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ABSTRACT                                                                                                 

Article History: This article presents a comprehensive study of the factors that influence the length of study 

data of undergraduate students at FMIPA UNIB class 2018 and 2019. This study is essential 
because observations show that many students study for more than 8 semesters. The purpose 

of this study is to determine the factors that significantly influence the length of study of 

undergraduate students. These factors can be internal and external. Survival analysis is the 
right method to identify these factors because ordinary regression analysis is unable to 

estimate survival data. Therefore, methods such as Weibull regression, Cox Proportional 

Hazards regression, and Random Survival Forest are used. This study does not compare the 

methods used because these methods are independent of each other, but have the same goal, 
namely, to determine the factors that influence the length of study of students. The data used 

in this study are data on the length of study of students from the 2018 and 2019 cohorts 

sourced from the academic subsection of FMIPA UNIB, with variables of GPA, gender, 

region of origin, university entry route, parents' occupation, type of study program, and 
length of study. The results showed that GPA and the type of study program significantly 

influenced the length of study in Weibull regression analysis. In Cox proportional hazard 

regression, the GPA variable is an influential factor, while using the Random Survival 

Forest method, all factors significantly influenced the length of study, with their respective 
levels of importance. 
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1. INTRODUCTION 

Higher education serves as a place to educate the next generation of the nation in academic and non-

academic aspects. According to [1], every university makes maximum efforts to increase the graduation rate 

of its students, both in terms of quantity and quality. Bengkulu University, as one of the leading state 

universities in Bengkulu Province, has a vision to become a world-class university. To achieve this vision, 

hard work and dedication from the entire academic community are required. The Faculty of Mathematics and 

Natural Sciences is one part of Bengkulu University, which has 14 study programs. 

The quality of university graduates can be influenced by internal and external factors. Internal factors 

include intelligence, learning ability, and family background. Meanwhile, external factors include the 

learning environment, socialization, and available facilities. These factors are believed to have an impact on 

the duration of student studies [1]. Survival analysis is the method utilized to look at the variables that affect 

the students' study duration in this study. A statistical technique called survival analysis is applied when the 

data set involves the amount of time before a specific event takes place. According to [2], in analyzing 

survival data, ordinary linear regression cannot be used because it is unable to handle the presence of censored 

data. If an individual or observation has not gone through a certain occurrence, the data is considered 

censored. It is referred to be uncensored data if the subject had an experience prior to the conclusion of the 

observation. 

Previous research on the length of study conducted by [3] using Cox proportional hazard regression 

showed that the significant factors influencing the length of study of ULM FMIPA undergraduate students 

were gender, grade point average (GPA > 3.50), and residence status. Further research on the comparison of 

Cox proportional hazard regression and random survival forest was carried out by [4]. The results obtained 

were that the factors that significantly influenced the length of study using Cox proportional hazard regression 

were GPA, while using random survival forest, the factors that significantly influenced were GPA, gender, 

and part-time work. 

There are several survival analysis methods, such as the Kaplan-Meier method, Accelerated Failure 

Time, Parametric Proportional Hazards Model, Stratified Cox Model, Weibull regression, Cox Proportional 

Hazards regression, and Random Survival Forest. This study uses the Weibull regression method, Cox 

Proportional Hazards regression, and Random Survival Forest because these methods can handle censored 

data and can also be used for large amounts of data. This study is the latest research from previous research, 

namely, using an additional method, the Weibull regression method. These three survival analysis methods 

are used to see based on the three methods whether there are variables that have a consistent influence on the 

three methods used and use more data. This study does not compare the methods used because these methods 

are independent of each other, but have the same goal, namely, to determine the factors that influence the 

length of study of students. Random Survival Forest is a collection of random tree methods used for right-

censored survival time data. Survival time is divided into 2 types, namely non-coincidence time and co-

occurrence time. Co-occurrence is a condition where there are two or more individuals who experience an 

event at the same time. Two or more students who are doing thesis attempts in the same month are considered 

as a joint event in this study. If the students’ thesis attempts last more than 48 months, then the data is 

considered censored. 

 

2. RESEARCH METHODS 

2.1 Survival Analysis 

Survival analysis is a time-related statistical technique that begins at the beginning of a certain 

occurrence. One survival analysis that is used to examine data with survival time as the dependent variable 

is Cox regression. Survival time is the time from the beginning of the study to the time of occurrence of an 

event or events [5]. 

 

https://science.unib.ac.id/
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2.2 Censored Data 

If a certain event has not occurred in the observation, the data is considered censored. It is referred to 

be uncensored data if the subject had an experience prior to the conclusion of the observation [2]. According 

to [6], there are four types of censoring in survival analysis, namely right censoring, left censoring, interval 

censoring, and random censoring.   

 

Figure 1. Censorship Illustration 

Suppose the case in Figure 1 is that if individuals experience events up to the time limit 𝒕, then the 

data is said to be uncensored. If individuals experience events or do not experience events beyond the time 

limit 𝒕, then the data is said to be censored. 

 

2.3 Weibull Distribution 

The Weibull distribution is a generalization of the Exponential distribution, which was originally used 

in examining the durability of materials. The Weibull distribution has a shape parameter 𝛼 > 0 and scale 

parameter 𝜆 > 0. 

 

2.3.1 Weibull Regression 

 The Weibull model is a survival model with survival time that follows the Weibull distribution, having 

scale parameters (𝛽) and shape parameters (𝛾) with the assumption of Accelerated Failure Time (AFT). The 

AFT formula of the Weibull distribution is as follows [5]: 

𝑆(𝑡) = 1 − 𝐹(𝑡) = 1 − (1 − exp (− (
𝑡

𝛽
)

𝛾

)) 

𝑆(𝑡) = exp(−𝛽𝑡𝛾) (1) 

The AFT assumption is that the explanatory variables are independent of time. This can be seen by looking 

at the plot of ln𝑒[− lne 𝑆𝑡] against survival time (𝑡) for each independent variable, forming a parallel pattern. 

Here is the hazard function in Weibull regression. 

ℎ(𝑡) = 𝛽𝛾𝑡𝛾−1 

Where 𝛽 = exp(𝛼0 + 𝛼1𝑋1 + 𝛼2𝑋2 + ⋯ + 𝛼𝑗𝑋𝑗) with 𝑡 is the survival time, 𝑋 is the independent variable. 

 

2.3.2 Weibull Regression Parameter Estimation 

Parameter estimation can be done using the maximum likelihood estimation method. This parameter 

estimation method is to determine the parameter that maximizes the probability of the sample data. If 𝑓(𝑡; 𝜃) 

is a joint probability function where 𝑡 is a realization of 𝑇, then the likelihood function of 𝜃 is defined as 

follows: 

𝐿(𝜃|𝑡) = 𝑓(𝑡; 𝜃) (2) 

 For survival data that is assumed to be independent and identical and complete, when there are 

𝑡1, 𝑡2, 𝑡3, ⋯ , 𝑡𝑛 observations, the likelihood function can be written: 

𝐿(𝜃|𝑡) = ∏ 𝑓(𝑡𝑖; 𝜃)

𝑛

𝑖=1

 

 0  𝒕 Event 

Time 
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 For incomplete survival data with the possibility of right censoring, it can be represented as a pair of 

survival observation values with their censored status, namely (𝑡𝑖 , 𝛿𝑖), 𝑖 =  1, 2, 3, . . . , 𝑛 with 

𝛿𝑖 = {
0 ;  𝐼𝑓 𝑖 is censored
1 ; 𝐼𝑓 𝑖 is not censored

 

Assuming each (𝑇𝑖 , 𝛿𝑖) is independent of the other, the likelihood function for right censored data is: 

𝐿(𝜃) ∝ ∏ 𝑓(𝑡𝑖; 𝜃)𝛿𝑖𝑆(𝑡𝑖; 𝜃)1−𝛿𝑖

𝑛

𝑖=1

 

 With 𝜃 = (𝜃1, ⋯ , 𝜃𝑝) are the 𝑝 parameters to be estimated, 𝑓(𝑡𝑖; 𝜃) is the density function for 𝑖 who 

got the event and 𝑆(𝑡𝑖; 𝜃) is the survival function for 𝑖 who did not get the event. The log-likelihood function 

for right-censored data from the likelihood function is: 

ℓ(𝜃) ∝ ∑(𝛿𝑖)

𝑛

𝑖=1

 log(𝑓(𝑡𝑖; 𝜃)) + ∑(1 − 𝛿𝑖)

𝑛

𝑖=1

log(𝑆(𝑡𝑖; 𝜃)) 

 Furthermore, to obtain an estimate using the maximum likelihood estimation method is the result of 

the first and second partial derivatives after obtaining the log of the likelihood function. The results obtained 

using the method are implicit, so that parameter estimates are obtained computationally with the help of 

software using the Newton-Raphson iteration method. 

 

2.3.3 Multicollinearity Detection 

Multicollinearity is a condition in which two or more independent variables in the regression model 

are strongly correlated. This can cause problems in regression analysis, such as difficulty in determining the 

effect of variables on other variables, making coefficient estimates unstable, or reducing the accuracy of 

model predictions [7]. According to [8], multicollinearity is caused by several factors, namely the application 

of data collection, the limitations contained in the model, or differences in the population being sampled. 

This study uses the Variance Inflation Factor (VIF) value to detect multicollinearity. The following is 

the VIF Equation (3) [9]: 

𝑉𝐼𝐹 =
1

(1 − 𝑅𝑗
2)

 (3) 

The VIF value is theoretically impossible to be negative because it is calculated from the square of the 

correlation, where 𝑅𝑗
2 is the coefficient of determination of the regression of the variable 𝑋𝑗  against the other 

independent variables. Since 𝑅𝑗
2 has a value between 0 and 1, the VIF is always positive and has a minimum 

value of 1. The VIF also cannot be zero, because a value of 0 will appear if 𝑅𝑗
2 = 1, which mathematically 

will cause division by zero (undefined). VIF values below 10 are considered to indicate no serious 

multicollinearity, while values above 10 indicate high multicollinearity that needs to be addressed. 

 

2.3.4 Significant Testing of Weibull Regression Parameters 

 Knowing whether the independent variable really influences the model is the goal of parameter 

significance testing. In this research, the Wald test is used for partial tests and the partial likelihood ratio test 

for simultaneous tests. The Wald test is used because it is more efficient, namely, by using the coefficient 

estimate (�̂�) and its standard error, the Wald test is practical for evaluating the influence of one variable at a 

time on survival time in the model. The partial likelihood ratio test compares models with all variables and 

models without the tested variables, thus providing a more comprehensive picture of the overall contribution 

of the variables 
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a.  Simultaneous Test  

1. Hypothesis  

𝐻0 ∶  𝛽1 = 𝛽2 = 𝛽3 = ⋯ = 𝛽𝑘 = 0 

𝐻1 ∶ at least one 𝛽𝑗 ≠ 0 where 𝑗 = 1, 2, ⋯ , 𝑝 

2. Significance level 𝛼 = 5% 

3. Test Statistics  

𝐺 = −2[ln 𝐿𝑅  − ln 𝐿𝐹]  

4. Rejection Criteria  

 Reject 𝐻0 if 𝐺ℎ𝑖𝑡 > 𝒳(𝑑𝑓=𝑝;𝛼)
2  or 𝑃-𝑣𝑎𝑙𝑢𝑒 < 𝛼 

5. Conclusion  

Because the 𝑃-𝑣𝑎𝑙𝑢𝑒 < 𝛼 so 𝐻0 is rejected, meaning that at least one independent variable has an 

effect on the dependent variable, and the model is feasible. 

 

b.  Partial Test  

1. Hypothesis  

𝐻0 ∶  𝛽𝑗 = 0 

𝐻1 ∶ 𝛽𝑗 ≠ 0 where 𝑗 = 1, 2, ⋯ , 𝑝 

2. Significance level 𝛼 = 5% 

3. Test Statistics 

𝑍 =
�̂�𝑗

𝑆𝐸(�̂�𝑗)
 (4) 

Rejection Criteria  

 Reject 𝐻0 if |𝑍| > 𝑍𝛼/2 or 𝑃-𝑣𝑎𝑙𝑢𝑒 < 𝛼 

4. Conclusion  

Because the 𝑃-𝑣𝑎𝑙𝑢𝑒 < 𝛼 so 𝐻0 is rejected, the independent variable affects the dependent variable. 

 

2.4 Cox Proportional Hazards Regression (CPH) 

The Cox model is a semiparametric distributed model because in Cox, the estimation of regression 

parameters of the Cox model does not have to determine the basic hazard function; besides that, the Cox 

model does not require information about the underlying distribution of survival time [10]. 

The Cox proportional hazards regression model is as follows [5]:  

𝒉(𝒕, 𝑿) = 𝒉𝟎(𝒕) 𝐞𝐱𝐩(𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿𝟐+. . . +𝜷𝒑𝑿𝒑) = 𝒉𝟎(𝒕)𝒆
∑ 𝜷𝒋𝑿𝒋

𝒑
𝒋=𝟏 (𝟓) 

2.4.1 Co-Occurrence Data 

Co-occurrence data is often found in survival analysis. Co-occurrence is an event where two or more 

individuals experience an event at the same time. The following is an example of co-occurrence data. 
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Table 1. Example of Co-Occurrence Survival Data 

𝒊 1 2 3 4 5 6 

𝑡𝑖 4 3 5 7 6 5 

𝑐 0 1 1 0 0 1 

Suppose, 𝑖 is the 𝑖-th individual, 𝑐 is the censored data status and 𝑡𝑖 is the event time for the 𝑖-th 

individual. Suppose the event times 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4 < 𝑡5 < 𝑡6 are the observed times and have been 

sorted. At time 𝑡3 and 𝑡4 there are two individuals who experienced the event, and it is not known which 

individual experienced the event first. 

 

2.4.2 Parameter Estimation of the Cox Proportional Hazards Model 

The Breslow partial likelihood approach is an alternate technique for handling co-occurrence data that 

is provided by [6]. The partial likelihood equation for the Breslow approach is as follows: 

𝐿(𝛽)𝐵𝑟𝑒𝑠𝑙𝑜𝑤 = ∏
𝑒

(∑ 𝛽𝑗𝑆𝑘
𝑝
𝑗=1 )

(∑ 𝑒
(∑ 𝛽𝑗𝑋𝑖𝑗

𝑝
𝑗=1 )

𝑖∈𝑅(𝑡𝑗) )
𝑑𝑖

𝑟

𝑖=1

(6) 

Where 𝑆𝑘 is the amount of covariance 𝑋 on the joint event and 𝑑𝑖 is the number of cases of the joint 

event at time 𝑡𝑖. 

 

2.4.3 Cox Proportional Hazards Regression Parameter Testing 

The purpose of parameter significance testing is to determine if the independent variables actually 

affect the model [11]. The ratio partial likelihood test is used in this study’s simultaneous test, while the score 

test is used in the partial test.  

Simultaneous test steps using the ratio partial likelihood test 

1. Hypothesis: 

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0  

𝐻1: at least one 𝛽𝑗 ≠ 0, 𝑗 = 1, 2, 3, . . . , 𝑝 

2.  Significance level: alpha value (𝛼)  

3.  Test statistic: 

𝐺 = −2[ln 𝐿𝑅 − ln 𝐿𝐹] 

Where ln 𝐿𝑅 is the Log likelihood value for the Cox model without independent variables, while ln 𝐿𝐹 

is the Log likelihood value for the Cox model with independent variables. 

4.  Rejection Criteria: 

Reject 𝐻0 if 𝐺 ≥ 𝜒(𝛼:𝑑𝑓=𝑝)
2 or 𝑃-𝑣𝑎𝑙𝑢𝑒 < 𝛼 

5.  Conclusion: 

Reject 𝐻0 if 𝐺 ≥ 𝜒(𝛼:𝑑𝑓=𝑝)
2  or 𝑃-𝑣𝑎𝑙𝑢𝑒 ≤ 𝛼, meaning that at least one independent variable has an 

effect in the model. 

The test statistic in the score test follows the chi-square distribution with a free degree of 𝑝. Here are the score 

test steps [12]: 

1. Hypothesis: 

𝐻0: 𝛽𝑗 = 0 (variable 𝑋𝑗  has no effect in the model) 

𝐻1: 𝛽𝑗 ≠ 0, 𝑗 = 1, 2, … , 𝑝 (variable 𝑋𝑗  has an effect on the model) 
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2.   Significance level: alpha value (𝛼)  

3.   Test statistic: 

𝑧 = (
�̂�𝑗

𝑆𝐸(�̂�𝑗)
) 

4.   Rejection criteria: 

𝐻0 is rejected if 𝑧 ≥ 𝜒(𝛼:𝑑𝑓=𝑝)
2 or 𝑃-𝑣𝑎𝑙𝑢𝑒 ≤ 𝛼 

5.   Conclusion: 

Reject 𝐻0 if 𝑧 ≥ 𝜒(𝛼:𝑑𝑓=𝑝)
2  or 𝑃-𝑣𝑎𝑙𝑢𝑒 < 𝛼, means that variable 𝑋𝑗  has an effect on the model 

 

2.4.4 Cox Proportional Hazard Model Assumptions 

The Schoenfeld residual plot is one way to test the proportional hazard assumption in a Cox model 

[13]. According to [2], Schoenfeld residuals are defined as residuals for each individual and each independent 

variable based on the first derivative of the log-likelihood function. The following is the Schoenfeld Residual 

equation: 

𝑅𝑗𝑖 = 𝛿𝑖 (𝑋𝑗𝑖 −
∑ 𝑋𝑗𝑙𝑒(𝜷′̂𝑿𝒍)

𝑙∈𝑅(𝑡𝑗)

∑ 𝑒(𝜷′̂𝑿𝒍)
𝑙∈𝑅(𝑡𝑗)

) , 𝑗 = 1, 2, . . . , 𝑝 (7) 

With �̂� being the maximum partial likelihood estimator of 𝜷. When the sample size is large, the 

expected value of 𝑅𝑗𝑖 is zero, so the Schoenfeld residuals are uncorrelated with each other. 

 

2.5 Random Survival Forests (RSF) 

Random Survival Forest (RSF) is a nonparametric ensemble method for analyzing right-censored 

survival data, built as a time-to-event extension of random forests for classification. This method can handle 

multiple covariates, noise covariates, and complex nonlinear relationships between covariates without the 

need for prior specification [14]. 

 

2.5.1 Splitting 

Let's say we wish to divide a node ℎ into two child nodes throughout the tree construction process. If 

𝑛 observations with survival times and censoring indicators (𝑇1, 𝛿1), . . . , (𝑇𝑛, 𝛿𝑛) are present at the node ℎ, 

then observation 𝐼 is considered censored at time 𝑇𝑖 if 𝛿𝑖 = 0, and uncensored at time 𝑇𝑖 if 𝛿𝑖 = 1. 

 The log-rank test statistic for splitting according to the independent variable 𝑋 at a value of 𝑐 is as 

follows: 

|𝐿(𝑋, 𝑐)| =

∑ (𝑑𝑗,𝐿 − 𝑌𝑗,𝐿

𝑑𝑗

𝑌𝑗
)𝑚

𝑗=1

√∑
𝑌𝑗,𝐿

𝑌𝑗
(1 −

𝑌𝑗,𝐿

𝑌𝑗
) (

𝑌𝑗 − 𝑑𝑗

𝑌𝑗 − 1
)𝑚

𝑗=1 𝑑𝑗

 (8)
 

 The value of |𝐿(𝑋, 𝑐)| is a measure of the node separation which is directly proportional to the 

performance of the node separation. The greater the value of |𝐿(𝑋, 𝑐)| the better the separation and the greater 

the difference between the two groups. [15]. 
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2.5.2 Bootstrap 

Since the original sample will be used as the population, bootstrap is a nonparametric resampling 

approach that may function without any distribution assumptions. The bootstrap method's steps include 

resampling the original dataset to produce fresh data [4]. 

 

2.5.3 Variable Importance Selection 

The permutation significance approach is a sampling technique for selecting variables based on their 

importance. Permutation importance is a technique that determines variable 𝑋 significance in the 𝑡-𝑡 tree 

average by comparing the prediction error of variable 𝑋 before and after permutation [16]. A positive 

significance value for a variable indicates that it has excellent predictive power [17]. The variable is not 

predictive even if the importance value is zero or negative. Let ℒ∗(Θ𝑚) be the mth bootstrap sample and 

ℒ∗∗(Θ𝑚) = ℒ\ℒ∗(Θ𝑚) be the OOB data. Given 𝑿 = (𝑋1, 𝑋2, . . , 𝑋𝑝) where 𝑋𝑗  is the th-𝑗 feature coordinate. 

The permutation value of the th-𝑗 coordinate in 𝑿 is denoted by �̃�𝑗 . 

�̃�𝑗 = (𝑋1, … , 𝑋𝑗−1, 𝑋𝑗 , 𝑋𝑗+1, , . . , 𝑋𝑝) 

Variable importance is calculated by looking at the difference between the permutation value of �̃�𝑗  and 

the original value of 𝑿 in the OOB data. In other words, let 𝐼(𝑋𝑗, Θ𝑚, ℒ) be the variable importance for 𝑋(𝑗) 

in the th-𝑚 tree. The permutation variable importance equation is as follows: 

𝐼(𝑋𝑗 , Θ𝑚, ℒ) =
∑ ℓ (𝑌𝑖 , ℎ (�̃�𝑖

𝑗
, Θ𝑚, ℒ))𝑖𝜖ℒ∗∗(Θ𝑚)

∑ 1𝑖𝜖ℒ∗∗(Θ𝑚)
−

∑ ℓ(𝑌𝑖, ℎ(𝑿𝑖 , Θ𝑚 , ℒ))𝑖𝜖ℒ∗∗(Θ𝑚)

∑ 1𝑖𝜖ℒ∗∗(Θ𝑚)
 (9) 

 

2.6 Duration of Study 

According to [4], the length of study is the time required for students to complete their education 

according to their respective education levels; for example, for the undergraduate level is 4 years, the Diploma 

level is 3 years, and the Magister is 2 years. 

 
 

3. RESULTS AND DISCUSSION 

The types of data in this study are nominal data and numeric data. Nominal data in this study are data 

on factors that affect the length of study of students, such as gender, parents' occupation, region of origin, 

university entry path, and study program. While the numeric data in this study is the GPA variable. The data 

used in this study is secondary data, namely data on the length of study of students at FMIPA UNIB, batches 

of 2018 and 2019. Data is said to be censored if an individual or observation has not experienced a certain 

event. If an individual experiences an event before the end of the observation, it is called uncensored data. 

 

3.1 Weibull Regression Modeling 

3.1.1 Parameter Estimation 

Weibull regression parameter estimation for each variable in the length of student study data. 

Table 2. Parameter Estimation of the Weibull Regression Model 

Variable 𝜷𝒋 Standard Error 

Intercept 5.233 0.104 

GPA -0.392 0.030 

Gender 0.022 0.016 
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Variable 𝜷𝒋 Standard Error 

Origin -0.001 0.012 

Selection -0.001 0.009 

Parents Occupation -0.006 0.013 

Study Program 0.028 0.004 

Scale = 0.0939 Shape=1/Scale = 10.650 

Chisq = 197.97 𝑃-𝑉𝑎𝑙𝑢𝑒 = 5.1 × 10−40, 𝑑𝑓 = 6 

Based on the output results of the Weibull regression model on survival data, an intercept value of 

5.233 was obtained with a standard error of 0.104. The coefficient of the GPA variable of -0.392 with a 

standard error of 0.030 indicates that the higher the GPA value, the shorter the study period tends to be. This 

means that students with high GPAs tend to complete their studies faster. The Gender variable has a positive 

coefficient of 0.022 with a standard error of 0.016, indicating that gender has a small and positive effect on 

survival time, although the effect is relatively small. The Origin and Selection variables each have a 

coefficient of -0.001 with a standard error of 0.012 and 0.009, respectively, meaning that their effect on 

survival time is very small and tends to be insignificant. Likewise, Parents' Occupation has a coefficient of  

-0.006 with a standard error of 0.013, indicating a very weak negative effect. Meanwhile, the Study Program 

has the most prominent influence with a positive coefficient of 0.028 and a standard error of 0.004, indicating 

that the type of study program plays a fairly important role in determining the length of student study. The 

scale model parameter of 0.0939 and the shape of 10.650 indicate that the Weibull distribution shape 

approaches a hazard distribution that increases over time, indicating that the risk of graduation increases as 

the study period increases. So that the Weibull regression model estimation is obtained as follows: 

𝑆(𝑡|𝑋) = exp (− (exp (
5.233 − 0.392𝑋1 + 0.022𝑋2 − 0.001𝑋3 − 0.001𝑋4 − 0.006𝑋5

+0.028𝑋6
) 𝑡)

10.650

) (10) 

 

3.1.2 Multicollinearity Detection 

Multicollinearity is a condition in which two or more independent variables in the regression model 

are strongly correlated. A regression model is considered good if there is no multicollinearity. 

Table 3. Multicollinearity Detection Results 

Variable VIF Value 

GPA 1.143 

Gender 1.018 

Origin 1.048 

Selection 1.079 

Parents Occupation 1.072 

Study Program 1.130 

 It is known in Table 3 that the data has a VIF value <10, meaning that all variables in the data do not 

have multicollinearity. 

3.1.3 Parameter Testing 

The partial likelihood ratio test is used for parameter testing to see if each variable in Equation (10) 

affects the model: 

1. Hypothesis 

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽6 = 0  

𝐻1: At least one 𝛽𝑗 ≠ 0, 𝑗 = 1, 2, 3, . . . , 6  

2.  Level of significance: 𝛼 = 5% 

3.  Test statistic: 

𝐺 = −2[ln 𝐿𝑅 − ln 𝐿𝐹] = −2[−1018.7 − (−919.7)] = 197.97 

4.  Rejection criteria: 
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Reject 𝐻0 if 𝐺 ≥ 𝜒(𝛼:𝑑𝑓=𝑝)
2 or 𝑃 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 

Since 𝐺 = 197.97 ≥ 𝜒(0.05:6)
2 = 12.5916 or 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 5.1 × 10−40 < 𝛼 = 0.05, 𝐻0 is rejected 

5.  Conclusion: 

There is at least one independent variable that has an effect on the model. 

The following is a partial parameter significance test using the Wald test. 

Table 4. Partial Parameter Testing Results with Wald Test 

Variable 𝒛 𝑷 − 𝑽𝒂𝒍𝒖𝒆 Decision 

Intercept 50.20 2 × 10−16 𝐻0 is rejected 

GPA -13.21 2 × 10−16 𝐻0 is rejected 

Gender 1.38 0.17 𝐻0 is accepted 

Origin -0.11 0.91 𝐻0 is accepted 

Selection -0.11 0.91 𝐻0 is accepted 
Parents Occupation -0.43 0.66 𝐻0 is accepted 

Study Program 8.04 9.1 × 10−16 𝐻0 is rejected 

 Based on Table 4, the GPA and Study Program variables have an effect on the model, this can be seen 

from the 𝑃-value which is smaller than the 5% alpha value. While the Selection, Origin, Selection, and 

Parents Occupation variables have no effect in the model because the 𝑃-value is greater than the 5% alpha 

value. It can be concluded that the final Weibull regression model is as follows: 

Table 5. Weibull Regression Final Model Results 

Variable 𝜷𝒋 Standard Error 𝒁 𝑷-𝑽𝒂𝒍𝒖𝒆 

Intercept 5.247 0.101 52.01 2 × 10−16 

GPA -0.396 0.029 -13.56 2 × 10−16 

Study Program 0.028 0.004 8.09 5.9 × 10−16 

Scale = 0.0943 Shape=1/Scale = 10.604 

Chisq = 195.76 𝑃-𝑉𝑎𝑙𝑢𝑒 = 3.1 × 10−43 𝑑𝑓 = 2 

 Based on the final results of the Weibull regression model in Table 5, it is obtained that the Intercept 

is 5.247 with a standard error of 0.101, which indicates that the intercept is significant. The GPA variable has 

a regression coefficient of -0.396 with a standard error of 0.029, which is also very significant. This 

coefficient indicates that the higher the GPA, the shorter the time to graduation, or in other words, students 

with higher GPAs tend to complete their studies faster. Furthermore, the Study Program variable has a 

coefficient of 0.028 with a standard error of 0.004, indicating a significant effect on survival time. A positive 

coefficient indicates that there is a difference in the length of study between study programs. The scale 

parameter in the model is 0.0943, and the shape is 10.604, which indicates a hazard distribution shape that 

increases over time. From the estimation results of the final Weibull regression model, the Weibull regression 

model equation is obtained: 

𝑆(𝑡|𝑋) = exp(−(exp(5.247 − 0.396𝑋1 + 0.028𝑋6)𝑡)10.604) (11) 

Based on Equation (11), it is interpreted that the intercept of 5.247 indicates the basic hazard risk 

without being influenced by other variables. The coefficient of -0.396 for GPA indicates that the higher the 

GPA value, the lower the risk of occurrence, meaning that the higher the GPA value obtained by students, 

the more likely the students are to graduate on time in 8 semesters. The coefficient of 0.028 for the study 

program indicates that the higher the value of the study program variable, the higher the risk of occurrence, 

meaning that the higher the value of the study program variable, the more the study program has the incentive 

to encourage students to graduate on time. The shape parameter of 10.604 indicates that the data has a 

distribution form with decreasing risk over time, meaning that the hazard decreases over time. 

 

3.2 Cox Proportional Hazard Regression Modeling 

3.2.1 Parameter Estimation 

Cox proportional hazard regression parameter estimation for each variable in the student length of study data. 
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Table 6. CPH Model Parameter Estimation Using the Breslow Method 

Variable 𝜷𝒋 𝒆𝜷𝒋 Standard Error Lower Limit Upper Limit 

GPA 3.2793 26.5578 0.3432 13.5538 52.0384 

Gender -0.0269 0.9735 0.1728 0.6938 1.3659 

Origin -0.0340 0.9665 0.1314 0.7471 1.2505 

Selection 0.1159 1.1228 0.0919 0.9378 1.3444 

Parents Occupation -0.1019 0.9031 0.1472 0.6768 1.2050 

Study Program -0.2577 0.7728 0.0378 0.7176 0.8323 

Based on the results of the Cox Proportional Hazards (CPH) model parameter estimation using the 

Breslow method in Table 6, it can be seen that the GPA variable has a coefficient of 3.2793. The exponential 

value of the coefficient of 3.2793 indicates that a one-unit increase in GPA is associated with a 26.56-fold 

increase in the chance of an event occurring, meaning that GPA has a very large and significant influence on 

the acceleration of graduation time; the higher the GPA, the more likely students are to graduate faster. 

Conversely, the Gender variable has a coefficient of -0.0269, indicating that gender has a small and 

insignificant influence on graduation time. The Origin and Parents' Occupation variables that have an 

influence on survival time are considered insignificant. Overall, the most significant variables in this model 

are GPA and Study Program, while other variables tend not to have a significant influence on survival time. 

So that the Cox proportional hazard model estimate is obtained as follows: 

𝒉(𝒕, 𝑿) = 𝒉𝟎(𝒕) 𝐞𝐱𝐩(𝟑. 𝟐𝟕𝟗𝟑𝑿𝟏 − 𝟎. 𝟎𝟐𝟔𝟗𝑿𝟐 − 𝟎. 𝟎𝟑𝟒𝟎𝑿𝟑 + 𝟎. 𝟏𝟏𝟓𝟗𝑿𝟒 − 𝟎. 𝟏𝟎𝟏𝟗𝑿𝟓 − 𝟎. 𝟐𝟓𝟕𝟕𝑿𝟔) (𝟏𝟐) 

3.2.2 Parameter Testing 

To find out whether all variables in Equation (12) affect the model, parameter testing is carried out 

with the partial likelihood ratio test: 

1. Hypothesis 

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽6 = 0  

𝐻1: At least one 𝛽𝑗 ≠ 0, 𝑗 = 1, 2, 3, . . . , 6 

2.  Level of significance: 𝛼 = 5% 

3.  Test statistic: 

𝐺 = −2[ln 𝐿𝑅 − ln 𝐿𝐹] = −2[−1506.215 − (−1448.317)] = 115.796 

4.  Rejection region: 

Reject 𝐻0 if 𝐺 ≥ 𝜒(𝛼:𝑑𝑏=𝑝)
2 or 𝑃 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 

Since 𝐺 = 115.796 ≥ 𝜒(0.05:6)
2 = 12.5916 or 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 2 × 10−16 < 𝛼 = 0.05 𝐻0 is rejected 

5.  Conclusion: 

There is at least one independent variable that has an effect on the model. 

The following is a partial parameter significance test using the Score test: 

Table 7. Partial Parameter Testing Results with Score Test 

Variable 𝒛 𝝌(𝟎,𝟎𝟓:𝟏)
𝟐  𝑷 − 𝑽𝒂𝒍𝒖𝒆 Decision 

GPA 9.555 3.841 2 × 10−16 𝐻0 is rejected 

Gender 0.156 3.841 0.876 𝐻0 is accepted 

Origin 0.259 3.841 0.796 𝐻0 is accepted 

Selection 1.261 3.841 0.207 𝐻0 is accepted 

Parents Occupation 0.693 3.841 0.489 𝐻0 is accepted 

Study Program 6.813 3.841 9.6 × 10−12 𝐻0 is rejected 

 Based on Table 7, the GPA and Study Program variables have an effect on the model with a 𝑃-value 

that is smaller than the 5% alpha value. The Gender, Origin, Selection, and Parents Occupation variables 
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have no effect in the model because the 𝑃-value is greater than the 5% alpha value. It can be concluded that 

the final Cox proportional hazard model is as follows: 

ℎ(𝑡, 𝑋) = ℎ0(𝑡) exp(3.2638𝑋1 − 0.2558𝑋6) 

 

3.2.3 Proportional Hazard Assumption Testing 

The slope curve of the Schoenfeld Residual Plot suggests that the coefficient of 𝑋𝑖 is constant if it is 

near zero. Thus, the proportionate hazard assumption can be said to be met. The Schoenfeld residual plot of 

the GPA variable is shown below. 

 
Figure 2. Schoenfeld Residual Plot for GPA Variable 

Based on Figure 2, it can be seen that the Schoenfeld residual plot against the survival time of the GPA 

variable has a slope close to zero, so it can be said that the proportional hazard assumption is met. 

 

  
Figure 3. Schoenfeld Residual Plot for the Study Program Variable 

  

Based on Figure 3, it can be seen that the Schoenfeld residual plot against the survival time of the 

Study Program variable does not have a slope close to zero, so it is said that the proportional hazard 

assumption is not met. According to [18], if the proportional hazard assumption is not met, then remove the 

independent variables that do not meet the assumptions from the model, and the Cox proportional hazard 

model can still be used. 
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3.2.4 Interpretation of the Cox Proportional Hazard Model 

 Based on parameter testing and proportional hazard assumptions, it is concluded that the final Cox 

proportional hazard model is: 

ℎ(𝑡, 𝑋) = ℎ0(𝑡) exp(2.4322𝑋1) (13) 

Equation (13) illustrates the impact of independent variables on the hazard function by displaying the 

value of 𝑒𝛽1. Since the GPA variable in this study is numerical, the hazard ratio is calculated by selecting a 

value that falls between the GPA ranges. The hazard ratio, assuming that this study compares cumlaude GPA 

values (GPA 3.8) with those that are not cumlaude (GPA 3.28), is as follows: 

𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜 =
exp (𝑐𝑜𝑒𝑓(3.8))

exp (𝑐𝑜𝑒𝑓(3.28))
=

exp(2.4322(3.8))

exp(2.4322(3.28))
= 3.5 

Based on the calculation results, it can be said that students with a GPA of 3.8 are 3.5 months faster 

to graduate on time than students who have a GPA of 3.28. 

 

3.3 Random Survival Forest (RSF) 

3.3.1 RSF Method Data Processing 

Separating the data into 85% training and 15% testing is the first stage in the random survival forest 

technique. The outcomes of using the random survival forest approach to data processing are as follows: 

Table 8. RSF Method Data Processing Results 

Sample size : 352 

Number of deaths : 226 

Number of trees : 1000 

Forest terminal node size : 15 

Average no. of terminal nodes : 13.539 

No. of variables tried at each split : 3 

Total no. of variables : 6 

Resampling used to grow trees : Swor 

Resample size used to grow trees : 222 

Analysis : RSF 

Family : Surv 

Splitting rule : logrank *random 

Number of random split points : 3 

(OOB) CRPS : 0.01507168 

(OOB) Requested performance error : 0.24172093 

Based on Table 8, it can be seen that the sample size indicates the number of samples used as bootstrap 

data to build a survival tree. In this study, the bootstrap data sample was 352 samples. Then the number of 

students graduating on time was 226, stating that there were 226 students who failed (in the case of this study, 

students graduating on time) from 352 students who were randomly selected as bootstrap samples. The 

number of trees indicates the number of trees built to construct the forest, and it is 1000 trees. The forest 

terminal node size is the number of training samples in the terminal node. This means that the survival tree 

is built until the terminal node has a size of 15, or in other words, the survival tree cannot grow anymore at a 

terminal node size of less than 15 nodes. While the average no. of terminal nodes shows the average number 

at the terminal node is 13.539. In addition, the no. of variables tried at each split shows the number of 

candidate variables in the node separation obtained from the root of the number of independent variables, 

namely √6 = 2.5, into 3 variables. Resampling for bootstrap samples is done by swor (sampling with 

replacement). Then "analysis: RSF and family: surv" shows that data processing is done using the random 

survival forest method, which is one of the methods in survival analysis. The splitting rule or splitting rule 

used in this analysis is the random log-rank rule. The number of random split points shows the number of 

random split points is 3. From Table 8, it can also be seen that the prediction error results obtained are 1.52%. 
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3.3.2 Variable Importance 

 The selection of important variables is done to find out which variables affect the length of the study. 

The representative method used for variable importance selection is the permutation importance method. 

Permutation importance is a technique that determines a variable 𝑋 degree of significance in the tree average 

by comparing the prediction error before and after permutation. 

Table 9. Importance Value of Free Variables 

Variable Importance 

GPA (X1) 0.1343 

Study Program (X6) 0.0931 

Parents Occupation (X3) 0.0043 

Origin (X4) 0.0042 

Gender (X2) 0.0023 

Selection (X5) 0.0021 

 Based on Table 9, it can be seen that the importance value for variables X1, X2, X3, X4, X5 and X6 is 

positive. This shows that all variables are predictive variables, or in other words, these variables are variables 

that can significantly predict whether students graduate on time. When viewed from the importance value, 

variable X1 is a variable with a greater importance value among other variables, meaning that variable X1 is 

the most predictive variable compared to other variables.  

This research shows that the GPA has a significant influence on students' graduation time at the FMIPA 

UNIB. These results align with previous research findings showing that GPA is an important indicator in 

determining students' academic success and graduation time. For example, research conducted by [4] shows 

that students with higher GPAs tend to graduate more quickly than those with lower GPAs. This research 

makes a significant contribution to the field of educational continuity analysis because it confirms that 

academic quality, reflected in GPA, is closely related to the effectiveness of the learning process and timely 

graduation. These findings also support educational policies that emphasize strengthening students' academic 

quality to encourage accelerated graduation times. Policies such as academic mentoring programs, curriculum 

improvements, and monitoring academic progress can be more focused on increasing students' GPAs, which 

in turn is expected to shorten the duration of their studies. In other words, the results of this research are in 

line with previous studies that show the importance of academic factors in higher education success and 

provide a strong basis for formulating policies that can help improve overall student graduation rates. 

 

4. CONCLUSIONS 

 Based on the results and discussion of Weibull regression, Cox proportional hazard regression, and 

random survival forest, it can be concluded that the resulting Weibull regression model is 𝑆(𝑡|𝑋) =
exp(−(exp(5.247 − 0.396𝑋1 + 0.028𝑋6)𝑡)10.604) , while the resulting Cox proportional hazards model 

with the Breslow approach is ℎ(𝑡, 𝑋) = ℎ0(𝑡) exp(2.4322𝑋1). A significant factor influencing the length of 

study for FMIPA UNIB undergraduate students in the class of 2018 and 2019, based on these three methods, 

is the cumulative achievement index. Students are advised to achieve and maintain a high GPA so as not to 

repeat courses. If this is consistently done, then students have a high probability of graduating on time, namely 

8 semesters. 
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