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 ABSTRACT 

Article History: 
Natural gas is a key energy commodity with significant global economic impact, and its 

pricing is influenced by factors like weather, energy policies, geopolitics, and supply-

demand balance. The Russia-Ukraine conflict disrupted Russia’s gas exports, causing 

price volatility and affecting global markets, including Indonesia. This has heightened the 

need for accurate price prediction to support policy and investment decisions. Previous 

studies show ARIMA-GARCH models predict well but need pulse function intervention 

for sudden shocks. This study aims to apply pulse function intervention analysis, which 

captures the immediate effects of external events on time-series data, to improve the 

precision of natural gas price forecasts, aiding government and industry decision-makers. 
The optimal intervention model for predicting natural gas prices on the New York 

Mercantile Exchange is the Probabilistic ARIMA (0,2,1) with a pulse function 

intervention order of b=0, r=2, and s=0. Using this model with the pulse function 

intervention approach yields consistent fluctuation patterns over time and achieves a 

MAPE value of 12.2586%, indicating that the model provides good predictive accuracy. 
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1. INTRODUCTION 

Natural gas is one of the main energy commodities that plays an important role in the world economy. 

The use of natural gas by utilizing technology for exploration, production, and distribution opens up 

opportunities for a country in the investment sector [1]. Fluctuations in natural gas prices not only affect 

companies engaged in the energy sector that are directly involved in the production and distribution of natural 

gas, but also affect the industrial sector whose industrial raw materials depend on natural gas. Natural gas 

prices on the New York Mercantile Exchange are influenced by many factors, such as weather, energy policy, 

the geopolitical situation, and the balance between supply and demand. 

The prolonged conflict between Russia and Ukraine is one of the causes of the disruption of natural 

gas import-export activities from Russia, which is the world’s second-largest exporter of natural gas, to the 

world market [2]. The conflict between Russia and Ukraine also impacted energy policy as well as the 

availability of fossil fuels in Indonesia. For instance, Nusantara Regas, an Indonesian company, plans to 

import up to 2 million metric tons of LNG annually from the United States. Analysts and market sources 

project that Indonesia may face a shortfall of around 10 LNG shipments in 2024 due to rising domestic 

demand, decreasing local supplies, and existing export commitments. This shortfall is expected to be 

addressed through additional imports. Since Russia’s invasion of Ukraine, which culminated in 2022, Russia's 

natural gas exports have decreased by at least 40% from the previous year. Although Russian gas production 

has declined as a result of the invasion of Ukraine, Russia remains the owner of the largest natural gas reserves 

and is still the second largest gross gas exporter in the world, after the United States [3]. The geopolitical 

impact of the war has led to higher price fluctuations and added volatility to natural gas futures. 

Given the uncertainty of natural gas futures prices in the global market due to the Russia-Ukraine 

conflict, there is a need for in-depth research to understand and predict these price fluctuations so that energy 

and economic policies can be designed appropriately. Choosing a good and appropriate prediction method 

will help in identifying and quantifying the impact of the Russia-Ukraine conflict on changes in natural gas 

futures prices. Accurate predictions also help many parties, such as governments, companies engaged in the 

energy sector, and investors, in making decisions such as investments.  

There are several previous studies related to natural gas price prediction, such as [4], which predicts 

natural gas prices using the ARIMA and AR–GARCH models. Furthermore, [4] reports that the MAPE for 

the ARIMA (1,1,1) model does not provide a significant probability value and thus fails to fit the data 

properly. After detecting the presence of ARCH effects, the study applies an AR (1)–GARCH (1,1) model, 

which is found to be the best-fitted model with a highly significant probability value (P < 0.0001), along with 

low mean squared error (MSE) and root mean squared error (RMSE) values, indicating high prediction 

accuracy. Although the ARIMA–GARCH model provides accurate predictions under normal conditions, it 

lacks the ability to account for sudden shocks or unexpected structural changes in the data. Therefore, it is 

necessary to conduct further analysis using an intervention model, such as the pulse function, which is 

specifically designed to capture the effects of abrupt events on time series data like natural gas prices. Another 

relevant study is presented in [5], which applies the pulse function intervention analysis to predict the JCI. 

Based on this study, the best intervention model for forecasting JCI close price data is the ARIMA (3,1,0) 

model with b = 0, r = 0, s = 11, and a MAPE value of 0.98%, which means the model is able to do forecasting 

very well. The occurrence of extreme trend changes in August 2022 states that the data has intervened, so it 

is necessary to model the pulse function intervention. Intervention itself is a shock that arises due to internal 

and external factors [6]. While intervention analysis is a method in time series analysis that considers the 

impact of an intervention that results in changes to the average function or trend in the data. Box and Tiao 

(1975) revealed that the intervention function has two forms, namely the step function and pulse function. 

Intervention analysis with a pulse function is applied to overcome interventions that are temporary and only 

occur at a certain point in time, such as the Russia-Ukraine conflict [7]. 

This research was conducted to predict natural gas prices on the New York Mercantile Exchange using 

a method that has not previously been used in predicting them, namely the pulse function intervention analysis 

approach. The pulse function intervention analysis method was chosen due to its ability to identify and 

quantify the impact of external events on time series data, such as geopolitical events or economic policies, 

which are often difficult to capture by traditional models such as ARIMA. A key advantage of this method is 

its ability to assess the direct influence of interventions at any given time, which allows for more precise 

predictions and responsiveness to changes that occur. Therefore, this research provides accurate forecasts of 

natural gas price fluctuations on the New York Mercantile Exchange, enabling the government to design 
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better energy policies, companies in the energy sector to optimize production and trading strategies, and 

investors to make informed decisions on market risks and investment timing. 

2. RESEARCH METHODS 

The research method contains explanations about the variables and data sources, literature review about 

methods, and research stages. 

2.1 Data Sources and Variables 

The data used in this study are weekly data of natural gas closing prices on the New York Mercantile 

Exchange obtained from the official investing.com website from the first week of January 2020 to the last 

week of October 2022, with a total of 147 data points. The data has gone through a Box-Cox transformation 

and differencing process to stabilize the variance before modeling. The data is divided into two parts, namely 

training data and testing data. Training data used to build the model, namely data for the first week of January 

2020 to the first week of August 2022, with a total of 136 data points. Meanwhile, testing data is used to 

compare prediction results with actual data, namely, data from the third week of August 2022 to the last week 

of October 2022, with a total of 10 data points.  

2.2 Literature Review about Methods 

2.2.1 Autoregressive Integrated Moving Average (ARIMA) 

ARIMA is a statistical method used in time series analysis and forecasting [8]. In forecasting, this 

method uses past data. ARIMA modeling is a time series analysis method that consists of three stages: 

identification, estimation, and diagnostic checks. In the identification stage, the data is analyzed to determine 

the appropriate parameters for the model. The estimation stage involves calculating those parameters using 

the available time series data. Finally, diagnostic checks are performed to ensure the model meets the key 

assumptions of ARIMA, which include stationarity, normality of residuals, whiteness (residuals behaving as 

white noise), and unbiasedness of the errors [9]. The ARIMA model itself consists of three main components: 

Autoregressive (AR), Moving Average (MA), and Differencing (I), which together capture different 

characteristics of the time series data [10]. The ARIMA (𝑝, 𝑑, 𝑞) model is a forecasting model that applies 

differencing to transform non-stationary time series data into a stationary form before modeling it using 

autoregressive (AR) and moving average (MA) components. The model of ARIMA (𝑝, 𝑑, 𝑞) is as follows: 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝜃𝑞(𝐵)𝑎𝑡 (1) 

The general model for ARIMA (𝑝, 𝑑, 𝑞) with differencing 1 is as follows: 

𝑍𝑡 = (1 + 𝜙𝑝)𝑍𝑡−1 + (𝜙1 + 𝜙2)𝑍𝑡−2 + ⋯ + (𝜙𝑝 + 𝜙𝑝−1)𝑍𝑡−𝑝 − 𝜙𝑝𝑍𝑡−𝑝−1 

+𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞 𝑎𝑡−𝑞;          𝑎𝑡~𝑁(0, 𝜎𝑎
2) (2) 

With 𝑍𝑡 represents the variable value at time 𝑡, while 𝑍𝑡−1denotes the variable value before time 𝑡. 

The autoregressive coefficient is represented by 𝜙𝑖, and the moving average coefficient is denoted by 𝜃𝑖. The 

symbol 𝑎𝑡 stands for white noise (residual) at time 𝑡, whereas 𝑎𝑡−1 represents white noise (residual) before 

time 𝑡. The autoregressive polynomial of degree 𝑝 is expressed as 𝜙𝑝(𝐵), and the polynomial moving average 

of degree 𝑞 is denoted by 𝜃𝑞(𝐵). 

In determining the best ARIMA model, it is necessary to identify the autocorrelation function (ACF) 

and partial autocorrelation function (PACF) plots. This is followed by parameter estimation using the 

ordinary least squares (OLS) method. The OLS method works by minimizing the sum of the squares of the 

difference between the observed value and the value predicted by the model [11]. Time series data requires 

classical assumptions, must be stationary, and unbiased. The ARIMA (𝑝, 𝑞) model can be used if 𝑎𝑡 meets 

the white noise assumption and is identically independent distributed (IID) 𝑁(0, 𝜎𝑎
2). 

2.2.2 Best Model Criteria 

In evaluating models, it is important to consider various criteria for both model selection and 

forecasting accuracy. Commonly used model selection criteria include the Akaike Information Criterion 
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(AIC) and the Schwarz Bayesian Criterion (SBC), while the Mean Squared Error (MSE) is frequently used 

to assess the model’s forecasting performance [12]. 

Mean Squared Error (MSE) measures the average squared difference between the predicted and actual 

values of the dependent variable. This value is obtained by summing the squared difference between the 

prediction and the actual, then dividing it by the number of observations. The MSE equation is as follows 

[13]: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑍𝑡 − 𝑍𝑡̂)

2
𝑛

𝑡=1

(3) 

With:  

𝑍𝑡  : The actual value at time t 

𝑍̂𝑡   : The predicted value (from the model) at time t 

𝑛  : Total number of observations 

Mean Absolute Percentage Error (MAPE) is a method to measure the accuracy of a prediction model 

by assessing the error as a percentage. It allows comparison of prediction errors between different models or 

methods. The main function of MAPE is to assess the quality of model predictions and identify the need for 

model improvement if necessary. To calculate MAPE, it is usually formulated in the form of the following 

equation:  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑍𝑡 − 𝑍𝑡̂

𝑍𝑡
|

𝑛

𝑡=1

× 100% (4) 

The lower the MAPE value, the more accurate the model is in predicting actual values. However, a 

MAPE value that is too low may indicate the risk of overfitting, so the optimal value is one that is low enough 

to indicate accuracy without overfitting [14]. For MAPE itself, there is a range of values that can be used as 

a measurement material regarding the ability of a forecasting model; the range of values can be seen in Table 

1 [15]: 

Table 1. Range Value of MAPE 

MAPE Range Description 

< 10% Excellent Forecasting Model Ability 

10 − 20% Good Forecasting Model Capability 

20 − 50% Decent Forecasting Model Capability 

> 50% Poor Forecasting Model Ability 
 

2.2.3 Intervention Analysis 

Time series intervention analysis is a statistical method used to study the impact of an intervention on 

time series variables, whether it is a deliberate change or an unexpected event that affects the time series 

pattern [16]. This method determines an intervention model with an intervention time 𝑇, which is determined 

through ARIMA modeling before the intervention, and an indicator variable is added to represent the 

intervention, where the indicator is either 1 or 0. In general, interventions are divided into two types: step and 

pulse. The step function describes a sudden and continuous change in the level of a variable, which can be 

mathematically written in the following equation: 

𝐼𝑡
(𝑇)

= 𝑆𝑡
(𝑇)

= {
1,       𝑡 < 𝑇
0,      𝑡 ≥ 𝑇

 (5) 

While the pulse function shows a sudden change that only lasts for a certain time, mathematically it 

can be written in the following equation: 

 

𝐼𝑡
(𝑇)

= 𝑃𝑡
(𝑇)

= {
1,       𝑡 = 𝑇
0,      𝑡 ≠ 𝑇

 (6) 

With:  

𝐼𝑡
(𝑇)

  : An indicator function that changes value based on time 𝑡 relative to a specific time 𝑇 
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𝑆𝑡
(𝑇)   : 

A step function that is equal to 1 for all times before 𝑇, and 0 from time 𝑇 onward. Represents 

a sudden drop at time 𝑇 

𝑃𝑡
(𝑇)

  : 
A pulse function that is equal to 1 only at time 𝑇, and 0 at all other times. Represents a sudden 

spike at time 𝑇 

The general form of the intervention model is as follows: 

𝑋𝑡 =
𝜔𝑠(𝐵)𝐵𝑏

𝛿𝑟(𝐵)
𝐼𝑡

(𝑇)
+ 𝑁𝑡  (7) 

With 𝑋𝑡 represents the response variable at time 𝑡, while 𝐼𝑡  denotes the intervention variable. The 

parameter 𝑏 indicates the delay time for the effect of the intervention 𝐼 on 𝑋, and 𝒔 represents the duration of 

the intervention’s effect on the data after 𝑏 periods. The pattern of the intervention effect after 𝑏 + 𝑠 periods 

since the intervention event at time 𝑇 is denoted by 𝑟. The terms 𝜔𝑠 = 𝜔0 − 𝜔1𝐵 − ⋯ − 𝜔𝑠𝐵𝑠 and 

 𝛿𝑠 = 1 − 𝛿𝑞𝐵 − ⋯ − 𝛿𝑟𝐵𝑟 are used to describe the intervention effect mathematically. Finally, 𝑁𝑡  refers 

to the best ARIMA model without the intervention effect. Mathematically, the ARIMA model without the 

effect of intervention can be written as follows: 

𝑁𝑡 =
𝜃𝑞(𝐵)

𝜙𝑝(𝐵)(1 − 𝐵)𝑑
𝑎𝑡 (8) 

The Cross Correlation function is used to determine the order of the intervention model parameters, 

namely 𝑏, 𝑠, and 𝑟, which serve as the basis for determining the transfer function. This transfer function 

describes the relationship between inputs and outputs in a system, with the aim of predicting outputs based 

on given inputs. 

2.3 Research Stages 

The steps in this research are as below:  

1. Modeling natural gas price data on the New York Mercantile Exchange using an intervention analysis 

approach. 

a. Data exploration. 

i. Plot the time series of all the data and expose the extreme variables that allow intervention.  

ii. Divide the data into two groups, namely training data for data that occurs before an extreme event 

and testing data for data that occurs after an extreme event. 

b. Estimating the best ARIMA model for the training data. 

i. Checking the stationarity of the data in mean and variance based on the time series plot, ACF 

plot, PACF plot, and ADF test. 

ii. Perform a Box-Cox transformation or differencing process for testing data that does not meet the 

stationarity assumption. 

iii. Identify some candidate models based on the ACF and PACF plots of the testing data that have 

met the stationarity assumption. 

iv. Perform parameter estimation of the training data ARIMA model using the Ordinary Least 

Square (OLS) method. 

v. Perform diagnostic tests on the estimated model, namely parameter significance test, residual 

white-noise test, and data residual normality test. 

vi. Selecting the best model based on the lowest AIC, SIC, and MSE values. 

vii. Predicting the testing data based on the best ARIMA model of the testing data. 
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c. Modeling with an intervention analysis approach. 

i. Determine the order of the intervention model (𝑏, 𝑠, and 𝑟) by identifying the Cross Correlation 

Function (CCF) plot between the testing data and the predicted data of the selected ARIMA 

model. 

ii. Perform parameter estimation of the intervention model using the Ordinary Least Square (OLS) 

method. 

iii. Perform diagnostic tests on the estimated model, namely parameter significance, residual white-

noise test, and data residual normality test. 

2. Predict and analyze natural gas prices on the New York Mercantile Exchange market using an intervention 

analysis approach. 

a. Write down the best model obtained.  

b. Checking the accuracy of the model in making predictions using testing data.  

c. Predicting the best model data. 

3. Draw interpretations and conclusions from the model obtained in the previous stages.  

 

3. RESULTS AND DISCUSSION 

3.1 Descriptive Analysis of Natural Gas Price Data on the New York Mercantile Exchange 

Descriptive analysis is carried out to describe the overall natural gas price data of the New York 

Mercantile Exchange as a research variable and to determine the extreme increases that occur in natural gas 

price data with a weekly period, starting from the first week of January 2020 to the last week of October 

2022. 

 
Figure 1. Time Series Plot of Natural Gas Price Data of the New York Mercantile Exchange 

Figure 1 shows the pattern of natural gas price data on the New York Mercantile Exchange 

experiencing fluctuations and a sharp increase at the 137th point, namely on August 14, 2022, with a natural 

gas price of 9336 USD. Based on this increase, the data is divided into two, namely training data for data that 

occurred before the extreme increase and testing data for data that occurred after the extreme increase. The 

calculation of the amount of data, average, variance, median, minimum value, and maximum value is as in 

Table 2. 

Table 2. Descriptive Analysis of Natural Gas Prices on the New York Mercantile Exchange 

Variable N Mean Variance Minimum Median Maximum 

Data 147 3,995 4,473,190 1,495 3,215 9,336 

Training 136 3,726 3,706,130 1,495 2,966 8,850 

Testing 10 7,128 1,801,986 4,959 6,797 9,296 
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Table 2 shows the price of natural gas on the New York Mercantile Exchange before the extreme 

increase, namely the first week of January 2020 to the first week of August 2022, has an average of 3,726 

USD with a variance of 3,706,130 USD. Meanwhile, the average price of natural gas on the United States 

futures market after the extreme increase amounted to 7,128 USD with a variance of 1,801,986 USD. The 

lowest US natural gas futures price was obtained at 1,495 USD on June 21, 2020, or the third week of June 

2020. The highest US natural gas futures price was 9,336 USD on August 14, 2022, or the second week of 

August in 2022, which is the point of extreme increase in this study. 

3.2 Modeling Intervention Analysis of Natural Gas Price Data on the New York Mercantile Exchange 

The first stage in forming an intervention model is to divide the data into two. Based on the time series 

plot in Figure 1, the intervention point occurs at point  137, which is on August 14, 2022, so that the data is 

divided into training data, namely, data from point 1 of the first week of January 2020 to point 136 of the first 

week of August 2022. The testing data is the data from the 138th point of the third week of August 2022 to 

the 147th point of the last week of October 2022. 

3.2.1 ARIMA Modeling of Training Data 

Training data is used to determine the best ARIMA model. This is to identify whether the data has 

been stationary in average, meaning it does not have a clear trend or pattern, and stationary in variance, 

meaning it does not have large fluctuations.  

 
Figure 2. Plot of Time Series Data Testing Natural Gas Prices on the New York Mercantile Exchange 

Based on Figure 2, the plot of natural gas prices on the New York Mercantile Exchange before the 

intervention shows an upward trend and uneven distribution of data. This indicates data non-stationarity in 

average and variance. To show the assumption that the training data has not been stationary in variance, it 

can be seen through the Box-Cox transformation in Figure 3 (a). Then, checking the stationarity of the 

transformation results in average with the differencing process at lag 1 is shown in Figure 3 (b). 

  
Figure 3. (a) Plot of Box-Cox Transformation Results and (b) Trend Analysis Plot of Differencing Data 1 

Based on Figure 3 (a), the rounded value (𝜆) of 0 is obtained, which proves that the data is not yet 

stationary in variance and needs to be transformed into 𝑙𝑛 𝑍𝑡. Based on Figure 3 (b), the trend goes up 

slightly. This indicates that the data is still not stationary in average. To ensure that the data is still not 

stationary in average, it is necessary to identify the ACF and PACF plots as shown in Figure 4 below. 
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Figure 4. (a) Autocorrelation Function Plot and (b) Partial Autocorrelation Function Plot of Differencing 1 

Data 

Figure 4 shows that there is no lag out of the boundary line, so that differencing is required again with 

lag 1 to obtain optimal stationarity to the average. The results of the data plot that has undergone Box-Cox 

transformation and differencing 2 can be seen in Figure 5 below. 

 
Figure 5. Trend Analysis Plot of Differencing 2 Data 

Based on Figure 5, there is no significant upward or downward trend. This indicates that the data 

pattern tends to be stationary. To ensure that the data have been stationary in average and variance, it is 

necessary to conduct an ADF test, whose results are presented in Table 3. 

Table 3. Augmented Dickey Fuller Test Results Differencing 2 Data 

𝑡-statistics 𝑃-Value 

−7.7863 0.01 

Based on the ADF hypothesis, namely: 𝐻0 ∶ 𝐷𝑎𝑡𝑎 𝑛𝑜𝑛 − 𝑠𝑡𝑎𝑠𝑖𝑜𝑛𝑎𝑟𝑦 and 𝐻1 ∶ 𝐷𝑎𝑡𝑎 𝑠𝑡𝑎𝑠𝑖𝑜𝑛𝑎𝑟𝑦. If 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.05 then it is stated that it has failed to receive 𝐻0. Based on Table 3, the 𝑝-value of 0.01 is 

less than 0.05, indicating that the data has reached stationarity. Furthermore, a temporary model estimation 

is carried out through identification on the ACF and PACF plots, as in Figure 6. 

  
Figure 6. (a) Autocorrelation Function Plot and (b) Partial Autocorrelation Function Plot of Differencing 2 

Data 
 

The results of the ACF plot in Figure 6 (a) show that there is a lag that comes out of the boundary line, 

namely at lag 1. It shows that the estimated MA (1) model is obtained with a q order of 1. While the results 

of the PACF plot in Figure 6 (b) show that there is a lag that comes out of the boundary line, namely at lag 

1 and lag 2. The results of the data stationarity test show that the data is stationary when given a differencing 

treatment 2 times, so that the order 𝑑 is 2. The temporary conjecture models obtained are ARIMA (2,2,1), 

ARIMA (1,2,1), ARIMA (0,2,1), ARIMA (2,2,0), and ARIMA (1,2,0). 
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After obtaining the conjecture model, parameter estimati-on and parameter significance test of the 

conjecture model will be carried out. The significance test aims to show whether the parameters are feasible 

for use in modeling. The results of the presumptive model analysis are presented in Table 4 below. 

Table 4. Conjectured ARIMA Model 

Model Parameter Estimate 𝑃-Value Description 

ARIMA 

(2,2,1) 

Probabilistic 

AR 1 

AR 2 

MA 1 

0.025 

-0.1349 

1.00331 

0.779 

0.133 

0.000 

Not Significant 

Deterministic 

AR 1 

AR 2 

MA 1 

Constant 

-0.0231 

-0.0418 

0.9877 

0.000201 

0.794 

0.636 

0.000 

0.417 

Not Significant 

ARIMA 

(1,2,1) 

Probabilistic 
AR 1 

MA 1 

-0.0202 

0.9885 

0.816 

0.000 
Not Significant 

Deterministic 

AR 1 

MA 1 

Constant 

-0.0244 

0.988 

0.0001 

0.781 

0.000 

0.663 

Not Significant 

ARIMA 

(0,2,1) 

Probabilistic MA 1 0.98712 0.000 Significant 

Deterministic 
MA 1 

Constant 

0.9825 

0.000206 

0.000 

0.521 
Not Significant 

ARIMA 

(2,2,0) 

Probabilistic 
AR 1 

AR 2 

-0.6913 

-0.3902 

0.000 

0.000 
Significant 

Deterministic 

AR 1 

AR 2 

Constant 

-0.6914 

-0.3903 

0.00159 

0.000 

0.000 

0.844 

Not Significant 

ARIMA 

(1,2,0) 

Probabilistic AR 1 -0.4973 0.000 Significant 

Deterministic 
AR 1 

Constant 

-0.4974 

0.00147 

0.000 

0.866 
Not Significant 

 

Based on Table 4, it is found that ARIMA (0,2,1) Probabilistic, ARIMA (2,2,0) Probabilistic, and 

ARIMA (1,2,0) Probabilistic have a 𝑝-value of less than 0.05, so the model can be said to be significant. The 

next step is to test the residual assumptions on the estimated model that has been significant, namely the white 

noise test to prove there is a correlation between the residuals through the Ljung-Box test and the residual 

normality test to determine that the residual data has been normally distributed through the Kolmogorov-

Smirnov test, whose results are presented in Table 5 below. 

Table 5. Results of White Noise Test and Residual Normality Test 

Model 
Ljung-Box’s P-Value 

MSE 
Normalities 

P-Value 
Description 

Lag 12 Lag 24 Lag 36 Lag 48 

ARIMA 

(0,2,1) 

Probabilistic 

0.714 0.683 0.842 0.942 0.0066955 0.135 
Normal 

Distributed 

ARIMA 

(2,2,0) 

Probabilistic 

0.155 0.254 0.37 0.623 0.00868 0.144 
Normal 

Distributed 

ARIMA 

(1,2,0) 

Probabilistic 

0.006 0.031 0.114 0.323 0.0101499 0.045 

Not 

Normally 

Distributed 

In Table 5, it is found that Probabilistic ARIMA (0,2,1) and Probabilistic ARIMA (2,2,0) have fulfilled 

both assumptions. Furthermore, in determining the best model, it is necessary to identify the smallest MSE 

value of the model that has been fulfilled. From Table 5, it can be seen that the smallest MSE value is found 

in the Probabilistic ARIMA (0,2,1) model, so that the model is the best model, which mathematically can be 

written as follows. 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑍̇𝑡 = 𝜃𝑞(𝐵)𝑎𝑡 

With the value of 𝑝 = 0, 𝑑 = 2, and 𝑞 = 1, then 

𝜙0(𝐵)(1 − 𝐵)2𝑍̇𝑡 = 𝜃1(𝐵)𝑎𝑡 
(1 − 𝐵)2𝑍̇𝑡 = (1 − 𝜃1𝐵)𝑎𝑡 
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(1 − 2𝐵 − 𝐵2)𝑍̇𝑡 = (1 − 𝜃1𝐵)𝑎𝑡 

𝑍̇𝑡 =
(1 − 𝜃1𝐵)𝑎𝑡

1 − 2𝐵 − 𝐵2
 

𝑍̇𝑡 = (1 − (2 − 𝜃1)𝐵 + (3 − 2𝜃1)𝐵2 + ⋯ )𝑎𝑡 
Substitute the value of 𝜃1 = 0.98712 obtained from Table 5. 

𝑍̇𝑡 = (1 − (2 − 0.98712)𝐵 + (3 − 2(0.98712))𝐵2 + ⋯ )𝑎𝑡 

𝑍̇𝑡 = (1 − 1.01279𝐵 + 1.02558𝐵2 + ⋯ )𝑎𝑡 
𝑍̇𝑡 = 𝑎𝑡 − (1.01279)𝑎𝑡−1 + (1.02558)𝑎𝑡−2 + ⋯ 

 with 𝑍̇𝑡 = ln 𝑍𝑡 − ln 𝑍𝑡−1 

The 𝑍̇𝑡 equation is the best ARIMA model without the influence of the intervention used as noise or 𝑁𝑡. 

3.2.2 Pulse Function Intervention Analysis 

After obtaining the best ARIMA model, the next step is to determine the value of the intervention 

parameters, namely 𝑏, 𝑟, and 𝑠 through the cross-correlation plot on the testing data with the ARIMA model 

prediction data. The results of the cross-correlation plot can be seen in Figure 7 below. 
 

 
Figure 7. Plot of Cross Correlation Function 

Based on Figure 7, it can be identified that the intervention order 𝑏 is 0 because there is no delay when 

the intervention effect begins to occur, the intervention order 𝑟 is 2 because it forms a wave pattern, and the 

intervention order 𝑠 is 0 because the length of an intervention has no effect on the data after lag 0. After 

obtaining the intervention order, the parameter estimation of the pulse function intervention model is then 

carried out. The results of the pulse function intervention model parameter estimation are presented below. 

Table 6. Intervention Model Significance Test Results 

Intervention Model Parameter Estimate 𝑃-Value Description 

ARIMA (0,2,1) 

with 𝑏 = 0, 𝑟 = 2, 
 𝑠 = 0 

MA (1) 0.96920 < 0.0001 Significant 

𝜔0 0.05737 0.0444 Significant 

𝛿1 1.79964 < 0.0001 Significant 

𝛿2 −1 0.0477 Significant 

Based on Table 6, it can be seen that all 𝑝-values are less than 0.05, so the parameters of the ARIMA 

(0,2,1) model with 𝑏 = 0, 𝑟 = 2, and 𝑠 = 0 can be said to be significant. Next, the residual assumptions of 

white noise and normality are checked. The results of the white noise test and normality test can be seen in 

Table 7 below. 

Table 7. Intervention Model Residual Assumption Test Results 

𝑷-Value White Noise Normalities 

𝑷-Value 
Description 

Lag 6 Lag 12 Lag 18 Lag 24 

0.7202 0.8704 0.7345 0.7867 0.0841 
Normal 

Distributed 

Based on Table 7, it is found that the intervention model has fulfilled the white noise assumption 

because the 𝑝-value of all lags that appear is more than 0.05. In addition, the intervention model residuals are 

normally distributed because the 𝑝-value of normality is more than 0.05. 
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3.3 Prediction and Analysis of US Natural Gas Futures Exchange Intervention Data 

Based on the previous discussion, the intervention model built has met the assumptions, so the model 

can be used to predict natural gas prices on the New York Mercantile Exchange. The ARIMA (0,2,1) model 

with intervention parameters 𝑏 =  0, 𝑟 =  2, and 𝑠 =  0 is written as follows. 

𝑍̇𝑡 =
𝜔𝑠(𝐵)𝐵𝑏

𝛿𝑟(𝐵)
𝑃𝑡

𝑇 + 𝑁𝑡;  𝑁𝑡 = (1 − 1.01279𝐵 + 1.02558𝐵2 + ⋯ )𝑎𝑡 

With 𝑏 = 0, 𝑟 = 2, and 𝑠 = 0 then 

𝑍̇𝑡 =
𝜔0(𝐵)𝐵0

𝛿2(𝐵)
𝑃𝑡

𝑇 + 𝑁𝑡 

𝑍̇𝑡 =
𝜔0(𝐵)𝐵0

(1 − 𝛿1𝐵 − 𝛿2𝐵2)
𝑃𝑡

(137)
+ 𝑁𝑡 

𝑍̇𝑡 = 𝜔0

𝐵

(1 − 𝛿1𝐵 − 𝛿2𝐵2)
𝑃𝑡

(137)
+ 𝑁𝑡 

𝑍̇𝑡 = 𝜔0(1 + (𝛿1𝐵 + 𝛿2𝐵2) + (𝛿1𝐵 + 𝛿2𝐵2)2 + ⋯ )𝑃𝑡
(137)

+ 𝑁𝑡 

𝑍̇𝑡 = 𝜔0(1 + 𝛿1𝐵 + 𝛿2𝐵2 + 𝛿1
2𝐵2 + 𝛿2

2𝐵4 + 2𝛿1𝛿2𝐵3 + ⋯ )𝑃𝑡
(137)

+ 𝑁𝑡 

Substitute the value of 𝜔0 = 0.05737, 𝛿1 = 1.79964, and 𝛿2 = −1  obtained from Table 6. 

𝑍̇𝑡 = 0.05737(1 + 1.79964𝐵 + (−1)𝐵2 + (1.79964)2𝐵2 + (−1)2𝐵4 + 2(1.79964)(−1)𝐵3 + ⋯ )𝑃𝑡
(137)

+ 𝑁𝑡 

𝑍̇𝑡 = 0.05737(1 + 1.79964𝐵 + 4.2387𝐵2 + 𝐵4 − 3.59928𝐵3 + ⋯ )𝑃𝑡
(137)

+ (1 − 1.01279𝐵 + 1.02558𝐵2 + ⋯ )𝑎𝑡 

𝑍̇𝑡 = (0.05737 + 0.103245𝐵 + 0.24317𝐵2 + 0.05737𝐵4 − 0.20649𝐵3 + ⋯ )𝑃𝑡
(137)

+ (1 − 1.01279𝐵 + 1.02558𝐵2 + ⋯ )𝑎𝑡 

𝑍̇𝑡 = (0.05737)𝑃𝑡
(137)

+ (0.103245)𝑃𝑡−1
(137)

+ (0.24317)𝑃𝑡−2
(137)

+ (−0.20649)𝑃𝑡−3
(137)

+ (0.05737)𝑃𝑡−4
(137)

+ ⋯ + 𝑎𝑡 − (1.01279)𝑎𝑡−1 + (1.02558)𝑎𝑡−2 + ⋯ 
 

From the results of the model that has been built, predictions will be obtained for the next 10 weeks. 

The prediction results can be seen in Table 8 below. 

Table 8. Prediction Results of Natural Gas Prices on the United States Futures Exchange 

Date 
Predicted 

Results 
Actual Data APE 

8/21/2022 9,930.837 9,296 0.068291 

8/28/2022 9,666.291 8,786 0.100193 

9/4/2022 8,877.72 7,996 0.11027 

9/11/2022 7,850.245 7,764 0.011108 

9/18/2022 7,465.891 6,828 0.093423 

9/25/2022 6,475.622 6,766 0.042917 

10/2/2022 6,428.522 6,748 0.047344 

10/9/2022 6,498.327 6,453 0.007024 

10/16/2022 6,344.858 4,959 0.279463 

10/23/2022 4,965.653 9,296 0.465829 

MAPE 12.25863 

Based on Table 8, it can be seen that the prediction results have a MAPE value of 12.2586%, which, 

based on this value, indicates that the model’s ability to predict is good. Furthermore, a comparison is made 

between the forecasting results and the testing data to ascertain whether the model built is good. The 

comparison graph between the forecasting results and the testing data can be seen in Figure 8. 
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Figure 8. Comparison Plot of Actual and Predicted Data 

Based on Figure 8, it can be concluded that the forecasting results for the third week of August 2022 

to the last week of October 2022 do not have much difference from the actual data. This indicates that the 

developed model has good quality. 

4. CONCLUSION 

The best intervention model for natural gas prices in the New York Mercantile Exchange market is 

Probabilistic ARIMA (0,2,1) with pulse function intervention order 𝑏 = 0, 𝑟 = 2, and 𝑠 = 0. The prediction 

results of this model show a price fluctuation pattern that is consistent with the actual data, with a MAPE 

value of 12.2586%. Consequently, this research offers valuable insights that enable the government to 

formulate more effective energy policies, assist companies in the energy sector to optimize their production 

and trading strategies, and support investors in making informed decisions regarding market risks and 

investment timing. However, this study has limitations, especially related to the very small size of the test 

data, which is only 10 data points. Therefore, the prediction results need to be further tested using larger data 

so that the reliability and generalizability of the model in various market conditions can be ensured. 
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