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ABSTRACT                                                                                                 

Article History: Smoking remains a critical global public health challenge, with both traditional tobacco use 

and the rising prevalence of e-cigarettes contributing to significant morbidity and mortality. 

This study introduces a novel mathematical model that captures the dynamics of smoking 

behavior by explicitly integrating two smoker populations: traditional tobacco users and e-
cigarette users. The model incorporates optimal control strategies aimed at prevention, via 

public health campaigns, and cessation, through smoking cessation treatments. The smoking 

model without control has two basic reproduction numbers for tobacco smokers and e-

cigarette smokers, 𝑅𝑡 and 𝑅𝑒. The extinction smoker’s equilibrium is locally asymptotically 

stable if 𝑅𝑡 < 1 and 𝑅𝑒 < 1. The extinction tobacco smokers equilibrium is locally 

asymptotically stable if 𝑅𝑡 < 𝑅𝑒 and 𝑅𝑒 > 1. The endemic equilibrium tends to be 

asymptotically stable whenever 𝑅𝑡 > 1 and 𝑅𝑒 > 1. Simulations demonstrate that 

implementing control strategies significantly reduces smoking prevalence, with the 
combined two strategies achieving the most substantial reduction. 
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1. INTRODUCTION   

In this modern era, smoking has emerged as a critical and persistent public health challenge, 

significantly contributing to global morbidity and mortality. Smoking is known to cause blocked arteries and 

increase the risk of cardiovascular diseases such as heart attacks, strokes, and other vascular complications. 

Tobacco, the primary component of cigarettes, contains nicotine, a highly addictive substance that fosters 

dependence upon consumption. The World Health Organization (WHO) identifies tobacco use as one of the 

principal risk factors for cardiovascular diseases, premature death, and global disability [1]. Alarmingly, 

recent data indicate that tobacco consumption is responsible for over 8 million deaths annually worldwide 

[2]. Despite mandatory health warnings on cigarette packaging, smoking prevalence remains high, 

highlighting the ineffectiveness of current prevention measures. 

Compounding this issue is the rising popularity of e-cigarettes, which are often perceived as a safer 

alternative to traditional tobacco products. As of now, 88 countries lack regulations on the minimum 

purchasing age for e-cigarettes [3], and only a few require a doctor’s prescription for access [4]. Public 

misconceptions about the safety of e-cigarettes have further fueled their widespread adoption. However, 

evidence shows that e-cigarettes contain toxic substances that can lead to severe health problems, including 

cancer, cardiovascular issues, respiratory diseases, brain development impairments, and learning disorders, 

particularly in adolescents [2]. The dangers of e-cigarettes are comparable to those of traditional tobacco 

products, yet public awareness of these risks remains critically low. 

Efforts to mitigate smoking behavior, such as the WHO Framework Convention on Tobacco Control's 

Article 11 provisions, mandate clear and graphic health warnings on cigarette packaging [5]. Nevertheless, 

smoking behaviors remain challenging to curtail due to the strong influence of peer groups, a key factor 

driving the spread of smoking habits. Behavioral transmission, including smoking, is influenced by complex 

factors such as media exposure, population dynamics, and evolving social norms [6]. 

Mathematical modeling offers a powerful approach to analyze and predict the dynamics of smoking 

behavior. Researchers have utilized differential equation-based models to explore various aspects of smoking 

spread and control. For instance, [4] employed an SIR (Susceptible-Infected-Recovered) framework to 

investigate peer influence on smoking initiation, while  [7] developed a model incorporating interactions 

between vulnerable populations and active smokers based on the intensity of their interactions. Additionally, 

[8] analyzed interactions between traditional smokers and e-cigarette users, and [9] integrated a population 

of tuberculosis-infected smokers into a smoking dynamics model. Furthermore, [10] and [11] introduced 

mathematical models focused on control strategies. Additionally, [12] introduced a model distinguishing 

occasional and temporary quit smokers, coupled with optimal control strategies using the Pontryagin 

maximum principle. Moreover, [13] proposed a model incorporating media campaigns as a strategy to curtail 

smoking behavior, providing insights for public health policies and optimal control measures. 

Building upon these foundational works, this study introduces a novel mathematical model to capture 

the dynamics of smoking behavior, explicitly integrating the rapidly growing population of e-cigarette users. 

Recognizing the significant health risks posed by both traditional and e-cigarettes, this model incorporates 

optimal control strategies aimed at prevention and cessation. By introducing targeted interventions for non-

smokers and active smokers, the study seeks to provide actionable insights for public health policy. This dual 

focus on prevention and treatment is expected to not only reduce smoking prevalence but also serve as a 

valuable tool for policymakers in formulating effective strategies to address the evolving landscape of 

smoking behavior. 

 

2. RESEARCH METHODS 

In this section, we present the formulation of the mathematical model both without and with the 

implementation of control strategies. The first part of the section focuses on the model's baseline structure, 

which describes the dynamics of the system without any interventions. Then, we introduce control 

mechanisms in the form of public health campaigns highlighting the dangers of smoking, along with treatment 

programs aimed at reducing smoking prevalence. 
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2.1 Model Formulation 

The population considered in this study is divided into four compartments: susceptible individuals (𝑆), 

tobacco smokers (𝐼𝑡), electronic cigarette smokers (𝐼𝑒), and individuals who have quit smoking (𝑅). Building 

upon previous studies, this research introduces a novel mathematical model that explicitly incorporates two 

distinct populations of smokers: traditional tobacco smokers and e-cigarette smokers. This dual-population 

approach is crucial, as it acknowledges the unique characteristics, health risks, and behavioral dynamics 

associated with each group. Unlike prior models that either focus solely on traditional smokers or treat all 

smoking behaviors uniformly, this model accounts for the interplay between these two populations, including 

transitions from traditional smoking to e-cigarette use. Transmission diagrams between smokers are shown 

in Figure 1. 

 
Figure 1. Compartement Diagram of the Smokers 

 

Let 𝑋 = (𝑆, 𝐼𝑡 , 𝐼𝑒, 𝑅)𝑇, we consider the following dynamical system: 

𝑑𝑆

𝑑𝑡
= Λ − 𝜇𝑆 − 𝛽1𝑆𝐼𝑡 − 𝛽2𝑆𝐼𝑒, (1) 

𝑑𝐼𝑡
𝑑𝑡

= 𝛽1𝑆𝐼𝑡 + 𝛾𝐼𝑒 + 𝜃𝑅 − (𝜇 + 𝜔 + 𝛼)𝐼𝑡, (2) 

𝑑𝐼𝑒
𝑑𝑡

= 𝛽2𝑆𝐼𝑒 + 𝛼𝐼𝑡 + 𝜎𝑅 − (𝜇 + 𝛾 + 𝜌)𝐼𝑒, (3) 

𝑑𝑅

𝑑𝑡
= 𝜔𝐼𝑡 + 𝜌𝐼𝑒 − (𝜇 + 𝜃 + 𝜎)𝑅. (4) 

With 𝑁 = 𝑆 + 𝐼𝑡 + 𝐼𝑒 + 𝑅 is the total of human population. In the smoker user model, there are several 

assumptions used as follows: 

(1) The rate of individual recruitment is constant. 

(2) Susceptible individuals can become tobacco smokers and electronic smokers. 

(3) The population of individuals who quit smoking can return to being smokers. 

(4) All parameter values are positive. 

Description and dimensions for all compartments are shown in Table 1, while Table 2  provides further 

detail about the parameter description. 

Table 1. Variables Description 

Variable Description 

𝑆(𝑡) The population of individuals is vulnerable to smoking at this time 𝑡 

𝐼𝑡(𝑡) The Population of individual tobacco smokers at the time 𝑡 

𝐼𝑒 (𝑡) The population of individuals electric cigarette smokers at the time 𝑡 

𝑅(𝑡) The population of individuals who have stopped using cigarettes at the time 𝑡 

 

 

𝛼𝐼𝑡  𝛾𝐼𝑒  

𝜔𝐼𝑡  

𝜌𝐼𝑒  
𝛽2𝑆𝐼𝑒  

𝜃𝑅 

𝜎𝑅 

 

 

 

 

           

 

 

 

 

 

 

𝜇𝑆 𝜇𝐼𝑡  

𝛽1𝑆𝐼𝑡  ʌ 
𝑆 𝐼𝑡  

𝐼𝑒  

𝑅 

𝜇𝑅 

𝜇𝐼𝑒  
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Table 2. Parameters Description  

Parameter Description 

Λ Rate of recruitment 

𝛽1 Conversion rate of individuals from potential smokers to tobacco smokers compartment 

𝛽2 Conversion rate of individuals from potential smokers to tobacco smokers compartment 

𝛼 Transmission rate from smokers moving to electric smokers 

𝛾 Transmission rate from smokers moving to tobacco smokers 

𝜌 Transmission rate from electric smokers moving to the quitter class 

𝜔 Transmission rate from tobacco smokers moving to the quitter class 

𝜃 Relapse rate of tobacco smokers 

𝜎 Relapse rate of electric smokers 

𝜇 Natural death rate 

 

2.2 Basic Reproduction Number 

To reduce the complexity of the model and facilitate the exploration of its dynamics analytically, we 

assume that the transition parameters from e-cigarette smokers to tobacco smokers can be neglected. 

Additionally, transitions from individuals who have quit smoking back to either tobacco smokers or e-

cigarette smokers are also excluded. The neglect of the transition from e-cigarette smokers to tobacco smokers 

is justified by the general observation that e-cigarette users rarely revert to tobacco smoking. This is primarily 

because e-cigarettes are perceived as a healthier or lower-risk alternative to traditional tobacco products. 

Furthermore, the transition from tobacco smokers to e-cigarette users remains included, reflecting the 

common trend of traditional smokers switching to e-cigarettes as a means to mitigate health risks or as a step 

toward reducing nicotine consumption intensity. The exclusion of individuals who have quit smoking back 

to either tobacco smokers or e-cigarette smokers is supported by the idea that individuals who have quit 

smoking tend to maintain their non-smoking status. Behavioral studies indicate that relapses are most 

common shortly after quitting and become increasingly rare among individuals who successfully maintain 

their non-smoking status over longer periods. By simplifying the model, we establish a reduced system 

intended solely for analytical analysis, with transmission diagrams shown in Figure 2 and formulated as 

follows: 

 
Figure 2. Transmission Diagrams of Reduced System 

 
𝑑𝑆

𝑑𝑡
= Λ − 𝜇𝑆 − 𝛽1𝑆𝐼𝑡 − 𝛽2𝑆𝐼𝑒, (5) 

𝑑𝐼𝑡
𝑑𝑡

= 𝛽1𝑆𝐼𝑡 − 𝑚1𝐼𝑡 , (6) 

𝑑𝐼𝑒
𝑑𝑡

= 𝛽2𝑆𝐼𝑒 + 𝛼𝐼𝑡 − 𝑚2𝐼𝑒, (7) 

𝑑𝑅

𝑑𝑡
= 𝜔𝐼𝑡 + 𝜌𝐼𝑒 − 𝜇𝑅. (8) 

𝛼𝐼𝑡  

𝜔𝐼𝑡  

𝜌𝐼𝑒  
𝛽2𝑆𝐼𝑒  

 

 

 

           

 

 

 

 

 

 

 

 

 

𝛽1𝑆𝐼𝑡  ʌ 
𝑆 𝐼𝑡  

𝐼𝑒  

𝑅 

𝜇𝐼𝑒  
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With 𝑚1 = 𝜇 + 𝜔 + 𝛼, and  𝑚2 = 𝜇 + 𝜌. 

The basic reproduction number (𝑅0) represents the expected number of secondary cases generated by 

a single infected individual during its infectious period in a completely susceptible population [14]. This 

parameter serves as a critical threshold in epidemiological modeling. Specifically, if 𝑅0 > 1, the infection is 

expected to spread within the population, potentially leading to an outbreak. Conversely, if 𝑅0 < 1, the 

infection will eventually die out [15]. 

In this model, the value of 𝑅0 is derived using the Next Generation Matrix (NGM) approach [16], 

which is constructed from the compartments representing the infected population. The NGM provides a 

systematic framework to quantify the spread of the infection by capturing transmission dynamics between 

different compartments. The matrix 𝑁𝐺𝑀𝑟 for this model is obtained as follows: 

𝑁𝐺𝑀𝑟 =

[
 
 
 

𝛽1Λ

𝜇𝑚1
0

𝛼𝛽1Λ

𝜇𝑚1𝑚2

𝛽2Λ

𝜇𝑚2]
 
 
 

. 

The basic reproduction number is defined as the largest eigenvalue of this matrix, which corresponds 

to the spectral radius; hence, we get: 

𝑅0 = max(𝑅𝑡 , 𝑅𝑒), 

with 𝑅𝑡 =
𝛽1Λ

𝜇(𝜇+𝜔+𝛼)
 and 𝑅𝑒 =

𝛽2Λ

𝜇(𝜇+𝜌)
. 

 

2.3 Equilibrium Points 

Equilibrium point is a state where the population size remains constant over time [17]. There are three 

types of equilibria in this model, namely the extinction equilibrium points of smokers, the extinction 

equilibrium points of tobacco smokers, and the endemic equilibrium. 

 

2.3.1 Extinction Equilibrium Point of Smokers  

The extinction equilibrium point of smokers represents a critical state in epidemiological models where 

the population is entirely free from smokers, serving as a baseline for analyzing disease dynamics [18]. This 

condition occurs when there is no infection [19]. At this equilibrium, there are no active smokers in the 

population, meaning that all compartments associated with the disease dynamics are zero. Mathematically, 

this condition is expressed as: 

𝐼𝑡(𝑡) = 𝐼𝑒(𝑡) = 0. 

Substituting these conditions into Equations (5) – Equation (8) in the equilibrium condition, the 

extinction equilibrium point of smokers is derived as: 

𝐸0 = (𝑆0, 𝐼𝑡
0, 𝐼𝑒

0, 𝑅0) = (
Λ

𝜇
, 0,0,0). 

 

2.3.2 Extinction Equilibrium Point of Tobacco Smokers 

The extinction equilibrium point of tobacco smokers represents a steady-state condition where tobacco 

smoking behavior is eradicated from the population, but electronic cigarette use persists over time. Unlike 

the extinction equilibrium of smokers, which occurs when the system is free from any form of smoking, this 

equilibrium describes a scenario in which the tobacco smoker compartment reaches zero while the electronic 

cigarette smoker compartment remains non-zero. Mathematically, this condition is expressed as: 

𝐼𝑡(𝑡) = 0    and   𝐼𝑒(𝑡) ≠ 0. 
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From Equation (5) – Equation (8) in the equilibrium condition, the endemic equilibrium point is derived as: 

𝐸1 = (𝑆1, 𝐼𝑡
1, 𝐼𝑒

1, 𝑅1) = (
Λ

𝜇𝑅𝑒
, 0,

𝜇(𝑅𝑒−1)

𝛽2
,
𝜌(𝑅𝑒−1)

𝛽2
). 

Thus, the equilibrium point for the extinction of tobacco smokers exists when 𝑅𝑒 > 1. 

 

2.3.3 Endemic Equilibrium Point 

The endemic equilibrium represents a steady-state condition in which the infection persists within the 

population over time [20]. Unlike the disease-free equilibrium, this state occurs when all compartments are 

non-zero, meaning that all populations coexist dynamically. Mathematically, this condition is expressed as: 

𝑆(𝑡) ≠ 0, 𝐼𝑡(𝑡) ≠ 0, 𝐼𝑒(𝑡) ≠ 0, 𝑅(𝑡) ≠ 0. 

From Equation (5) – Equation (8) in the equilibrium condition, the endemic equilibrium point is derived as: 

𝐸∗ = (𝑆∗, 𝐼𝑡
∗, 𝐼𝑒

∗, 𝑅∗), 

where: 

𝑆∗ =
Λ

𝜇 + 𝛽1𝐼𝑡
∗ + 𝛽2𝐼𝑒

∗ , 

𝐼𝑡
∗ =

𝜇𝑚2[𝑅𝑡 − 1] (1 −
𝑅𝑒

𝑅𝑡
)

𝛽1𝑚2 − 𝛽2(𝜇 + 𝜔)
, 

𝐼𝑒
∗ =

𝛼𝜇[𝑅𝑡 − 1]

𝛽1𝑚2 − 𝛽2(𝜇 + 𝜔)
, 

𝑅∗ =
𝜔𝐼𝑡

∗ + 𝜌𝐼𝑒
∗

𝜇
, 

Thus, the endemic equilibrium point exists when 𝑅𝑡 > 1, 
𝛽1𝑚2

𝛽2(𝜇+𝜔)
> 1, and 𝑅𝑒 < 𝑅𝑡 

 

2.4 Optimal Control 

In general, an optimal control problem is a problem with the aim of finding a control (𝑡) that can 

optimize (maximize or minimize) the performance index. The performance index is formulated as follows: 

𝐽 =  𝜑 (𝑥(𝑡𝑓), 𝑡𝑓 + ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡

𝑡𝑓

𝑡0

, 

with systems 

𝑑𝑥

𝑑𝑡
= �̇� =  𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡), 𝑥(𝑡0) = 𝑥0, 

where 𝑡0 and 𝑡𝑓 respectively, the initial time of control administration and the final time of administration. 

Meanwhile 𝜑 and 𝐿 are scalar functions. Control 𝑢(𝑡) is optimal control if it can optimize the performance 

index. 

Pontryagin’s maximum principle [21] establishes the first-order conditions required to identify the 

optimal solutions for control problems. The procedure for solving optimal control problems using 

Pontryagin's Maximum Principle is as follows:  

For example, given the equation of state: 

�̇� = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡), 

with 𝑥(𝑡) ∈ ℝn and 𝑢(𝑡) ∈ ℝ𝑛, and the performance index: 



BAREKENG: J. Math. & App., vol. 19(3), pp. 2003- 2016, September, 2025 2009 

 

𝐽 =  𝜑 (𝑥(𝑡𝑓), 𝑡𝑓 + ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓

𝑡0
,            

with boundary condition values  𝑥(𝑡0) = 𝑥0 and 𝑡𝑓 given, while 𝑥(𝑡𝑓) = 𝑥𝑓 is free. 

A sufficient condition for minimizing the performance index 𝐽 is to convert the state equation and 

performance index equation into the problem of minimizing the Hamiltonian function. The steps to solve 

optimal control problems with Pontryagin's Maximum Principle are as follows: 
 

1. The form of the Hamiltonian function is a combination of the function of a problem (𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡) 

and the product of the subject function in the form of a differential equation (𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)) with the 

variable co-state (𝑡). Here is the form of the Hamiltonian function: 

𝐻(𝑥(𝑡), 𝑢(𝑡), 𝛾(𝑡), 𝑡) = 𝐿 (𝑥(𝑡), 𝑢(𝑡), 𝑡) + 𝛾𝑇(𝑡)𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡). 

2. Minimize 𝐻 over all vectors 𝑢(𝑡) name 
𝜕𝐻

𝜕𝑢
= 0, so we get: 

𝑢∗(𝑡) = 𝐻∗(𝑥∗(𝑡), 𝛾∗(𝑡), 𝑡), 

3. Use the results from Step 2 in the Hamiltonian function that was formed from Step 1, so that the optimal 

𝐻∗ is obtained, namely: 

𝐻∗(𝑥∗(𝑡), 𝑢∗(𝑡), 𝛾∗(𝑡), 𝑡) = 𝐻∗(𝑥∗(𝑡), 𝛾∗(𝑡), 𝑡). 

4.  Solve the Hamiltonian function that has been formed by: 

a. The state equation is the constraint equation in the model 

�̇�(𝑡) =
𝜕𝐻

𝜕𝛾
, 

given the initial value 𝑥(𝑡0) = 𝑥0. 

b. Co-state equations associated with accumulation constraints of state variables 

�̇�(𝑡) =  −
𝜕𝐻

𝜕𝑥
, 

with the final value 𝛾(𝑡𝑓) = (
𝜕𝜑

𝜕𝑥
) |𝑡𝑓. 

5. Substitute the solutions of 𝑥∗(𝑡) and 𝛾∗(𝑡) from Step 4 into the optimal control 𝑢∗(𝑡)  obtained from 

Step 2 to obtain the optimal control. 

To mitigate the prevalence of smoking behavior, we extend the mathematical model in Equation (1) - 

Equation (4) by incorporating two control strategies: 𝑢1, representing campaigns highlighting the dangers of 

smoking, and 𝑢2, representing treatments to assist individuals in ceasing smoking behavior. These controls 

operate under the assumption that susceptible individuals are exposed to environments where smoking 

behaviors can propagate. 

Let 𝑥𝑖 = (𝑆, 𝐼𝑡 , 𝐼𝑒, 𝑅)𝑇 represent the state variables of the system. The dynamical system with control 

variables is defined as 𝑥𝑖 = (𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥))
𝑇
, with the following equations: 

𝑑𝑆

𝑑𝑡
= Λ − 𝜇𝑆 − (1 − 𝑢1)𝛽1𝑆𝐼𝑡 − (1 − 𝑢1)𝛽2𝑆𝐼𝑒, 

𝑑𝐼𝑡
𝑑𝑡

= (1 − 𝑢1)𝛽1𝑆𝐼𝑡 + 𝛾𝐼𝑒 + 𝜃𝑅 − (𝜇 + 𝜔 + 𝛼 + 𝜂𝑢2)𝐼𝑡 , 

𝑑𝐼𝑒
𝑑𝑡

= (1 − 𝑢1)𝛽2𝑆𝐼𝑒 + 𝛼𝐼𝑡 + σR − (𝜇 + 𝛾 + 𝜌 + 𝜂𝑢2)𝐼𝑒, 

𝑑𝑅

𝑑𝑡
= (𝜂𝑢2 + 𝜔)𝐼𝑡 + (𝜂𝑢2 + 𝜌)𝐼𝑒 − (𝜇 + 𝜃 + 𝜎)𝑅. 

The objective is to minimize the number of smokers (𝐼𝑡 and 𝐼𝑒) while balancing the costs associated 

with the control measures. To achieve this, we define the following objective function:  

𝐽(𝑢1, 𝑢2) = min
𝑢1,𝑢2

∫ [𝐶1𝐼𝑡 + 𝐶2𝐼𝑒 +
1

2
𝐶3𝑢1

2 +
1

2
𝐶4𝑢2

2]
𝑡𝑓

0
 𝑑𝑡,  
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where 𝐶1 and 𝐶2 are weighting parameters for the state variables 𝐼𝑡 and 𝐼𝑒, respectively, and 𝐶3 and 𝐶4 are 

weighting parameters for the control variables 𝑢1 and 𝑢2. The control set is defined as                                               

𝑢∗ = {(𝑢1, 𝑢2) ∶ 0 ≤ 𝑢1, 𝑢2 ≤ 1}. Pontryagin’s maximum principle [22] provides the first-order condition to 

determine the optimal solutions of the control problems. If the Hamiltonian function fulfills the state equation, 

the costate equation, and the stationarity condition, it will yield an optimal solution based on Pontryagin's 

principle [21]. To solve the optimization problem, we introduce the Hamiltonian function: 

𝐻 = 𝐶1𝐼𝑡 + 𝐶2𝐼𝑒 +
1

2
𝐶3𝑢1

2 +
1

2
𝐶4𝑢2

2 + ∑ 𝜆𝑖𝑥𝑖

4

i=1

, 

where 𝜆𝑖 = (𝜆1, 𝜆2, 𝜆3, 𝜆4)
𝑇 are the adjoint (or costate) variables. The adjoint equations are derived as: 

𝜆1̇ = −
𝜕𝐻

𝜕𝑆
= (𝜆1 − 𝜆2)(1 − 𝑢1)𝛽1𝐼𝑡 + (𝜆1 − 𝜆3)(1 − 𝑢1)𝛽2𝐼𝑒 + 𝜆1𝜇, 

𝜆2̇ = −
𝜕𝐻

𝜕𝐼𝑡
= −𝐶1 + (𝜆1 − 𝜆2)(1 − 𝑢1)𝛽1𝑆 + (𝜆2 − 𝜆3)𝛼 + (𝜆2 − 𝜆4)(𝜔 + 𝜂𝑢2) + 𝜆2𝜇, 

𝜆3̇ = −
𝜕𝐻

𝜕𝐼𝑒
= −𝐶2 + (𝜆1 − 𝜆3)(1 − 𝑢1)𝛽2𝑆 + (𝜆3 − 𝜆2)𝛾 + (𝜆3 − 𝜆4)(𝜌 + 𝜂𝑢2) + 𝜆3𝜇, 

𝜆4̇ = −
𝜕𝐻

𝜕𝑅
= (𝜆4 − 𝜆2)𝜃 − (𝜆4 − 𝜆3)𝜎 + 𝜇𝜆4, 

with the transversal condition 𝜆𝑖(𝑡𝑒𝑛𝑑) = 0. 

The optimal controls 𝑢1 and 𝑢2 satisfy the stationary condition 
𝜕𝐻

𝜕𝑢𝑖
= 0, yielding: 

𝑢1 =
(𝜆2 − 𝜆1)𝛽1𝑆𝐼𝑡 + (𝜆3 − 𝜆1)𝛽2𝑆𝐼𝑒

𝐶3
, 

𝑢2 =
(𝜆2 − 𝜆4)𝜂𝐼𝑡 + (𝜆3 − 𝜆4)𝜂𝐼𝑒

𝐶4
. 

To ensure the controls remain within the feasible range, the solutions are projected as: 

𝑢1
∗ = max {0, min (1,

(𝜆2 − 𝜆1)𝛽1𝑆𝐼𝑡 + (𝜆3 − 𝜆1)𝛽2𝑆𝐼𝑒
𝐶3

)} , 

𝑢2
∗ = max {0, min (1,

(𝜆2 − 𝜆1)𝜂𝐼𝑡 + (𝜆3 − 𝜆1)𝜂𝐼𝑒
𝐶4

)}. 

To substitute the optimal control equation into the Hamiltonian equation to obtain the optimal 

Hamiltonian 𝐻. Determine the state equation in the optimal state: 

�̇� =
𝜕𝐻

𝜕𝜆1
= Λ + −𝜇𝑆 − (1 − 𝑢1)𝛽1𝑆𝐼𝑡 − (1 − 𝑢1)𝛽2𝑆𝐼𝑒, 

𝐼�̇� =
𝜕𝐻

𝜕𝜆3
= (1 − 𝑢1)𝛽1𝑆𝐼𝑡 + 𝛾𝐼𝑒 + 𝜃𝑅 − (𝜇 + 𝜔 + 𝛼 + 𝜂𝑢2)𝐼𝑡 , 

𝐼�̇� =
𝜕𝐻

𝜕𝜆4
= (1 − 𝑢1)𝛽2𝑆𝐼𝑒 + 𝛼𝐼𝑡 + σR − (𝜇 + 𝛾 + 𝜌 + 𝜂𝑢2)𝐼𝑒, 

�̇� =
𝜕𝐻

𝜕𝜆5
= (𝜂𝑢2 + 𝜔)𝐼𝑡 + (𝜂𝑢2 + 𝜌)𝐼𝑒 − 𝜇𝑅. 

Once the state equation is obtained, the next step is to derive the co-state equation. The co-state 

equation is the result of taking the partial derivative of the Hamiltonian function with respect to the 

system’s variables. The co-state equation is calculated as follows: 

𝜆1̇ = −
𝜕𝐻

𝜕𝑆
=  (𝜆1 − 𝜆2)𝜀𝑀 + (𝜆1 − 𝜆3)(1 − 𝑢1)𝛽1𝐼𝑡 + (𝜆1 − 𝜆4)(1 − 𝑢1)𝛽2𝐼𝑒 + 𝜆1𝜇, 

𝜆2̇ = −
𝜕𝐻

𝜕𝐼𝑡
− 𝐶1 + (𝜆1 − 𝜆3)(1 − 𝑢1)𝛽1𝑆 + (𝜆3 − 𝜆4)𝛼 + (𝜆3 − 𝜆5)(𝜔 + 𝜂𝑢2) + 𝜆3𝜇 − 𝜆6𝜏, 

𝜆3̇ = −
𝜕𝐻

𝜕𝐼𝑒
− 𝐶2 + (𝜆1 − 𝜆4)(1 − 𝑢1)𝛽2𝑆 + (𝜆4 − 𝜆3)𝛾 + (𝜆4 − 𝜆5)(𝜌 + 𝜂𝑢2) + 𝜆4𝜇 − 𝜆6𝜏, 
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𝜆4̇ = −
𝜕𝐻

𝜕𝑅
= (𝜆5 − 𝜆3)𝜃 + (𝜆5 − 𝜆4)𝜎 + 𝜆5𝜇. 

         

3. RESULTS AND DISCUSSION 

3.1 Stability Analysis of Equilibrium Point 

This section conducts a stability analysis of the three equilibrium points previously identified. The 

purpose of this stability analysis is to understand the dynamic properties of each equilibrium point and the 

conditions influencing their persistence. To analyze stability, an analytical method is applied using the 

eigenvalue approach on the Jacobian matrix for the smoker-free and tobacco-smoker-free equilibrium points. 

Additionally, a numerical approach is employed to assess the stability of the endemic equilibrium. This 

approach enables a detailed exploration of the model's dynamics, particularly in scenarios where analytical 

solutions are challenging to obtain. 

 

3.1.1 Local Stability of the Extinction Equilibrium Point of Smokers 

The local stability of the extinction equilibrium point of smokers is obtained by substituting the value 

of this equilibrium (𝐸0) into the Jacobian matrix as follows: 

𝐽(𝐸0) =

(

 
 
 

−𝜇 −
𝛽1Λ

𝜇
−

𝛽2Λ

𝜇
0

0
𝛽1Λ

𝜇
− 𝑚1 0 0

0 𝛼
𝛽2Λ

𝜇
− 𝑚2 0

0 𝜔 𝜌 −𝜇)

 
 
 

. 

From the matrix 𝐽(𝐸0), we will look for the characteristic equation with |𝜆𝐼 − 𝐽(𝐸0)|, such that we 

obtain: 

(𝜆 + 𝜇)2 (𝜆 + 𝑚1 −
𝛽1Λ

𝜇
) (𝜆 + 𝑚2 −

𝛽2Λ

𝜇
) = 0, (9) 

From Equation (9), we have the eigenvalues 𝜆1 = 𝜆2 = −𝜇, which are negative, also  

𝜆3 = 𝑚1[𝑅𝑡 − 1], which is negative when 𝑅𝑡 < 1, and 𝜆4 = 𝑚2[𝑅𝑒 − 1], which is negative when 𝑅𝑒 < 1. 

Therefore, the extinction equilibrium point of smokers will be locally asymptotically stable if 𝑅𝑡 < 1 and 

𝑅𝑒 < 1. The foregoing discussion could be summarized in the following theorem. 

Theorem 1. The extinction equilibrium point of smokers (𝐸0) of the system is locally asymptotically stable 

if 𝑅𝑡 < 1 and 𝑅𝑒 < 1. 

 

3.1.2 Local Stability of the Extinction Equilibrium Point of Tobacco Smokers 

The local stability of the extinction equilibrium point of tobacco smokers is obtained by substituting 

the value of this equilibrium (𝐸1) into the Jacobian matrix as follows: 

𝐽(𝐸1) =

(

 
 
 
 

−𝜇𝑅𝑒 −
𝛽1Λ

𝜇𝑅𝑒
−

𝛽2Λ

𝜇𝑅𝑒
0

0
𝛽1Λ

𝜇𝑅𝑒
− 𝑚1 0 0

𝜇(𝑅𝑒 − 1) 𝛼
𝛽2Λ

𝜇𝑅𝑒
− 𝑚2 0

0 𝜔 𝜌 −𝜇)

 
 
 
 

. 
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From the matrix 𝐽(𝐸1), we will look for the characteristic equation with |𝜆𝐼 − 𝐽(𝐸0)|, such that we 

obtain: 

(𝜆 + 𝜇) (𝜆 + 𝑚1 −
𝛽1Λ

𝜇𝑅𝑒
) (𝜆2 + (𝜇𝑅𝑒)𝜆 + 𝜇𝑚2(𝑅𝑒 − 1)) = 0, (10) 

From Equation (10), we have the eigenvalues 𝜆1 = −𝜇, which is negative, 𝜆2 = 𝑚1 [
𝑅𝑡

𝑅𝑒
− 1], which 

is negative when 𝑅𝑡 < 𝑅𝑒, and the remainder are the roots of the following equation: 

𝜆2 + (𝜇𝑅𝑒)𝜆 + 𝜇𝑚2(𝑅𝑒 − 1) (11) 

By using the Routh-Hurwitz criterion, the characteristic Equation (11) will have roots with negative 

real parts if and only if  𝜇𝑅𝑒, 𝜇𝑚2(𝑅𝑒 − 1) > 0. It is clear that 𝜇𝑅𝑒 > 0, while 𝜇𝑚2(𝑅𝑒 − 1) > 0 if 𝑅𝑒 > 1. 

Therefore, the extinction equilibrium point of tobacco smokers will be locally asymptotically stable if  

𝑅𝑡 < 𝑅𝑒 and 𝑅𝑒 > 1. The foregoing discussion could be summarized in the following theorem. 

 

Theorem 2. The extinction equilibrium point of tobacco smokers (𝐸1) of the system is locally asymptotically 

stable if 𝑅𝑡 < 𝑅𝑒 and 𝑅𝑒 > 1. 

 

3.1.3 Stability of Endemic Equilibrium Point  

Due to the analytical complexity of determining the stability of the endemic equilibrium, we investigate 

its stability through numerical methods. In this simulation, we employ three different initial conditions while 

keeping the parameter values constant to observe the convergence of the trajectories over an extended period.  

This simulation uses the parameter set from Table 3 and initial population values from Table 4.  

Table 3. Parameters Value for Simulation  

Parameter Value for Endemic Condition Reference 

Λ 20 [13] 

𝛽1 0.0000007 Assumed 

𝛽2 0.00000005 [13] 

𝛼 0.05 Assumed 

𝛾 0.05 Assumed 

𝜌 0.01 [13] 

𝜔 0.01 [13] 

𝜃 0.06 [13] 

𝜎 0.06 [13] 

𝜇 0.00005479 [13] 

 

Table 4. Initial Value for Phase Field Simulation  

Initial Value 𝑺(𝟎) 𝑰𝒕(𝟎) 𝑰𝒆(𝟎) 𝑹(𝟎) Color 

𝑧1 1,000 200 1,000 20,000 Red 

𝑧2 2,000 100 3,000 10,000 Green 

𝑧3 4,000 300 5,000 30,000 Blue 

To provide a more comprehensive understanding of the system, this simulation focuses on the 𝐼𝑡, 𝐼𝑒, 

and 𝑅 populations. This three-dimensional representation captures the trajectories of the system as it evolves 

towards equilibrium. The visualization clearly differentiates between the three primary equilibrium states: 

the extinction equilibirum point of smokers (𝐼𝑡 = 𝐼𝑒 = 𝑅 = 0), extinction equilibrium point of tobacco 
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smokers (𝐼𝑡 = 0, 𝐼𝑒, 𝑅 ≠ 0) and the endemic equilibrium (𝐼𝑡 , 𝐼𝑒, 𝑅 ≠ 0). The results of the simulation are 

illustrated in Figure 3.  

 

Figure 3. Phase Field Simulation 

By substituting the parameter values from Table 3, we get 𝑅𝑡 = 4.25 and 𝑅𝑒 = 1.82. Since 

 𝑅0 = max{𝑅𝑡 , 𝑅𝑒}, hence the value of 𝑅0 for these parameter values is found to be 𝑅0 = 4.25 > 1. 

Next, by solving the system of Equation (5) - Equation (8) with the given parameter values, three 

equilibrium points are obtained: 

𝐸0 = (𝑆; 𝐼𝑡; 𝐼𝑒; 𝑅) = (3.65 × 105; 0;  0;  0) 

𝐸1 = (𝑆; 𝐼𝑡; 𝐼𝑒; 𝑅) = (2.01 × 105; 0;  893;  1.63 × 105) 

𝐸∗ = (𝑆; 𝐼𝑡; 𝐼𝑒; 𝑅) = (8.58 × 104; 157;  1364;  2.78 × 105) 

𝐸1 exists because 𝑅𝑒 = 1.82 > 1. Similarly 𝐸∗ exists because 𝑅𝑡 = 4.25 > 1, 
𝛽1𝑚2

𝛽2(𝜇+𝜔)
= 14.00 > 1 and 

𝑅𝑒 = 1.82 < 4.25 = 𝑅𝑡. Furthermore, based on Figure 3, we observe that when the asymptotic stability 

conditions for 𝐸0 dan 𝐸1 are not satisfied, and 𝐸∗ exists, the endemic equilibrium point tends to be 

asymptotically stable. 

 

3.2 Optimal Control Simulation  

This optimal control problem is numerically solved using the forward-backward sweep method [23]. 

Numerical simulations were conducted to evaluate the effectiveness of two control strategies aimed at 

reducing smoking prevalence: public campaigns highlighting the dangers of smoking (𝑢1) and smoking 

cessation treatments (𝑢2). Using the parameter values in Table 3, except 𝛽1 = 0.00000007. The results, 

presented in Figure 4 and Figure 5, illustrate the dynamics of tobacco smokers (𝐼𝑡) and electronic cigarette 

smokers (𝐼𝑒) under four scenarios: without control, with a single control (𝑢1 or 𝑢2), and with combined 

controls (𝑢1,𝑢2). 
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(a)    (b) 

Figure 4. Optimal Control Simulation of (a) Tobacco Smoker and (b) E-Cigarette Smoker Population 

 

  
(a) (b) 

 
(c) 

Figure 5. Control Profile of (a) Single 𝒖𝟏, (b) Single 𝒖𝟐 and (c) Combination 𝒖𝟏 and 𝒖𝟐 

 From the simulation results, it is evident that the controls 𝑢1, 𝑢2, and the combination (𝑢1, 𝑢2) 

significantly reduce the prevalence of smoking within the population. The combined control strategy was 

particularly effective, demonstrating the potential to achieve both prevention (through campaigns) and 

cessation (through treatments).  
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Table 5. Comparison of Cost Function Values for Three Strategies 

Strategy Cost Function Value (Hundred Rupiah) 

Single Control 𝑢1 2.1457 × 107 

Single Control 𝑢2 6.9344 × 106 

Combination Controls 𝑢1 and 𝑢2 3.8512 × 106 

 

Table 5 summarizes the cost function value for each control strategy. The findings indicate that the 

combined control strategy achieved the most significant reduction in smoking prevalence. However, the 

single controls also showed substantial effectiveness, particularly in targeting specific smoking behaviors.  

These findings emphasize the importance of implementing both preventive and cessation-oriented 

interventions as a comprehensive approach to reducing smoking prevalence. Public health authorities can 

leverage these results to design targeted strategies that address the spread of smoking behavior in diverse 

populations. 

 

4. CONCLUSIONS 

This study presents a refined mathematical model to capture the intricate dynamics of smoking 

behavior, incorporating both traditional tobacco smokers and e-cigarette users. The model employs optimal 

control strategies: 𝑢1, representing prevention campaigns, and 𝑢2, representing cessation treatments, to assess 

their effectiveness in reducing smoking prevalence. Stability analysis, with the assumption of neglecting the 

transition parameters from e-cigarette smokers to tobacco smokers and transitions from individuals who have 

quit smoking back to either tobacco smokers or e-cigarette smokers, results in three equilibrium points.  The 

extinction equilibrium of smokers is locally asymptotically stable if 𝑅𝑡 < 1 and 𝑅𝑒 < 1. The extinction 

equilibrium of tobacco smokers of the system is locally asymptotically stable if 𝑅𝑡 < 𝑅𝑒  and 𝑅𝑒 > 1. The 

endemic equilibrium point tends to be asymptotically stable when this equilibrium exists. Simulation results 

demonstrated that while individual strategies 𝑢1 and 𝑢2 significantly reduce smoking rates, their combined 

implementation achieves the most substantial overall reduction. These findings highlight the critical role of 

integrated prevention and cessation efforts in controlling smoking behavior. By addressing both traditional 

and emerging forms of smoking, such as e-cigarette use, this model offers valuable insights for public health 

policymakers. It underscores the importance of implementing comprehensive strategies to curb smoking 

prevalence, ultimately contributing to better health outcomes on a global scale. 
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