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Article Info ABSTRACT 

Article History: 
This research is focused on the development and comparison of time series models for 

short-term electrical load forecasting, utilizing several variants of Long Short-Term 

Memory (LSTM) networks. The specific LSTM variants employed in this study include 

Vanilla LSTM, Stacked LSTM, Bidirectional LSTM, and Convolutional Neural Network 

LSTM (CNN-LSTM). We used five years (2016-2020) of daily electricity load data from 

the Central Java-DIY system, provided by PT PLN (Persero). The primary objective is to 

ascertain the accuracy and evaluate the performance of these LSTM variants in the 

context of short-term load forecasting. This is achieved quantitatively through the 

computation of various error metrics, namely MSE, MAE, RMSE, MAPE, and R-squared. 

The results of the study reveal that the CNN-LSTM method outperforms the other variants 

in terms of the calculated metrics. Specifically, the CNN-LSTM method achieved the 

lowest values for all metrics: an MSE of 0.007 for training and 0.0010 for testing, an 

MAE of 0.0050 for training and 0.0062 for testing, and an RMSE of 0.083 for training 

and 0.099 for testing. Among the evaluated models, CNN-LSTM demonstrates the best 

trade-off between predictive accuracy and training efficiency, making it the most 

recommended for short-term electricity load forecasting. While BiLSTM achieves higher 

accuracy, particularly in terms of MAE, it requires a longer training time. In contrast, 

Stacked LSTM converges faster with slightly lower accuracy, making it a strong 

alternative when computational efficiency is prioritized.. 
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1. INTRODUCTION 

Forecasting energy load is crucial for a nation’s economic growth as it enables effective energy 

management and reduction in power consumption [1]. The demand for electricity generation, transmission, 

and distribution must be met by energy providers, which involves considerations of capital investment, 

efficient power procurement, capacity and network planning, fuel ordering planning, renewable planning, 

and optimal supply scheduling [2], [3]. The primary objective of energy load forecasting is to produce the 

most accurate results with minimal errors through proper planning. This can help reduce operational costs, 

enhance grid reliability, and increase financial profits. Accurate energy load forecasting can enable energy 

providers to save millions in energy procurement. The losses incurred due to energy conservation can be 

costly due to the expense of technologies used in energy storage. Accurate peak demand forecasting is 

essential; failure to do so could lead to underproduction of electricity, resulting in power outages. Conversely, 

overproduction could lead to energy wastage and increased costs. To optimize power plant operations, reduce 

operational costs, and improve grid operation reliability, a precise forecast of future grid load is necessary, 

along with proper scheduling and decision-making [4], [5]. Energy load forecasting can be categorized based 

on their time horizon into very short-term, short-term, medium-term, and long-term forecasting [6]. 

Electric load forecasts are classified into four temporal categories: very short-term, short-term, 

medium-term, and long-term [1], [7]. Very Short-Term Load Forecasting (VSTLF) encompasses a period 

from several minutes up to an hour ahead [8], while Short-Term Load Forecasting (STLF) extends from one 

hour up to one week ahead. In contrast, Medium-Term Load Forecasting (MTLF) and Long-Term Load 

Forecasting (LTLF) cover periods from several weeks to months and from one year to several years into the 

future, respectively [9]. Forecasts of electricity loads that significantly deviate from the actual loads impose 

additional costs on electricity suppliers in the market. Consequently, accurate 24-hour load forecasting is a 

primary concern for these providers. This study, therefore, focuses on forecasting the STLF [1] load for the 

subsequent 24 hours. Several studies have explored STLF utilizing various deep learning optimization 

methods, see e.g. [10], [11]. Additionally, the development and integration of fuzzy-based methods have also 

been conducted, such as [12] employing fuzzy support vector regressions and [13] combined fuzzy 

optimization model and load feature recognition [14]. 

Generally, accurate forecasting, particularly short-term forecasting, can significantly contribute to 

reducing operational costs, stabilizing power supply scheduling, coordinating load management efficiently, 

and enhancing the safety and security of power supply system’s [15], [16], [17], [18]. With technological 

advancements and the incorporation of smart devices in a smart network environment, accuracy, rapid 

response, and intelligence have emerged as critical aspects of STLF [19]. Deep learning, which is a specific 

area within machine learning, has been receiving a lot of attention recently. This is largely due to its ability 

to manage and analyze large quantities of data and identify complex patterns within this data. When it comes 

to forecasting power load, deep learning provides innovative ways to model and predict electricity usage. 

This addresses many of the challenges that are often encountered with traditional forecasting methods [20], 

[21], [22].  

Deep learning (DL), a branch of machine learning (ML), leverages deep, multi-layered artificial neural 

networks (ANNs) to enhance accuracy in a variety of tasks, including object detection, speech recognition, 

and language translation, among others. Due to the notable success of DL models in addressing both 

classification and regression challenges, there has been a growing trend toward exploring various DL 

architectures across numerous fields. One architecture has gained significant traction due to its effectiveness 

in capturing both long- and short-term dependencies in time series data, while requiring minimal feature 

engineering or preprocessing. This architecture is known as recurrent neural networks (RNNs). 

RNNs are dynamic systems that efficiently utilize the temporal structure of input sequences, making 

them a powerful tool for time series forecasting. They are an evolution of feed-forward neural networks 

(FFNNs), with the key difference being that RNNs propagate information forward through time steps in a 

sample. The defining feature of RNNs is their memory gate, which allows the model to process sequential 

data by retaining prior inputs to predict future outputs. The model continuously updates its memory, also 

called the recurrent hidden state ℎ𝑡, as it processes each time step. 

However, standard RNNs are hindered by short-term memory limitations, making it difficult for them 

to effectively process long input sequences. The longer the input sequence, the less the model can learn from 

earlier data points. Additionally, RNNs face challenges when dealing with long sequential data due to the 

issues of exploding and vanishing gradients. Exploding gradients occur when excessively large importance 
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is assigned to weight matrices without justification, while vanishing gradients result in values that are too 

small, preventing further learning by the model [25], [26].  

LSTM networks solve the short-term memory limitations of RNNs, where backpropagation errors tend 

to vanish or explode as they pass through many time steps [27]. To address this issue, gated units were 

introduced to regulate the flow of information. LSTM units have demonstrated successful performance across 

various domains for time series forecasting. Unlike RNNs, which are typically constrained to learning 

patterns over about 10-time steps, LSTM networks can model long-term dependencies, effectively learning 

from sequences with over 1000-time steps. 

This study is designed to significantly contribute to the field of Short-Term Load Forecasting (STLF) 

by employing the Long Short-Term Memory (LSTM) method. LSTM, a multi-layered approach, can map an 

input sequence to a fixed-dimension vector and subsequently translate the target sequence from this vector. 

This method is integral to the iterative neural network model, barring the input sequence. LSTM is adept at 

addressing problems associated with long-term dependencies, which may arise due to the introduction of 

numerous short-term dependencies into the dataset. Furthermore, both LSTM and its bidirectional variant 

(BiLSTM) are theoretically suitable for short-term forecasting because they are capable of modeling complex 

temporal patterns, including non-linear dependencies and local fluctuations that are often present in short-

term data. LSTM learns from past temporal dependencies effectively, while BiLSTM enhances predictive 

power by considering both past and future contexts through its dual-directional processing. This architectural 

strength allows these models to capture fine-grained dynamics over short horizons, making them particularly 

well-matched to the needs of STLF tasks [23], [24]. 

The primary aim of this research is to provide insights into the application of several LSTM variants, 

namely Vanilla LSTM, Stacked LSTM, Bidirectional LSTM, and CNN-LSTM, for the short-term forecasting 

of electrical loads. The findings of this study are expected to serve as a valuable resource for managerial 

decision-makers in STLF, aiding them in leveraging various LSTM variants to address STLF challenges. 

2. RESEARCH METHODS 

This research is an experimental study aimed at finding the best model for forecasting daily electricity 

usage data. The data used is daily electricity usage data over a period of 5 years (2016-2022), obtained from 

the State Electricity Company (PT PLN Persero) for the Central Java-DIY region. From the data obtained, 

selection, ranking, transformation, and encoding are performed as needed. The method used in this research 

experiment focuses on the use of deep learning, specifically LSTM and several of its variations, such as 

Stacked LSTM, Bidirectional LSTM, and CNN-LSTM. Each model undergoes experiments to find the 

optimal parameter combination to obtain the best model. Model evaluation is carried out using several 

evaluation metrics, such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), and Mean Average Percentage Error (MAPE). The best-performing model(s) based on the 

evaluation metrics are then implemented for short-term electricity load forecasting. The final stage of the 

research involves drawing conclusions from the modeling analysis results, discussing the implications of 

these findings, and suggesting areas for future research in STLF using LSTM methods. 

2.1 Vanilla LSTM 

The vanilla LSTM network consists of three primary gates: the forget gate, the input gate, and the 
output gate. The forget gate determines which information should be retained, assigning a value between 0 
and 1, with values near 0 being discarded and those near 1 being kept. The input gate controls what new 
information is allowed to enter the memory cell and be stored. 
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Figure 1. LSTM Architecture 

This process is represented by Eqs. (2) and (3), where 𝑘𝑡 generates a vector of new values to be added 
to the memory cell, guided by the update signal 𝑖𝑡. The memory cell is then updated as described in Eq. (4), 
where 𝑐𝑡 (the long-term state) decides whether to retain or discard past information and incorporate new data. 
Finally, the output, ℎ𝑡 (the short-term state), is produced by two layers. First, 𝑜𝑡 is the output determined by 
the 𝜎 activation function, which selects which values from the memory cell are passed as output. This is 
followed by a tanh layer, which constrains the output within the range [−1, 1]. The process of updating the 
network is shown in Eqs. (1) to (6) and illustrated in Fig. 1. 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), (1) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), (2) 

𝑘𝑡 =tanh(𝑊𝑘 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑘), (3) 

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑘𝑡 , (4) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), (5) 

ℎ𝑡 = 𝑜𝑡 ×tanh(𝑐𝑡), (6) 

where 𝑓𝑡, 𝑖𝑡, 𝑘𝑡, and 𝑜𝑡 represent the output values of the forget gate, input gate, update signal, and output 
gate, respectively. These gates receive input values 𝑥𝑡 at the current time step 𝑡 and the output value ℎ𝑡−1 
from the previous time step (𝑡 − 1). The corresponding weight matrices are denoted as 𝑊𝑓, 𝑊𝑖, 𝑊𝑘, and 𝑊𝑜, 

while the bias vectors are represented by 𝑏𝑓, 𝑏𝑖, 𝑏𝑘, and 𝑏𝑜 for each gate. The activation function 𝜎 is 

nonlinear, and 𝑐𝑡 refers to the memory unit within the LSTM [25], [26], [27]. 

2.2 Stacked LSTM 

A stacked LSTM is a neural network architecture that consists of multiple layers of LSTM units, 

arranged sequentially to increase the depth of the model and enhance its capacity to learn complex patterns 

from data [28]. Under a standard LSTM model, the layer would receive an input sequence and output a value 

or a specified number of values to be predicted. However, under a stacked model, as it is shown in Fig. 5, the 

outputs that can either correspond to each timestep or represent an aggregate prediction for the sequence, 

depending on the task's configuration and the network's structure [29]. In this way, the hidden states are a 

function of all previously hidden states. Consequently, the 𝑖-th layer can be updated by Eqs. (7) to (13).  

 𝑓𝑡
𝑙 = 𝜎(𝑊𝑓

𝑙 ⋅ [ℎ𝑡−1
𝑙 , ℎ𝑡

𝑙−1] + 𝑏𝑓
𝑙),  (7) 

 𝑖𝑡
𝑙 = 𝜎(𝑊𝑖

𝑙 ⋅ [ℎ𝑡−1
𝑙 , ℎ𝑡

𝑙−1] + 𝑏𝑖
𝑙), (8) 

 𝑘𝑡
𝑙 =tanh(𝑊𝑘

𝑙 ⋅ [ℎ𝑡−1
𝑙 , ℎ𝑡

𝑙−1] + 𝑏𝑘
𝑙 ),  (9) 

 𝑐𝑡
𝑙 = 𝑓𝑡

𝑙 × 𝑐𝑡−1
𝑙 + 𝑖𝑡

𝑙 × 𝑘𝑡
𝑙, (10) 

 𝑜𝑡
𝑙 = 𝜎(𝑊𝑜

𝑙 × [ℎ𝑡−1
𝑙 , ℎ𝑡

𝑙−1] + 𝑏𝑜
𝑙 ), (11) 
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 ℎ𝑡
𝑙 = 𝑜𝑡

𝑙 ×tanh(𝑐𝑡
𝑙) , (12) 

 ℎ𝑡
0 = 𝑥𝑡 (13) 

where the resulting output acts as an abstracted input representation, which is then passed as a hierarchical 

feature to the next LSTM layer. The final layer contains a set of neurons equal to the number of time steps 

the model aims to forecast. Studies highlight several benefits of this architecture, noting that stacking multiple 

layers enables the network to extract and refine features from the raw time series at different levels and 

moments. The model’s parameters are distributed throughout the entire architecture, which helps speed up 

convergence and improves the tuning of the nonlinear transformations applied to the data. 

2.3 Bidirectional LSTM 

The Bidirectional Long Short-Term Memory (BiLSTM) network is an advanced variant of the LSTM 

architecture that captures long-term dependencies in both forward and backward temporal directions [30]. In 

short-term electricity load forecasting, where future load values depend on both past and recent load patterns, 

by leveraging the BiLSTM’s dual-layer approach, the model can better capture complex temporal 

relationships and improve the accuracy of predictions, particularly for non-linear and fluctuating load trends 

[31].  

While the traditional LSTM processes data sequentially from past to future, BiLSTM comprises two 

LSTM layers: one processes the input sequence from start to end (forward pass), and the other processes it 

from end to start (backward pass). By merging these two sequences, BiLSTM has access to a more complete 

context at every time step, allowing it to incorporate information from both previous and subsequent points. 

This is particularly advantageous for load forecasting, where fluctuations may correlate with both past and 

forthcoming load values, influenced by external factors like temperature or day of the week. 

Each LSTM layer in the BiLSTM model follows the standard LSTM gating mechanisms, namely the 

forget, input, and output gates. Forget gate (𝑓𝑡) regulates which portions of the previous cell state 𝑐𝑡−1 are 

retained or discarded. Input gate (𝑖𝑡) selects the new information to be stored in the current cell state. Output 

gate (𝑜𝑡) decides what part of the cell state contributes to the output at the current time step [31]. 

 
Figure 2. BiLSTM Architecture 

For BiLSTM, these gates function independently in the forward and backward layers, which are later 

concatenated or averaged to produce a final output that reflects information from both directions. The 

combined effect of these gates enables the BiLSTM to learn more intricate patterns in the time series data, 

even when there are subtle shifts in electricity load trends. The mathematical framework for each direction 

in the BiLSTM is the same as the vanilla LSTM model Eqs. (1) to (6), consists of forget gate (𝑓𝑡), input gate 

and update vector (𝑖𝑡) and (𝑘𝑡), memory cell update (𝑐𝑡), output gate (𝑜𝑡), and short-term state (final output, 

ℎ𝑡). The outputs of the forward and backward layers are then concatenated or combined (e.g., averaged or 

summed) to produce a final output that encapsulates information from both directions. The mathematical 

framework for each direction in the BiLSTM is consistent with the vanilla LSTM equations. Let ℎ𝑡
⃗⃗  ⃗ represent 

the hidden state in the forward layer at time step 𝑡, and ℎ𝑡
⃖⃗ ⃗⃗  represent the hidden state in the backward layer. 

The final output of the BiLSTM, denoted as ℎ𝑡
Bi, is computed as: 

ℎ𝑡
Bi = [ℎ𝑡

⃗⃗  ⃗; ℎ𝑡
⃖⃗ ⃗⃗ ]. (14) 

The forward layer computes its states using the equations: 
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𝑓𝑡⃗⃗⃗  = 𝜎(𝑊𝑓
⃗⃗ ⃗⃗  ⃗ ∙ [ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑥𝑡] + 𝑏𝑓
⃗⃗  ⃗), (15) 

𝑖𝑡⃗⃗ = 𝜎(𝑊𝑖
⃗⃗⃗⃗ ∙ [ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑥𝑡] + 𝑏𝑖
⃗⃗⃗  ), (16) 

𝑘𝑡
⃗⃗  ⃗ =tanh(𝑊𝑘

⃗⃗ ⃗⃗  ⃗ ∙ [ℎ𝑡−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑥𝑡] + 𝑏𝑘

⃗⃗⃗⃗ ), (17) 

𝑐𝑡⃗⃗  ⃗ = 𝑓𝑡⃗⃗⃗  × 𝑐𝑡−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑖𝑡⃗⃗ × 𝑘𝑡
⃗⃗  ⃗, (18) 

𝑜𝑡⃗⃗  ⃗ = 𝜎(𝑊𝑜
⃗⃗⃗⃗  ⃗ ∙ [ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑥𝑡] + 𝑏𝑜
⃗⃗⃗⃗ ), (19) 

ℎ𝑡
⃗⃗  ⃗ = 𝑜𝑡⃗⃗  ⃗ ×tanh(𝑐𝑡⃗⃗  ⃗). (20) 

Similarly, the backward layer processes the sequence in reverse, with analogous equations for 𝑓𝑡⃖⃗⃗⃗ , 𝑖𝑡⃗⃗⃖, 

𝑘𝑡
⃖⃗ ⃗⃗ , 𝑐𝑡⃖⃗⃗⃗ , 𝑜𝑡⃖⃗ ⃗⃗ , and ℎ𝑡

⃖⃗ ⃗⃗ . By considering both past and future contexts simultaneously, BiLSTM are highly effective 

in capturing intricate dependencies in sequential data, such as subtle variations in electricity load trends across 

time. This bidirectional architecture is particularly beneficial for time series forecasting, where understanding 

both historical and potential future influences is critical. 

2.4 CNN-LSTM 

Convolutional Neural Network - Long Short-Term Memory (CNN-LSTM) is an extension of the 

traditional LSTM architecture designed to handle spatiotemporal data by integrating convolution operations 

into its structure. While conventional LSTMs employ fully connected layers to process input and hidden 

states, CNN-LSTM replaces these layers with convolutional operations, enabling it to capture spatial 

dependencies alongside temporal patterns [32]. Convolutional Neural Networks (CNNs) are primarily used 

for extracting features from data with a grid-like structure, such as images or spatially organized data. CNN 

architectures were originally designed for two-dimensional data, enabling the model to learn hierarchical 

patterns that are recognized across the entire network. This ability to capture spatial hierarchies made CNNs 

particularly effective in image processing. However, with the increasing application of sequence data such as 

text and time series, one-dimensional CNNs have gained popularity. These 1D CNNs adapt the original CNN 

framework to work with sequential data by learning local patterns along a single dimension, making them 

well-suited for tasks like time-series forecasting and natural language processing [33]. However, their 

performance tends to be less effective when compared to other models, such as Long Short-Term Memory 

(LSTM) networks. CNNs excel in feature extraction, especially for spatial data like images, they often 

struggle with sequential data where the order and context of inputs matter significantly [32]. CNNs typically 

consist of three main layers: the convolutional layer, which extracts features from the input data, the pooling 

layer, which reduces the spatial dimensions of the data while retaining essential features, and the fully 

connected layer, which makes predictions based on the learned features [34]. First, the input layer receives 

the vector of input values, which is then processed by the convolutional layer where filters (or kernels) extract 

relevant features before passing them to a fully connected layer. The basic architecture of CNNs is illustrated 

in Figure 6. An LSTM network can be attached to the dense or fully connected layer in this setup, allowing 

the resulting CNN–LSTM architecture to be updated similarly to a standard LSTM, with matrix additions 

and dot products replaced by convolutional operations. In this configuration, the CNN–LSTM integrates 

convolutional mechanisms into both the input-to-state and state-to-state transitions. The network is 

reformulated so that the operators originally defined in Eqs. (1) to (6) are substituted with the convolution 

operator (∗) and the Hadamard product (⊙), as shown in Eqs. (15) to (19), where the latter preserves the 

constant-bias property of the cell. Compared to the traditional LSTM, these equations incorporate information 

from the cell state into all gate computations, enabling the model to maintain or discard information 

appropriately across the CNN–LSTM structure. Additionally, the weight matrices of each gate now employ 

convolutional operators to embed the filter behavior. The network is updated according to the following 

equations: 

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ 𝑥𝑡 + 𝑈𝑓 ∗ ℎ𝑡−1 + 𝑏𝑓), (21) 

𝑖𝑡 = 𝜎(𝑊𝑓 ∗ 𝑥𝑡 + 𝑈𝑖 ∗ ℎ𝑡−1 + 𝑏𝑖), (22) 

𝑐̃𝑡 =tanh(𝑊𝑐 ∗ 𝑥𝑡 + 𝑈𝑐 ∗ ℎ𝑡−1 + 𝑏𝑐), (23) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡 , (24) 
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𝑜𝑡 = 𝜎(𝑊𝑜 ∗ 𝑥𝑡 + 𝑈𝑜 ∗ ℎ𝑡−1 + 𝑏𝑜), (25) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡) . (26) 

where 𝑥𝑡 stands for input tensor at time step 𝑡; typically a multidimensional array (e.g., images or sequences); 

ℎ𝑡 hidden state tensor at time 𝑡; 𝑐𝑡 cell state tensor at time 𝑡, 𝑓𝑡, 𝑖𝑡, 𝑜𝑡 are forget, input, and output gates, 

respectively; 𝑐̃𝑡 candidate cell state; 𝑊 and 𝑈 convolutional kernel weights; 𝑏 bias terms; ∗ convolution 

operator; ⊙ element-wise multiplication; 𝜎 sigmoid activation function; and tanh hyperbolic tangent 

function [25], [32]. 

2.5 Hyperparameter Optimization 

Hyperparameter optimization is a critical step in training deep learning models, as it involves finding 

the optimal set of hyperparameters to maximize model performance. Optuna, a Python-based library for 

automatic hyperparameter optimization, has gained prominence due to its flexibility and efficiency. Optuna 

employs a sequential model-based optimization (SMBO) framework, where a surrogate model predicts the 

performance of hyperparameter combinations. Specifically, Optuna uses Tree-structured Parzen Estimator 

(TPE) as its default optimization algorithm. TPE builds two probability density functions: 𝑙(𝑥), which models 

hyperparameters leading to poor performance, and 𝑔(𝑥), which models hyperparameters resulting in good 

performance. The optimization problem is then formulated as: 

𝑥∗ = argmax
𝑥

𝑔(𝑥)

𝑙(𝑥)
. (28) 

This approach enables Optuna to prioritize hyperparameter regions with a higher likelihood of 

improved performance while avoiding exhaustive search. Optuna operates in three key stages: (1) objective 

function definition: the user defines an objective function that returns a performance metric (e.g., validation 

loss) for a given set of hyperparameters; (2) search space specification: optuna provides an intuitive API to 

define hyperparameter ranges (e.g., learning rate, number of units, dropout rates). These ranges can include 

discrete, continuous, or categorical variables; and (3) optimization: optuna iteratively samples 

hyperparameters, evaluates the objective function, and updates its surrogate model to improve future 

sampling. 

In practice, Optuna works by trying out many combinations of hyperparameters sampled from 

predefined ranges (e.g., learning rate, number of hidden units, dropout rate, batch size), then training the 

model with each set on the training data. The model’s performance, typically measured using a loss metric 

such as Mean Squared Error (MSE) on the validation set, is then used to inform the surrogate model in 

selecting the next, potentially better, combination of hyperparameters. This iterative process continues, with 

each trial refining the understanding of which regions in the hyperparameter space yield better model 

performance. In time series forecasting using LSTM and BiLSTM, such tuning is especially crucial due to 

the models’ sensitivity to temporal patterns and parameter configurations. Since all optimization trials are 

based on training data and validation MSE, it is important that this process be clearly described in the Methods 

section—especially how the time series was split for validation—to ensure clarity, reproducibility, and that 

temporal dependencies are preserved during model selection. 

3. RESULTS AND DISCUSSION 

The plot of dataset consists of daily electricity usage records spanning five years (2016–2022) is 

illustrated in Figure 1. To ensure data suitability for analysis, preprocessing steps such as selection, ranking, 

transformation, and encoding are applied.  The dataset is subsequently split into training and testing portions, 

with 80% used for training and the remaining 20% reserved for testing. This proportion ensures that the 

models are trained on a sufficiently large dataset while preserving a representative portion for performance 

evaluation. 

The identification of multi-seasonal characteristics is evident from two boxplots presented in Fig. 3 

and Fig. 4, which show monthly and daily electricity consumption patterns, respectively. The monthly 

boxplot reveals a recurring pattern similar to the daily plot, with a notable dip in electricity usage around late 

May to early June. This decline corresponds to the Idul Fitri holiday period, during which industries and 

schools in Indonesia temporarily close, leading to a significant reduction in electricity demand. On the daily 
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scale, a consistent weekly pattern emerges where electricity consumption decreases on Saturdays and 

Sundays, reflecting lower industrial and commercial activity during weekends. 

 
Figure 3. Monthly Electricity Load Distribution from 2016 to 2020 

 
Figure 4. Daily Electricity Load Distribution by Day of The Week from 2016 to 2020 

These observations highlight the presence of multi-seasonality in the electricity load data, characterized 

by both weekly and annual seasonal fluctuations. Such complex, overlapping seasonal patterns pose 

challenges for traditional forecasting models, which often struggle to capture multiple seasonality effectively. 

Consequently, deep learning approaches, particularly LSTM-based models, are well-suited for this task, as 

they can learn intricate temporal dependencies and multi-scale seasonal patterns inherent in electricity 

consumption data. 

The study focuses on deep learning methodologies, specifically variations of Long Short-Term 

Memory (LSTM) models, including Vanilla LSTM, Stacked LSTM, Bidirectional LSTM (BiLSTM), and 

CNN-LSTM. These models are evaluated to determine the most accurate and efficient approach for short-

term electricity load forecasting. 
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Figure 5. Electricity Load Data from 2016 to 2020 

Each model undergoes rigorous experimentation to identify the optimal combination of 

hyperparameters for enhanced forecasting accuracy. The evaluation process employs multiple performance 

metrics, including MSE, RMSE, MAE, MAPE, and the coefficient of determination (R²). These metrics 

provide a comprehensive assessment of model performance, ensuring the reliability and robustness of the 

forecasting results. Hyperparameter optimization is conducted iteratively using Optuna, where each trial 

involves training the model with a specific set of hyperparameters and evaluating its performance on 

validation data. The iteration process is governed by two termination criteria: (1) a maximum of 50 trials per 

study to manage computational efficiency, and (2) early stopping during model training if no improvement 

in validation performance is observed for 15 consecutive epochs. By systematically comparing different 

LSTM-based architectures, the study aims to determine the model best suited for capturing the complex 

temporal patterns in electricity consumption data. 

Table 1 summarizes the parameter value ranges explored during the optimization of LSTM-based 

models using Optuna. Four model types are considered: Vanilla LSTM, Stacked LSTM, Bidirectional LSTM, 

and CNN-LSTM. To analyze different temporal dependencies, two-time step configurations, 7 and 30, are 

examined, corresponding to weekly and monthly patterns. The models differ in layer configurations: Vanilla 

LSTM employs a single layer, Stacked LSTM varies between 1 and 5 layers, Bidirectional LSTM integrates 

bidirectional layers with 1 to 5 additional LSTM layers, and CNN-LSTM combines 1 to 5 convolutional 

layers followed by 1 to 5 LSTM layers. The number of neurons in dense layers ranges from 35 to 256, while 

convolutional layers in CNN-LSTM utilize between 32 and 256 neurons. Activation functions tested include 

ReLU, tanh, and sigmoid, while dropout rates range from 0.1 to 0.5 to mitigate overfitting. Additionally, 

batch sizes between 16 and 256 are explored to optimize the training process. This extensive hyperparameter 

search ensures a thorough exploration of model configurations to achieve optimal forecasting performance. 

Table 1. Parameter Value Range used in Optimization Optuna 

Model 
Time 

step 
Layers Dense 

Activation 

function 

Dropout 

rate 

Batch 

size 

Vanilla LSTM 7 & 30 LSTM:1 layer LSTM layer:  

35 – 256 neurons 

[relu, tanh, 

sigmoid] 

0.1 – 0.5 16 – 256 

Stacked LSTM 7 & 30 LSTM: 1-5 layers LSTM layer:  

35 – 256 neurons 

[relu, tanh, 

sigmoid] 

0.1 – 0.5 16 – 256 

Bidirectional 

LSTM 

7 & 30 Bidirectional  

LSTM: 1 – 5 layers 

BiLSTM layer:  35 – 256 

neurons 

[relu, tanh, 

sigmoid] 

0.1 – 0.5 16 – 256 

CNN-LSTM 7 & 30 Convolutional 1d: 

1-5 layers 

LSTM: 1 – 5 layers 

Convolutional layer: 32 – 256 

neurons 

LSTM layer: 32 – 256 neurons 

[relu, tanh, 

sigmoid] 

0.1 – 0.5 16 – 256 

Table 2 presents the optimal parameter values determined for each model after the optimization 

process, showcasing the best configurations for effective short-term electricity load forecasting. The Vanilla 
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LSTM model achieves its optimal performance with a single LSTM layer consisting of 236 neurons, utilizing 

the ReLU activation function, a dropout rate of 0.12, and a batch size of 25, all configured with a time step 

of 30. Similarly, the Stacked LSTM model performs best with two LSTM layers, containing 216 and 209 

neurons, respectively, while employing the ReLU activation function, a higher dropout rate of 0.21, and a 

batch size of 16, also with a time step of 30. The Bidirectional LSTM model is optimized using two 

bidirectional LSTM layers, with 252 and 242 neurons, respectively, leveraging the tanh activation function, 

a dropout rate of 0.3, and a batch size of 17, maintaining a time step of 30. 

In contrast, the CNN-LSTM model demonstrates an optimal structure with three convolutional layers 

containing 179, 91, and 220 neurons, respectively, followed by two LSTM layers with 106 and 104 neurons. 

This model utilizes the tanh activation function, a dropout rate of 0.1, and a batch size of 55, but with a 

notably shorter time step of 7. This distinction underscores the varying structural requirements across 

different architectures, where deeper recurrent models benefit from longer time steps, while hybrid models 

like CNN-LSTM leverage shorter sequences to capture spatial and temporal dependencies efficiently. These 

optimized configurations highlight the importance of tailoring hyperparameters to specific model 

architectures to achieve the best forecasting performance. 

Table 2. Best Parameter Value from Each Model 

Model 
Time 

step 
Layers Dense 

Activation 

function 

Dropout 

rate 

Batch 

size 

Vanilla LSTM 30 LSTM: 1 layer LSTM layer 1:236 relu 0.12 25 

Stacked LSTM 30 LSTM: 2 layers LSTM layer 1:216 

LSTM layer 2:209 

relu 0.21 16 

Bidirectional 

LSTM 

30 Bidirectional  

LSTM: 2 layers 

BiLSTM layer 1:252 

BiLSTM layer 2:242 

tanh 0.3 17 

CNN-LSTM 7 Convolutional 1d: 

3 layers 

LSTM: 2 layers 

Convolutional Layer 1:179 

Convolutional Layer 2:91 

Convolutional Layer 3:220 

LSTM layer 1:106 

LSTM layer 2:104 

tanh 0.10 55 

Expanding on the previously discussed in Table 2, which outlined the best parameter values for each 

model at a broader scale, Table 3 specifically examines the optimal configurations when using a shorter time 

step of 7. This comparison provides insights into how model architectures adapt to a more immediate 

forecasting window. The Vanilla LSTM model achieves its best performance with a single LSTM layer 

comprising 167 neurons, employing the ReLU activation function, a dropout rate of 0.19, and a batch size of 

16. The Stacked LSTM, designed to leverage deeper feature representations, performs optimally with two 

LSTM layers containing 86 and 34 neurons, respectively. This model utilizes the tanh activation function, a 

slightly higher dropout rate of 0.22, and a batch size of 19, indicating an adjustment in complexity to 

accommodate the shorter time horizon. 

The Bidirectional LSTM, structured to capture temporal dependencies in both forward and backward 

directions, achieves its best results with a single bidirectional LSTM layer consisting of 167 neurons. This 

model uses the ReLU activation function, a lower dropout rate of 0.10, and a batch size of 27, suggesting a 

balance between depth and regularization. Finally, the CNN-LSTM model, which integrates convolutional 

layers for spatial feature extraction before sequential modeling, consists of three convolutional layers with 

179, 91, and 220 neurons, followed by two LSTM layers with 106 and 104 neurons. It employs the tanh 

activation function, a dropout rate of 0.10, and a batch size of 55. These configurations highlight how each 

model adapts its structure and hyperparameters to effectively process shorter sequences, optimizing 

performance for short-term electricity load forecasting. 

Table 3. Best Parameter Value from Each Model at Time Step 7 

Model Layers Dense 
Activation 

function 

Dropout 

rate 

Batch 

size 

Vanilla 

LSTM 

LSTM: 1 layer LSTM layer 1: 167 relu 0.19 16 

Stacked 

LSTM 

LSTM: 2 layers LSTM layer 1:86 

LSTM layer 2:34 

tanh 0.22 19 

Bidirectional 

LSTM 

Bidirectional  

LSTM: 1 layer 

BiLSTM layer 1:  167 relu 0.10 27 
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Model Layers Dense 
Activation 

function 

Dropout 

rate 

Batch 

size 

CNN-LSTM Convolutional 1d: 3 

layers 

LSTM: 2 layers 

Convolutional Layer 1: 179 

Convolutional Layer 2: 91 

Convolutional Layer 3: 220 

LSTM layer 1: 106 

LSTM layer 2: 104 

tanh 0.10 55 

Table 4 presents the optimal model parameters for a time step of 30, showcasing the best configurations 

for each deep learning architecture. The Vanilla LSTM model achieves its best performance with a single 

LSTM layer comprising 236 neurons, utilizing the ReLU activation function, a dropout rate of 0.12, and a 

batch size of 25. In contrast, the Stacked LSTM, which leverages deeper network structures, performs 

optimally with two LSTM layers containing 216 and 209 neurons, respectively. This model also adopt the 

ReLU activation function but with a higher dropout rate of 0.21 and a batch size of 16. The Bidirectional 

LSTM, designed to capture dependencies in both forward and backward directions, consists of two 

bidirectional LSTM layers with 252 and 242 neurons, respectively, utilizing the tanh activation function, a 

dropout rate of 0.3, and a batch size of 17. 

Table 4. Best Parameter Value from Each Model at Time Step 30 

Model Layers Dense 
Activation 

function 

Dropout 

rate 

Batch 

size 

Vanilla LSTM LSTM: 1 layer LSTM layer 1:236 relu 0.12 25 

Stacked LSTM LSTM: 2 layers LSTM layer 1:216 

LSTM layer 2:209 

relu 0.21 16 

Bidirectional 

LSTM 

Bidirectional  

LSTM: 2 layers 

BiLSTM layer 1:252 

BiLSTM layer 2:242 

tanh 0.3 17 

CNN-LSTM Convolutional 1d: 2 

layers 

LSTM: 3 layers 

Convolutional Layer 1:60 

Convolutional Layer 2:185 

LSTM layer 1:57 

LSTM layer 2:192 

LSTM layer 3:172 

tanh 0.20 85 

Meanwhile, the CNN-LSTM model integrates convolutional layers to extract spatial-temporal features 

before feeding the data into the LSTM layers. Its optimal configuration consists of two convolutional layers 

with 60 and 185 neurons, followed by three LSTM layers with 57, 192, and 172 neurons. This model employs 

the tanh activation function, a dropout rate of 0.20, and a batch size of 85. These diverse architectures and 

parameter settings demonstrate the distinct strategies used to optimize each model for short-term electricity 

load forecasting. By fine-tuning the number of layers, neuron counts, activation functions, dropout rates, and 

batch sizes, the study aims to determine the most effective deep learning approach for capturing complex 

temporal dependencies in electricity demand. 

Table 5. Number of Epochs for Training the Best Model 

Model 
Epochs 

Time steps 7 Time steps 30 

Vanilla LSTM 121 105 

Stacked LSTM 41 87 

Bidirectional LSTM 123 104 

CNN-LSTM 54 88 

Following the discussion on model parameters, the next section focuses on the training and evaluation 

of the models. The training process is analyzed in terms of the number of epochs required to achieve optimal 

performance, as summarized in Table 5. This table presents the training durations for each model at both time 

steps 7 and 30, offering insights into the computational demands of different architectures. The number of 

epochs required varies depending on the complexity of the model and the selected time step. For example, 

the Vanilla LSTM model reaches optimal performance after 121 epochs for time step 7 and 105 epochs for 

time step 30, whereas the Stacked LSTM model requires 41 epochs at time step 7 and 87 epochs at time step 

30. 
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(a)       (b) 

 
(c)      (d) 

Figure 6. Training Loss Curves for Each Model at Time Step 7, (a) Vanilla LSTM, (b) Stacked LSTM,             (c) 
Bidirectional LSTM, (d) CNN-LSTM 

Similarly, the Bidirectional LSTM model demands 123 epochs at time step 7 and 104 epochs at time 

step 30, reflecting its bidirectional processing complexity. In contrast, the CNN-LSTM model exhibits a 

smaller variance in training duration, requiring 54 epochs for time step 7 and 88 epochs for time step 30. 

These variations in the number of epochs highlight differences in model convergence rates and training 

dynamics. Models with deeper architectures or more complex dependencies, such as the Bidirectional LSTM, 

generally require more epochs to learn long-term dependencies effectively. Fig. 6 and Fig. 7 illustrate the 

training progress for the time steps 7 and 30, respectively, providing a visual representation of model 

convergence trends. 

 
(a)       (b) 
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(c)       (d) 

Figure 7. Training Loss Curves for Each Model at Time Step 30, (a) Vanilla LSTM, 

 (b) Stacked LSTM, (c) Bidirectional LSTM, (d) CNN-LSTM 

Table 6 provides a comprehensive evaluation of the four LSTM-based models by analyzing multiple 

performance metrics, including MSE, MAE, RMSE, MAPE, and the coefficient of determination (𝑅²). 

Table 6. Best Evaluation Value from Each Model 

Model 
MSE MAE RMSE MAPE R2 

Train Test Train Test Train Test Train Test Train Test 

Vanilla LSTM 0.008 0.011 0.052 0.065 0.089 0.104 1.71% 1.99% 88.49% 80.38% 

Stacked 

LSTM 
0.007 0.011 0.049 0.062 0.086 0.103 1.62% 1.90% 89.31% 80.68% 

Bidirectional 

LSTM 
0.008 0.010 0.051 0.058 0.089 0.100 1.68% 1.79% 88.50% 81.68% 

CNN-LSTM 0.007 0.010 0.050 0.062 0.083 0.099 1.62% 1.88% 89.98% 81.90% 

These metrics serve as critical indicators of the models' accuracy, reliability, and ability to generalize 

unseen data. Lower values of MSE, MAE, RMSE, and MAPE suggest higher predictive accuracy, while an 

𝑅² value approaching 1 signifies a stronger alignment between predicted and observed outcomes. The 

comparison of these metrics across both training and testing datasets helps assess the effectiveness of each 

model under different time step configurations. Fig. 8 and Fig. 9 provide a visual representation of these 

performance comparisons for time steps 7 and 30, respectively. 

 
Figure 8. Forecast comparison of the four models at time step 7, predicting the last 30 days (1 month)  

Among the evaluated models, the CNN-LSTM and Bidirectional LSTM architectures demonstrate 

superior performance in terms of minimizing prediction errors, as reflected in their lowest test MSE values 
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of 0.010. This suggests that these hybrid architectures effectively capture temporal dependencies and patterns 

in the electricity load data. Meanwhile, the Vanilla LSTM and Stacked LSTM models produce slightly higher 

test MSE values of 0.01, indicating that while they remain competitive, their predictive accuracy is marginally 

lower. Although these variations are minimal, they highlight the nuanced differences in each model’s capacity 

to learn and generalize from the dataset. The results suggest that leveraging convolutional layers in 

combination with LSTM, as seen in CNN-LSTM, or employing bidirectional architectures, as in Bidirectional 

LSTM, may contribute to better forecasting performance by capturing both past and future contextual 

information, thereby enhancing the model’s ability to learn from temporal dependencies in both directions. 

 
Figure 9. Forecast Comparison of the Four Models at Time Step 30, Predicting the Last 30 Days (1 Month)  

When evaluated using the Mean Absolute Error (MAE), the CNN-LSTM, Stacked LSTM, and 

Bidirectional LSTM models achieve the lowest test MAE values of 0.062, 0.062, and 0.058, respectively. 

These low MAE values indicate that the models yield the smallest average absolute deviations from the actual 

values, suggesting a high level of accuracy in capturing the underlying patterns in electricity consumption 

data. In contrast, the Vanilla LSTM model yield slightly higher test MAE values of 0.065. Although the 

differences in MAE among the models are relatively minor, they highlight subtle variations in performance. 

Interestingly, the Bidirectional LSTM achieves a slightly lower MAE than the CNN-LSTM and Stacked 

LSTM models, suggesting its potential advantage in leveraging bidirectional dependencies within the data. 

However, despite this marginal improvement in absolute error, the CNN-LSTM and Stacked LSTM models 

offer a more balanced trade-off between model complexity and predictive accuracy, making them particularly 

suitable for scenarios where reducing absolute error is crucial. 

For RMSE, a metric that penalizes larger errors more heavily, the CNN-LSTM and Bidirectional 

LSTM models again demonstrate superior performance with lower RMSE values of 0.099 and 0.100, 

respectively. These results indicate that these architectures are more effective at mitigating large deviations 

in predictions, which is essential for practical forecasting applications where minimizing extreme errors is 

critical. Meanwhile, the Vanilla LSTM and Bidirectional LSTM models record RMSE values of 0.104 and 

0.103, showing slightly higher error magnitudes. Similarly, in terms of Mean Absolute Percentage Error 

(MAPE), which measures prediction accuracy in percentage terms, the CNN-LSTM and Bidirectional LSTM 

models achieve the lowest test MAPE values of 1.88% and 179, respectively, signifying their robustness in 

providing precise percentage-based predictions. In comparison, the Vanilla LSTM and Stacked LSTM 

models have slightly higher MAPE values of 1.99% and 1.90%, respectively, indicating a relatively lower 

degree of precision. These results suggest that CNN-LSTM and Stacked LSTM models not only maintain 

lower absolute and squared errors but also demonstrate higher accuracy in relative terms, reinforcing their 

suitability for time series forecasting tasks. 

The coefficient of determination (𝑅²) values further highlight the effectiveness of the CNN-LSTM and 

Bidirectional LSTM models in capturing variance within the time series data. The CNN-LSTM achieves the 

highest 𝑅² value of 81.90% on the test set, followed closely by the Bidirectional LSTM at 81.68%. These 
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results suggest that both models can explain a substantial portion of the variability in the data, making them 

valuable tools for understanding complex temporal patterns. Meanwhile, the Stacked LSTM and Vanilla 

LSTM exhibit slightly lower 𝑅² values of 80.68% and 80.38%, respectively, indicating a marginally reduced 

ability to capture data variance. Although the differences are small, they reinforce the notion that CNN-LSTM 

and Bidirectional LSTM have a slight edge in predictive capability. 

In terms of training performance, CNN-LSTM and Stacked LSTM demonstrate superior 

generalization, as evidenced by their lower MSE, MAE, and RMSE values on both training and test sets. 

efficiency of training is another critical factor, with CNN-LSTM and Stacked LSTM requiring significantly 

fewer epochs to converge. For time step 7, CNN-LSTM and Stacked LSTM converges in just 54 and 41 

epochs, respectively, whereas Vanilla LSTM and Bidirectional LSTM take 121 and 123 epochs, respectively. 

A similar trend is observed at time step 30, where CNN-LSTM and Stacked LSTM require 88 and 87 epochs, 

compared to Vanilla LSTM and Bidirectional LSTM that require 105 and 104 epochs, respectively. This 

efficiency makes CNN-LSTM and Stacked LSTM more suitable for large-scale applications, reducing 

computational costs without sacrificing accuracy. 

In terms of predictive accuracy, the Bidirectional LSTM and CNN-LSTM models consistently 

outperform the other architectures across multiple evaluation metrics, including MSE, MAE, RMSE, MAPE, 

and 𝑅². Bidirectional LSTM achieves the lowest MAE (0.058) and highly competitive scores in MSE (0.010) 

and RMSE (0.100), demonstrating strong capability in modeling temporal dependencies in both forward and 

backward directions. CNN-LSTM, on the other hand, achieves the highest 𝑅² value (81.90%) and the lowest 

RMSE (0.099), indicating its strength in minimizing large prediction errors and capturing overall data 

variance. While Stacked LSTM and Vanilla LSTM also perform reasonably well, their slightly higher error 

values and lower 𝑅² scores suggest comparatively reduced effectiveness in learning complex temporal 

dynamics. These results confirm that Bidirectional LSTM and CNN-LSTM offer superior forecasting 

accuracy, making them more reliable for short-term electricity load prediction tasks. 

4. CONCLUSION 

This study comprehensively evaluates the performance of four LSTM-based models—Vanilla LSTM, 

Stacked LSTM, Bidirectional LSTM (BiLSTM), and CNN-LSTM—for daily electricity load forecasting. By 

employing extensive hyperparameter optimization, the study ensures that each model operates under its best 

possible configuration, providing a fair comparison of their predictive capabilities. The findings reveal that, 

of all the models evaluated, CNN-LSTM demonstrates the highest predictive accuracy, consistently achieving 

the lowest error metrics (MSE, MAE, RMSE, MAPE) and the highest 𝑅² score. This indicates its strong 

capability in capturing complex temporal patterns in electricity load data. Although slightly less accurate, 

Stacked LSTM emerges as the most efficient model, requiring significantly fewer training epochs to 

converge, making it well-suited for large-scale applications where computational efficiency is critical. 

Bidirectional LSTM offers higher accuracy than Stacked LSTM, particularly in MAE, but demands longer 

training time due to its bidirectional structure. In contrast, Vanilla LSTM performs the weakest in both 

accuracy and training efficiency, making it the least suitable for time series forecasting in this context. 

Overall, CNN-LSTM is the most recommended model, striking a strong balance between predictive 

performance and training efficiency, while Stacked LSTM remains a competitive alternative when 

computational resources are limited.  

Despite these findings, the study has several limitations. First, the time step configurations used in 

model training are fixed and may not fully capture all temporal dependencies present in the data. Second, the 

hyperparameter search space, although carefully selected, is bounded and may exclude potentially better 

configurations outside the defined range. Third, the evaluation is limited to four specific LSTM-based 

architectures; other advanced deep learning models such as Transformers or hybrid models incorporating 

exogenous variables are not considered. These limitations suggest directions for future research, including 

broader model comparisons, adaptive time step strategies, and expanded hyperparameter tuning. 
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