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1. INTRODUCTION 

Graph theory is used to represent discrete objects and their relationships. In recent years, it has been 

widely applied to algebraic structures such as groups and rings. One significant approach is the use of 

topological indices to analyze graph representations of these structures. These indices, which assign 

numerical values to graphs, provide insights into connectivity, distance, and complexity. The coprime graph, 

introduced by Ma [1], was later extended to the generalized quaternion group by Nurhabibah, who also 

studied its numerical invariants [2]. Conversely, the non-coprime graph, which connects elements with a 

greatest common divisor greater than one, has been analyzed for its spectral and structural properties [3],[4], 

[5], [6]. 

The energy of a graph is defined as the sum of the absolute values of the eigenvalues of its adjacency 

matrix . This concept provides a bridge between algebraic graph theory and spectral graph theory, offering 

insight into the structural and spectral properties of graphs [7]. Over the years, various generalizations and 

variants of graph energy have been proposed, including degree-based graph energies such as the Degree 

Square Sum Energy (DSSE) [8], [9] the Degree Exponent Energy (DEE) [10], and the Degree Exponent Sum 

Energy (DESE) [11]. These indices aim to capture different structural characteristics of graphs by utilizing 

vertex degree information raised to various powers, thus extending the analysis beyond traditional spectral 

properties. 

In graph theory, the concept of graph energy is an important approach to understanding the spectral 

properties of graphs, particularly those related to the adjacency matrix and the eigen spectrum of the graph 

[12],[13]. The intriguing variant in the development of graph energy is DSSE,DEE and DESE. This concept 

arises as an effort to broaden the scope of graph energy analysis by considering the degrees of the graph’s 

vertices. 

DSSE is defined based on the Degree Square Sum Matrix (DSSM) of a graph G, which is a matrix where 

each element is determined by the square of the sum of the degrees of the connected vertex pairs [14]. The 

DSSE  differs from the traditional adjacency matrix because its elements not only represent the connections 

between vertices but also weigh these connections based on the squared degrees of the corresponding 

vertices. Mathematically, the DSSE is calculated as the sum of the absolute values of the eigenvalues derived 

from the DSSM [15],[16]. 

DEE is defined as the sum of the absolute values of the eigenvalues of the Degree Exponent Matrix 

(DEM). By incorporating exponents in the matrix, DEE provides a novel way to analyze the spectral energy 

distribution of graphs, emphasizing the influence of vertex degrees. This approach offers deeper insights into 

how the local structure of vertices (via their degrees) impacts the global properties of the graph [17]. 

DESE extends the concept of graph energy by considering the Degree Exponent Sum (DES), which is 

obtained from the sum of the exponentiated vertex degrees in a graph. This approach offers several 

advantages, such as a direct relationship with the topological properties of the graph and potential 

applications in fields like network theory, bioinformatics, and communication network engineering [18], 

[19],[20]. 

This article will formulate the DSSE, DEE, and DESE on the coprime graph of the generalized quaternion 

group. Research on the energy of quaternion groups in their coprime graphs is intriguing because it combines 

two significant fields: group theory and spectral graph theory. Quaternion groups possess a unique structure 

compared to ordinary abelian groups, resulting in coprime graphs with distinct spectral characteristics. 

2. RESEARCH METHODS 

This research is a study that using a literature review of previous studies to formulate the new theorem. 

The research begins with a literature review, followed by deriving the general formula for the DSSE,DEE and 

DESE of the coprime graph on generalized quaternion group, generalized for several cases of 𝑛. Subsequently, 

a conjecture is formulated, and the conjecture is proven. If the conjecture is validated, it is then established 

as a theorem. 

Several references utilized in this study are as follows: 

Definition 1.[21] A generalized quaternion group 𝑄4𝑛 is a group presented as: 



BAREKENG: J. Math. & App., vol. 20(1), pp. 0031- 0040, Mar, 2026.     33 

 

〈𝑥, 𝑦 ∣ 𝑥2𝑛 = 𝑒, 𝑥𝑛 = 𝑦2, 𝑦−1𝑥𝑦 = 𝑥−1〉. (1) 

In this group, 𝑒 is an identity element, 𝑛 ≥ 2, 𝑥𝑘𝑦 = 𝑦𝑥−𝑘 and the order of 𝑥𝑘𝑦 is 4 for every positive 

integer 𝑘. For example, 𝑄8 = {𝑒, 𝑥, 𝑥
2, 𝑥3, 𝑦, 𝑥𝑦, 𝑥2𝑦, 𝑥3𝑦} are the elements of a generalized quaternion 

group with order eight, where 𝑛 = 2. 

Definition 2.[22] For a finite group 𝐺, the coprime graph of 𝐺, denoted as 𝛤𝐺 , is defined as a graph with the 

vertex set 𝑉(𝛤𝐺) = 𝐺. Two distinct vertices 𝑥 and 𝑦 are connected by an edge if and only if the orders of 𝑥 

and 𝑦, denoted by |𝑥| and |𝑦|, are coprime or (|𝑥|, |𝑦|) = 1. 

In this paper, the 𝐷𝑆𝑆𝐸 and the 𝐷𝐸𝐸 of a coprime graph of the generalized quaternion groups are 

determined. Therefore, their definitions are provided in the following. 

Definition 3.[23] Let 𝛤 be a graph and 𝜂 be an eigenvalue of the matrix graph of 𝛤, then the energy of 𝛤 is 

defined as 

𝐸(𝛤) =∑|𝜂𝑖|

𝑛

𝑖=1

, (2) 

where 𝑛 is the number of eigenvalues. 

Next, the definitions of Degree Square Sum Matrix (DSSM), Degree Exponent Matrix (DEM)  and the Degree 

Exponent Sum Matrix (DESM)  are stated. 

Definition 4.[24] Let  𝛤 be a graph, then the Matrix of Degree Square Sum of 𝛤 is 𝐷𝑆𝑆(𝛤) = [𝑑𝑠𝑠𝑖𝑗] with: 

𝑑𝑠𝑠𝑖𝑗 = {
𝑑𝑖
2 + 𝑑𝑗

2, 𝑖𝑓 𝑖 ≠ 𝑗;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;
(3) 

where the DSSE will be denoted by 𝐸𝐷𝑆𝑆. 

Definition 5.[14] Let 𝛤 be a graph, then the Degree Exponent Matrix of  𝛤 is defined as 𝐷𝐸(𝛤) = [𝑑𝑒𝑖𝑗] 

with:  

𝑑𝑠𝑠𝑖𝑗 = {
𝑑𝑖
𝑑𝑗 , 𝑖𝑓 𝑖 ≠ 𝑗;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

(4) 

where the DEE will be denoted by 𝐸𝐷𝐸. 

Definition 6.[25] Let  𝛤 be a graph, then the Matrix of Degree Exponent Sum of 𝛤 is 𝐷𝐸𝑆(𝛤) = [𝑑𝑒𝑠𝑖𝑗] with:  

𝑑𝑠𝑠𝑖𝑗 = {
𝑑𝑖
𝑑𝑗 + 𝑑𝑗

𝑑𝑗 , 𝑖𝑓 𝑖 ≠ 𝑗;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;
(5) 

where the DESE will be denoted by 𝐸𝐷𝐸𝑆. 

The subsequent lemmas are presented as a basis for deriving the DEE and DSSE on the coprime graph of 

generalized quaternion groups. 

Lemma 1.[26] Given a generalized quaternion group 𝑄4𝑛  with 𝑛 =  2𝑘 for every positive integer 𝑘, then 

the coprime graph of 𝑄4𝑛 is a complete bipartite graph. 

Lemma 2.[2] Let 𝛤𝑄4𝑛 be the coprime graph of 𝑄4𝑛. If 𝑛 =  2𝑘 for every positive integer 𝑘, then        

𝑑𝑒𝑔(𝑒) = 4𝑛 − 1 and  𝑑𝑒𝑔(𝑣) = 1 for every 𝑣 ∈ 𝑄4𝑛\{𝑒}. 

The Lemma 2 above suggests the numerical degree of the vertices in the graph. 

Lemma 3.[27] If  𝑎, 𝑏, 𝑐, 𝑑 ∈  ℝ, then the matrix 

𝐴 = (
(𝜂 + 𝑎)𝐼𝑛1 − 𝑎𝐽𝑛1 −𝑐𝐽𝑛1×𝑛2

−𝑑𝐽𝑛2×𝑛1 (𝜂 + 𝑏)𝐼𝑛2 − 𝑏𝐽𝑛2
) 

has the determinant  

|𝐴| = (𝜂 + 𝑎)𝑛1−1(𝜂 + 𝑏)𝑛2−1[(𝜂 − (𝑛1 − 1)𝑎)(𝜂 − (𝑛2 − 1)𝑏) − 𝑛1𝑛2𝑐𝑑]. (6) 
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3. RESULTS AND DISCUSSION 

In this section, we will determine the 𝐷𝑆𝑆𝐸 and the 𝐷𝐸𝐸 of coprime graph on generalized quaternion 

group with order 2𝑘 for every positive integer 𝑘.  

3.1. Degree Square Sum Energy 

The DSSE of the coprime graph of a generalized quaternion group is given in the following theorem. 

Theorem 1. Let 𝛤𝑄4𝑛 be the coprime graph of 𝑄4𝑛. If 𝑛 =  2𝑘 for positive integer 𝑘, then the characteristics 

polynomial of 𝐷𝑆𝑆(𝛤𝑄4𝑛) is: 

𝑃𝐷𝑆𝑆 (𝛤𝑄4𝑛)
(𝜂) = (𝜂 + 2)4𝑛−2[(𝜂2 − 4(2𝑛 − 1)𝜆) − (4𝑛 − 1)(16𝑛2 − 8𝑛 + 1)2]. 

Proof. By using Lemma 1 and Lemma 2, the graph is complete bipartite graph with 𝑑𝑒𝑔(𝑒) = 4𝑛 − 1 and 

𝑑𝑒𝑔(𝑣) = 1. Then, 𝑑𝑠𝑠𝑖𝑗 = (4𝑛 − 1)
2 + 12 if 𝑖 = 𝑒 and 𝑗 = 𝑣 ∈ 𝑉(𝛤𝑄4𝑛)\{𝑒}, 𝑑𝑠𝑠𝑖𝑗 = 1

2 + (4𝑛 − 1)2 if 

𝑖 = 𝑣 ∈ 𝑉(𝛤𝑄4𝑛){𝑒}  and 𝑗 = 𝑒, and 𝑑𝑠𝑠𝑖𝑗 = 1
2 + 12 if 𝑖 = 𝑣1 and 𝑗 = 𝑣2, where 𝑣1, 𝑣2 ∈ 𝑉(𝛤𝑄4𝑛)\{𝑒} and 

𝑣1 ≠ 𝑣2. Degree Square Sum Matrix of 𝛤𝑄4𝑛 is:  

𝐷𝑆𝑆(𝛤𝑄4𝑛) = (

0 (4𝑛 − 1)2 + 12 ⋯ (4𝑛 − 1)2 + 12

12 + (4𝑛 − 1)2 0 ⋯ 12 + 12

⋮ ⋮ ⋱ ⋮
12 + (4𝑛 − 1)2 12 + 12 ⋯ 0

) 

𝐷𝑆𝑆(𝛤𝑄4𝑛) = (

0 16𝑛2 − 8𝑛 + 2 ⋯ 16𝑛2 − 8𝑛 + 2
16𝑛2 − 8𝑛 + 2 0 ⋯ 2

⋮ ⋮ ⋱ ⋮
16𝑛2 − 8𝑛 + 2 2 ⋯ 0

) (7) 

By using Lemma 3,  the matrix in Eq. (7) can be written into four block matrices bellow: 

𝐷𝑆𝑆(𝛤𝑄4𝑛) = (
0 (16𝑛2 − 8𝑛 + 2)𝐽1×(4𝑛−1)

(16𝑛2 − 8𝑛 + 2)𝐽(4𝑛−1)×1 2(𝐽 − 𝐼)(4𝑛−1)×(4𝑛−1)
)        (8) 

To find the characteristic polynomial of 𝐷𝑆𝑆(ΓQ4n), the matrix Eq. (8) can be written as: 

𝑃𝐷𝑆𝑆(𝛤𝑄4𝑛)(𝜆) = |
𝜆 −(16𝑛2 − 8𝑛 + 2)𝐽(4𝑛−1)×1

−(16𝑛2 − 8𝑛 + 2)𝐽(4𝑛−1)×1 (𝜆 + 2)𝐼(4𝑛−1) − 2𝐽(4𝑛−1)
|.       (9) 

The matrix in Eq. (9) is derived from the operation of det (𝐷𝑆𝑆(𝛤𝑄4𝑛) − 𝜆𝐼). 

According to Lemma 3 with 𝑎 = 0, 𝑏 = 2  and 𝑐 = 𝑑 = 16𝑛2 − 8𝑛 + 2, the matrix in Eq. (9) has the 

determinant as follows: 

𝑃𝐷𝑆𝑆(𝛤𝑄4𝑛)(𝜆) = (𝜆 + 0)
1−1(𝜆 + 2)4𝑛−2[(𝜆 − (1 − 1)0)(𝜆 − (4𝑛 − 2)2) − (4𝑛 − 1) 

        (16𝑛2 − 8𝑛 + 2)(16𝑛2 − 8𝑛 + 2)] 

      = (𝜆 + 2)4𝑛−2[(𝜆(𝜆 − 8𝑛 + 4)) − (4𝑛 − 1)(16𝑛2 − 8𝑛 + 2)2] 

       = (𝜆 + 2)4𝑛−2[𝜆2 − 4(2𝑛 − 1)𝜆 − (4𝑛 − 1)(16𝑛2 − 8𝑛 + 2)2].∎ 

Theorem 1 establishes a fundamental property of the graph structure under consideration. Building on this 

result, we now extend the analysis to derive a more specific characterization in Theorem 2. 

Theorem 2. Let 𝛤𝑄4𝑛 be the coprime graph of 𝑄4𝑛. If 𝑛 =  2𝑘 for positive integer 𝑘, then the 𝐷𝑆𝑆𝐸 of 𝛤 is: 

𝐸𝐷𝑆𝑆(𝛤𝑄4𝑛) = 2 (4𝑛 − 2 + √8(2𝑛 − 1)
2 + 2(4𝑛 − 1)(16𝑛2 − 8𝑛 + 1)2). 

Proof. By setting the characteristic polynomial of Theorem 1 to zero, we will get 3 eigenvalues, 𝜆1 = −2 

with multiplicity 4𝑛 − 2, 𝜆2 = 2(2𝑛 − 1) + √8(2𝑛 − 1)
2 + 2(4𝑛 − 1)(16𝑛2 − 8𝑛 + 1)2 with multiplicity 

1, and 𝜆3 = 2(2𝑛 − 1) − √8(2𝑛 − 1)
2 + 2(4𝑛 − 1)(16𝑛2 − 8𝑛 + 1)2 with multiplicity 1.  

According to Definition 3,  the 𝐷𝑆𝑆𝐸 of 𝐺 is obtained by summing all the eigenvalues, as below: 
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𝐸𝐷𝑆𝑆( 𝛤𝑄4𝑛) = (4𝑛 − 2)|−2| + |2(2𝑛 − 1) + √8(2𝑛 − 1)
2 + 2(4𝑛 − 1)(16𝑛2 − 8𝑛 + 1)2| + 

     |2(2𝑛 − 1) − √8(2𝑛 − 1)2 + 2(4𝑛 − 1)(16𝑛2 − 8𝑛 + 1)2| 

 = (8𝑛 − 4) + 2(2𝑛 − 1) + √8(2𝑛 − 1)2 + 2(4𝑛 − 1)(16𝑛2 − 8𝑛 + 1)2 + 

      √8(2𝑛 − 1)2 + 2(4𝑛 − 1)(16𝑛2 − 8𝑛 + 1)2 − 2(2𝑛 − 1) 

 = 8𝑛 − 4 + 2√8(2𝑛 − 1)2 + 2(4𝑛 − 1)(16𝑛2 − 8𝑛 + 1)2 

 = 2(4𝑛 − 2 + √8(2𝑛 − 1)2 + 2(4𝑛 − 1)(16𝑛2 − 8𝑛 + 1)2) .∎ 

3.2. Degree Exponent Energy 

The DEE of the coprime graph on the generalized quaternion group is given in the following theorem. 

Theorem 3. Let 𝛤𝑄4𝑛 be the coprime graph of 𝑄4𝑛. If 𝑛 =  2𝑘 for every positive integer 𝑘, then the 

characteristics polynomial of 𝐷𝐸( 𝛤𝑄4𝑛) is: 

𝑃𝐷𝐸( 𝛤𝑄4𝑛)(𝜆) = (𝜆 + 1)
4𝑛−2[(𝜆2 − 2(2𝑛 + 1)𝜆) − (16𝑛2 − 8𝑛 + 1)]. 

Proof. Let 𝑛 = 2𝑘 with for positive integer 𝑘. By using Lemma 1 and Lemma 2, the graph is complete 

bipartite graph with 𝑑𝑒𝑔(𝑒) = 4𝑛 − 1 and 𝑑𝑒𝑔(𝑣) = 1. Then, 𝑑𝑠𝑠𝑖𝑗 = (4𝑛 − 1)
1 for 𝑖 = 𝑒 and 𝑗 = 𝑣 ∈

𝑉(𝛤𝑄4𝑛)\{𝑒}, 𝑑𝑠𝑠𝑖𝑗 = 1
4𝑛−1 for 𝑖 = 𝑣 ∈ 𝑉(𝛤𝑄4𝑛){𝑒}  and 𝑗 = 𝑒, and 𝑑𝑠𝑠𝑖𝑗 = 1

1 for 𝑖 = 𝑣1 and 𝑗 = 𝑣2, 

where 𝑣1, 𝑣2 ∈ 𝑉(𝛤𝑄4𝑛)\{𝑒} and 𝑣1 ≠ 𝑣2. Then the Degree Exponent Matrix of 𝛤𝑄4𝑛 is: 

𝐷𝐸(𝛤𝑄4𝑛) = (

0 (4𝑛 − 1)1 ⋯ (4𝑛 − 1)1

14𝑛−1 0 ⋯ 11

⋮ ⋮ ⋱ ⋮
14𝑛−1 11 ⋯ 0

) . (10) 

By using Lemma 3, the matrix Eq. (10) can be written into four block matrices bellow: 

𝐷𝐸(𝛤𝑄4𝑛) = (
0 (4𝑛 − 1)𝐽1×(4𝑛−1)

𝐽(4𝑛−1)×1 (𝐽 − 𝐼)(4𝑛−1)×(4𝑛−1)
) . (11) 

By using Lemma 3, to find the characteristic polynomial of 𝐷𝐸𝐸(ΓQ4n) the matrix Eq. (11) can be written as: 

𝑃𝐷𝐸(𝛤𝑄4𝑛)(𝜆) = |
𝜆 −(4𝑛 − 1)𝐽(4𝑛−1)×1

−𝐽(4𝑛−1)×1 (𝜆 + 1)𝐼(4𝑛−1) − 𝐽(4𝑛−1)
| . (12) 

The matrix Eq. (12) is derived from the operation of det (𝐷𝐸(𝛤𝑄4𝑛) − 𝜆𝐼). 

Then, the matrix Eq. (12) has the determinant as follows: 

        𝑃𝐷𝐸(𝛤𝑄4𝑛)(𝜆) = (𝜆 + 0)
1−1(𝜆 + 1)4𝑛−2[(𝜆 − (1 − 1)0)(𝜆 − (4𝑛 − 2)) − (4𝑛 − 1)(4𝑛 − 1)] 

= (𝜆 + 1)4𝑛−2[(𝜆(𝜆 − 4𝑛 − 2)) − (16𝑛2 − 8𝑛 + 1)] 

= (𝜆 + 1)4𝑛−2[(𝜆2 − 2(2𝑛 + 1)𝜆) − (16𝑛2 − 8𝑛 + 1)] . ∎ 

The preceding result provides a crucial insight that lays the groundwork for the next development. We now 

refine this perspective to uncover a deeper structural property. 

Theorem 4. Let 𝛤𝑄4𝑛 be the coprime graph of 𝑄4𝑛. If 𝑛 =  2𝑘 for every positive integer 𝑘, then the 𝐷𝐸𝐸 of 

𝛤 is: 

𝐸𝐷𝐸(𝛤𝑄4𝑛) = 2 (2𝑛 − 1 + √20𝑛
2 − 4𝑛 + 2). 

Proof. By setting the characteristic equation in Theorem 3 to zero, we can calculate the 𝐷𝐸𝐸 of 𝐺 : 

(𝜆 + 1)4𝑛−2[(𝜆2 − 2(2𝑛 + 1)𝜆) − (16𝑛2 − 8𝑛 + 1)] = 0. 
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By this characteristic, the eigenvalues of Degree Exponent matrix of 𝐺 is 𝜆1 = 1 with multiplicity 4𝑛 − 2. 

Then for (𝜆2 − 2(2𝑛 + 1)𝜆) − (16𝑛2 − 8𝑛 + 1), 𝜆2 = (2𝑛 + 1) + √20𝑛
2 − 4𝑛 + 2 and                                          

𝜆3 = (2𝑛 + 1) − √20𝑛
2 − 4𝑛 + 2. Then the 𝐷𝐸𝐸 of 𝐺 is: 

   𝐸𝐷𝐸(𝛤𝑄4𝑛) = (4𝑛 − 2)|−1| + |(2𝑛 − 1) + √20𝑛
2 − 4𝑛 + 2| + |(2𝑛 − 1) − √20𝑛2 − 4𝑛 + 2| 

= (4𝑛 − 2) + (2𝑛 − 1) + √20𝑛2 − 4𝑛 + 2 + √20𝑛2 − 4𝑛 + 2 − (2𝑛 − 1) 

= 4𝑛 − 2 + 2√20𝑛2 − 4𝑛 + 2 

= 2(2𝑛 − 1 + √20𝑛2 − 4𝑛 + 2) .∎ 

3.3. Degree Exponent Sum Energy 

 The Degree Exponent Sum Energy (DESE) of the coprime graph on the generalized quaternion group 

is presented in the following theorem. 

Theorem 5. Let 𝛤𝑄4𝑛 be the coprime graph of 𝑄4𝑛. If 𝑛 =  2𝑘 for positive integer 𝑘, then the characteristics 

polynomial of 𝐷𝐸𝑆(𝛤𝑄4𝑛) is: 

𝑃𝐷𝐸𝑆 (𝛤𝑄4𝑛)
(𝜆) = (𝜆 + 2)4𝑛−2[𝜆2 − 4(2𝑛 − 1)𝜆 − (64𝑛3 − 16𝑛2)]. 

Proof. By using Lemma 1 and Lemma 2, the graph is complete bipartite graph with 𝑑𝑒𝑔(𝑒) = 4𝑛 − 1 and 

𝑑𝑒𝑔(𝑣) = 1. Then the Degree Exponent Sum Matrix of 𝛤𝑄4𝑛 is:  

                𝐷𝐸𝑆(𝛤𝑄4𝑛) =

(

 

0 (4𝑛 − 1)1 + 1(4𝑛−1) ⋯ (4𝑛 − 1)1 + 1(4𝑛−1)

1(4𝑛−1) + (4𝑛 − 1)1 0 ⋯ 11 + 11

⋮ ⋮ ⋱ ⋮
1(4𝑛−1) + (4𝑛 − 1)1 11 + 11 ⋯ 0 )

   

 = (

0 4𝑛 ⋯ 4𝑛
4𝑛 0 ⋯ 2
⋮ ⋮ ⋱ ⋮
4𝑛 2 ⋯ 0

). 

By using Lemma 3, this matrix can be written into four block matrices below: 

𝐷𝐸𝑆(𝛤𝑄4𝑛) = (
0 (4𝑛)𝐽1×(4𝑛−1)

(4𝑛)𝐽(4𝑛−1)×1 2(𝐽 − 𝐼)(4𝑛−1)×(4𝑛−1)
). 

To find the characteristic polynomial of 𝐷𝑆𝑆(ΓQ4n), this matrix can be written as: 

𝑃𝐷𝐸𝑆(𝛤𝑄4𝑛)(𝜆) = |
𝜆 −(4𝑛)𝐽(4𝑛−1)×1

−(4𝑛)𝐽(4𝑛−1)×1 (𝜆 + 2)𝐼(4𝑛−1) − 2𝐽(4𝑛−1)
|. 

This matrix is derived from the operation of det (𝐷𝐸𝑆(𝛤𝑄4𝑛) − 𝜆𝐼). 

According to Lemma 3 with 𝑎 = 0, 𝑏 = 2  and 𝑐 = 𝑑 = 4𝑛, this matrix has the determinant as follows: 

      𝑃𝐷𝐸𝑆(𝛤𝑄4𝑛)(𝜆) = (𝜆 + 0)
1−1(𝜆 + 2)4𝑛−2[(𝜆 − (1 − 1)0)(𝜆 − (4𝑛 − 2)2) − (4𝑛 − 1)(4𝑛)(4𝑛)] 

 = (𝜆 + 2)4𝑛−2[(𝜆(𝜆 − 8𝑛 + 4)) − (4𝑛 − 1)(4𝑛)2] 

 = (𝜆 + 2)4𝑛−2[𝜆2 − 4(2𝑛 − 1)𝜆 − (64𝑛3 − 16𝑛2)].∎ 

This result provides further insight into the spectral properties of the graph, allowing us to extend the analysis 

to the next case. 

Theorem 6. Let 𝛤𝑄4𝑛 be the coprime graph of 𝑄4𝑛. If 𝑛 =  2𝑘 for positive integer 𝑘, then the 𝐷𝐸𝑆𝐸 of 𝛤 is: 

𝐸𝐷𝐸𝑆(𝛤𝑄4𝑛) = 8𝑛 − 4 + √256𝑛
3 − 64𝑛 + 16. 
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Proof. By setting the characteristic polynomial of Theorem 5 to zero, we will get 3 eigenvalues: 𝜆1 = −2 

with multiplicity 4𝑛 − 2, 𝜆2 = 2(2𝑛 − 1) +
√256𝑛3−64𝑛+16

2
 with multiplicity 1, and 𝜆3 = 2(2𝑛 − 1) −

√256𝑛3−64𝑛+16

2
 with multiplicity 1.  

By summing all the eigenvalues, we get the 𝐷𝐸𝑆𝐸 of 𝐺 as follows: 

 𝐸𝐷𝐸𝑆( 𝛤𝑄4𝑛)   = (4𝑛 − 2)|−2| + |2(2𝑛 − 1) +
√256𝑛3−64𝑛+16

2
| + |2(2𝑛 − 1) −

√256𝑛3−64𝑛+16

2
|  

 = (8𝑛 − 4) + 2(2𝑛 − 1) + 2
√256𝑛3−64𝑛+16

2
− 2(2𝑛 − 1)  

 = 8𝑛 − 4 + √256𝑛3 − 64𝑛 + 16. ∎ 

This study shows that the Degree Square Sum Energy, Degree Exponent Energy, dan Degree Exponent 

Sum Energy of the coprime graph on the generalized quaternion group 𝑄4𝑛 with 𝑛 = 2𝑘 are strongly 

influenced by the order structure of the group elements. The Degree Square Sum Energy highlights the 

influence of vertices with large degrees, the Degree Exponent Sum Energy accounts for the cumulative role 

of degree exponents, and the Degree Exponent Energy provides a spectral perspective through the exponential 

weighting of vertex degrees. Collectively, these measures offer a comprehensive characterization of the 

coprime graph’s spectral behavior and demonstrate the complexity induced by the quaternion group structure 

4. CONCLUSION 

In this study, the values of the Degree Square Sum Energy, Degree Exponent Energy, and Degree 

Exponent Sum Energy of the coprime graph on the generalized quaternion group are presented: 

1. 𝐸𝐷𝑆𝑆(𝛤𝑄4𝑛) = 2 (4𝑛 − 2 + √8(2𝑛 − 1)
2 + 2(4𝑛 − 1)(16𝑛2 − 8𝑛 + 1)2),   

2. 𝐸𝐷𝐸(𝛤𝑄4𝑛) = 2(2𝑛 − 1 + √20𝑛
2 − 4𝑛 + 2), and 

3. 𝐸𝐷𝐸𝑆(𝛤𝑄4𝑛) = 8𝑛 − 4 + √256𝑛
3 − 64𝑛 + 16. 

This research can serve as a foundational reference for discovering alternative energy indices on the same 

graph or for extending the study of graph energies to other algebraic graphs. Such investigations enrich the 

interplay between graph theory and algebra, offering deeper insights into structural properties emerging from 

algebraic structures. 
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