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ABSTRACT 

Article History: Dengue Haemorrhagic Fever (DHF) is a vector-borne disease caused by the dengue virus, 

transmitted to humans through the bite of an infected female Aedes aegypti mosquito. DHF 

is prevalent in tropical regions, necessitating mathematical modeling to better understand 

its dynamics and predict its spread. This study develops and analyzes a mathematical model 
for DHF transmission that incorporates seven compartments to reflect different 

transmission risk levels. Stability analysis of the disease-free and endemic equilibria was 

conducted, with the basic reproduction number (𝑅0) used to classify the conditions under 

which DHF transmission is controlled (𝑅0 < 1) or endemic (𝑅0 > 1). Key model 
parameters were estimated using DHF case data from East Java in 2018, employing a 

genetic algorithm (GA) to optimize the estimation process. The GA approach achieved a 

mean absolute percentage error (MAPE) of 2.6382%, ensuring high accuracy in parameter 

values. Furthermore, the basic reproduction number was determined to be 𝑅0 = 1.14, 
which is greater than one, confirming that DHF remains endemic in East Java. Sensitivity 

analysis identified the mosquito biting rate (𝑏), mosquito mortality rate (𝜇𝑣), and 

transmission rates (𝛽ℎ  𝑎𝑛𝑑 𝛽𝑣) as the most critical factors influencing 𝑅0. Numerical 

simulations demonstrated the effects of these key parameters on both 𝑅0 and the 

symptomatic human population (𝐼ℎ). An increase in 𝑏, 𝛽ℎ, or 𝛽𝑣 significantly amplified 𝑅0 

and 𝐼ℎ, while a rise in 𝜇𝑣 had the opposite effect, reducing both transmission and infections. 

These results underscore the critical role of vector control strategies, such as increasing 

mosquito mortality and reducing breeding sites, in mitigating DHF outbreaks. This study 
highlights the utility of combining mathematical modeling with genetic algorithm-based 

parameter estimation to provide accurate insights into disease dynamics and inform 

effective control measures. 
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1. INTRODUCTION 

Dengue Hemorrhagic Fever (DHF) is a significant public health threat that predominantly impacts 

tropical and subtropical regions, including Southeast Asia, Latin America, and Africa. This mosquito-borne 

disease is caused by the dengue virus, a member of the Flavivirus genus within the Flaviviridae family, and 

is transmitted primarily through the bite of infected female Aedes aegypti mosquitoes [1]. First identified in 

Manila, Philippines, during 1953 – 1954, DHF quickly established itself as a critical health issue across 

Southeast Asia within just two decades, becoming a leading cause of pediatric mortality by the mid-1970s 

[2]. The disease presents a wide clinical spectrum, with approximately 80% of infected individuals 

experiencing mild fever-like symptoms, typically appearing between 3 to 14 days post-infection [3]. 

Compared to other diseases and their impacts, DHF puts a huge burden on the human population, the 

health sector, and the economy in the majority of tropical countries in the world. The emergence and spread 

of the dengue virus can also pose a global pandemic threat. It is proven that in the last five decades, DHF 

cases have increased by 30 times. DHF is also the most important arbovirus disease in the world. Every year, 

DHF infection continues to increase, resulting in hundreds of thousands of people being infected, with 

medical costs of up to 514-1394 USD per year [4]. In Indonesia, DHF is one of the infectious diseases that is 

still a major problem for public health, with a very rapid spread and has the potential to cause death. DHF 

was first reported to occur in 1968 in the city of Surabaya with 58 sufferers and 24 deaths, then spread 

throughout Indonesia and attacked all ages, especially children [5]. In 2017, the number of dengue cases in 

East Java reached 7,254 people throughout East Java, with the number of deaths reaching 104 residents [6]. 

Understanding and predicting DHF transmission dynamics are essential for formulating effective 

intervention strategies. Over the past two decades, mathematical modeling has emerged as a powerful tool 

for studying the spread of infectious diseases, including DHF [7], [8], [9], [10]. Previous studies have 

provided significant insights into various aspects of dengue epidemiology. For instance, Agusto and Khan 

[11] integrated vaccination strategies into their model, while Jan et al. [12] explored the role of asymptomatic 

infections in disease dynamics. Ghosh et al. [13] introduced a model that distinguishes between high-risk and 

low-risk susceptible populations, and Anggriani et al. [14] focused on reinfection with the same serotype. 

More recently, Zhang et al. [15] proposed innovative control mechanisms involving Wolbachia bacteria to 

disrupt mosquito reproduction. Most existing mathematical models either rely on static parameters derived 

from limited datasets or lack specificity to regional epidemiological contexts. Furthermore, while parameter 

estimation is critical for translating theoretical models into practical applications, challenges persist in 

accurately calibrating models to real-world data.  

Genetic algorithm (GA) is a population-based optimization method inspired by natural selection 

mechanisms such as selection, mutation, and recombination to find the best solution to a given problem [16]. 

Compared to conventional parameter estimation methods, GA offers several key advantages. GA does not 

require function derivatives or specific assumptions about data distribution, making it more flexible for 

solving complex and nonlinear optimization problems. Additionally, GA can explore a wide range of possible 

solutions, reducing the risk of getting stuck in suboptimal solutions. This capability makes GA particularly 

effective in determining the best parameters for epidemiological models with multiple variables and 

uncertainties. Therefore, in this study, GA is utilized to estimate model parameters, ensuring that simulation 

results closely align with real-world data. 

Despite the numerous mathematical models developed for DHF, existing models often have limitations 

in capturing the heterogeneity in transmission risk and in accurately estimating parameters from real-world 

data. Many models assume uniform transmission dynamics, which may not reflect the actual variations in 

risk levels among infected individuals. Moreover, traditional parameter estimation methods may not provide 

the best fit for epidemiological trends. These gaps highlight the need for a refined mathematical model that 

incorporates different levels of transmission risk and employs a robust estimation technique to improve 

predictive accuracy. This study seeks to address these issues by developing an extended DHF model with a 

compartment for transmission risk levels and utilizing a genetic algorithm to optimize parameter estimation. 

In this study, we aim to address modifying and extending the DHF models proposed by Jan et al. [12] 

and Ghosh et al. [13]. Utilizing monthly cumulative DHF case data from East Java in 2018, we apply genetic 

algorithms to estimate parameters within the models. This approach not only enhances the realism and 

predictive accuracy of the models but also provides novel insights into the dynamics of DHF transmission. 

By integrating regional data and advanced parameter estimation techniques, this research seeks to offer a 

more targeted and effective framework for DHF control. The findings are expected to inform public health 
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strategies and contribute to reducing the morbidity and mortality associated with DHF in East Java and similar 

endemic regions in the future. 

 

2. RESEARCH METHODS 

In this section, we provide a detailed explanation of the model formulation and the step-by-step 

implementation of the Genetic Algorithm (GA) as an optimization technique. 

2.1 DHF Model Formulation 

This study builds upon and modifies the mathematical models for dengue haemorrhagic fever (DHF) 

transmission previously developed by Jan et al. [12] and Ghosh et al. [13]. The resulting model incorporates 

the dynamics of DHF transmission with varying levels of risk, reflecting environmental and population-

specific factors. In this model, we assume a constant total population size. This assumption aligns with 

previous studies that serve as our primary references [12]. While real-world populations are dynamic, the 

relatively short time frame of this study minimizes the impact of demographic changes on disease 

transmission dynamics. Other assumptions in the model include: 

1. The susceptible human population is divided into two compartments, 𝑆ℎ and 𝐿ℎ, which differ based on 

environmental risk factors. 

2. The infected human population is divided into two compartments, 𝐴ℎ (asymptomatic infections) and 

𝐼ℎ (symptomatic infections), both of which can transition to the recovered compartment (𝑅ℎ). 

3. Humans who recover from dengue are assumed to gain permanent immunity, as the likelihood of 

reinfection with the same serotype is negligible. 

4. Mortality due to DHF is not considered in this model. 

5. 𝐼ℎ population can recover either naturally or through treatment. 

6. The incubation period for the dengue virus is assumed to be negligible, allowing infected individuals 

to transmit the virus immediately upon infection. 

7. Age and sex differences within the human population are not accounted for in the model. 

The notations and descriptions for each compartment and parameter used in the model are summarized 

in Table 1 and Table 2. These tables provide clarity regarding the biological meaning of the variables and 

parameters, ensuring accurate interpretation of the model. 

Table 1. Compartments Description  

Compartments Description 

𝑆ℎ Number of high-risk susceptible human population 

𝐿ℎ Number of low-risk susceptible human population 

𝐴ℎ Number of asymptomatic human population 

𝐼ℎ Number of symptomatic human population 

𝑅ℎ Number of recovered human population 

𝑆𝑣 Number of susceptible mosquito population 

𝐼𝑣 Number of infected mosquito population 

 

Table 2. Parameters Description  

Parameters Description Unit 

𝑟 
Proportion of newly recruited individuals joining the 

high-risk susceptible class 
- 

𝛹 Proportion of asymptomatic carriers - 
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Parameters Description Unit 

𝛾 Recovery rate of human individuals Month−1 

𝜏 Treatment rate, which Ih recover Month−1 

𝑏 Biting rate of mosquitoes Month−1 

𝜇ℎ Natural mortality rate of humans Month−1 

𝜇𝑣 Natural mortality rate of mosquitoes Month−1 

𝛽ℎ 
Transmission probability from infected mosquitoes 

to susceptible humans 
- 

𝛽𝑣 
Transmission probability from infected humans to 

susceptible mosquitoes 
- 

 

Table 1 describes the compartments that represent different groups within the human and mosquito 

populations. The human population is divided into several categories: high-risk and low-risk susceptible 

individuals (𝑆ℎ and 𝐿ℎ), asymptomatic carriers (𝐴ℎ), symptomatic infected individuals (𝐼ℎ), and those who 

have recovered from the disease (𝑅ℎ). These divisions capture variations in risk level, infection status, and 

immunity. Meanwhile, the mosquito population is categorized into susceptible (𝑆𝑣) and infected (𝐼𝑣) groups, 

reflecting their role in disease transmission. 

Table 2 outlines the parameters that influence the dynamics of the model. These parameters include 

proportions, such as the fraction of newly recruited humans joining the high-risk group (𝑟) and the proportion 

of asymptomatic carriers among infected humans(Ψ). Rates such as recovery (𝛾) and treatment (𝜏) are 

included to capture the progression of the disease and the impact of interventions. Transmission rates 
(𝛽ℎ and 𝛽𝑣) describe how the disease spreads between humans and mosquitoes, while the biting rate (𝑏) 
captures mosquito feeding behavior. Additionally, natural mortality rates of humans (𝜇ℎ) and mosquitoes 

(𝜇𝑣) are incorporated to account for baseline population turnover. 

Based on these assumptions, the description of compartments and parameters, the transmission 

dynamics of the DHF model are illustrated in the diagram presented in Figure 1. This diagram serves as a 

conceptual representation of the interactions and transitions among the various compartments in the system. 

 

  
Figure 1. DHF Transmission Diagram  

Based on the transmission diagram presented above, the system of differential equations for the 

mathematical model of DHF spread is formulated as follows: 

𝑑𝑆ℎ
𝑑𝑡

= 𝑟𝜇ℎ𝑁ℎ − 𝑏
𝛽ℎ𝑆ℎ𝐼𝑣
𝑁ℎ

− 𝜇ℎ𝑆ℎ, 

𝑑𝐿ℎ
𝑑𝑡

= (1 − 𝑟)𝜇ℎ𝑁ℎ − 𝑏
𝛽ℎ𝐿ℎ𝐼𝑣
𝑁ℎ

− 𝜇ℎ𝐿ℎ, 
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𝑑𝐴ℎ
𝑑𝑡

= Ψ𝑏
𝛽ℎ(𝑆ℎ + 𝐿ℎ)𝐼𝑣

𝑁ℎ
− (𝜇ℎ + 𝛾)𝐴ℎ, 

𝑑𝐼ℎ
𝑑𝑡
= (1 − Ψ)𝑏

𝛽ℎ(𝑆ℎ + 𝐿ℎ)𝐼𝑣
𝑁ℎ

− (𝜇ℎ + 𝛾 + 𝜏)𝐼ℎ, (1) 

𝑑𝑅ℎ
𝑑𝑡

= 𝛾(𝐴ℎ + 𝐼ℎ) + 𝜏𝐼ℎ − 𝜇ℎ𝑅ℎ , 

𝑑𝑆𝑣
𝑑𝑡

= 𝜇𝑣𝑁𝑣 − 𝑏
𝛽𝑣𝑆𝑣(𝐴ℎ + 𝐼ℎ)

𝑁ℎ
− 𝜇𝑣𝑆𝑣 , 

𝑑𝐼𝑣
𝑑𝑡
=  𝑏

𝛽𝑣𝑆𝑣(𝐴ℎ + 𝐼ℎ)

𝑁ℎ
− 𝜇𝑣𝐼𝑣 . 

 

The variables 𝑆ℎ, 𝐿ℎ, 𝐴ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑣 and 𝐼𝑣 are all non-negative. The total human population is given 

by 𝑁ℎ = 𝑆ℎ + 𝐿ℎ + 𝐴ℎ + 𝐼ℎ + 𝑅ℎ ≥ 0 and the total mosquito population is 𝑁𝑣 = 𝑆𝑣 + 𝐼𝑣 ≥ 0. Additionally, 

all parameters defined in the model are positive, with 0 ≤  𝑟,Ψ ≤ 1 as proportion or probabilities and 

𝛾, 𝜏, 𝑏, 𝜇ℎ, 𝜇𝑣 , 𝛽ℎ, 𝛽𝑣  > 0. 

 

2.2 Genetic Algorithm 

The application of Genetic Algorithm (GA) in this study follows a systematic approach designed to 

optimize the parameters of the model. GA is a population-based optimization method inspired by natural 

selection mechanisms such as selection, mutation, and recombination to find the best solution to a given 

problem. GA does not require function derivatives or specific assumptions about data distribution, making it 

more flexible for solving complex and nonlinear optimization problems. Additionally, GA can explore a wide 

range of possible solutions, reducing the risk of getting stuck in suboptimal solutions [16]. The key steps in 

the GA process are as follows: 

1. Initialization: The first step involves defining the problem parameters, including the number of 

variables, population size, mutation rate, crossover rate, and the number of generations. The algorithm 

also specifies the upper and lower bounds for the model parameters. A random initial population is 

generated, with each solution corresponding to a set of model parameters within the defined bounds. 

2. Evaluation: Each individual in the population is evaluated by solving the system numerically with its 

parameters. The model's predictions are compared to actual data, and the error of Mean Absolute 

Percentage Error (MAPE) is calculated to assess the fit of each solution. 

3. Selection: Individuals are ranked based on their error values (MAPE). The top-ranked individuals are 

selected as parents for the next generation, with a number proportional to the crossover rate. 

4. Crossover: The selected parents undergo crossover, where their model parameters are combined to 

produce offspring, exchanging genetic information to potentially improve the solutions. 

5. Mutation: To maintain genetic diversity, a mutation process is applied, where a percentage of the 

offspring have their parameters randomly altered within the defined bounds. 

6. Replacement: The offspring replace the least fit individuals in the population, forming a new 

generation. 

7. Iteration: Steps 2 – 6 are repeated for a set number of generations. Over time, the population evolves 

toward better solutions, with the best set of parameters found in the final generation being selected as 

the optimal model parameters. 

 

 

2.3 Research Methodology 

This study employs a mathematical modeling approach to analyze the transmission dynamics of 

Dengue Hemorrhagic Fever (DHF). The research methodology in Figure 2 consists of several key stages, 

including model formulation, parameter estimation, stability analysis, and numerical simulation.  
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1. Model Formulation 

The mathematical model is constructed based on a compartmental framework, incorporating different 

population groups to represent disease transmission dynamics. The model extends previous studies by 

integrating varying levels of transmission risk and employing a system of differential equations to 

describe interactions between humans and mosquito populations. 

2. Parameter Estimation 

The model parameters are estimated using actual DHF case data from East Java Province in 2018. Since 

some parameters related to mosquito populations are not directly available from official records, a 

genetic algorithm (GA) is employed to optimize parameter values and minimize discrepancies between 

simulated and observed data. 

3. Stability Analysis 

The stability of the model is examined through equilibrium analysis, focusing on disease-free and 

endemic conditions. The basic reproduction number (𝑅0) is derived to determine the threshold 

conditions under which DHF can either persist or be eradicated. Sensitivity analysis is also conducted 

to identify the most influential parameters affecting 𝑅0. 

4. Numerical Simulation 

To observe long-term trends in DHF transmission, numerical simulations are performed using 

estimated parameter values. Two scenarios are considered: (i) a disease-free scenario with 𝑅0 < 1, 

where infection gradually disappears, and (ii) an endemic scenario with 𝑅0 > 1, where the disease 

continues to spread. 

The overall research methodology is illustrated in the following flowchart: 

 

 
 

Figure 2. Flowchart of Research 
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3. RESULTS AND DISCUSSION 

3.1 Positive Invariance and Boundedness 

To show the boundedness of the solution, we consider the total human and mosquito 

populations. From system Equation (1), the total human population satisfies: 

𝑑𝑁ℎ

𝑑𝑡
=
𝑑𝑆ℎ

𝑑𝑡
+
𝑑𝐿ℎ

𝑑𝑡
+
𝑑𝐴ℎ

𝑑𝑡
+
𝑑𝐼ℎ

𝑑𝑡
+
𝑑𝑅ℎ

𝑑𝑡
  

𝑑𝑁ℎ

𝑑𝑡
= 𝜇ℎ𝑁ℎ − 𝜇ℎ(𝑆ℎ + 𝐿ℎ + 𝐴ℎ + 𝐼ℎ + 𝑅ℎ)  

𝑑𝑁ℎ

𝑑𝑡
= 𝜇ℎ𝑁ℎ − 𝜇ℎ𝑁ℎ  

𝑑𝑁ℎ

𝑑𝑡
= 0  

Thus, the total human population remains 𝑁ℎ = 𝐾1, where 𝐾1 = 𝑆ℎ(0) + 𝐿ℎ(0) + 𝐴ℎ(0) + 𝐼ℎ(0) +

𝑅ℎ(0). Similarly, for the mosquito population, using the same approach, we obtain that the total 

mosquito population remains 𝑁𝑣 = 𝐾2, where 𝐾2 = 𝑆𝑣(0) + 𝐿𝑣(0). Therefore, the solutions of system 

Equation (1) remain non-negative for all time 𝑡 > 0 and defined in the closed set Ω (positively invariant) 

given as 

Ω = Ωℎ ∪ Ω𝑣 ⊂ ℝ+
5 × ℝ+

2 , 

where 

Ωℎ = {(𝑆ℎ(𝑡), 𝐿ℎ(𝑡), 𝐴ℎ(𝑡), 𝐼ℎ(𝑡), 𝑅ℎ(𝑡)) ∈ ℝ+
5 ∶ 𝑁ℎ = 𝐾1 = 𝑆ℎ(0) + 𝐿ℎ(0) + 𝐴ℎ(0) + 𝐼ℎ(0) + 𝑅ℎ(0)}, 

Ω𝑣 = {(𝑆𝑣(𝑡), 𝐼𝑣(𝑡)) ∈ ℝ+
2 ∶ 𝑁𝑣 = 𝐾2 = 𝑆𝑣(0) + 𝐼𝑣(0)}, 

with 𝐾1 and 𝐾2 are constant values. 

 

Next, we show the positivity solution of system Equation (1) based on the following theorem. 

 

Theorem 1. Let 𝑆ℎ(0), 𝐿ℎ(0), 𝐴ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0), 𝑆𝑣(0) and 𝐼𝑣(0) be the initial conditions of the system. 

If 𝑆ℎ(0) ≥ 0, 𝐿ℎ(0) ≥ 0, 𝐴ℎ(0) ≥ 0, 𝐼ℎ(0) ≥ 0, 𝑅ℎ(0) ≥ 0, 𝑆𝑣(0) ≥ 0 and 𝐼𝑣(0) ≥ 0 then all solutions are 

positive for every  𝑡 ≥ 0. 

Proof. Take the first equation in the system Equation (1), and assume that 𝜆(𝑡) = 𝑏
𝛽ℎ𝐼𝑣(𝑡)

𝑁ℎ
 as follows 

𝑑𝑆ℎ
𝑑𝑡

= 𝑟𝜇ℎ𝑁ℎ − 𝜆(𝑡)𝑆ℎ(𝑡) − 𝜇ℎ𝑆ℎ(𝑡) 

𝑑𝑆ℎ
𝑑𝑡

≥ −𝜆(𝑡)𝑆ℎ(𝑡) − 𝜇ℎ𝑆ℎ(𝑡) 

𝑑 (𝑒𝜇ℎ𝑡+∫ 𝜆(𝑠)
𝑡
0

𝑑𝑠𝑆ℎ(𝑡))

𝑑𝑡
≥ 0 

𝑆ℎ(𝑡) ≥ 𝑘𝑒
−𝜇ℎ𝑡−∫ 𝜆(𝑠)

𝑡
0

𝑑𝑠 

with the initial condition 𝑆ℎ(0) at 𝑡 = 0, we get 

𝑆ℎ(𝑡) ≥ 𝑆ℎ(0)𝑒
−𝜇ℎ𝑡−∫ 𝜆(𝑠)

𝑡
0

𝑑𝑠. 

Hence 𝑆ℎ(𝑡) is positive for 𝑡 ≥ 0 if 𝑆ℎ(0) ≥ 0. Then, using the same steps, we can prove that all 

compartments are also positive for 𝑡 ≥ 0 if the initial conditions of the system are positive.  

∎ 

 

3.2 Parameter Estimation 

To optimize the estimation of model parameters, a genetic algorithm (GA) is implemented. GA is an 

evolutionary optimization technique inspired by natural selection, making it particularly effective for solving 
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complex, non-linear problems. First, the data used for parameter estimation consists of monthly cumulative 

DHF case data from January 2018 to December 2018 in East Java Province, obtained directly from the 

Surabaya Health Office. The value of 𝜇ℎ is the inverse of the life expectancy in East Java, which is 70.97 

years or 70.97 × 12 months. Thus 𝜇ℎ =
1

70.97×12
. The total population of East Java in 2018 is recorded as 

39,500,900 individuals [17], [18]. The parameter estimation process involves 14 variables, referred to as 

"genes" in the context of the genetic algorithm. These genes include remaining parameters, as well as the 

initial population sizes for compartments where direct data is unavailable. The first to 14 th genes are 𝜏, 𝛾, 𝑟, 
Ψ, 𝑏, 𝛽ℎ, 𝛽𝑣, 𝜇𝑣, 𝑆ℎ(0), 𝐿ℎ(0), 𝐴ℎ(0), 𝑅ℎ(0), 𝑆𝑣(0), and 𝐼𝑣(0), respectively. 

Table 3. Best Result of Parameter Estimation  

Notation Value Notation Value 

𝜏 0.5430 𝑆ℎ(0) 20,043,511 

𝛾 0.5999 𝐿ℎ(0) 19,454,975 

𝑟 0.0043 𝐴ℎ(0) 368 

Ψ 0.5622 𝑅ℎ(0) 940 

𝑏 0.5891 𝑆𝑣(0) 43,016,346 

𝛽ℎ  0.7194 𝐼𝑣(0) 4,006 

𝛽𝑣 0.4986   

𝜇𝑣 0.1350   

  
Figure 3. Comparison of Real Data and Model Solution based on Parameter Estimation Results  

 

The estimated parameter values of the DHF model Equation (1) are listed in Table 3. Based on the 

parameter values of Table 3, the value of 𝑅0 is 1.14. Figure 3 shows a comparison between the DHF case 

real data and the model's predictions using the estimated parameters. The results demonstrate a high degree 

of alignment, with an error difference of only 3.00%.  This indicates that the genetic algorithm successfully 

captured the dynamics of DHF transmission in East Java during the study period. From the graph, it is evident 

that both the observed data and the model predictions exhibit an increasing trend in DHF cases, although 

slight discrepancies occur in certain months. The estimated parameters reveal that the transmission rate of 

the dengue virus from mosquitoes to humans is relatively high, while the transmission rate from humans to 

mosquitoes is comparatively lower. This asymmetry can be attributed to factors such as population growth, 

challenges in vector control, and unpredictable climatic and environmental changes. Additionally, the 

recovery rate for humans, whether through natural or treatment recovery, is found to be substantial. This is 

consistent with advancements in DHF research, which have significantly improved recovery outcomes in 

recent years. 
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3.3 Stability Analysis of Equilibrium Point 

This section analyzes the equilibria of system Equation (1). Notice that the total human and mosquito 

populations are constant, satisfying 
𝑑𝑁ℎ

𝑑𝑡
= 0 and 

𝑑𝑁𝑣

𝑑𝑡
= 0. Consequently, two types of equilibria are 

identified: the disease-free equilibrium and the endemic equilibrium. 

The disease-free equilibrium represents a condition where no dengue virus is present in either the 

human or mosquito populations. This occurs when there are no infected humans or mosquitoes 
(𝐴ℎ = 𝐼ℎ = 𝐼𝑣 = 0), and consequently, there are no humans recovering or undergoing treatment (𝑅ℎ =  0). 
The disease-free equilibrium is given by: 

𝐸0 = (𝑆ℎ
0, 𝐿ℎ

0 , 𝐴ℎ
0 , 𝐼ℎ

0, 𝑅ℎ
0, 𝑆𝑣

0, 𝐼𝑣
0) = (𝑟𝑁ℎ , (1 − 𝑟)𝑁ℎ , 0,0,0, 𝑁𝑣 , 0).   

Next, the basic reproduction number (𝑅0) is determined, which is used to measure the potential 

spread of DHF in a population. With the Next Generation Matrix (NGM) method [19]. First, we define 𝐹 as 

the transmission matrix, whose elements represent the number of newly infected individuals resulting from 

interactions with the 𝐴ℎ, 𝐼ℎ, and 𝐼𝑣 compartments. Meanwhile, 𝑍 is the transition matrix, which contains the 

infected population dynamics without including transmission interaction. 

In calculating 𝑅0, we consider only the equations related to the 𝐴ℎ, 𝐼ℎ, and 𝐼𝑣 compartments. Based 

on this approach, the matrices 𝐹 and 𝑍 are derived as follows: 

𝐹 =

(

 
 

𝛹𝑏
𝛽ℎ(𝑆ℎ+𝐿ℎ)𝐼𝑣

𝑁ℎ

(1 − 𝛹)𝑏
𝛽ℎ(𝑆ℎ+𝐿ℎ)𝐼𝑣

𝑁ℎ

𝑏
𝛽𝑣𝑆𝑣(𝐴ℎ+𝐼ℎ)

𝑁ℎ )

 
 

 and 𝑍 = (

(𝜇ℎ + 𝛾)𝐴ℎ
(𝜇ℎ + 𝛾 + 𝜏)𝐼ℎ

𝜇𝑣𝐼𝑣

). 

Let 𝔽 and ℤ be the Jacobian matrices of the transmission matrix 𝐹 and the transition matrix 𝑍, evaluated at 

the disease-free equilibrium (𝐸0), we obtain: 

𝔽 = (

0 0 𝛹𝛽ℎ𝑏

0 0 (1 − 𝛹)𝛽ℎ𝑏
𝛽𝑣𝑏𝑁𝑣

𝑁ℎ

𝛽𝑣𝑏𝑁𝑣

𝑁ℎ
0

) and ℤ = (

𝜇ℎ + 𝛾 0 0
0 𝜇ℎ + 𝛾 + 𝜏 0
0 0 𝜇𝑣

). 

The basic reproduction number 𝑅0 is determined as the largest eigenvalue (spectral radius) of the matrix 

𝔽ℤ−1. Thus, we obtain:  

𝑅0 = √
(𝛹𝜏 + 𝛾 + 𝜇ℎ)𝛽ℎ𝛽𝑣𝑏

2𝑁𝑣
(𝛾 + 𝜇ℎ)(𝜏 + 𝛾 + 𝜇ℎ)𝜇𝑣𝑁ℎ

, 

Based on the parameters estimation result in Table 3, 𝑅0 is calculated to be 1.14, indicating that 𝑅0 >
1 and validating the existence of endemic conditions in East Java Province in 2018. 

The endemic equilibrium describes a state where DHF is actively transmitted, resulting in infected 

humans and mosquitoes (𝐴ℎ, 𝐼ℎ, 𝐼𝑣 ≠ 0). The endemic equilibrium, denoted as 𝐸∗ =
(𝑆ℎ
∗ , 𝐿ℎ

∗ , 𝐴ℎ
∗ , 𝐼ℎ

∗ , 𝑅ℎ
∗ , 𝑆𝑣

∗, 𝐼𝑣
∗), is expressed as: 

𝑆ℎ
∗ = 𝑟

𝜇ℎ𝑁ℎ
2

𝛽ℎ𝑏𝐼𝑣
∗ + 𝜇ℎ𝑁ℎ

, 

𝐿ℎ
∗ = (1 − 𝑟)

𝜇ℎ𝑁ℎ
2

𝛽ℎ𝑏𝐼𝑣
∗ + 𝜇ℎ𝑁ℎ

, 

𝐴ℎ
∗ = Ψ

𝛽ℎ𝑏(𝑆ℎ
∗ + 𝐿ℎ

∗ )𝐼𝑣
∗

(𝜇ℎ + 𝛾)𝑁ℎ
, 

𝐼ℎ
∗ = (1 −Ψ)

𝛽ℎ𝑏(𝑆ℎ
∗ + 𝐿ℎ

∗ )𝐼𝑣
∗

(𝜇ℎ + 𝛾 + 𝜏)𝑁ℎ
, 

𝑅ℎ
∗ =

𝛾(𝐴ℎ
∗ + 𝐼ℎ

∗) + 𝜏𝐼ℎ
∗

𝜇ℎ
, 
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𝑆𝑣
∗ =

𝜇𝑣𝑁𝑣𝑁ℎ
𝛽𝑣𝑏(𝐴ℎ

∗ + 𝐼ℎ
∗) + 𝜇𝑣𝑁ℎ

, 

𝐼𝑣
∗ =

(𝑅0
2 − 1)(𝜇ℎ + 𝛾)(𝜇ℎ + 𝛾 + 𝜏)𝜇ℎ𝜇𝑣𝑁ℎ

(𝜇ℎ + 𝛾 +Ψ𝜏)𝛽ℎ𝛽𝑣𝑏
2𝜇ℎ + (𝜇ℎ + 𝛾)(𝜇ℎ + 𝛾 + 𝜏)𝜇𝑣𝑏𝛽ℎ

, 

This equilibrium exists if 𝑅0
2 > 1 ⇔ 𝑅0 > 1. 

 

3.3.1 Local Stability of the Disease-free Equilibrium 

The stability of the disease-free equilibrium point is obtained by substituting the value of the disease-

free equilibrium (𝐸0) into the Jacobian matrix as follows: 

𝐽(𝐸0) =

(

 
 
 
 
 
 
 

−𝜇ℎ 0 0 0 0 0 −𝑟𝛽
ℎ
𝑏

0 −𝜇ℎ 0 0 0 0 −(1 − 𝑟)𝛽
ℎ
𝑏

0 0 −(𝛾 + 𝜇ℎ) 0 0 0 Ψ𝛽
ℎ
𝑏

0 0 0 −(𝜏 + 𝛾 + 𝜇ℎ) 0 0 (1 −Ψ)𝛽
ℎ
𝑏

0 0 𝛾 𝜏 + 𝛾 −𝜇ℎ 0 0

0 0 −
𝛽𝑣𝑏𝑁𝑣

𝑁ℎ
−
𝛽𝑣𝑏𝑁𝑣

𝑁ℎ
0 −𝜇𝑣 0

0 0
𝛽𝑣𝑏𝑁𝑣

𝑁ℎ

𝛽𝑣𝑏𝑁𝑣

𝑁ℎ
0 0 −𝜇𝑣 )

 
 
 
 
 
 
 

. 

From the matrix 𝐽(𝐸0), we will look for the characteristic equation with |𝜆𝐼 − 𝐽(𝐸0)|, such that we 

obtain: 

(𝜆 + 𝜇ℎ)
3(𝜆 + 𝜇𝑣)(𝜆

3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3) = 0, (2) 

where 

𝑎1 = (𝛾 + 𝜇ℎ) + (𝜏 + 𝛾 + 𝜇ℎ) + 𝜇𝑣, 

𝑎2 = (𝛾 + 𝜇ℎ)(𝜏 + 𝛾 + 𝜇ℎ) + (𝛾 + 𝜇ℎ)𝜇𝑣 + (𝜏 + 𝛾 + 𝜇ℎ)𝜇𝑣[1 − 𝑅1], 

𝑎3 = (𝛾 + 𝜇ℎ)(𝜏 + 𝛾 + 𝜇ℎ)𝜇𝑣[1 − 𝑅0
2], 

with 𝑅1 =
𝛽ℎ𝛽𝑣𝑏

2𝑁𝑣

(𝜏+𝛾+𝜇ℎ)𝜇𝑣𝑁ℎ
. 

From Equation (2), we have the eigenvalues 𝜆1 = 𝜆2 = 𝜆3 = −𝜇ℎ , 𝜆4 = −𝜇𝑣, which are negative, 

and the remainder are the roots of the following equation: 

𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0. (3) 

By using the Routh-Hurwitz criterion, the characteristic Equation (3) will have roots with negative real parts 

if and only if  𝑎1, 𝑎2, 𝑎3, 𝑎1𝑎2 − 𝑎3 > 0. It is clear that the coefficient 𝑎1 > 0, while 𝑎2 > 0 if 𝑅1 < 1, and 

the coefficient 𝑎3 > 0 if 𝑅0
2 < 1. Using some algebraic calculations, we have 

𝑎1𝑎2 − 𝑎3 = ((𝛾 + 𝜇ℎ) + (𝜏 + 𝛾 + 𝜇ℎ))((𝛾 + 𝜇ℎ)(𝜏 + 𝛾 + 𝜇ℎ) + (𝛾 + 𝜇ℎ)𝜇𝑣 + (𝜏 + 𝛾 + 𝜇ℎ)𝜇𝑣[1 − 𝑅1]) 

+(𝛾 + 𝜇ℎ)𝜇𝑣
2 + (𝜏 + 𝛾 + 𝜇ℎ)𝜇𝑣

2[1 − 𝑅1] + (𝛾 + 𝜇ℎ)(𝜏 + 𝛾 + 𝜇ℎ)𝜇𝑣𝑅0
2. 

Hence, the coefficient 𝑎1𝑎2 − 𝑎3 > 0 if 𝑅1 < 1. Next, we will look for the relationship between 𝑅0
2 and 𝑅1, 

using some algebraic calculations, we have 

𝑅0
2 − 𝑅1 =

(𝜏 + 𝛾 + 𝜇ℎ)Ψ𝛽ℎ𝛽𝑣𝑏
2𝜇𝑣𝑁𝑣𝑁ℎ

(𝛾 + 𝜇ℎ)(𝜏 + 𝛾 + 𝜇ℎ)
2𝜇𝑣
2𝑁ℎ

2 . 

Hence, 𝑅0
2 − 𝑅1 > 0 ⇔ 𝑅1 < 𝑅0

2. So, when 𝑅0
2 < 1 then 𝑅1 < 1 is fulfilled. Then, the conditions are 

sufficient and necessary for Equation (2) to have negative real parts when 𝑅0
2 < 1 ⟺ 𝑅0 < 1. Therefore, 

the disease-free equilibrium (E0) will be locally asymptotically stable for 𝑅0 < 1 and unstable whenever        

𝑅0 > 1. The foregoing discussion could be summarized in the following theorem. 
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Theorem 2. The disease-free equilibrium (𝐸0) of the system is locally asymptotically stable in the region 𝛺 

if 𝑅0 < 1 and unstable if 𝑅0 > 1. 

 

3.3.2 Global Stability of the Disease-free Equilibrium 

The global stability of the disease-free equilibrium will be investigated using the direct Lyapunov 

method. Suppose the positive constants 𝑐𝑖 > 0, (𝑖 = 1,2,3) are defined as: 

𝑐1 =
(𝜇ℎ+𝛾+𝜏)𝑏𝛽𝑣𝑆𝑣

0

𝑁ℎ
, 𝑐2 =

(𝜇ℎ+𝛾)𝑏𝛽𝑣𝑆𝑣
0

𝑁ℎ
 and 𝑐3 = (𝜇ℎ + 𝛾)(𝜇ℎ + 𝛾 + 𝜏). 

Then, consider the Lyapunov function ℒ ∶ Ω → ℝ defined as 

ℒ = 𝑐1𝐴ℎ + 𝑐2𝐼ℎ + 𝑐3𝐼𝑣 . 

Time derivative of ℒ is: 

𝑑ℒ

𝑑𝑡
= 𝑐1

𝑑𝐴ℎ
𝑑𝑡

+ 𝑐2
𝑑𝐼ℎ
𝑑𝑡
+ 𝑐3

𝑑𝐼𝑣
𝑑𝑡

 

= (𝑏
𝛽𝑣𝑆𝑣
𝑁ℎ

𝑐3 − (𝜇ℎ + 𝛾)𝑐1)𝐴ℎ + (𝑏
𝛽𝑣𝑆𝑣
𝑁ℎ

𝑐3 − (𝜇ℎ + 𝛾 + 𝜏)𝑐2) 𝐼ℎ

+ (Ψ𝑏
𝛽ℎ(𝑆ℎ + 𝐿ℎ)

𝑁ℎ
𝑐1 + (1 −Ψ)𝑏

𝛽ℎ(𝑆ℎ + 𝐿ℎ)

𝑁ℎ
𝑐2 − 𝜇𝑣𝑐3) 𝐼𝑣. 

Replacing constant 𝑐1, 𝑐2 and 𝑐3, we obtain: 

𝑑ℒ

𝑑𝑡
=
𝑏𝛽𝑣(𝜇ℎ + 𝛾)(𝜇ℎ + 𝛾 + 𝜏)

𝑁ℎ
(𝑆𝑣 − 𝑆𝑣

0)𝐴ℎ +
𝑏𝛽𝑣(𝜇ℎ + 𝛾)(𝜇ℎ + 𝛾 + 𝜏)

𝑁ℎ
(𝑆𝑣 − 𝑆𝑣

0)𝐼ℎ

+ (
Ψ𝑏2𝛽ℎ𝛽𝑣(𝜇ℎ + 𝛾 + 𝜏)(𝑆ℎ + 𝐿ℎ)𝑆𝑣

0

𝑁ℎ
2 +

(1 − Ψ)𝑏2𝛽ℎ𝛽𝑣(𝜇ℎ + 𝛾)(𝑆ℎ + 𝐿ℎ)𝑆𝑣
0

𝑁ℎ
2

− 𝜇𝑣(𝜇ℎ + 𝛾)(𝜇ℎ + 𝛾 + 𝜏)) 𝐼𝑣 . 

Since 𝑆𝑣 ≤ 𝑆𝑣 + 𝐼𝑣 = 𝑁𝑣 = 𝑆𝑣
0, we have 𝑆𝑣 ≤ 𝑆𝑣

0, leading to the inequality: 

𝑑ℒ

𝑑𝑡
≤ (

Ψ𝑏2𝛽ℎ𝛽𝑣(𝜇ℎ+𝛾+𝜏)(𝑆ℎ+𝐿ℎ)𝑆𝑣
0

𝑁ℎ
2 +

(1−Ψ)𝑏2𝛽ℎ𝛽𝑣(𝜇ℎ+𝛾)(𝑆ℎ+𝐿ℎ)𝑆𝑣
0

𝑁ℎ
2 − 𝜇𝑣(𝜇ℎ + 𝛾)(𝜇ℎ + 𝛾 + 𝜏)) 𝐼𝑣  

≤ 𝜇𝑣(𝜇ℎ + 𝛾)(𝜇ℎ + 𝛾 + 𝜏) (
Ψ𝑏2𝛽ℎ𝛽𝑣(𝑆ℎ+𝐿ℎ)𝑆𝑣

0

𝑁ℎ
2𝜇𝑣(𝜇ℎ+𝛾)

+
(1−Ψ)𝑏2𝛽ℎ𝛽𝑣(𝑆ℎ+𝐿ℎ)𝑆𝑣

0

𝑁ℎ
2𝜇𝑣(𝜇ℎ+𝛾+𝜏)

− 1) 𝐼𝑣  

≤ 𝜇𝑣(𝜇ℎ + 𝛾)(𝜇ℎ + 𝛾 + 𝜏) (
(Ψ𝜏+𝜇ℎ+𝛾)𝑏

2𝛽ℎ𝛽𝑣(𝑆ℎ+𝐿ℎ)𝑆𝑣
0

𝑁ℎ
2𝜇𝑣(𝜇ℎ+𝛾)(𝜇ℎ+𝛾+𝜏)

− 1) 𝐼𝑣. 

Now, using the fact that 𝑆ℎ + 𝐿ℎ ≤ 𝑆ℎ + 𝐿ℎ + 𝐴ℎ + 𝐼ℎ + 𝑅ℎ = 𝑁ℎ , we get 𝑆ℎ + 𝐿ℎ < 𝑁ℎ. Also, since       

𝑆𝑣
0 = 𝑁𝑣 , we have: 

𝑑ℒ

𝑑𝑡
≤ 𝜇𝑣(𝜇ℎ + 𝛾)(𝜇ℎ + 𝛾 + 𝜏) (

(Ψ𝜏+𝜇ℎ+𝛾)𝑏
2𝛽ℎ𝛽𝑣𝑁ℎ𝑁𝑣

𝑁ℎ
2𝜇𝑣(𝜇ℎ+𝛾)(𝜇ℎ+𝛾+𝜏)

− 1) 𝐼𝑣  

≤ 𝜇𝑣(𝜇ℎ + 𝛾)(𝜇ℎ + 𝛾 + 𝜏)(𝑅0
2 − 1)𝐼𝑣. 

Therefore 
𝑑ℒ

𝑑𝑡
≤ 0 if 𝑅0 ≤ 1, with 

𝑑ℒ

𝑑𝑡
= 0 if 𝑅0 = 1 or 𝐼𝑣 = 0. According to LaSalle's invariance principle 

[20], the free-disease equilibrium (𝐸0) is globally asymptotically stable in the region Ω if 𝑅0 < 1. The 

foregoing discussion could be summarized in the following theorem. 

 

Theorem 3. The disease-free equilibrium (𝐸0) of the system is globally asymptotically stable in the region 

𝛺 if 𝑅0 < 1. 
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3.3.3 Stability of the Endemic Equilibrium 

Due to the analytical complexity of determining the stability of the endemic equilibrium, we investigate 

its stability through numerical methods. In this simulation, we employ three different initial conditions while 

keeping the parameter values constant to observe the convergence of the trajectories over an extended period. 

The initial values used in the numerical simulation are provided in Table 4, while the parameter values are 

based on the estimation results in Table 3, except for 𝑁ℎ = 40,000,000 and 𝑁𝑣 = 43,000,000. 

Table 4. Initial Value for Phase Field Simulation  

Initial Value 𝑺𝒉(𝟎) 𝑳𝒉(𝟎) 𝑨𝒉(𝟎) 𝑰𝒉(𝟎) 𝑹𝒉(𝟎) 𝑺𝒗(𝟎) 𝑰𝒗(𝟎) Color 

𝑧1 20,000,000 19,900,000 30,000 40,000 30,000 42,900,000 100,000 Red 

𝑧2 18,000,000 21,900,000 10,000 50,000 40,000 42,800,000 200,000 Green 

𝑧3 22,000,000 17,900,000 20,000 80,000 20,000 42,600,000 400,000 Blue 

For the phase-space simulation, we present a 3D visualization focusing on the 𝐴ℎ, 𝐼ℎ and 𝐼𝑣 

populations. This approach highlights the equilibrium state for endemic conditions, where the populations 

are non-zero, and for disease-free conditions, where they are zero. This distinction offers a clear visual 

representation of the two scenarios. The results of the simulation are illustrated in Figure 4.  

  
Figure 4. Phase Field of 𝑨𝒉, 𝑰𝒉 and 𝑰𝒗 Populations 

 

Based on the numerical simulation results shown in Figure 4, the trajectories of the 𝐴ℎ, 𝐼ℎ and 𝐼𝑣 

populations, starting from three different initial conditions, converge to the endemic equilibrium point (𝑥∗), 
with 𝑅0 = 1.1326 > 1. This suggests that the endemic equilibrium point tends to be asymptotically stable 

when 𝑅0 > 1. The foregoing discussion could be summarized in the following theorem. 

  

Theorem 4. The endemic equilibrium (𝐸∗) of the system tends to be asymptotically stable in the region 𝛺 if 

𝑅0 > 1. 

 

3.4 Sensitivity Analysis 

This section examines the sensitivity analysis to identify the parameters that significantly influence the 

basic reproduction number (𝑅0), as described in [21]. Sensitivity analysis allows for the quantification of 

how changes in parameters affect 𝑅0. The sensitivity index of 𝑅0 with respect to a parameter 𝑝 is defined as: 
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Υ𝑝
𝑅0 =

𝜕𝑅0
𝜕𝑝

×
𝑝

𝑅0
. 

Using this formula, sensitivity indices for 𝑅0 were calculated based on the parameter values in Table 

3. The result is presented in Table 5. 

Table 5. Sensitivity Index of the Parameters in 𝑹𝟎  

Parameters Sensitivity Index Parameters Sensitivity Index 

𝜏 − 0.069 𝛽ℎ + 0.5 

𝛾 − 0.421 𝛽𝑣 + 0.5 

Ψ + 0.166 𝜇ℎ − 0.010 

𝑏 + 1 𝜇𝑣 − 0.5 

A positive sensitivity index means that an increase in the parameter value will cause an increase in the 

value of 𝑅0. Conversely, a negative sensitivity index means that an increase in the parameter value will cause 

a decrease in 𝑅0. From Table 5, the sensitivity index of the mosquito biting rate (𝑏) is 1, indicate that if the 

parameter 𝑏 increase 10%, then the value of 𝑅0 also increase 10%. Conversely, if the parameter 𝑏 decrease 

10%, then the value of 𝑅0 also decrease 10%. Similar proportional relationships hold for other parameters, 

as shown in Table 5. The most influential parameters affecting 𝑅0 are the mosquito biting rate (𝑏), the 

transmission rate from infected mosquitoes to susceptible humans (𝛽ℎ), the transmission rate from infected 

humans to susceptible mosquitoes (𝛽𝑣), and the mosquito mortality rate (𝜇𝑣). This highlights the critical role 

of vector control strategies in reducing DHF transmission. 

3.4.1 Impact Parameters on 𝑹𝟎 

The parameter with the highest sensitivity index is 𝑏, with an index value of 1. Additionally, the 

parameters 𝛽ℎ, 𝛽𝑣 and 𝜇𝑣 have sensitivity indices of 0.5 and − 0.5. These four parameters significantly 

influence 𝑅0, and their impact has been further analyzed through simulation. 
 

  
(a) (b) 

  
(c) 

Figure 5. Impact of 𝒃 on the Value of 𝑹𝟎 with Three Different Values of (a) 𝜷𝒉, (b) 𝜷𝒗 and (c) 𝝁𝒗 
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Figure 5 illustrates the relationship between these parameters and 𝑅0. It is evident that an increase in 

𝑏 leads to a higher 𝑅0 value, indicating a greater potential for DHF to become endemic. This is because the 

sensitivity index of 𝑏 is positive, meaning that an increase in 𝑏 proportionally increases 𝑅0. Similarly, an 

increase in 𝛽ℎ and 𝛽𝑣 also results in a higher 𝑅0, as both parameters have positive sensitivity indices. In 

contrast, an increase in 𝜇𝑣 reduces the 𝑅0 value because its sensitivity index is negative. This suggests that 

higher mosquito mortality can significantly help control the spread of DHF. 

 

3.4.2 Impact Parameters on Population 

To further assess the influence of parameters 𝑏, 𝛽ℎ, 𝛽𝑣, and 𝜇𝑣, simulations were conducted to observe 

their effects on the symptomatic human population (𝐼ℎ). The resulting simulation graphs are presented in 

Figure 6. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Impact of (a) 𝒃, (b) 𝜷𝒉, (c) 𝜷𝒗, and (d) 𝝁𝒗 on 𝑰𝒉 

From Figure 6, it can be concluded that these four parameters significantly impact changes in the 𝐼ℎ 

population. When the values of 𝑏, 𝛽ℎ, and 𝛽𝑣 are low, indicating that a reduced transmission rate leads to the 

𝐼ℎ population remains relatively small. Conversely, higher values of these parameters lead to a significant 

increase in the 𝐼ℎ population, reflecting more intense disease transmission. In contrast, the mosquito mortality 

rate 𝜇𝑣 exhibits an inverse relationship with the 𝐼ℎ population. When 𝜇𝑣 is high, the transmission rate 

decreases, resulting in a lower 𝐼ℎ population. However, when 𝜇𝑣 is low, the reduced mosquito mortality 

allows for more effective disease transmission, leading to an increase in the 𝐼ℎ population. 

Since b is the most influential parameter affecting changes in 𝑅0, we further analyze the impact of 𝑏 

on the occurrence of disease-free and endemic conditions. By substituting the parameter values from            

Table 3, except for 𝑏, we obtain 𝑅0 = 1.9351𝑏. Therefore, for the system to be in a disease-free state when 

𝑏 < 0.5167700912, while the system remains endemic when 𝑏 > 0.5167700912. 
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3.5 Numerical Simulation 

To analyze the future trends of dengue hemorrhagic fever (DHF) in West Java, we perform simulations 

based on the estimated parameter values. The simulations are conducted under two different conditions: 

1. Disease-free condition, where parameter values follow Table 3, except for 𝑏 = 0.3891, resulting in 

𝑅0 = 0.7529. 

2. Endemic condition, where all parameter values follow Table 3, yielding 𝑅0 = 1.14. 

The numerical simulations are implemented using the Runge-Kutta integration method. The 

comparison of population dynamics under these two conditions is presented in Figure 7. These simulations 

provide insights into the potential trajectory of DHF in West Java Province. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) 

Figure 7. Numerical simulation of (a) 𝑺𝒉, (b) 𝑳𝒉, (c) 𝑨𝒉, (d) 𝑰𝒉, (e) 𝑹𝒉, (f) 𝑺𝒗, and (g) 𝑰𝒗 population 

The results indicate that when 𝑅0 > 1, the disease persists in the population, leading to an increase in 

the number of infected individuals over time. In contrast, when 𝑅0 < 1, the infection gradually dies out. This 

condition aligns with our previous calculations, which show that the system remains in a disease-free state 

when 𝑏 < 0.5167700912, while it stays endemic when 𝑏 > 0.5167700912. Therefore, controlling and 

reducing the mosquito biting rate (𝑏) can be one of the key strategies for shifting the system toward a disease-

free state. These findings underscore the critical threshold behavior of 𝑅0 and emphasize the necessity of 

maintaining control efforts to prevent periodic resurgences of DHF outbreaks. 

 

4. CONCLUSIONS 

This study developed a mathematical model to analyze the transmission dynamics of Dengue 

Hemorrhagic Fever (DHF) in East Java Province, Indonesia. The model integrates key epidemiological 

different levels of transmission risk and utilizes a Genetic Algorithm (GA) to optimize parameter estimation. 

The basic reproduction number (𝑅0) was calculated as 1.0959, confirming the endemic status of DHF in 

West Java Province in 2018. Stability analysis demonstrated that the disease-free equilibrium is locally and 

globally asymptotically stable when 𝑅0 < 1, while the endemic equilibrium tends to be asymptotically stable 

when 𝑅0 > 1. Sensitivity analysis revealed that the mosquito biting rate (𝑏), mosquito mortality rate (𝜇𝑣), 
and transmission rates from infected mosquitoes to humans (𝛽ℎ) and from infected humans to mosquitoes 

(𝛽𝑣) are the most critical factors influencing the basic reproduction number (𝑅0). Among these, parameter 𝑏 

exhibited the highest sensitivity index, indicating a direct proportional relationship. Next, the most influential 

parameters are 𝛽ℎ and 𝛽𝑣, which have a positive sensitivity index, as well as 𝜇𝑣, which has a negative 

sensitivity index. Simulations further analyzed the effects of these four parameters on both 𝑅0 and the 

symptomatic human population (𝐼ℎ). The results confirmed that higher values of 𝑏, 𝛽ℎ, and 𝛽𝑣 increase 𝑅0 

and amplify 𝐼ℎ, reflecting intensified transmission dynamics. For instance, a significant rise in 𝑏 or 𝛽ℎ leads 

to a marked increase in the peak and duration of 𝐼ℎ, highlighting their impact on disease propagation. In 

contrast, an increase in 𝜇𝑣 reduces 𝑅0 and diminishes 𝐼ℎ, indicating its crucial role in suppressing outbreaks. 

These findings underscore the importance of vector control measures targeting 𝑏 and 𝜇𝑣, such as fumigation 

and environmental interventions to eliminate breeding sites. By effectively reducing 𝑏 and increasing 𝜇𝑣, 

public health efforts can achieve significant reductions in both 𝑅0 and 𝐼ℎ. 
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