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Article Info ABSTRACT

Air quality is a crucial factor due to its significant impact on environmental sustainability
and public health. One of the major pollutants affecting air quality is Nitrogen Monoxide
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1. INTRODUCTION

Surabaya, with a population of around 3 million people, is predicted to continue to grow every year
[1]. This increase in population is directly proportional to the growth in the number of motor vehicles,
industrial activities, burning of fossil fuels, and an increase in garbage and waste, including open burning of
garbage, which has an impact on the decline in air quality [2]. The amount of air pollution inhaled by the
human body exceeds the standard and poses a proven health risk with a hazard quotient (HQ) of more than
one and people living in urban industrial areas are at higher risk of respiratory disorders [3]. Air pollution
gases such as PM2.5, SO2, and O3 have a direct impact on human health [4]. However, of the various types
of pollutants present in the air, Nitrogen Monoxide (NO) gas is one of the main pollutants that affect the
degradation of air quality in many areas of the earth's surface and is toxic [5]. Human activities that are not
environmentally friendly have a positive correlation in producing prolonged air pollution emissions such as
carbon dioxide (CO2), methane (CH4), and NO [6].

NO is a compound consisting of one nitrogen atom (N) and one oxygen atom (O) [7]. NO and nitrogen
dioxide are known as Nitrogen Oxides (NOx) which are the major air pollutants and adversely affect the
respiratory health of humans, animals, and the environment through the greenhouse effect and the depletion
of the ozone layer [8]. NOx compounds are mostly produced by anthropogenic activities, which involve
combustion processes such as energy production, transportation, and industrial activities [9].

NO air quality in Surabaya is influenced by various sectors, namely transportation (44%) as the largest
contributor to air pollution, the energy industry sector (31%), the manufacturing industry (10%), the housing
sector (14%), and the commercial sector (1%) also play a role in air pollution that damages health [10]. NO,
as a major pollutant produced by motor vehicles and industry, can cause respiratory distress and increase the
risk of heart disease [11]. Therefore, it is crucial to monitor NO levels in the air to reduce the adverse impact
of pollution on public health [12]. Monitoring nitrogen levels in the air is essential to reduce the risk of
adverse events. Air quality monitoring methods are based on time series analysis [13].

Time series analysis is a method used to understand, model, and predict data collected or observed in
a specific time sequence [14]. Data in a time series consists of observations recorded sequentially at specific
time intervals, such as daily, monthly, yearly, or even per second [15]. The main goal of the time series
method is to identify patterns or trends in the data and utilize them to make predictions [16]. If the type of
time series analysis involves a single variable measured in a specific time sequence using the univariate time
series method approach [17] and univariate time methods such as ARIMA [18].

Research on univariate time series for air quality has been explored extensively. Abhilash et al. [19]
used the ARIMA model to predict NO: levels, showing that stationary data can produce accurate predictions.
Nieto [20], comparing four mathematical models namely Support Vector Machines (SVM), ARIMA,
Multilayer Perceptron neural networks (MLPs), and Vector Autoregressive Moving-Average (VARMA) to
predict PM10 pollutants in northern Spain, concluded that SVM outperformed others in short-term (one-
month) and medium-term (seven-month) forecasts. Bernacki [21] combining the Random Forest algorithm
with NASA's GEOS-CF data to predict Os and NO, concentrations in southeastern China for the next five
days, has been shown to reduce prediction errors and prediction values in near real-time. In addition, Liu et
al. [22] examined multivariate time series to predict NOx emissions using Vector Autoregressive (VAR)
models, which captured the interactions among various pollutants and improved forecast accuracy.

Air quality monitoring stations are located at SPKU Wonorejo, SPKU Kebonsari, and SPKU Tandes.
These locations reflect the diverse environmental characteristics of Surabaya and have the potential to
influence air pollution levels [23]. SPKUA Wonorejo is located in an industrial and residential area with high
economic activity. Kebonsari is a residential area affected by vehicle traffic, while SPKUA Tandes is situated
in an area with industrial office land and business centers. These variations in environmental characteristics
create diverse conditions, which can significantly affect air quality, as each location has its unique sources of
pollution and environmental factors.

When time (t) and location are combined and have a relationship between location and time, space-
time series models such as the Generalized Space-Time Autoregressive Integrated Moving Average
(GSTARIMA) model are used to analyze the data. This model is an extension of the Space-Time
Autoregressive Integrated Moving Average (STARIMA) model [24]. The GSTARIMA model can capture
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the relationship between a value at a given location and a value at a neighboring location at the same time,
the relationship between a value at a given time and a random error at a previous time, and accommodate the
difference in characteristics between different locations [25].

Various previous studies support the use of GSTARIMA in air quality monitoring. Research Hu et al.
[26] predicted PM2.5 concentrations in 80 stations in the Beijing-Tianjin-Hebei region using the GSTAR
model, which considers the effects of time and space. The prediction results of the GSTAR(1) model with
inverted distance weights are superior to ARMA and STAR based on RMSE and MAE accuracy indicators.
Akbar et al [25] concluded that the GSTARMAX(21,[7]1) model with inverted distance weights and OLS
parameter estimation gave a small RMSE for SUF 1 (Prestasi Park), GSTAR(21) with SUR for SUF 6
(Wonorejo), and GSTARMA(21,[7]1) with SUR for SUF 7 (Kebonsari). The GSTARMA model can correct
the prediction errors on CO data. Finally, Mohamed et al [27] using the GSTAR model to forecast the Air
Pollution Index (API) in Selangor, considering the spatial-temporal relationship between locations. Models
with inverted distance weights show the best performance with low RMSE, confirming the importance of
location-based information in efficient forecasting. Other research related to GSTARIMA, namely
Jamilatuzzahro et al [28] the GSTAR(2,1); model with inverted distance weighting is the best model because
it meets the assumptions of white noise and normal multivariate, and has the lowest RMSE and MAPE values.
Imro’ah [29] concluded that the GSTAR(3; 1; 1) model with the MST weight matrix had a prediction error
tolerance of 19%. Safira et al [30] resulting in the GSTARIMA model having the lowest average RMSE score
compared to the ARIMA model. Ajobo et al. [24] shows that GSTARIMA with SUR estimation is more
efficient in handling non-stationary data and correlates better with residual values.

This study identifies a gap in the literature that discusses air pollution predictions, especially in the
Surabaya area with an emphasis on the Eid homecoming period. Most previous studies tended to focus on
other major cities or use predictive models such as ARIMA and SARIMA, while the GSTARIMA model,
which can map spatial and temporal relationships simultaneously, is still rarely applied. In addition, the
impact of the Eid homecoming period on air pollution levels has not been widely investigated, although this
has the potential to increase the number of vehicles and pollutant concentrations significantly. This study
offers novelty by applying the GSTARIMA model to predict NO concentrations in three areas in \WWonorejo,
Kebonsari, and Tandes by considering specific spatial and temporal variations. The use of various types of
weighting in the GSTARIMA model also enriches the analysis, resulting in more accurate and relevant
predictions. This study aims to evaluate the best model of GSTARIMA with three spatial weightings
(normalization of cross-correlation and uniform and inverse distance) and compare it with other methods
such as ARIMA, VARIMA, and SVR and then predict changes in NO air pollution levels in Surabaya during
Eid al-Fitr for the April 2024 period. The advantages of the method used can be further explained by its
ability to capture both spatial and temporal dependencies more effectively than traditional models. The results
of this modeling are expected to provide useful information for mitigating the impact of pollution and
supporting the Surabaya Green and Clean Program, which aims to maintain the sustainability of the urban
environment and improve the community’s quality of life.

2. RESEARCH METHODS

The data used in this research are secondary data in the form of daily NO concentrations from January
2023 to March 2024, taken from monitoring by the Surabaya City Environment Agency (DLH) at three
monitoring locations, namely at SPKU Wonorejo (¥;), SPKU Kebonsari (¥;), and SPKU Tandes (Y3)
Surabaya. The location of the monitoring is presented in Fig. 1. The air quality of NO concentration will be
predicted using the GSTARIMA model using three weights ((i) normalized cross-correlation, (ii) uniform,
and (iii) inverse distance), limited by the spatial order lag one. The steps involved in GSTARIMA modeling
and forecasting are presented in Fig. 2. The type of instrument used, data collection approach, and data
analysis techniques/tools can be detailed to ensure methodological transparency. Data processing and model
estimation were carried out using Minitab and SAS software, which support comprehensive time series
analysis and spatial modeling.
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SPKU Wonorejo

Figure 1. Ai Monitoring Location in Suraaya /

2.1 Generalized Space-Time Autoregressive Moving Average

STARIMA is a data modeling technique. The model establishes a relationship between time and
location in observations. GSTARIMA, as an extension of the STARIMA model, was developed to overcome
the limitations of the STARIMA model mainly related to the assumption of homogeneity of location
characteristics [31]. Homogeneous location characteristics are difficult to find, as these traits often differ in
research. The GSTARIMA model (p, d, q) is a combination of time with the order of p (autoregressive), the
time component with the order g (moving average), and the spatial component with the order of one.
Essentially, the GSTARIMA maodel is very similar to the STARIMA model, only it allows for parameter
values on a spatial lag that varies between locations [32]. The GSTARIMA model (p, d, q) can be described
in the form of [24], [25], [33] as follows Eq. (1).

p 2 q9 m
VY,(t") = Z Z O WOVY,(t — k) — Z Z O WDa,(t" — K) + a(t), 1)
k=11=0 k=11=0
where :
VYi(tY) = (1-B)4Y(t*) is an observation vector that has been stationary and is differencing at
t*=1,2,---, T atlocationi = 1,2,3,---, N size (N x 1);
Dy = diag(@};, %, -+, OF,) is the diagonal matrix of the autoregressive vector parameter at the kth
lag and the [th spatial lag is sized (N X N);
O = diag(@,%l, 0%, 9,’2’1) is the diagonal matrix of the vector moving average parameter at the

kth lag and the [th spatial lag is sized (N X N).

WO is a matrix of elements Wigl)spatial weights for spatial lag to | sized (N x N) and when (I = 0) then
W s an identity matrix. a; is a normally distributed error vector multivariate, p is an autoregressive order,
q is the moving average order, A is the spatial order of autoregressive conditions and m is the spatial order of
the moving average condition. The estimation of the parameters of the GSTARIMA model using Ordinary

Least Square is to minimize the number of squares of errors so that the estimate becomes 8 = (XTX)~1X7y.

The Modified Cross-Correlation Function (MCCF) and Modified Partial Cross-Correlation Function
(MPCCF) matrix patterns can be used for data that have reached the stationary level. The plots of MCCF and
MPCCEF are depicted with the symbols (+), (—), and (*) in the ith and jth positions of the matrix. The MCCF
plot determines the order of moving averages, which (cut off) after the order of zero at the lag of g, then the
order of moving averages for the model is MA(q). The value of p(k) indicated by the symbol (+) indicating
a positive correlation between i and j, the symbol (-) indicating a value less than -2 times the standard
estimate of error, indicating a negative correlation between i and j and the symbol (-) indicating a value
between -2 and 2 times the standard estimate of error, indicating that there was no correlation between i and

j [34].

Residual check diagnostics consist of a white noise test and normal multivariate distribution. White
noise multivariate testing is a technique to check whether a series of multivariate times has no autocorrelation
in each variable and between variables. In other words, the data does not have a predictable temporal pattern.
One of the commonly used tests for this purpose is the Ljung-Box multivariate test or the Portmanteau test
[35], [36]. The hypothesis that H, is a residual White Noise and H; is a residual is not White Noise, with a
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statistical test on Eq. (2), where n is the number of observations and Ry, is the kth autocorrelation matrix. It
is said to be residual white noise if the p-value is more than a significant level or Q(h) < xz o [37].

h

Q(h) = n? Z 1 trace(RiRy). 2)
=t
In spatial-temporal modeling, spatial dependence is represented by a weighting matrix that reflects the
influence among locations. The proper choice of weights is crucial to capture the true spatial structure of the
data. This study uses three types of spatial weights, namely cross-correlation normalization (based on
standardized correlations among locations), uniform weight (equal influence for all locations), and inverse
distance weight (greater influence for closer locations).

1. Uniform Weights
Uniform weighting is a technique in which each element in a dataset is given equal weight. This
method calculates the average or aggregation of values across multiple locations assuming that
each location has an equally large contribution. For example, if there are three locations, then the
total neighbors (n;) is two [38].

2. Inverse Distance Weights (IDW)
Inverse Distance weighting for location optimization is a technique that gives greater weight in
closer locations and less weight in more distant locations. The weighting method applied in this
spatial analysis aims to take into account the distance between geographical locations. The weight
for interaction or relationship between two locations will be greater if the distance is closer. On
the other hand, if the distance between locations is getting farther, the weight given will be smaller.
Weight calculation is done using the inverse of the distance between two points or locations. This
method is often used in spatial analysis to address the problem of spatial heterogeneity by
maximizing the relative change of location based on distance. The calculation can use the distance
in latitude (u) and longitude (v) coordinates between the centers of the observed location. Suppose
we and represent the latitude and longitude coordinates of the location, and d;; represents the
distance from the i-th location to the j-th location [33], [39].
The Euclidean distance between locations is expressed as:

dij = \/(ui — ) + (v — )
According to [40], the IDW can then be calculated using the following formula Eq. (3).

=——, i #]. 3)

3. Cross-Normalization Correlation Weights
The method for normalizing weight values based on cross-variable or place cross-correlation is
called cross-correlation normalization weighting. Each weight accurately reflects the relative
contribution of the cross-correlation connections. This technique ensures that the total weight for
each location or variable is equal to one. Cross-correlation between the i-th and j-th locations with
the k-th time lag, where (k) is the cross-correlation between the observations at the i-th and j-th
locations at the k-th time lag. o; and g; are the standard deviations from the observations of the i-
th and j-th locations. The weighting of the cross-correlation is as follows Eq. (4) [24].

Wij=rij—(k), L#], (4)
X1 ri; ()
ek [Vt Py (=) -]

with rij (k) = .
JErm o702 (s, v )-7))°)

2.2 Forecasting Performance Model

Symmetric Mean Absolute Percentage Error (SMAPE) is an employed performance measure in this
study. SMAPE describes a certain index for measuring an approximation model which is the average absolute
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percentage error of the predicted value from the actual one [41]. As compared to the traditional mean absolute
percentage error, SMAPE is more efficient at handling situations where the item for forecasting can assume
the value of zero. In MAPE, some percentage of errors return undefined when the actual value is zero. SMAPE
gives rise to errors that are valued between 0% to 200% unlike MAPE which can yield infinite values when
actual results are nearing a figure close to indefinite [42]. This SMAPE eliminates those ambiguities making
SMAPE more insightful and simpler to understand in different scenarios. SMAPE is also better for measuring
the dynamic of data over time and thus understanding the state of the prediction model would be accurate and
efficient even when the data is subjected to change [43]. One of the options for the performance criteria to
resolve up against zero observation values is to apply SMAPE Eqg. (5) [44] and Root Mean Square Error
(RMSE) Eq. (6) [45].

SMAPE = Z [ =P >< 100 (5)
(lYt*l + | t* ’
1 n
RMSE = Ez(yt*_?t*)z' (6)
t=1

where Y;- is the actual value in the t*-th period, Y+ is the prediction value in the t*-th period, and n is the
number of periods used. Eq. (5) calculates the mean percentage of error by considering the predicted and
actual values symmetrically, thus avoiding problems that can arise when the actual value is close to zero.

Order selection (p, q) using Corrected Akaike Information Criterion (AlICc) criteria with the formula Eq. (7)
[46].

AlCc = (Zp —2In (L(é))) + %, (7)

where p is the number of parameters in the model, and L () is a function of likelihood.

2.3 Analysis Steps

The steps of the research analysis are as shown in Fig. 2.

Ay No
2 Imputasi Missing FRs & =
@ input data with mean value H Description Data }»» Data 2
Yes l
(reeecccccananas
'
'
'

! Yes Yes Yes
Ci Weight : i in Mean? i in Variance? <——  Spatial Heterogeneity?
'
'
' lNo lNo No
'
Identify orde : Di s : il
(Pd.q) with MCCF ) T . Box-Cox
and MPCCF : VARIMA
GSTARIMA l
s ARIMA
Selection Orde
(p.q) using AIC
minimum '
'
'
- l' ______________________ SVR
'
imation and D Residual Calcul i '

i ic Residua alculte ' "
significant White Noise and Model T“esgl":c‘ﬁ’:zde‘ F"’egg‘a’l*_‘;i"'r')m“
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'

Figure 2. GSTARIMA Modeling and Forecasting Flowchart Scheme

1. Input Data on Nitrogen Levels at SPKU Wonorejo (Y; ), SPKU Kebonsari (Y,), and SPKU Tandes
(¥3).
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2. Description Time series plots were generated to examine trends, seasonal patterns, and extreme
values. Descriptive statistics including the maximum and minimum values of NO concentrations
were calculated and presented in Fig. 3.

3. Testing GSTARIMA Assumptions
To validate the use of the GSTARIMA model, several preliminary tests were conducted:

a. The Pearson correlation test using Equations of [47], to validate the use of the GSTARIMA
model, several preliminary tests were conducted.

b. Testing the Spatial Effects of Spatial Heterogeneity with the Breusch-Pagan Test using
Equations of [48] and Spatial Dependency with the Morans'l Test using Equations of [49].
4. Detection of Stationary in variance and mean. If variance was non-stationary, a Box-Cox
transformation was applied and If mean was non-stationary, differencing was used to stabilize the
series. GSTARIMA modeling is a spatial-temporal analysis method that integrates the relationship
between time and space. In order to construct a valid GSTARIMA model, the main stages need
to be implemented systematically
a. Calculating weights, this study uses weights (i) cross-correlation normalization weights using
Eq. (4); (ii) Uniform weight using [38]; and (iii) weight inverse distance using Eq. (3)

b. Identification of Lag Orders (p, d, g) with Maximum Cross-Correlation Function (MCCF)
and Modified Partial Cross-Correlation Function (MPCCF).

c. Selection order (p,d, q) using Corrected Akaike Information Criterion (AICc) calculated
with Eq. (7), and the model with the smallest AICc was selected.

d. Model parameters were estimated using the Ordinary Least Squares (OLS).

= (XTX)"'XTy.

Statistically, significant parameters were retained to construct the final GSTARIMA model
equation.

e. Diagnostic residual white noise using Eq. (2) and distribution normal

5. The predictive performance was assessed using SMAPE Eq. (5) and RMSE using Eq. (6). The
model with the lowest values of SMAPE and RMSE was considered the best in predictive
accuracy.

6. The best-performing GSTARIMA model was compared to three benchmark models are ARIMA,
VARIMA, and Support Vector Regression (SVR). All models were trained using the same dataset,
and their predictive performance was evaluated using the same metrics (SMAPE and RMSE).

7. Forecasting nitrogen levels in three locations in the April 2024 period to mitigate the impact of
Eid al-Fitr in Surabaya based on the best GSTARIMA model.

3. RESULTS AND DISCUSSION

This study describes the distribution of variations in NO concentrations in three monitoring locations
in Surabaya, namely SPKU Wonorejo, SPKU Kebonsari, and SPKU Tandes. Furthermore, an analysis was
carried out using the GSTARIMA model to understand the spatial-temporal patterns of NO concentrations in
the three regions. After the model is implemented, NO levels are forecasted for the April 2024 period to
project changes in the concentration of this pollutant and provide deeper insights into air quality management
in Surabaya.

3.1 Description of Nitrogen Monoxide

The air quality conditions of NO at SPKU Wonorejo, SPKU Kebonsari, and SPKU Tandes from
January 1, 2023 to March 31, 2024 are depicted as shown in Fig. 3.
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Figure 3. Description of Nitrogen Monoxide Concentration Data: (a) Wonorejo; (b) Kebonsari; (c) Tandes
(Source: Data processing from Minitab)

Based on Fig. 3, The nitrate concentration at the Wonorejo SPKU location generally ranges from 0 to
25.94 pg/m?® with an average value of 6.6 pg/m?, which falls under the "Good" air quality category. However,
from January 26 to 30, 2023, there was a significant increase in NO concentrations, exceeding the acceptable
threshold. The peak concentration was recorded on January 27, 2023, reaching 162.98 pg/m?3, categorized as
"Unhealthy." This spike may be attributed to increased traffic congestion in the area, as Wonorejo is
surrounded by university campuses and densely populated residential zones. During this period, a rise in
vehicular movement was observed, possibly due to the return of students to Surabaya after the holiday break.

Meanwhile, Tandes, located in the western part of Surabaya, serves as a main access point to the
Surabaya—Gresik toll road, facilitating both residential mobility and goods transportation. The Tandes area is
dominated by residential and industrial areas. The concentration of NO in this area tends to spread in the
interval 0 to 40.04 pg/m3with an average value of 31.72 pug/m? which is included in the category of good air
guality. On Friday, October 13, 2023, the highest NO concentration occurred, but overall, the NO
concentration from January 1, 2023, to March 2024 has been within the specification limit.

Kebonsari is located in the south of the city of Surabaya. Kebonsari has a mix of urban and semi-urban
environments and several green areas and parks that serve as the city's lungs. However, the area is also
experiencing rapid urbanization. The concentration of NO spread from 0 to 43.24 ug/m? with an average of
31.72 pug/m?. There were no observation points outside the threshold, so the concentration of NO was included
in the category of good air quality. However, on Monday, December 11, 2023, Tuesday, January 30, 2024,
and Wednesday, February 7, 2024, there was a spike in NO concentrations exceeding 100 pg/m? which is
included in the unhealthy air quality category.
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3.2 GSTARIMA Model

3.2.1 Correlation and Spatial Effect

The relationship between variables is measured using a correlation test, which indicates the presence
or absence of a relationship and measures and quantifies the influence of one variable on another at a given
time. This study employs Pearson's correlation analysis to examine NO air quality across three locations, as
illustrated in Fig. 4. The correlation between the three locations is weak and negative, indicating an inverse
relationship. This means that when NO levels in Wonorejo are high, they tend to be lower in Kebonsari and
Tandes, and vice versa. Given this negative correlation, the GSTARIMA model is suitable for capturing the
spatial and temporal dependencies among the locations.

Wonorejo*Kebonsari Wonorejo*Tandes
] s i - . 160
® Coeficient (r) =-0.123 ® g?::l:::'lté?)(;o 0.171
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Figure 4. Scatterplot of Nitrogen Monoxide Concentrations at Three Locations
(Source: Data processing from Minitab)

Spatial heterogeneity was tested using the Breusch-Pagan test, while spatial dependency was assessed
using Moran’s T test. As a result, Table 1 showed that the significance value (p-value) of 0.045 and 0.032
was less than the significance level (&« = 5%), then spatial heterogeneity occurred, namely the three locations
had different characteristics that affect the air quality of NO.

Table 1. Spatial Effect Test

Spatial Test p-Value Conclusion
Breusch- Pagan 0.045 Heterogeneity
Morans’] 0.032 Dependencies

The main condition for using the GSTARIMA forecasting model is the existence of relationships in
three locations, as shown in Fig. 4. If there is no relationship between nitrogen concentrations in the three
locations, then the univariate time series model of ARIMA is used [50]. The second condition is that spatial
heterogeneity occurs. If spatial homogeneity occurs, then use STARIMA [51]. If both conditions are met, the
GSTARIMA model can be continued.

3.2.1 Detection of Stationary in Variance and Mean

The NO concentration at Wonorejo and Kebonsari was not stationary in variance (A # 1) as shown
in column (a), unlike Tandes. After applying the Box-Cox transformation (column b), the variance became
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stationary Table 2. After achieving variance stationarity, mean stationarity was tested using the MCCF plot
as shown in Fig. 5 and the Dickey-Fuller (ADF) test shown in Table 3 can detect stationarity in the mean.

Table 2. Stationarity in Variance
Before Transformation (a)

Nitrogen Monoxide of Location After Transformation (b)

Y1 (Wonorejo) =1 =1
Y (Kebonsari) =1 =1
Y3 (Tandes) L =0.5 =1

Schematic Representation of Cross Correlations
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Figure 5. Detection of Mean Susceptibility with MCCF Plot: (a) The Data has not been Stationed in the Mean, (b) The
Data has been Stationed in the Mean after Differencing
(Source: Data processing from SAS)

Fig. 5 shows an MCCEF plot to detect stationarity in the mean, in plot (a) it can be seen that all locations
in all lags contain different signs (+ and -) so that it is detected if the data is not stationary in the mean; (b)
where at the time of the second lag has contained a sign (.) which means that the second lag in the 1st location
and location 2nd is no longer out of the confidence interval or cut off in the second lag and the 5th lag of all
locations there is no lag out of the confidence interval. The detection of stationarity in the mean can be
confirmed through the Augmented Dickey-Fuller (ADF) test and the proposed GSTARIMA model with
AR(3) and MA(1) with one-time differencing components is presented in Table 3.

Table 3. Dickey-Fuller Test of Nitrogen Monoxide in Three Locations after Differencing Once

Location Tcount p-Value T456,5% Results
Y1 (Wonorejo) -18.70 <.0001 -2.87 Stationary in Mean
Y (Kebonsari) -22.17 <.0001 -2.87 Stationary in Mean
Y3 (Tandes) -13.18 <.0001 -2.87 Stationary in Mean

In the test of the significance in the mean using the Dickey-Fuller test (ADF) after differencing once
summarized in Table 3, the result was obtained that the ADF calculation value (Tp;,ng ) in all three locations
(Wonorejo, Kebonsari, and Tandes) is larger than the ADF Table (1456,5%) as -2.87 and the P-value value is
less than the 5% significance level so it is concluded that the data has been stationary in the mean.

3.2.3 Spatial Weight Matrix

In this study, three types of spatial weights are used, namely (1) cross-correlation normalization
weights, which are constructed based on the normalized cross-correlation values among locations, (2)
uniform weight, where each location is assigned the same influence regardless of distance or correlation, and
(3) inverse distance weight, where the influence between locations decreases as the distance between them
increases.

1. Cross-correlation normalization

0 —0.0158 0.0188
W;; = [-0.0599 0 0.1189].
0.1360 —0.1824 0

2. Uniform weights
It is divided into three locations so that there are two neighbors n; = 2.
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Inverse Distance Weight (IDW)

IDW are calculated by taking into account the latitude and longitude coordinates of the locations.
The latitude and longitude coordinates for each monitoring location are presented in Table 4
below.

Table 4. Latitude and Longitude Coordinates
Location Latitude (u) Longitude (v)

Wonorejo  -7.2706 112.7128
Kebonsari  -7.3271 112.6971
Tandes -7.2569 112.5994

Based on these coordinates, the spatial weighting matrix W;; derived from the Inverse distance
method is expressed as follows:
0 0.6610 0.3390

W;; =10.6721 0 0.3279
0.5130 0.4870 0

Subsequently, the model identification was conducted using the Corrected Akaike Information
Criterion (AlICc). The minimum AICc values for different autoregressive (AR) and moving average (MA)
orders are shown in Table 5.

Table 5. Minimum Information Criterion Based on AICC

Lag MA(q) 0 MA(q) 1
AR(p) 0 -1.331638 -1.487538
AR(p) 1 -1.432991 -1.476406
AR(p) 2 -1.492226 -1.502503
AR(p) 3 -1.524271* -1.522911

*) Smallest AICC Value Selected Model

After selecting GSTARIMA (3,1,0): as the best model based on the smallest AICc value, the parameters were
estimated using the Ordinary Least Squares (OLS) method, and the results are shown in Table 6.

Table 6. Parameter Estimation of GSTARIMA (3,1,0); Model

Parameter Estimation

Location Parameter  Cross-Normalized correlation  Uniform  Inverse Distance
@ (b) (©)
D10 0.7013 0.6987 0.6991
14 0.0675 0.0614 0.0626
. o -0.0240 -0.0341 -0.0335
Y1 (Wonorejo) 0oy -2.7300 -0.0482 -0.0233
D30 2.0700 -0.0424 -0.0422
sy 1.9900 -0.0387 -0.0446
D10 0.5443 0.5406 0.5403
011 -0.0448 -0.0482 -0.0480
. 0, 0.2766 0.2674 0.2683
Y2 (Kebonsari) Bos -0.4130 -0.0473 -0.0302
D30 -0.2620 0.0250 0.0169
031 0.9210 -0.1006 -0.0911
D10 1.0706 1.0689 1.0686
) -0.0023 0.0012 0.0014
¥s (Tandes) . -0.0977 -0.0964 -0.0961

@21 0.0158 0.0010 0.0007
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Parameter Estimation

Location Parameter  Cross-Normalized correlation  Uniform  Inverse Distance
@) (b) (©)
D30 -0.0133 0.0109 0.0109
D31 0.0400 0.0005 0.0011

Based on Table 5, the optimal selection of the GSTARIMA model is determined based on the lowest
Corrected Akaike. The optimal model selected is GSTARIMA(3,1,0): with p=3, d=1, q=0, and the first
spatial lag, chosen due to its lowest AICc value. Parameter estimation using Cross-Normalized, Uniform, and
Inverse Distance weights is presented in Table 6.

In addition, the GSTARIMA model is compared with other models for predicting NO concentrations to
evaluate its effectiveness in capturing spatial and temporal dependencies. The comparison includes
ARIMA(3,1,0), VARIMA(3,1,0), and SVR, assessed based on the average SMAPE and Root Mean Squared
Error (RMSE), as shown in Table 7. This comparison evaluates GSTARIMA’s predictive performance
against alternative methods, emphasizing its advantages in modeling NO concentration across locations.

Table 7. Comparison of the Performance Model GSTARIMA, ARIMA, VARIMA and SVR
GSTARIMA (3,1,0)1 Weight

. Cross ARIMA VARIMA SVR_(RBF)
Location : . Inverse C=10,
Normalized Uniform . (3,1,0) (3,1,0) B .
: Distance €=0.01, y=0.1
Correlation
Y1 (Wonorejo) 1.94% 2.15% 2.15% 25.23% 5.32% 7.13%
Y (Kebonsari) 0.59% 1.69% 0.57% 18.32% 3.28% 4.23%
Y3 (Tandes) 1.48% 1.07% 0.07% 23.24% 4.23% 3.12%
Average SMAPE 1.33% 1.64% 0.93%* 22.26% 4.28% 4.i3%
Average RMSE 7.821 11.31 5.32* 25.23 18.37 16.23

*) The Best Performance Model Prediction

Based on the results shown in Table 7, The GSTARIMA(3,1,0) model excels in air quality forecasting
with SMAPE below 10% and the lowest RMSE, demonstrating high accuracy. This indicates the existence of
temporal and spatial dependency patterns in air pollution dynamics. This model effectively captures complex
spatial effects in Tandes, Kebonsari, and Wonorejo, making it superior to models without spatial aspects such
as ARIMA, VARIMA, or SVR models. In addition, an analysis of three spatial weighting methods showed
that inverse distance weighting (IDW) gave the best results, with SMAPE of 0.93% and RMSE of 5.321. The
advantage of this method lies in its ability to capture spatial influences between locations more effectively,
where closer locations have greater influence weight. Thus, GSTARIMA with inverse distance weighting
produces the most accurate predictions, making it the best choice for data analysis with complex spatial
patterns.

The results of this study are in line with the research by [30]. Comparison of the GSTARIMA Model
with ARIMA shows that the GSTARIMA model is the best. The best GSTARIMA model is an inverted
distance weight matrix rather than uniform and cross-correlation spatial weighting, the goodness of the model
is measured from an RMSE value of 0.184. The GSTARIMA model shows that the calculation of spatial
dependence between provinces improves the ability of the inflation model to predict more accurately. In
addition, in line with [38], modeling of provincial COVID-19 growth cases in Java on train passenger
mobility is the best model with the IDW (inverted distance weight) matrix GSTAR (1):. Other than the study
[27] showed that the GSTAR(1.1) model with inverted distance weights resulted in lower RMSE on average
than the uniformly weighted model, with an increase in accuracy of 4.8%. Inverted distance weights are more
effective in capturing spatial effects because they give higher priority to closer locations. Significant
correlations between Air Pollutant Index (API) data in Banting, Petaling, and Shah Alam support the use of
the GSTAR model for spatial-temporal analysis. Research by [52] also results in better-inverted distance
spatial weighting than other spatial weightings with the GSTAR (1:1)-1(2) model, which is applied to
consumer index price prediction. Then, the research by [53], shows that the GSTARIMA model (2,0,0) with
an inverted distance weighting matrix achieves the lowest Mean Absolute Percentage Error (MAPE) in
predicting flood events. Similarly, the studies by [33] and [54] demonstrate the effectiveness of GSTARIMA
in forecasting rainfall and inflation, respectively.
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However, the results of this study contradict previous studies [55], which showed that the best model
was GSTAR (3,1,1) with MST weighting. On the contrary, the weighting of inverted distance gives a poor
performance in predicting COVID-19 on the island of Java. The results of the white noise test Model
GSTARIMA using IDW (3,1,0); using the Portmanteau test obtained a P-value value of more than 5%. The
results of the multivariate normal distribution test obtained a value of dl-zj more than X(Zo,s)- The GSTARIMA
modeling using Inverse Distance Weight types has met the residual White Noise and Normal Multivariate
assumption so the GSTARIMA (3,1,0): model is feasible.

3.3 Forecasting Nitrogen Monoxide Concentration Period April 2024

Forecasting the NO concentration in the April 2024 period using the inverse distance weighting
selected as the best weighting can be seen in Fig. 6.
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Figure 6. Forecasting the Quality of Nitrogen Monoxide Concentrations for the April 2024 Period on Three Types of
Weighting: (a) Cross-Correlation Normalization Weights, (b) Uniform Weights, (c) Inverse Distance Weight
(Source: Data processing from Minitab)

In Fig. 6, it can be concluded that air quality forecasting based on NO concentrations in three
monitoring locations, namely SPKU Wonorejo, Kebonsari, and Tandes, has been carried out using three types
of spatial weighting. From the results of the analysis, it can be seen that the highest concentration of NO
occurred from April 23 to 25, 2024. This period is included in the period of homecoming flows back to
Surabaya after the Eid al-Fitr holiday which falls on April 21 to 22, 2024. During the Eid al-Fitr holiday,
from April 19 to April 22, 2024, the concentration of NO in the air is relatively low. This is due to the
reduction of activities in the city because many regional residents return to their hometowns to celebrate Eid
al-Fitr with their families. This condition leads to a decrease in emissions from motor vehicles and industry,
which is a major source of NO. NO levels are influenced by the NO levels of the previous day, hamely one,
two, three, and four days ago, at the three locations analyzed. In addition, there was a significant spatial
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relationship between the three sites, suggesting that changes in NO levels in one location could affect NO
levels in other locations.

However, when the return flow began to occur, from April 23 to 25, many residents returned to
Surabaya. This increase in activity leads to a surge in the number of motor vehicles on the highway, which
in turn increases NO emissions in the atmosphere. This phenomenon is reflected in air quality monitoring
data that shows an increase in NO concentrations during the period. The increase in NO levels in Surabaya
is also influenced by calendar variations, such as the Eid al-Fitr period, where the return flow of Eid al-Fitr
is depicted as increasing nitrogen levels. In addition, New Year's celebrations also contribute to an increase
in air pollution. Research [56] shows that pollutant concentrations have a significant increase (p < 0.001)
compared to ordinary days. However, this study has not accommodated the effects of calendar variations.
The addition of exogenous variables such as the addition of a dummy of calendar variations (for example
holidays, weekends, or certain events) can be used as an alternative for further research, as has been done by
[25], [57]. In addition, the use of GSTARIMA offers methodological strength because it is able to conduct
simultaneous forecasting at various observation sites taking into account spatial and temporal dependencies,
making it ideal for modeling the dynamics of pollutants that vary between space and time.

4. CONCLUSION

The best forecasting model used to predict Nitrogen Monoxide (NO) concentrations is GSTARIMA
(3,1,0)1 with a spatial order lag of one. Models with IDW help in capturing NO dispersion patterns more
accurately. In the model evaluation, the GSTARIMA with IDW (3,1,0): in the first spatial order provides a
very accurate prediction of NO concentration compared to using other experimental prediction models
(ARIMA, VARIMA, and SVR), with a very low sSMAPE value of 0.93% and the lowest RMSE of 5.32.

The forecast results show that NO has the characteristic of fluctuating dispersion over time and between
locations. However, there was a sharp spike in NO concentrations in the April 2024 period, especially from
April 23 to 25, 2024. This surge was caused by the return flow of homecoming to Surabaya, which occurred
after the holidays. This backflow increases the volume of vehicles entering the city, thereby increasing NO
emissions from motor vehicles. This condition led to a significant increase in the concentration of NO in the
air during that period.

Understanding NO concentration patterns and their influencing factors is essential for air quality
management. This study establishes a foundation for spatial-temporal modeling using GSTARIMA, whose
advantages, such as capturing spatial-temporal dependencies, flexible spatial weighting, and multi-location
forecasting, can be compared with ARIMA, VARIMA, and SVR. Future research may include exogenous
variables (e.g., calendar dummies, temperature, humidity) in extended models like GSTARIMA-X [58], [32].
Additionally, outlier detection should be considered, as previous studies [59]. showed improved performance
when integrated into GSTAR. Finally, if residual correlations exist across locations, the GSTAR-SUR model
[60] could be employed using Seemingly Unrelated Regression for more accurate estimation.
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