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ABSTRACT

Hunger in Indonesia remains a serious challenge, especially in the face of food price
instability, particularly rice as the main staple food. In order to achieve SDG 2 “Zero
Hunger” by 2030, policies that support price stability and more effective food distribution
are needed. This study aims to assess the predictive power of Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) models for Indonesian rice prices. The dataset,
consisting of 1,424 observations from early 2021 to late 2024, was collected from official
sources and preprocessed using normalization techniques. The data was then divided into
training, validation, and testing sets. Each model was trained and evaluated using Root
Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) metrics.
LSTM, a type of Recurrent Neural Network (RNN), uses three gates and cell memory to
identify long-term patterns in time series data. GRU, with a simpler structure involving
only two gates, is more efficient in modeling temporal relationships. The results show that
the LSTM model achieved MAPE 3.49%, while the GRU model outperformed it with
MAPE 1.08%. Overall, the GRU model demonstrated higher accuracy in forecasting rice
prices.
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1. INTRODUCTION

One of Indonesia’s biggest issues within the ASEAN region is the extent of poverty in the nation.
According to the Global Hunger Index (GHI) and reports from the World Food and Agriculture Organization
(FAO), Indonesia still suffers from hunger, especially in areas that are vulnerable to economic instability and
food price fluctuations. Indonesia, as the country with the largest population in ASEAN, faces great
challenges in ensuring sufficient food availability for its entire population, especially rice, which is the main
staple food. Significant fluctuations in rice prices can affect food security and exacerbate hunger levels in
communities [1], [2].

The Sustainable Development Goals (SDGs) of the UN are important standards for global efforts to
combat poverty. SDG 2, “Zero Hunger”, specifically targets eliminating hunger, achieving food security and
improved nutrition, and supporting sustainable agriculture by 2030 [3], [4]. To achieve this target, Indonesia
must address several key barriers, such as food price instability, increased sustainable agricultural production,
and more effective management of food distribution.

One of the main factors affecting hunger levels in Indonesia is the price of rice. The volatility of rice
prices, which can be influenced by weather, harvest patterns, distribution and market factors, has a direct
impact on people's purchasing power, especially in the most vulnerable groups. For example, in 2022,
national rice prices experienced sharp fluctuations, rising from around IDR 9,824 per kg in January to over
IDR 12,300 per kg by December, driven by disruptions in distribution and harvest failures in several regions.
Similar volatility was observed in 2023, with prices peaking during the dry season and falling abruptly after
government interventions. Unpredictable price fluctuations can lead to food crises, reduce people's access to
food, and increase poverty. Therefore, the development of accurate rice price forecasting models is essential
to support policies aimed at maintaining price stability and preventing hunger [5].

In this effort, the utilization of machine learning technology is becoming an increasingly relevant
solution. Techniques such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models,
which are types of Recurrent Neural Networks (RNNs), are well-suited for time series forecasting tasks.
These models are designed to capture sequential dependencies in data, making them effective for predicting
future rice prices based on historical trends. In time series data, artificial neural networks like LSTM and
GRU excel in identifying complex patterns and temporal relationships. The LSTM model has the advantage
of maintaining long-term memory through its gated architecture, making it suitable for data with longer
temporal dependencies. However, it requires more computational resources and training time. In contrast, the
GRU model offers simpler architecture with fewer gates, allowing for faster training and lower computational
cost, although it may be less effective in capturing very long-term dependencies. By using these machine
learning methods, rice price prediction can be done more effectively, assisting policymakers and economic
actors in designing more appropriate strategies for price stabilization.

Previous research has shown that the LSTM model is effective for rice price forecasting. Study [6]
used LSTM with variables such as weather, crop yield, and land area, achieving a low Root Mean Square
Error (RMSE) of 0.054 using daily data from 2015 to 2023. These results demonstrate LSTM’s ability to
model complex price patterns. Study [7] compared LSTM with Bidirectional LSTM (BILSTM) in predicting
medium- and high-quality rice prices from 2017 to 2022. The LSTM model achieved lower RMSE values
(0.986 and 0.989), showing better stability and accuracy, making it more suitable for supporting price control
policies. Although fewer studies focus on GRU in rice price forecasting, studies [8], [9] show that GRU
performs well in time series tasks with faster training and comparable accuracy to LSTM, making it a
promising alternative.

This study aims to assess how well LSTM and GRU perform in forecasting future rice prices in
Indonesia. This study evaluates both models. LSTM and GRU are suitable for this task because they can
capture sequential patterns and temporal dependencies in time series data, which are key characteristics of
price fluctuations over time. Their ability to learn from historical data enables accurate prediction of future
price movements, making them effective tools for economic and agricultural forecasting. The contribution of
this research is to provide more comprehensive rice price forecasting using the latest data. Unlike prior studies
that focused solely on LSTM or applied GRU to unrelated domains, this study offers a direct comparison of
both models using recent national rice price data from 2021 to 2024. This comparative approach with updated
data provides practical insights into which model is more reliable for real-world rice price prediction. Long-
term support for national food security, the creation of more effective and sustainable food policies, and the
achievement of SDG 2 in Indonesia are the expected outcomes of applying this technology. The findings
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provide valuable insights for policymakers in designing data-driven strategies to stabilize rice prices and
ensure food security in Indonesia.

2. RESEARCH METHODS

2.1 Data Collection

The data source used in this study comes from the National Food Agency Website
(https://newpanelharga.badanpangan.go.id/beranda) with 1,424 observations from the beginning of 2021 to
the end of 2024. In this study, the variables used are the date and national rice price to predict the price of
rice to overcome hunger in Indonesia. The original data is collected daily, however for model training and
forecasting, the data is resampled into 3-day intervals to reduce noise and improve trend detection.

2.2 Recurrent Neural Network

RNN is part of the Neural Network family designed to process sequential data by utilizing its internal
memory [10]. This memory allows the RNN to remember previously acquired information, so that the
decision or outcome of an input is influenced by previous information [11]. RNN stores information from the
past through a looping mechanism in its architecture, which automatically retains and processes data from
previous sequences, making it ideal for processing continuous data [12].

2.3 Long Short-Term Memory

LSTM was first postulated in 1997 by Jurgen Schmid Huber and Sepp Hochreiter. The LSTM method
was originally used to learn long-term dependencies in data by overcoming the vanishing gradient problem
[13]-[15] LSTM is a special type of RNN that works better in practice, due to the updating of the equations
and the backpropagation dynamics involved [16]. LSTM can detect data that should be kept and data that
should be discarded, because it has four layers of neurons commonly called gates to manage memory in each
neuron. LSTM has gates that function to delete or add information, namely forget gate, output gate, and input
gate [17]-[19].
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Figure 1. LSTM Architecture

The equations formed from forget gate, input gate, output gate, tanh layer creating a new candidate
value vector, cell state, and hidden layer are [17], [20], [21].

2.3.1 Forget Gate

fe = o(Wrxxe + Wynhe + Wreee_q + by), (D)
where:
ft . Forget gate at ¢;
o : Sigmoid activation function;

Xt > Input at ¢;
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h; : Hidden state at t;
Ct : Cell state at ¢;
Wex - Weights to determine x;;

Wer  : Weights to determine hy;
Wre - Weights to determine c;;
by : Bias for forget gate.

2.3.2 Input Gate

ir = o(Wixxe + Wiphe + Wicce—q + by), (2)
where
i : Gate input at ¢;
o : Sigmoid activation function;
Xt - Input at ¢;
h; : Hidden state at t;
Ct : Cell state at t;

Wi,  :Weights to determine x;;
Wi Weights to determine hy;
Wi : Weights to determine c;;
b; : Bias for input gate.

2.3.3 Memory Update

¢t = froce—q +ir 0 p(Wexxe + Wephe—q + be), 3)
where:
Ct : Cell state at ¢;
ft : Forget gate at ¢t;
ct—1 . Cellstateatt —1;
i : Input gate at ¢t;
Xt : Input at ¢;

hs—, :Hiddenstateatt — 1;
W,.,  :Weights to determine x;;
W.,  :Weights to determine h;;

b, : Bias for cell state.
2.3.4 Output Gate
0r = 0 (Woxxe + Wophy + Woccr—q + by), 4)
hs = o; 0 p(cp), (5)
where:
0t . Gate output at ¢t;
o : Sigmoid activation function;
W,, :Weights to determine x;;

S

bn - Weights to determine h;;
W,. :Weights to determine c;;
b, : Bias for output gate.

2.4 Gate Recurrent Unit

The main purpose of creating a GRU is to make each recurrent unit capable of capturing dependencies
in different time scales adaptively. GRU is a type of RNN. This model introduces a gating structure to read
remote information. GRU is similar to LSTM, except it has fewer parameters because it does not have an
output gate [8]. GRU only introduces two gates, namely update gate (z;) and reset gate (r;) [9].
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Figure 2. GRU Architecture

Update gate is useful for channeling information from previous inputs and outputs to the next cell,
while reset gate is useful for determining which past information should be forgotten [9]. The way GRU
works can be seen through the following formula [22].

ze = o(Wy * [he_y, xe]), (6)
e = U(Wr * [ht_l:xt])- (7)

After resetting the gate and updating the gate, the status of the GRU candidate value is h; and the final output
is h;, where h is the (hidden state) at (time step) t, with the following formula [22]-[24].

he = tanh(wy * [r, * he—, %], ®)
he =1 —=2z)*he_, + 2¢ * he. 9
where
Z; : Update gate
Tt - Reset gate
he : Candidate hidden gate
h¢ : Candidate gate
o : Sigmoid activation function

w, : Weight for update gate

W, : Weight for reset gate

wy, : Weight for candidate hidden gate
: Weight for candidate gate

Xt :Input at step ¢

2.5 Model Evaluation

A prediction accuracy number is obtained by evaluating the predictive model using test data after it
has been produced during the training process. For comparing forecasting methods, we used RMSE. RMSE
is calculated using the following equation:

n
1
RMSE = ;Z(xt _ )2 (10)
t=1

If a model yields a lower RMSE value, it is deemed good. Here, n stands for the number of
observations, x; for the observed values, and x; for the predicted values. The RMSE value ranges from
[0, ) [25]. Furthermore, the average absolute percentage error is computed using Mean Absolute Percent
Error (MAPE). MAPE provides a measure of the difference between the series' actual value and the
forecasting error. The MAPE equation can be seen as follows [22], [25], [26].
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n |(xfx_th) X 100%]

MAPE = - (11)

3. RESULTS AND DISCUSSION

3.1 Data Preprocessing

Data preprocessing is an important stage in data processing before it is used in analysis or machine
learning model development. This stage includes various processes such as feature scaling, data cleaning,
data transformation, data reduction, and data encoding, which aim to prepare raw data to suit the needs of
analysis or models. One of the main steps in feature scaling is data normalization so that it has a uniform
range of values. A commonly used method is min-max normalization, which changes the data scale so that it
is within the range of 0 to 1. This normalization is very important to prevent the dominance of certain features
due to differences in value scales, especially in the context of the LSTM and GRU models, which are very
sensitive to input scales. By performing normalization, the training process becomes more stable and
converges faster, thereby improving the overall performance and accuracy of the model.

3.2 Training, Testing, and Validation Data

To assess the effectiveness of the methods used, the data was divided into three parts, 80% for training,
10% for validation, and 10% for testing. The data was divided sequentially based on time (chronological
split) to reflect a realistic time series forecasting scenario. After the preprocessing stage was completed, the
training data was used to train the LSTM and GRU models to learn historical rice price patterns. During the
training process, the model is run for a few epochs, and model parameters such as the number of neuron units,
learning rate, and activation function are gradually adjusted through a trial-and-error approach to obtain the
best results. Validation data is used in parallel during the training process to evaluate the model's performance
on data not involved in weight updates, to prevent overfitting and determine the optimal point for stopping
training (early stopping). After the model is trained, the test data is used as truly unseen data to objectively
measure the model's prediction accuracy. The model's performance is measured using two primary evaluation
metrics, RMSE and MAPE, which provide an indication of how close the prediction results are to the actual
values. To find the best parameters for model creation, trial-and-error testing is employed.

Table 1. The Parameter Settings of LSTM and GRU

Parameter Value
Learning Rate 0.0005
Epoch 100
Optimizer Adam
Loss Huber

Table 1 describes the parameter settings used for the LSTM model. The learning rate is set to 0.0005,
which determines the step size for weight updates during training. The model is trained for 100 epochs,
meaning it iterates over the dataset 100 times. The Adam optimizer is used to adjust model parameters
efficiently, and the Huber loss function is selected to minimize the error while being robust to outliers. The
Parameter settings for the GRU model as shown in Table 1. The batch size is set to 64, meaning the model
processes 64 data samples at a time during training. The training process runs for 100 epochs, significantly
more than the LSTM model. Similar to LSTM, the Adam optimizer is used for weight updates. Additionally,
the "Verbose" parameter is set to 1, indicating that training progress and performance metrics are displayed
during the process.

3.3 Long Short-Term Memory

In this method, there are several steps involved in building an LSTM model for data prediction. First,
the data is imported and prepared using Python libraries such as NumPy, Pandas, Matplotlib, Seaborn, and
TensorFlow. After the data is read, a normalization process is performed to ensure that the data scale is
uniform, so that the model training process becomes more stable. To prevent overfitting, several regulation
techniques are applied, such as the use of dropout and early stopping. Next, the data is divided into three
parts: 80% for training, 10% for validation, and 10% for testing (Fig. 3).
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Figure 3. Plot of Data Sharing

The validation data is used during the training process to evaluate the model's performance on data not
involved in the weight update process. The purpose is to monitor whether the model is overfitting to the
training data and to assist in the optimal adjustment of parameters (such as the number of epochs or
architecture configuration). Validation is performed periodically at each epoch. Meanwhile, testing data is
used after the training process is complete, as data that the model has never seen before. The goal is to evaluate
the model's final generalization ability on new data. Thus, the separation between validation data and testing
data is done to ensure that model performance testing is conducted objectively and is not biased toward
parameters adjusted during training. The following plots were formed.

The normalized training data is used to train the LSTM model following the data separation procedure.
In this model, two LSTM layers are used, each consisting of 64 units, followed by a dropout layer to prevent
overfitting, and a Dense (fully connected) layer to generate prediction outputs, dropouts to avoid overfitting,
and using appropriate activation functions. During the training process, the model is optimized using Adam'’s
algorithm and Huber's loss function to better capture the data patterns. Once training is complete, the model
is tested using validation data to assess its ability to generalize data that has never been seen before. The
evaluation was done using the RMSE and MAPE metrics, which showed that the model could capture the
data patterns and trends quite well. There is still an opportunity for improvement, though, as there is a little
discrepancy between the actual and expected values. The model was then used to perform value forecasting
for a specific period by comparing the predicted results against the actual data. To make it easier to analyze
trend patterns and assess how well the model can capture past data, the forecast results are displayed as
graphs. Model evaluation is done by comparing actual with predicted data.

The RMSE value of 518.1 and the MAPE value of 3.49% during the training evaluation stage
demonstrate that the predicted model and the actual data accord well. During the validation phase, the model
is evaluated using previously unseen data to gauge its capacity for generalization. With an RMSE value of
489.8 and a MAPE value of 2.81%, the validation results demonstrate that the model can predict very well,
despite a little discrepancy between the actual and projected data. The comparison plot between actual data
and predicted data at both training and validation stages shows that the LSTM model performs quite well in
capturing patterns and trends in the data. The plot of comparison between actual and prediction data in Fig.
4.
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Figure 4. The Actual and Prediction of Training Data

Fig. 5 illustrates the comparison between actual and predicted validation data over time. The x-axis
represents the timeline, while the y-axis shows the price values. The actual validation data (depicted in an
orange dashed line) demonstrates a fluctuating downward trend, with a sharp peak around April 2024 before
continuing its decline until mid-2024, followed by a slight upward trend. In contrast, the predicted validation
data (depicted in a dark dashed line) follows a smoother downward trajectory with minimal fluctuations,
failing to capture some of the sharp variations observed in the actual data. This suggests that the predictive
model may not fully capture sudden market changes but maintains a relatively stable approximation of the
trend. The trained LSTM model is used to forecast the national rice price for the period January 2025 to
February 2025. To illustrate the predictions made by the model, the forecasting results are displayed as tables
and charts.

16600 1 Actual Validation Data
=w= Prediction Validation Data

16400

16200 1

15600 1

15400 1

2024-04 2024-05 2024-06 2024-07 2024-08
Time

Figure 5. The Actual and Prediction of Validation Data

Table 2 presents the forecasting results of the LSTM model for rice prices over a series of dates in
January and February 2025. It consists of three columns: the sequential number (No), the forecast date (Date),
and the predicted price value (Forecast). The results show a gradual increase in predicted prices over time,
starting from 15,319.29 on January 1, 2025, and reaching 15,810.96 on February 21, 2025. This indicates an
upward trend in rice prices based on the LSTM model's predictions.

Table 2. The LSTM Forecasting Results

No Date Forecast No Date Forecast
1 01-01-2025 15319.294922 10 28-01-2025 15576.994141
2 04-01-2025 15399.757812 11 31-01-2025 15603.788086
3 07-01-2025 15390.323242 12 03-02-2025 15631.656250
4 10-01-2025 15431.978516 13 06-02-2025 15659.846680
5 13-01-2025 15445.738281 14 09-02-2025 15688.808594
6 16-01-2025 15475.891602 15 12-02-2025 15718.319336
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No Date Forecast No Date Forecast
7 19-01-2025 15497.634766 16 15-02-2025 15748.532227
8 22-01-2025 15524.894531 17 18-02-2025 15779.392578
9 25-01-2025 15549.883789 18 21-02-2025 15810.961914

2024

Figure 6. Graph of Actual Data and Forecasts from the LSTM Model

The actual data and the forecasted data are compared to assess the forecasting's accuracy. This plot
includes training, validation, and forecast data. In this plot (Fig. 6), the actual data from the training and
validation periods are compared with the predictions from the LSTM model. The plot shows that the model's
forecast results follow the pattern and trend of the actual data quite well.

Overall, the model can capture the key characteristics of national rice price fluctuations, despite
occasional discrepancies between the actual and predicted data outputs. Performance of the model is then
clearly visualized by integrating the actual and forecast data into a plot (Fig. 7).

Actual Data
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16000 4 /
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v
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Time

Figure 7. Graph Forecasts Using the LSTM Model

3.4 Gate Recurrent Unit

In applying the GRU method, the steps taken are similar to the process in the LSTM model. First, the
data is read and normalized to ensure scale uniformity. The model is then built using a GRU architecture
with a number of hidden layers and dropout to prevent overfitting. The data is divided into three parts: 80%
for training, 10% for validation, and 10% for testing, with the division done chronologically to maintain the
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time sequence in the data series. During the training process, the model is trained using the training data and
validated at each epoch using the validation data to observe performance and prevent overfitting. This
validation helps determine when the model begins to experience a decline in performance on untrained data,
S0 it can be used for early stopping or parameter adjustment.

After the training process is complete, the model is evaluated using test data that the model has never
seen before. The evaluation is carried out using the RMSE and MAPE metrics to measure how accurately
the model predicts rice prices on new data. This process ensures that the GRU model is not only accurate on
the training data but also has good generalization capabilities on data that has never been evaluated before.
The following plot below shows the data that has been divided.

—— Training Data
16000+ Testing Data
—— Validation Data
14000
w
1]
< 12000 -
o
10000
8000 -

2021-012021-07 2022-012022-07 2023-012023-07 2024-012024-07 2025-01
Time
Figure 8. Data Sharing Results

The GRU model is built by adding multiple layers, dropouts to avoid overfitting, and using appropriate
activation functions. Adam's approach to the Mean Squared Error (MSE) loss function was used to optimize
the model during training in order to enhance its capacity to identify patterns in the data. For the model to
converge well, 200 epochs and a batch size of 32 were used during training. After the training is complete,
the model is tested using validation data to assess its ability to generalize to data that has never been seen
before. The evaluation is done using RMSE and MAPE metrics, where the GRU model shows a MAPE value
of 1.08%, which is lower than the LSTM. To make it easier to analyze trend patterns and assess how well
the model can reflect past data, the forecast results are then displayed as graphs.

Price
P \{ Original price
he - l Train predicted price
= validation predicted price
A Test predicted price

Stock price
I~
B

Jan 2021 Jul 2021 Jan 2022 Jul 2022 Jan 2023 Jul 2023 Jan 2024 Jul 2024
Date

Figure 9. Comparison of Actual and Predicted Price

The national daily rice price is then predicted for the period January 2025 to February 2025 using the
GRU model that has been created. The prediction results are then visualized using Table 3. The results show
that GRU is superior to LSTM in predicting national rice prices, with a MAPE value of 1.08% for GRU and
3.49% for LSTM. GRU's simplified model architecture explains its superior performance. With just two
primary gates—the update gate and the reset gate—GRU enables the model to effectively decide which data
should be retained or deleted without the need for an additional state cell. In contrast, LSTM has three main
gates and additional state cells, which increases complexity but does not necessarily provide an advantage
on data with moderate temporal patterns.
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Table 3. The GRU Forecasting Results

No Date Forecast No Date Forecast
1 01-01-2025 15394.469727 10 28-01-2025 15585.597656
2 04-01-2025 15369.442383 11 31-01-2025 15613.161133
3 07-01-2025 15419.353516 12 03-02-2025 15640.902344
4 10-01-2025 15427.994141 13 06-02-2025 15669.478516
5 13-01-2025 15460.508789 14 09-02-2025 15698.548828
6 16-01-2025 15480.405273 15 12-02-2025 15728.331055
7 19-01-2025 15508.164062 16 15-02-2025 15758.734375
8 22-01-2025 15532.322266 17 18-02-2025 15789.841797
9 25-01-2025 15559.331055 18 21-02-2025 15821.639648

Table 3 presents the GRU forecasting results, displaying predicted price values for specific dates from
January 1, 2025, to February 21, 2025. The table is divided into two sections, each containing forecasted
values for different dates. The forecasted prices exhibit an overall increasing trend, starting from
approximately 15,394 on January 1, 2025, and reaching around 15,821 by February 21, 2025. This suggests
that the GRU model predicts a gradual rise in prices over the given period. The results indicate a relatively
smooth progression without significant fluctuations, reflecting the model's capability to capture long-term
trends while potentially smoothing out short-term variations.

4. CONCLUSION

The Long Short-Term Memory and Gated Recurrent Unit algorithms are used to predict national rice
price fluctuations. Results indicate that GRU outperforms LSTM in terms of accuracy (MAPE 1.08% vs.
3.49%). GRU effectively captures seasonal price patterns without the additional capacity needed by LSTM
and helps prevent overfitting, particularly in datasets with short-term temporal dependencies. While LSTM
is advantageous for handling longer or more complex temporal patterns, this study highlights that GRU is a
more effective and efficient choice for national rice price forecasting. Its implementation can contribute to
maintaining price stability, enhancing food security, and supporting sustainable development goals in
Indonesia.
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