempotent graphs, research by Razaghi and 
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Sahebi [23] shows how these graphs can be used to explore the algebraic properties of rings, including 

connectivity, diameter, and girth. This research developed into more complex graphs, such as triple 

idempotent graphs from rings [24].  

Recently, Kurniawan and Ekasiwi [25] introduced the triple identity graph of a ring and provided an 

algorithm for constructing and investigating the properties of this graph. For a commutative ring 𝑅, the triple 

identity graph of 𝑅 denoted by 𝑇𝐸(𝑅) is a graph with the set of vertices 𝑅∗ = 𝑅 − {0, 1}. Two different 

vertices 𝑥 and 𝑦 in 𝑇𝐸(𝑅) is called adjacent if there is an element 𝑧 ∈ 𝑅 − {0,1} such that 𝑥. 𝑦 ≠ 1, 𝑥. 𝑧 ≠
1, 𝑦. 𝑧 ≠ 1, and 𝑥. 𝑦. 𝑧 =  1. The properties explored in their research are only conjectures that have not been 

proven.  This paper explores the properties of the triple idempotent graph of the ring ℤ𝑛. Important properties 

such as connectivity, diameter, girth, and Hamiltonian properties are given in the results section. By 

examining the properties of the triple idempotent graph of the ring ℤ𝑛, it is hoped that this article can 

significantly contribute to understanding the relationship between algebraic structures and graph theory. 

2. RESEARCH METHODS 

This study employs a qualitative approach that combines literature review, deductive axiomatic 

methods, and mathematical pattern recognition techniques. The methodology begins with a literature review 

by examining references from books, journals, and scientific articles related to algebraic graph theory, graph 

theory, and algebraic structures, particularly the characteristics of identity elements in a commutative ring. 

The literature review serves as a critical analysis of previous studies to identify research gaps, 

theoretical perspectives, and methodologies used. It provides a solid foundation for the current study by 

demonstrating how it builds upon or differs from existing work. 

In addition, deductive and axiomatic methods are applied to analyze graph properties based on 

algebraic structures, while pattern recognition techniques are used to group graphs with similar characteristics 

to identify specific patterns. These combined methods support the formulation and proof of mathematical 

theorems relevant to the study. 

2.1 Research Steps 

The following are the steps taken in this study. 

1. Study literature related to algebraic graph theory. 

2. Construct graphs according to the definition and algorithm given in [25]. 

3. Grouping graphs based on similar properties to identify certain patterns.  

4. Analyze various graph properties, such as degree of vertices, distance between vertices, 
connectedness, cycles, and Hamiltonian cycles. 

5. Using mathematical proof techniques to prove theorems or propositions that relate the algebraic 
properties of rings and topological properties of graphs. 

The research process flowchart is shown in Figure 1. 

 

Figure 1. The Flowchart of the Research Process 



2524 Kurniawan, et al.    THE TRIPLE IDENTITY GRAPH OF THE RING Zn  

 

2.2 Basic Concepts and Notations 

In this section, we give some basic concepts of graphs and the definition of the triple identity graph of 

a ring. An empty graph is a graph 𝐺 = (𝑉, 𝐸) where 𝐸 = ∅, meaning there are no edges between any pair of 

vertices in 𝑉. For a graph 𝐺 and a vertex 𝑣 ∈ 𝑉(𝐺), the degree of 𝑣, denoted deg (𝑣), is the number of edges 

incident with 𝑣. The minimum degree of a graph 𝐺, denoted 𝛿(𝐺), is the least degree among all vertices in 

𝐺. A path in a graph is a sequence of distinct vertices such that each consecutive pair of vertices is connected 

by an edge. A graph 𝐺 is said to be connected if there exists a path between every pair of distinct vertices in 

𝐺. The distance between two vertices 𝑢 and 𝑣 in a graph 𝐺, denoted 𝑑(𝑢, 𝑣), is the length of the shortest path 

between 𝑢 and 𝑣. The diameter of a graph 𝐺, denoted 𝑑𝑖𝑎𝑚(𝐺), is the maximum distance between any two 

vertices in 𝐺. A cycle is a path in which the first and last vertices are the same. The girth of a graph 

𝐺, denoted 𝑔𝑟(𝐺),  is the length of the shortest cycle in 𝐺. A Hamiltonian cycle is a cycle that passes through 

every vertex of a graph exactly once. A graph is called Hamiltonian if it contains a Hamiltonian cycle. 

The following definition and example of the triple identity graph of a commutative ring are taken from 

[25]. 

Definition 1. Let 𝑅 be a commutative ring with identity. The triple identity graph of 𝑅 denoted by 𝑇𝐸(𝑅) is 

a graph with the set of vertices 𝑅∗ = 𝑅 − {0, 1}. Two different vertices 𝑥 and 𝑦 is called adjacent if there is 

an element 𝑧 ∈ 𝑅 − {0,1} such that 𝑥. 𝑦 ≠ 1, 𝑥. 𝑧 ≠ 1, 𝑦. 𝑧 ≠ 1, and 𝑥. 𝑦. 𝑧 = 1. 

Since element 0 will always be an isolated vertex in all 𝑇𝐸(𝑅), and element 1 will always be adjacent 

to any vertex that has an inverse in 𝑇𝐸(𝑅), they are excluded from the vertex set of 𝑇𝐸(𝑅).  

Example 1. Let ℤ5 be a ring of integer modulo 5. Where  ℤ5 = {0̅, 1̅, 2̅, 3̅, 4̅}.  

Table 1. Adjacency Table of 𝑽(𝑻𝑬(ℤ5))  

𝑥 𝑦 𝑧 𝑥. 𝑦 𝑦. 𝑧 𝑥. 𝑧 𝑥. 𝑦. 𝑧 

3̅ 4̅ 3̅ 2̅ 2̅ 4̅ 1̅ 

2̅ 4̅ 2̅ 3̅ 3̅ 4̅ 1̅ 

By Definition 1, so we have the vertex set of 𝑇𝐸(ℤ5) is 𝑉(𝑇𝐸(ℤ5)) = {2̅, 3̅, 4̅} and by the rule of 

adjacency in 𝑇𝐸(𝑅) we obtained 𝐸(𝑇𝐸(ℤ5)) = {(2̅, 4̅), (3̅, 4̅)}. The 𝑇𝐸(ℤ5) is shown in Figure 2. 

 

Figure 2. The Triple Identity Graph of  ℤ𝟓 

3. RESULTS AND DISCUSSION 

In this study, the primary object of interest is the ring of integers modulo 𝑛, denoted ℤ𝑛 . Throughout 

the remainder of this discussion, all references to rings shall be understood to mean ℤ𝑛, unless explicitly 

stated otherwise. At the beginning, still related to the connectedness property, we give a condition where the 

triple identity graph of the ring ℤn becomes an empty graph. This also means that the graph is disconnected 

in this condition.  

Theorem 1. If 𝑛 = {3, 4, 6}, then 𝑇𝐸(ℤ𝑛) is an empty graph.  

Proof. By Definition 1, the vertex set of 𝑇𝐸(𝑅) is 𝑅∗ = 𝑅 − {0, 1}. Hence,|𝑉(𝑇𝐸(ℤn))| = 𝑛 − 2. Next, it 

will be proved for 3 cases. 

Case 1. For 𝑛 = 3. 

Given the ring ℤ3. Since |𝑉(𝑇𝐸(ℤ3))| = 1, so for 𝑇𝐸(ℤ3) there is no edge or 𝑇𝐸(ℤ3) is an empty graph. 
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Case 2. For 𝑛 = 4. 

Given the ring ℤ4. We get 𝑉(𝑇𝐸(ℤ4)) = {2,̅ 3̅}. If 𝑥 = 2 and 𝑦 = 3, we get 𝑥𝑦 = 2, then we cannot find the 

element 𝑧 ∈ 𝑉(𝑇𝐸(ℤ4)) that satisfies the adjacency condition of 𝑇𝐸(ℤ4) which is 𝑥𝑦𝑧 = 1. There are two 

possibilities. The first one is for 𝑧 = 2, we get 𝑥𝑦𝑧 = 0 ≠ 1, so it does not satisfy the adjacency condition. 

The second possibility is for 𝑧 = 3. Because 𝑥𝑦𝑧 = 2 ≠ 1, it also does not satisfy the adjacency condition. 

Therefore, 𝑇𝐸(ℤ4) has no edges or 𝑇𝐸(ℤ4) is an empty graph. 

Case 3. For 𝑛 = 6. 

Given the ring ℤ6. We get 𝑉(𝑇𝐸(ℤ6)) = {2̅, 3̅, 4̅, 5̅}. The following Table 2 is presented to show the 

multiplication between vertices. 

Table 2. Investigation of Adjacency between Vertices in 𝑻𝑬(ℤ𝟔)  

𝑥 𝑦 𝑧 𝑥. 𝑦 𝑥. 𝑧 𝑦. 𝑧 𝑥. 𝑦. 𝑧 

2 3 2 0 4 0 0 

2 3 3 0 0 3 0 

2 3 4 0 2 0 0 

2 3 5 0 4 3 0 

2 4 2 2 4 2 4 

2 4 4 2 2 4 2 

2 4 5 2 4 2 4 

2 5 2 4 4 4 2 

2 5 5 4 4 1 2 

3 3 3 0 0 0 0 

3 4 4 0 0 4 0 

3 5 5 0 0 2 0 

3 3 3 3 3 3 3 

3 5 5 3 3 1 3 

4 4 4 2 2 2 2 

4 5 5 2 2 1 4 

Table 2 shows that for any two distinct vertices 𝑥 and 𝑦, none of them fulfill the adjacency condition 

of 𝑇𝐸(ℤn). Thus, 𝑇𝐸(ℤ6) is an empty graph because it has no edges. Based on the three cases above, it is 

proven that 𝑇𝐸(ℤn) is an empty graph for 𝑇𝐸(ℤn) with 𝑛 = {3, 4, 6}. ∎ 

The construction graph of 𝑇𝐸(ℤn) with 𝑛 = {3, 4, 6} are shown in Figure 3. 

 

 

 

(a) 𝑇𝐸(ℤ3)  (b) 𝑇𝐸(ℤ4) 

 

(c) 𝑇𝐸(ℤ6) 

Figure 3. Graph 𝑻𝑬(ℤ𝒏) with 𝒏 = {𝟑, 𝟒, 𝟔} 



2526 Kurniawan, et al.    THE TRIPLE IDENTITY GRAPH OF THE RING Zn  

 

The following lemmas will be used to support the proof of Theorem 2. This lemma guarantees that 

there is a vertex in 𝑇𝐸(ℤ𝑛) that is connected to all other vertices if 𝑛 is a prime number greater than or equal 

to five. 

Lemma 1. If 𝑛 is prime and 𝑛 ≥ 5, then there exists a vertex 𝑢 = 𝑛 − 1 ∈ 𝑉(𝑇𝐸(ℤ𝑛)) that is adjacent to any 

other vertices in 𝑇𝐸(ℤ𝑛). 

Proof. Let 𝑣 be any vertex in 𝑇𝐸(ℤ𝑛) where 𝑛 is prime and 𝑛 ≥ 5. We will prove that 𝑣 is adjacent to the 

vertex 𝑢 = 𝑛 − 1 ∈ 𝑉(𝑇𝐸(ℤ𝑛)). By definition, two distinct vertices are adjacent if there is an element 𝑤 ∈
𝑅 − {0,1} such that 𝑢. 𝑣 ≠ 1, 𝑢. 𝑤 ≠ 1, 𝑣. 𝑤 ≠ 1, and 𝑢. 𝑣. 𝑤 = 1. Consider 

(𝑢)(𝑢) = (𝑛 − 1)(𝑛 − 1) 

= 𝑛2 − 2𝑛 + 1  

≡ 1(mod 𝑛) 

Since the inverse of 𝑢 = 𝑛 − 1 is itself, it follows that 𝑢𝑣 ≠ 1 if 𝑣 ≠ 𝑢. Therefore, the condition 𝑢𝑣 ≠
1 with 𝑢 = 𝑛 − 1 and 𝑣 arbitrary is satisfied. Since 𝑛 is a prime then ℤ𝑛 is a field. Every element in ℤ𝑛 has 

an inverse so that 𝑤 = (𝑢𝑣)−1 can be determined that satisfies 

𝑢𝑣𝑤 = 𝑢𝑣(𝑢𝑣)−1 = 1. 

Since 𝑢𝑣 ≠ 1 and there exists 𝑤 such that 𝑢𝑣𝑤 = 1, so 𝑢 and 𝑣 are adjacent. It is proved that in the ring  ℤ𝑛 

where 𝑛 is a prime and 𝑛 ≥ 5 there exists a vertex 𝑢 = 𝑛 − 1 ∈ 𝑉(𝑇𝐸(ℤ𝑛)) that is connected to any other 

vertex.  ∎ 

 The following theorem provides necessary and sufficient conditions for the connectedness of the 

graph 𝑇𝐸(ℤ𝑛). 

Theorem 2. The graph 𝑇𝐸(ℤ𝑛) is a connected graph if and only if 𝑛 is prime and 𝑛 ≥ 3. 

Proof. Given ℤ𝑛 with 𝑛 primes and 𝑛 ≥ 3, it will be proved that 𝑇𝐸((ℤ𝑛)) is a connected graph. A graph 𝐺 

is said to be connected if there exists a path between any two vertices of the graph 𝐺. Since 𝑇𝐸((ℤ3)) is a 

graph with only one vertex, it can be said that 𝑇𝐸(ℤ3) is a connected graph. Next, by Lemma 1, the 𝑇𝐸(ℤ𝑛) 

with 𝑛 prime and 𝑛 ≥ 5 must have a vertex that is adjacent to all other vertices, then it is proven that 𝑇𝐸(ℤ𝑛) 

with prime 𝑛 and 𝑛 ≥ 5 is a connected graph. 

Furthermore, the converse will be proved by contraposition, which is if 𝑛 is not prime or 𝑛 < 3, then 

𝑇𝐸(ℤ𝑛) is not connected. Since 𝑇𝐸(𝑅) is a graph with the vertex set 𝑅∗ = 𝑅 − {0, 1}, then 𝑇𝐸(ℤ𝑛) with 𝑛 <
3 will not form a graph. Let 𝑛 be a composite number, then ℤ𝑛 contains a non-unit element. Suppose 𝑢 is a 

non-unit element in ℤ𝑛, then for every 𝑣 ∈ ℤ𝑛, it holds 𝑢𝑣 ≠ 1. Suppose there exists 𝑤 ∈ ℤ𝑛 that satisfies 

𝑢𝑣𝑤 = 1, then 𝑣𝑤 is the inverse of 𝑢. This contradicts that 𝑢 is a non-unit element, so there will be no 𝑤 ∈
ℤ𝑛 that satisfies 𝑢𝑣𝑤 = 1. So, vertex 𝑢 cannot be adjacent to any other vertex or it can be called an isolated 

vertex. Since there is an isolated vertex in 𝑇𝐸(ℤ𝑛), then 𝑇𝐸(ℤ𝑛) with 𝑛 is a composite is an unconnected 

graph. Thus, it is proved that 𝑇𝐸(ℤ𝑛) is a connected graph if and only if 𝑛 is prime and 𝑛 ≥ 3.  ∎ 

Example 2. Given a ring ℤ7. In the 𝑇𝐸(ℤ7), we obtain the vertex set 𝑉(𝑇𝐸(ℤ7)) = {2, 3, 4, 5, 6}. Based on 

Lemma 1, there is a vertex 𝑢 = 𝑛 − 1 connected to all other vertices. In 𝑇𝐸(ℤ7), the vertex is 𝑢 = 6. Since 

vertex 6 is connected to all other vertices, there will always be a path between any two vertices in 𝑇𝐸(ℤ7). 
Therefore, 𝑇𝐸(ℤ7) is a connected graph. The following Figure 4. shows the graph of 𝑇𝐸(ℤ7). 

 

Figure 4. Graph 𝑻𝑬(ℤ𝟕) 

Next, we provide an example of a graph 𝑇𝐸(ℤ𝑛) where 𝑛 is not a prime number. 
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Example 3. Given the ring ℤ8. In the 𝑇𝐸(ℤ8) graph, we get the vertex set 𝑉(𝑇𝐸(ℤ8)) = {2, 3, 4, 5, 6, 7}. 
Based on Theorem 2, for 𝑛 that is not a prime number, there is a vertex 𝑢 that is a non-unit element so that 

𝑢 is an isolated vertex. In 𝑇𝐸(ℤ8), the vertices that are non-unit elements are {2, 4, 6} so that they are isolated 

vertices. Since there are isolated vertices, 𝑇𝐸(ℤ8) is an unconnected graph. The following Figure 5 shows 

the graph of 𝑇𝐸(ℤ8). 

 

Figure 5. Graph 𝑻𝑬(ℤ𝟖)  

Having shown the sufficient and necessary conditions for the connectedness of the triple identity graph, 

we next explore the properties associated with connected graphs such as girth and diameter. The following 

theorem shows that if the graph 𝑇𝐸(ℤ𝑛) is connected, then its girth is equal to 3. 

Theorem 3. If 𝑇𝐸(ℤ𝑛) is a connected graph, then 𝑔𝑟(𝑇𝐸(ℤ𝑛)) = 3. 

Proof. If 𝑇𝐸(ℤ𝑛) is a connected graph, then at least there are two vertices, 𝑎 and 𝑏, are adjacent to each other. 

Therefore, there exists 𝑐 ∈ 𝑉(𝑇𝐸(ℤ𝑛)) such that 𝑎𝑏 ≠ 1, 𝑎𝑐 ≠ 1, 𝑏𝑐 ≠ 1 and 𝑎𝑏𝑐 = 1. Thus, 𝑎, 𝑏, and 𝑐 

satisfy the adjacency conditions so 𝑎 is adjacent to 𝑏 and 𝑐, 𝑏 is adjacent to 𝑎 and 𝑐, 𝑐 is adjacent to 𝑎 and 𝑏, 

and the cycle is obtained 𝑎 − 𝑏 − 𝑐 − 𝑎. Therefore, the girth of the graph 𝑇𝐸(ℤ𝑛) is equal to 3 or 

𝑔𝑟(𝑇𝐸(ℤ𝑛)) = 3.  ∎ 

 The following example shows that a connected triple identity graph has a girth of 3. 

Example 4. In Figure 4, it can be seen that there is a shortest cycle in the 𝑇𝐸(ℤ7) graph which consists of at 

least three vertices, one of which is the cycle 2 − 3 − 6 − 2. Next, an example with a higher degree of 𝑛 is 

given, namely 𝑇𝐸(ℤ11). The following Figure 6 presents the graph 𝑇𝐸(ℤ11). 

 

Figure 6. Graph 𝑻𝑬(ℤ𝟏𝟏) 

Figure 6 also shows that there is a shortest cycle in the graph of 𝑇𝐸(ℤ11) which has at least 3 vertices, 

one of which is the cycle 2 − 3 − 10 − 2. Based on the definition of girth, it can be concluded that the graph 

has a girth equal to 3. 

The following theorem shows that if the graph 𝑇𝐸(ℤ𝑛) is connected, then the diameter of the graph 

𝑇𝐸(ℤ𝑛) is 2. 

Theorem 4. If 𝑇𝐸(ℤ𝑛) is a connected graph, then 𝑑𝑖𝑎𝑚(𝑇𝐸(ℤ𝑛)) = 2. 

Proof. If 𝑇𝐸(ℤ𝑛) is a connected graph, then by Theorem 2, 𝑛 is prime and 𝑛 ≥ 3. Based on Lemma 1, we 

know that vertex 𝑢 = 𝑛 − 1 will always be adjacent to all the other vertices in 𝑇𝐸(ℤ𝑛). Thus, the distance 

between any two vertices 𝑎 and 𝑏 in 𝑇𝐸(ℤ𝑛) contains only two possibilities, 𝑑(𝑎, 𝑏) = 1 or 𝑑(𝑎, 𝑏) = 2. 

Two distinct vertices will have a distance of one if they are adjacent or directly connected, and will have a 
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distance of two if there is a path through the vertex 𝑢 or they are not directly connected. Therefore, we obtain 

𝑑𝑖𝑎𝑚(𝑇𝐸(ℤ𝑛)) = 2.  ∎ 

Example 5. Given a 𝑇𝐸(ℤ7) graph. In Figure 4 we can see that vertex 6 is connected to all other vertices in 

𝑇𝐸(ℤ7). Thus, the distance between any two vertices 𝑎 and 𝑏 in 𝑇𝐸(ℤ7) contains two possibilities, 𝑑(𝑎, 𝑏) =
1 or 𝑑(𝑎, 𝑏) = 2. The distance equals 1 if they are adjacent to each other, such as vertices 2 and 3. The 

distance equals 2 if there is a path between two different vertices through vertex 6. For example between 

vertices 2 and 4, we have a path 2 − 6 − 4. Thus, we can conclude that the 𝑇𝐸(ℤ7) graph has a diameter 

equal to 2. 

The following theorem states that for ℤ𝑛 with 𝑛 prime and 𝑛 ≥ 7, the minimum degree of 𝑇𝐸(ℤ𝑛) is 

𝑛 − 4. 

Theorem 5. If 𝑛 is prime and 𝑛 ≥ 7, then 𝛿(𝑇𝐸(ℤ𝑛)) = (𝑛 − 4). 

Proof. Let 𝑛 be a prime number with 𝑛 ≥ 7, and consider the graph 𝑇𝐸(ℤ𝑛). We aim to show that the 

minimum degree of vertices in this graph is 𝛿(𝑇𝐸(ℤ𝑛)) = (𝑛 − 4). Since 𝑛 is prime, all nonzero elements 

have a unique multiplicative inverse. The vertex set of 𝑇𝐸(ℤ𝑛) is ℤ𝑛 − {0, 1},  hence it has 𝑛 − 2 vertices. 

In graph 𝑇𝐸(ℤ𝑛), two distinct vertices 𝑎 and 𝑏 are adjacent if and only there exists 𝑐 ∈ 𝑉(𝑇𝐸(ℤ𝑛)) such that 

𝑎𝑏 ≠ 1, 𝑎𝑐 ≠ 1, 𝑏𝑐 ≠ 1 and 𝑎𝑏𝑐 = 1. 

Now consider an arbitrary vertex 𝑢 ∈ 𝑉(𝑇𝐸(ℤ𝑛))  where 𝑢 ≠ 𝑛 − 1. Clearly, 𝑢 is not adjacent to itself 

since the graph is simple. Next, let us show that 𝑢 is also not adjacent to its multiplicative inverse 𝑢−1. 

Suppose, for contradiction, that 𝑢 and 𝑢−1 are adjacent. This implies 𝑢𝑢1 ≠ 1 which is a contradiction. 

Therefore, 𝑢 and 𝑢−1 are not adjacent. 

We now show that all other vertices 𝑣 ∈ 𝑉(𝑇𝐸(ℤ𝑛)) − {𝑢, 𝑢1} are adjacent to 𝑢. Let 𝑣 ∈

𝑉(𝑇𝐸(ℤ𝑛)) − {𝑢, 𝑢1} . We construct 𝑐 =  (𝑢𝑣)−1. Hence, 𝑢𝑣𝑐 =  1. Now check the other conditions. Since 

𝑣 ≠ 𝑢−1, 𝑢𝑣 ≠ 1. Since 𝑣 ≠ 1, 𝑢𝑐 = 𝑣−1 ≠ 1. Since 𝑢 ≠ 1, 𝑣𝑐 = 𝑢−1 ≠ 1. Hence, all conditions are 

satisfied and 𝑣 is adjacent to 𝑢. Therefore, 𝑢 has exactly 𝑛 − 4 neighbors, and thus deg(𝑢) = 𝑛 − 4. 

Furthermore, by Lemma 1, vertex 𝑤 = (𝑛 − 1) is adjacent to all other vertices in 𝑇𝐸(ℤ𝑛). Hence, 

vertex 𝑤 has degree (𝑛 − 3) or 𝑑𝑒𝑔(𝑤) = (𝑛 − 3). Thus, 𝑑𝑒𝑔(𝑤) > 𝑑𝑒𝑔(𝑢). Therefore, we conclude that 

the minimum degree in 𝑇𝐸(ℤ𝑛) with 𝑛 prime and 𝑛 ≥ 7 is 𝑛 − 4.  ∎ 

The following theorem gives the sufficient condition of 𝑇𝐸(ℤ𝑛) become a Hamiltonian graph. 

Theorem 6. If 𝑛 is prime and 𝑛 ≥ 7, then 𝑇𝐸(ℤ𝑛) is a Hamiltonian graph. 

Proof. By Dirac’s Theorem (Corollary 6.2 on [26]), a sufficient condition for a simple graph 𝐺 with 𝑘 ≥ 3 

vertices to be a Hamiltonian graph is if the degree of each vertex in 𝐺 is at least 
𝑘

2
. By Theorem 5, it is shown 

that the minimum degree of 𝑇𝐸(ℤ𝑛) with 𝑛 prime and 𝑛 ≥ 7 is 𝑘 − 2, where 𝑘 is the number of vertices. It 

will be shown for the number of vertices in 𝑇𝐸(ℤ𝑛) with 𝑛 prime and 𝑛 ≥ 7 that the sufficient condition is 

satisfied. The number of vertices or 𝑘 is 𝑛 − 2, so it can be written as 𝑘 = 𝑛 − 2. Since the smallest 𝑛 in 

𝑇𝐸(ℤ𝑛) with 𝑛 prime and 𝑛 ≥ 7 is 7, then the smallest 𝑘 is 5. So, 

𝑘

2
≤ 𝑘 − 2 

       𝑘 ≤ 2𝑘 − 4 

4 ≤ 𝑘    

The condition 𝑘/2 ≤ 𝑘 − 2 is satisfied when 𝑘 ≥ 4, while the smallest 𝑘 in 𝑇𝐸(ℤ𝑛) with 𝑛 prime and 

𝑛 ≥ 7 is 5. Therefore, the graph 𝑇𝐸(ℤ𝑛) with 𝑛 prime and 𝑛 ≥ 7 satisfies the sufficient condition of the 

Hamiltonian graph. Thus, we obtain if 𝑛 is a prime and 𝑛 ≥ 7, then 𝑇𝐸(ℤ𝑛) is a Hamiltonian graph.  ∎ 

Example 6. Given a graph 𝑇𝐸(ℤ11), as shown in Figure 4.7. In 𝑇𝐸(ℤ11), the number of vertices is 𝑘 =
|𝑉(𝑇𝐸(ℤ11))| = 9, so the minimum number of degrees in 𝑇𝐸(ℤ11) is 𝑘 − 2 = 9 − 2 = 7. Furthermore, 

based on Theorem 2.2.1, a sufficient condition for a simple graph 𝐺 with 𝑘 ≥ 3 vertices to be a Hamiltonian 

graph is if the degree of each vertex in 𝐺 is at least 𝑘/2. It is obtained that 𝑘/2 in 𝑇𝐸(ℤ11) is 9/2. Since 

7 ≥ 9/2, 𝑇𝐸(ℤ11) satisfies the sufficient condition so that 𝑇𝐸(ℤ11) is a Hamiltonian graph. Next, we show 

the Hamiltonian cycle contained in 𝑇𝐸(ℤ11), presented in Figure 7.  
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Figure 7. The Hamiltonian Cycle of the Graph 𝑻𝑬(ℤ𝟏𝟏) 

The Hamiltonian cycles contained in the 𝑇𝐸(ℤ11) graph is 2 − 10 − 9 − 3 − 8 − 6 − 5 − 4 − 7 − 2. 

4. CONCLUSION 

This research explores the structural properties of the triple idempotent graph of the ring ℤ𝑛. Several 

results have been established. In particular, when 𝑛 = {3, 4, 6}, the graph 𝑇𝐸(ℤ𝑛) is empty. Furthermore, we 

show that 𝑇𝐸(ℤ𝑛) is a connected graph if and only if 𝑛 is prime and 𝑛 ≥ 5. In such cases, the diameter of the 

graph is 2 and the girth is 3. We also prove that 𝑇𝐸(ℤ𝑛) is Hamiltonian if 𝑛 is a prime number and 𝑛 ≥ 7. 

While the current work has focused on several foundational graph-theoretic properties such as 

connectivity, diameter, girth, and Hamiltonicity, other important characteristics of 𝑇𝐸(ℤ𝑛), including 

chromatic number, domination number, clique number, and planarity, have not yet been investigated. 

Additionally, although many structural results involve prime moduli, the behavior of the graph for general 

composite values of n remains a rich area for further exploration. 

Future research may consider extending this study by analyzing the triple idempotent graph of a 

commutative ring 𝑅. Investigating the spectral properties and topological indices of the triple idempotent 

graph of a commutative ring could also provide deeper insights into the symmetries and invariants of these 

graphs. 
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