
September 2025 Volume 19 Issue 3 Page 1637-1648

BAREKENG: Journal of Mathematics and Its Applications

P-ISSN: 1978-7227 E-ISSN: 2615-3017

 https://doi.org/10.30598/barekengvol19iss3pp1637-1648

1637

THE SHOELACE ALGORITHM IN ENGINEERING: PYTHON

APPLICATIONS FOR AREA AND INERTIAL ANALYSIS

 Pankaj Dumka 1*, Dhananjay R. Mishra2

1,2Department of Mechanical Engineering, Jaypee University of Engineering and Technology

A.B. Road, Raghogarh-473226, Guna, Madhya Pradesh, India

Corresponding author’s e-mail: * p.dumka.ipec@gmail.com

ABSTRACT

Article History: The Shoelace Method is a classic mathematical formula for the determination of the area

of polygons. This method is based on the vertex coordinates of a polygon and has significant

applications in science and engineering. This article explores the method's extension to

calculate the centroids and moments of inertia of plane shapes, which is essential for
structural and mechanical analysis. By executing these calculations in Python

programming, the study shows the method's practicality and flexibility for modern

engineering tasks. The article introduces a Python-based structure using libraries like

NumPy, Shapely, and Matplotlib for enabling efficient computational modelling and
visualization. Through example problems, the versatility of the Shoelace Method in solving

real-world engineering shapes is showcased.

Received: 22nd January 2024

Revised: 10th February 2025

Accepted: 11th March 2025
Published: 1st July 2025

Keywords:

Computational Geometry;

Engineering Analysis;

Geometric Properties;

Python Programming;
Shoelace Method.

This article is an open access article distributed under the terms and conditions of

the Creative Commons Attribution-ShareAlike 4.0 International License.

How to cite this article:

P. Dumka and D. R. Mishra., “THE SHOELACE ALGORITHM IN ENGINEERING: PYTHON APPLICATIONS FOR AREA AND

INERTIAL ANALYSIS,” BAREKENG: J. Math. & App., vol. 19, no. 3, pp. 1637-1648, September, 2025.

Copyright © 2025 Author(s)

Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/

Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id

Research Article ∙ Open Access

http://creativecommons.org/licenses/by-sa/4.0/
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id

1638 Dumka, et al. THE SHOELACE ALGORITHM IN ENGINEERING: PYTHON APPLICATIONS FOR…

1. INTRODUCTION

The Shoelace Method, which is also known as the “Surveyor's Formula” or “Gauss's Area Formula”,

is a mathematical method for calculating the area of a simple polygon when the coordinates of its vertices are

known [1], [2]. The origin of the method dates back to the works of Carl Friedrich Gauss in the 18th century,

although the method's widespread use became famous in the field of surveying, where accurate calculations

of land areas are essential [3], [4]. The method is named for the way its formula involves, viz., summing and

subtracting cross-products of coordinates. That’s why it looks like the interweaving of laces, and hence the

name, Shoelace.

Over time, this method has gone beyond its original use, i.e., finding applications in structural and

mechanical analysis for calculating the key geometric properties, viz., centroids and moments of inertia [5].

These properties are fundamental to engineering design and analysis, thereby aiding in the estimation of

stability, strength, and load distribution in structures. Therefore, the Shoelace Method acts as a bridge

between geometry and engineering mechanics, offering a powerful approach to solving practical problems

that arise in engineering.

Integrating the Shoelace Method into engineering education not only enhances students’ perception of

computational geometry but also stresses the importance of algorithmic thinking in solving real-world

problems. With the growing dependence on computational tools in engineering the programming skills are

necessary [6], [7]. Among modern programming languages the Python has come out as a handy and open

tool, celebrated for its ease of use and rich system of libraries (NumPy [8]–[12], SymPy [13]–[15], Matplotlib

[16], Shapely [17], etc) that can simplify complex tasks [18].

This article presents a novel Python implementation of the Shoelace Method, presenting its application

to the calculation of centroids and moments of inertia. By utilizing Python's computational power, the

conventional Shoelace Method is changed into a dynamic tool for engineering education, which will enable

students and professionals to automate calculations and visualize results with precision and efficiency. The

proposed approach not only emphasizes the significance of programming in present engineering practices but

also displays the innovative ability of Python in increasing the understanding of foundational concepts.

2. RESEARCH METHODS

2.1 Mathematics of the Shoelace Method

The method is called a shoelace as it looks very similar to the way one ties the laces of a shoe, as shown

in Figure 1.

Figure 1. Graphical Representation of the Shoelace Problem

The method is traditionally used for computing the area of a polygon based on its vertex coordinates.

However, this method can be expanded to determine additional geometric properties such as centroids and

moments of inertia by modifying the summation process. The centroid, representing the geometric center, is

obtained by calculating the first moment of area using weighted coordinate summations, while the moment

BAREKENG: J. Math. & App., vol. 19(3), pp. 1637- 1648, September, 2025. 1639

of inertia is derived from second-order moment summations. These expansions transform the Shoelace

Method into a more comprehensive computational tool for engineering analysis.

In this section, a detailed mathematical background of the method is presented, i.e., how this can be

used to evaluate the area and the moment of inertia.

2.1.1 Formula for Area

Given a polynomial with the vertices (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛), the area can be computed by

dividing the polygon into trapezoidal strips along the x-axis [3]:

𝐴 =
1

2
|∑(𝑥𝑖𝑦𝑖+1 − 𝑦𝑖𝑥𝑖+1)

𝑛

𝑖=1

| (1)

where 𝑥𝑛+1 = 𝑥1 and 𝑦𝑛+1 = 𝑦1. This will ensure that the polynomial is closed. This formula

calculates the signed area of the trapezoids formed by the polygon edges and the x-axis. As can be seen in

Figure 2, half of the cross product of the vectors (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1) will be equal to the area of the

trapezoid they form, i.e.,
1

2
(𝑥𝑖𝑦𝑖+1 − 𝑦𝑖𝑥𝑖+1). Thus, summing all such areas will return the final area of the

full polygon.

Figure 2. Area of Trapezoid Formed by The Vectors

2.1.3 Formula for Centroid

The centroid (�̅�, �̅�) is the centre of the area of the polygon (Refer to Figure 3). Assuming uniform

distribution of area, the derivation of the formulas is as follows [19].

The x-coordinate of the centroid is determined by summing the moment contribution of small

trapezoidal areas weighted by their average x coordinate, as shown in Equation (2).

𝑥𝑐 =
1

𝐴
∑ 𝑥�̅�𝑎

𝑛
𝑖=1 (2)

Here, 𝑥�̅� is the average x-coordinate of the strip between the points (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1) as shown below:

𝑥�̅� =
𝑥𝑖+𝑥𝑖+1

2
 (3)

Since the area of each strip is:

𝐴𝑖 =
1

2
(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖) (4)

1640 Dumka, et al. THE SHOELACE ALGORITHM IN ENGINEERING: PYTHON APPLICATIONS FOR…

By substituting into the centroid formula, one can get:

𝑥𝑐 =
1

𝐴
∑ (

𝑥𝑖 + 𝑥𝑖+1

2
)

1

2
 (𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖) =

𝑛

𝑖

1

𝐴
∑ (

(𝑥𝑖 + 𝑥𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

4
)

𝑛

𝑖

(5)

Since 𝐴 is commuted using the shoelace formula, the factor of ¼ cancels out with the area’s ½ factor, resulting

in Equation (6).

�̅� =
1

6𝐴
∑(𝑥𝑖 + 𝑥𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑦𝑖𝑥𝑖+1)

𝑛

𝑖=1

 (6)

Similarly, the y centroid can also be obtained, �̅� can be obtained as follows:

�̅� =
1

6𝐴
∑(𝑦𝑖 + 𝑦𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑦𝑖𝑥𝑖+1)

𝑛

𝑖=1

 (7)

Figure 3. Representation of General 𝒙 − 𝒚 Axis and Centroidal Axis

These equations represent the first moment of the individual moments of the areas about the respective

axes. The factor of 6 in the centroid formula arises from the integration of 𝑥 and 𝑦 coordinates over the

triangular areas that make up the polygon.

2.1.3 Formula for Moment of Inertia

The moment of inertia, which is the second moment of area, is obtained by taking the moment twice.

For a polygon, it is computed as a summation of area-weighted squared distances from a reference axis.

Using a similar approach as in the centroid derivation, the moment of inertia formulas are obtained by

summing the second moment of area contributions from each polygon edge. The moment of inertia about the

x-axis and y-axis is calculated by weighting each trapezoidal strip’s contribution with the squared distance

of its centroid from the respective axis. The average squared coordinate values for each edge are computed

as
𝑦𝑖

2+𝑦𝑖𝑦𝑖+1+𝑦𝑖
2

3
 for 𝐼𝑥 and

𝑥𝑖
2+𝑥𝑖𝑥𝑖+1+𝑥𝑖

2

3
 for 𝐼𝑦. These terms account for the distribution of mass within each

segment. Thus, the resulting expressions for 𝐼𝑥 and 𝐼𝑦 as follows [19]:

𝐼𝑥 =
1

12
∑(𝑦𝑖

2 + 𝑦𝑖𝑦𝑖+1 + 𝑦𝑖+1
2)(𝑥𝑖𝑦𝑖+1 − 𝑦𝑖𝑥𝑖+1)

𝑛

𝑖=1

(8)

BAREKENG: J. Math. & App., vol. 19(3), pp. 1637- 1648, September, 2025. 1641

𝐼𝑦 =
1

12
∑(𝑥𝑖

2 + 𝑥𝑖𝑥𝑖+1 + 𝑥𝑖+1
2)(𝑥𝑖𝑦𝑖+1 − 𝑦𝑖𝑥𝑖+1)

𝑛

𝑖=1

(9)

where 𝐼𝑥 and 𝐼𝑦 are the moment of inertia about 𝑥 and 𝑦 axis respectively (Refer to Figure 3). The

factor of 12 in the moment of inertia formula comes from the integration of 𝑥2 and 𝑦2 over those same

triangular areas.

For obtaining the moment of inertia about the centroidal axis, the parallel axis theorem can be used

[20]. Thus, the respective moment of inertia about 𝑥 − 𝑥 and 𝑦 − 𝑦 axes can be obtained by using Equation

(10) and Equation (11).

𝐼𝑥𝑥 = 𝐼𝑥 − 𝐴 × 𝑦𝑐
2 (10)

𝐼𝑦𝑦 = 𝐼𝑦 − 𝐴 × 𝑥𝑐
2 (11)

2.2 Computational Complexity Analysis

The proposed algorithm for calculating area, centroid, and moment of inertia using the Shoelace

Method operates efficiently with a time complexity of 𝑂(𝑛), where 𝒏 represents the number of polygon

vertices. This efficiency is due to the method's reliance on single-pass summations over the polygon’s vertex

coordinates. Since the area, centroid, and moment of inertia computation requires a single pass over the

vertices, they also operate in 𝑂(𝑛) time. Therefore, the overall computational complexity remains 𝑂(𝑛). This

linear complexity ensures that the proposed method is highly efficient and scalable, making it suitable for

large-scale polygonal computations in engineering applications. Moreover, if the same task has to be done

with numerical integration or finite element analysis, then the time complexity will be 𝑂(𝑛2) and 𝑂(𝑛3),

respectively [21].

3. RESULT AND DISCUSSION

3.1 Modelling a Shoelace in Python

The important modules we will be using here are the Shapely and Matplotlib.pylab. The best part is

that the NumPy module (for creating arrays and for performing numerical computations) is already present

in both modules. The purpose of using Shapely is to generate the coordinates of the exterior of the polygon

in a way that will close the curve. The Pylab will help in plotting the polygon.

First, a function Polygon_xy() will be created. This will accept the (𝑥, 𝑦) coordinates of different

exterior points of the polygon. The function will plot the polygon and return the array of 𝑥 and 𝑦 coordinates.

The function Polygon_xy() is shown below as Program-1:

Program-1

 def Polygon_xy(list_of_coord):

 """

 Input: List of coordinates of polygon

 Output: Returns x and y as array

 """

 polygon = Polygon(list_of_coord)

 # Getting exterior coordinates

 x, y = polygon.exterior.xy

 pl.fill(x,y)

 pl.xlabel('X')

 pl.ylabel('Y')

 pl.grid()

 return x,y

1642 Dumka, et al. THE SHOELACE ALGORITHM IN ENGINEERING: PYTHON APPLICATIONS FOR…

Next, the function of named Area() is developed, which accepts the arrays 𝑥 and 𝑦 as arguments and

returns the area of the polygon based on Equation (1). The function is shown in Program 2 as follows:

Program-2
def Area(x,y):

 """

 Input: Arrays x and y

 Output: Area of Polygon

 """

 A = 0

 for i in range(len(x)-1):

 A += x[i]*y[i+1]-y[i]*x[i+1]

 A = abs(A)/2

 return A

Then, a function for evaluating the centroid (Centroid()) is developed. The function accepts the arrays

𝑥 and 𝑦 as arguments and returns the centroids �̅� and �̅� of the polygon based on Equation (2) and Equation

(3). The function is shown as Program 3 below:

Program-3
def Centroid(x,y):

 """

 Input: Arrays x and y

 Output: Centroids x_bar and y_bar

 """

 x_bar = 0

 y_bar = 0

 for i in range(len(x)-1):

 x_bar += (x[i]+x[i+1])*(x[i]*y[i+1]-y[i]*x[i+1])

 y_bar += (y[i]+y[i+1])*(x[i]*y[i+1]-y[i]*x[i+1])

 x_bar = abs(x_bar/(6*Area(x,y)))

 y_bar = abs(y_bar/(6*Area(x,y)))

 return x_bar, y_bar

At last, the function for Moment of Inertia is evaluated, which is named Mom_Inertia(). The function

is based on Equation (4) to Equation (7), which will return the moment of inertia about the axis 𝑥 − 𝑦 and

as well as about the centroidal axes. The function is shown in Program 4 as follows:

Program-4
def Mom_Inertia(x,y):

 Ix = 0

 Iy = 0

 for i in range(len(x)-1):

 Iy += (x[i]**2+x[i]*x[i+1]+x[i+1]**2)*(x[i]*y[i+1]-y[i]*x[i+1])

 Ix += (y[i]**2+y[i]*y[i+1]+y[i+1]**2)*(x[i]*y[i+1]-y[i]*x[i+1])

 Ix = abs(Ix/(12))

 Iy = abs(Iy/(12))

 xc,yc = Centroid(x,y)

 Ixx = Ix-Area(x,y)*yc**2

 Iyy = Iy-Area(x,y)*xc**2

 return Ix,Iy, Ixx, Iyy

BAREKENG: J. Math. & App., vol. 19(3), pp. 1637- 1648, September, 2025. 1643

To give the user the independence of writing the coordinates either in clockwise or counterclockwise

direction, the absolute values are returned in case of centroids and moment of inertia.

3.2 Application of Python Functions

In this section, two polygon problems will be solved using the function developed in the previous

section.

Problem 1: Figure 4 presents a quadrilateral, specifically a trapezoid, which is bounded by four vertices with

different coordinates. The vertices are located at (0,0), (50,0), (40,100), and (10,100), forming a closed

polygon. These coordinates define the exact dimensions of the trapezoid, enabling the calculation of its

geometric properties. Evaluate the area, centroid, and moment of inertia of the polygon.

Figure 4. Schematic of Polygon for Problem 1

The first thing that will be done here is to create the list of coordinates, then the Polygon_xy() function

will be called to get the arrays for x and y. Then, centroids x_c and y_c will be evaluated by the Centroid()

function, and finally, the Mom_Inertia() function will be used to get the moment of inertia. The program

and outputs are as follows:

Program

Define a polygon (give counterclockwise coordinates)

#list of coordinates

coordinates = [(0, 0), (10, 100), (10, 120), (40, 100), (50, 0)]

evaluation x and y

x,y = Polygon_xy(coordinates)

evaluating centroids

x_c,y_c =Centroid(x,y)

evaluating MOI

Ix, Iy, Ixx, Iyy, =Mom_Inertia(x,y)

printing results

print(f'Area = {Area(x,y)}')

print(f'x_c = {x_c}, y_c = {y_c}')

print(f'Ix = {Ix}, Iy = {Iy}\nIxx = {Ixx}, Iyy = {Iyy}')

1644 Dumka, et al. THE SHOELACE ALGORITHM IN ENGINEERING: PYTHON APPLICATIONS FOR…

Output

Figure 5. Image Generated by the Python Code for Problem 1

Figure 5 is the image generated by the code as a plot for the problem shown in Figure 4.

The value of area, centroids, and moment of inertia evaluated by the program are as follows:
Area = 4300.0

x_c = 24.651162790697676,

y_c = 50.07751937984496

Ix = 15086666.666666666,

Iy = 3201666.6666666665

Ixx = 4303307.493540052,

Iyy = 588643.410852713

Problem 2: Figure 6 depicts a composite shape constructed from three rectangles and a pentagon, with

labeled vertices and their corresponding coordinates. These coordinates define the boundaries and dimensions

of each individual shape, enabling calculation of the geometrical parameters. Evaluate the area, centroid, and

moment of inertia of the polygon.

9

Figure 6. Schematic of Polygon for Problem 2

BAREKENG: J. Math. & App., vol. 19(3), pp. 1637- 1648, September, 2025. 1645

Following the footsteps of problem 1, the solution and code are as follows:

Program

 # Define a polygon (give counterclockwise coordinates if possible)

#list of coordinates

coordinates = [(20,0), (20,10), (10,5), (5,20), (15,25),

 (25,45),(35,25), (45,20), (40,5), (30,10),

 (30,0)]

evaluation x and y

x,y = Polygon_xy(coordinates)

evaluating centroids

x_c,y_c =Centroid(x,y)

evaluating MOI

Ix, Iy, Ixx, Iyy, =Mom_Inertia(x,y)

printing results

print(f'Area = {Area(x,y)}')

print(f'x_c = {x_c}, y_c = {y_c}')

print(f'Ix = {Ix}, Iy = {Iy}\nIxx = {Ixx}, Iyy = {Iyy}')

Output

Figure 7. Image Generated by the Python Code for Problem 2

Figure 7 is the image generated by the code as a plot, which is the one shown in Figure 6. The value of

area, centroids, and moment of inertia evaluated by the program are as follows:
Area= 875.0

x_c = 25.0, y_c = 18.523809523809526

Ix = 374062.5, Iy = 614062.5

Ixx = 73822.42063492053, Iyy = 67187.5

Problem 3: Figure 8 represents an irregular polygon defined by seven vertices with given coordinates. The

shape features a combination of straight lines connecting these vertices, forming a closed boundary. The

provided coordinates define the exact dimensions and angles within the shape, which would be used to

calculate geometric properties. Evaluate the area, centroid, and moment of inertia of this polygon.

1646 Dumka, et al. THE SHOELACE ALGORITHM IN ENGINEERING: PYTHON APPLICATIONS FOR…

Figure 8. Schematic of Polygon for Problem 3

The code and the final solution to the above problem are as follows:

Program

Define a polygon (give counterclockwise coordinates if possible)

#list of coordinates

coordinates = [(30,0), (0,40), (35,50), (70,40), (35,35), (70, 15), (70,0)]

evaluation x and y

x,y = Polygon_xy(coordinates)

evaluating centroids

x_c,y_c =Centroid(x,y)

evaluating MOI

Ix, Iy, Ixx, Iyy, =Mom_Inertia(x,y)

printing results

print(f'Area = {Area(x,y)}')

print(f'x_c = {x_c}, y_c = {y_c}')

print(f'Ix = {Ix}, Iy = {Iy}\nIxx = {Ixx}, Iyy = {Iyy}')

Output

Figure 9. Image Generated by the Python Code for Problem 3

BAREKENG: J. Math. & App., vol. 19(3), pp. 1637- 1648, September, 2025. 1647

Figure 9 is the image generated by the code as a plot, which is the one shown in Figure 8. The value

of area, centroids, and moment of inertia evaluated by the program are as follows:
Area = 2112.5

x_c = 37.26824457593688, y_c = 23.68836291913215

Ix = 1585989.5833333333, Iy = 3465052.0833333335

Ixx = 400584.4222550953, Iyy = 530954.2447403027

4. CONCLUSIONS

The Shoelace Method, which was originally developed for land surveying, proves to be a powerful

tool in engineering for calculating geometric properties such as area, centroid, and moments of inertia. By

applying this method in Python, the engineers and educators gain a computationally efficient method for

solving structural and mechanical problems. The use of Python libraries like Shapely, NumPy, and Matplotlib

enables precise calculations and clear visualizations, enhancing both accuracy and comprehension. The

examples given in the manuscript have validated the method's applicability to solve complex polygons and

emphasize its potential as an educational tool in engineering programs. This integration of computational

geometry and programming forwards the algorithmic thinking, which will equip the students and

professionals to handle present engineering challenges with confidence.

REFERENCES

[1] V.A. Windarni, A. Setiawan, A. Rahmatalia, COMPARISON OF THE KARNEY POLYGON METHOD AND THE

SHOELACE METHOD FOR CALCULATING AREA, MATRIK J. Manajemen, Tek. Inform. Dan Rekayasa Komput. 23

(2023) 39–52. https://doi.org/10.30812/matrik.v23i1.2929.

[2] A. Setiawan, E. Sediyono, CALCULATION OF CENTRAL JAVA PROVINCE REGION AREA USING SHOELACE
FORMULA BASED ON THE GADM DATABASE, BAREKENG J. Ilmu Mat. Dan Terap. June 16 (2022) 597–606.

https://doi.org/10.1063/5.0103178.

[3] Y. Lee, W. Lim, Shoelace Formula: CONNECTING THE AREA OF A POLYGON AND THE VECTOR CROSS

PRODUCT, Math. Teach. 110 (2017) 631–636. https://doi.org/10.5951/mathteacher.110.8.0631.
[4] J. Gechlik, S. High, GAUSS ’ S AREA FORMULA FOR IRREGULAR SHAPES, (2024) 12–29.

[5] B. Braden, The Surveyor’s Area Formula, Coll. Math. J. 17 (1986) 326–337.

https://doi.org/10.1080/07468342.1986.11972974.

[6] B.G. Ryder, M. Lou Soffa, M. Burnett, THE IMPACT OF SOFTWARE ENGINEERING RESEARCH ON MODERN
PROGAMMING LANGUAGES, ACM Trans. Softw. Eng. Methodol. 14 (2005) 431–477.

https://doi.org/10.1145/1101815.1101818.

[7] P. Dumka, R. Chauhan, D.R. Mishra, F. Shaik, P. Govindaraj, A. Kumar, C. Sonawane, V.I. Velkin, DEVELOPMENT AND

IMPLEMENTATION OF A PYTHON FUNCTIONS FOR AUTOMATED CHEMICAL REACTION BALANCING,
Indones. J. Electr. Eng. Comput. Sci. 34 (2024) 1557–1565. https://doi.org/10.11591/ijeecs.v34.i3.pp1557-1565.

[8] J. Ranjani, A. Sheela, K. Pandi Meena, COMBINATION OF NUMPY, SCIPY AND MATPLOTLIB/PYLAB-A GOOD

ALTERNATIVE METHODOLOGY TO MATLAB-A COMPARATIVE ANALYSIS, in: Proc. 1st Int. Conf. Innov. Inf.

Commun. Technol. ICIICT 2019, 2019: pp. 1–5. https://doi.org/10.1109/ICIICT1.2019.8741475.
[9] S. Van Der Walt, S.C. Colbert, G. Varoquaux, The NumPy array: A STRUCTURE FOR EFFICIENT NUMERICAL

COMPUTATION, Comput. Sci. Eng. 13 (2011) 22–30. https://doi.org/10.1109/MCSE.2011.37.

[10] P. Dumka, R. Chauhan, A. Singh, G. Singh, D. Mishra, IMPLEMENTATION OF BUCKINGHAM ’ S PI THEOREM

USING PYTHON, Adv. Eng. Softw. 173 (2022) 103232. https://doi.org/10.1016/j.advengsoft.2022.103232.
[11] P. Mishra, P. Tewari, R. Mishra, Dhananjay, P. Dumka, INTEGRATION BASED ON MONTE CARLO SIMULATION,

Int. J. Math. Sci. Comput. 9 (2023) 58–65. https://doi.org/10.5815/ijmsc.2023.03.05.

[12] P. Mishra, P. Tewari, D.R. Mishra, P. Dumka, NUMERICAL MODELLING OF DOUBLE INTEGRATION WITH

DIFFERENT DATA SPACING : A PYTHON-BASED APPROACH, 4 (2023) 46–54.
https://doi.org/10.30511/MCS.2023.1990951.1115.

[13] A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S.B. Kirpichev, M. Rocklin, Am.T. Kumar, S. Ivanov, J.K. Moore, S. Singh,

T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry,

A.R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, A. Scopatz, SymPy: SYMBOLIC COMPUTING IN
PYTHON, PeerJ Comput. Sci. 2017 (2017) 1–27. https://doi.org/10.7717/peerj-cs.103.

[14] M. Cywiak, D. Cywiak, SymPy, in: MULTI-PLATFORM GRAPH. PROGRAM. WITH KIVY BASIC ANAL.

PROGRAM. 2D, 3D, Stereosc. Des., Apress, Berkeley, CA, 2021: pp. 173–190. https://doi.org/10.1007/978-1-4842-7113-
1_11.

[15] P. Dumka, P.S. Pawar, A. Sauda, G. Shukla, D.R. Mishra, APPLICATION OF HE’S HOMOTOPY AND PERTURBATION

METHOD TO SOLVE HEAT TRANSFER EQUATIONS: A PYTHON APPROACH, Adv. Eng. Softw. 170 (2022)

1648 Dumka, et al. THE SHOELACE ALGORITHM IN ENGINEERING: PYTHON APPLICATIONS FOR…

103160. https://doi.org/10.1016/j.advengsoft.2022.103160.

[16] V. Porcu, Matplotlib, in: PYTHON DATA MIN. Quick Syntax Ref., Apress, Berkeley, CA, 2018: pp. 201–234.

https://doi.org/10.1007/978-1-4842-4113-4_10.
[17] S. Gillies, THE SHAPELY USER MANUAL, URL Https//Pypi. Org/Project/Shapely (2013).

[18] Y.C. Huei, BENEFITS AND INTRODUCTION TO PYTHON PROGRAMMING FOR FRESHMORE STUDENTS

USING INEXPENSIVE ROBOTS, in: Proc. IEEE Int. Conf. Teaching, Assess. Learn. Eng. Learn. Futur. Now, TALE 2014,

2015: pp. 12–17. https://doi.org/10.1109/TALE.2014.7062611.
[19] C. Liu, X. Sun, Z. Li, J. Cui, CALCULATION OF SHIP FLOATING STATE BY QUASI-NEWTON ITERATION

METHOD FOR ONBOARD LOADING COMPUTER, Ships Offshore Struct. (2024) 1–10.

https://doi.org/10.1080/17445302.2024.2335438.

[20] S.P. Timoshenko, D.H. Young, ENGINEERING MECHANICS: statics, 1937.
[21] E.E. Gdoutos, NUMERICAL METHODS, Courier Corporation, 2020. https://doi.org/10.1007/978-3-030-35098-7_16.

	THE SHOELACE ALGORITHM IN ENGINEERING: PYTHON APPLICATIONS FOR AREA AND INERTIAL ANALYSIS
	ABSTRACT
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Mathematics of the Shoelace Method
	2.1.1 Formula for Area
	2.1.3 Formula for Centroid
	2.1.3 Formula for Moment of Inertia

	2.2 Computational Complexity Analysis

	3. RESULT AND DISCUSSION
	3.1 Modelling a Shoelace in Python
	3.2 Application of Python Functions

	4. CONCLUSIONS
	REFERENCES

