
 

https://doi.org/10.30598/barekengvol19no4pp2693-2708 
    

 

2693 
     

December 2025     Volume 19 Issue 4 Page 2693–2708 

P-ISSN: 1978-7227   E-ISSN: 2615-3017 
 

BAREKENG: Journal of Mathematics and Its Applications 

 

How to cite this article: 

J. K. Wororomi, A. M. Sroyer, H. Morin, F. Reba, I.  S. Beno, and O. O. O. Wambrauw, “DISTRIBUTION MODEL OF HUMAN 

DEVELOPMENT INDEX IN PAPUA PROVINCE BASED ON REGIONAL CLUSTERING”, BAREKENG: J. Math. & App., vol. 19, iss. 4, 

pp. 2693-2708, December, 2025. 

DISTRIBUTION MODEL OF HUMAN DEVELOPMENT INDEX 

IN PAPUA PROVINCE BASED ON REGIONAL CLUSTERING 

Jonathan K. Wororomi 1*, Alvian M. Sroyer 2, Henderina Morin 3, 

Felix Reba 4, Ishak S. Beno 5, Oscar O. O. Wambrauw 6  

 
1,2,4,5Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Cenderawasih 

3Department of Government Science, Faculty of Social and Political Sciences, Universitas Cenderawasih 
6Department of Management, Faculty of Economics and Business, Universitas Cenderawasih 

Jln. Kamp Wolker Yabansai, Jayapura, Papua, 99351, Indonesia 

Corresponding author’s e-mail: * jkwororomi@gmail.com 

 

 ABSTRACT 

Article History: 
Modeling the distribution of Human Development Index (HDI) components is essential to 

uncover underlying disparities and guide targeted policy interventions. This study aims 

to analyze HDI data, focusing on the average length of schooling across 26 districts in 
Papua Province from 2010 to 2023, to identify the most suitable probability distribution 

model. Using the k-means clustering method, two main groups were identified based on 

the average length of schooling. Cluster 1 includes 11 districts with a Weibull 

distribution, characterized by a scale parameter of 8.9931 and a shape parameter of 
16.1272, indicating significant variation in education duration. Cluster 2 consists of 15 

districts with a scale parameter of 3.73006 and a shape parameter of 8.07662, showing 

a distribution with a long tail and greater variability. This study provides insights into 

the distribution patterns of education duration in Papua, which could aid policymakers 
in making more targeted decisions and allocating resources efficiently. The findings also 

highlight regional disparities and the need for specific educational interventions. These 

results are valuable for government entities, NGOs, researchers, and international 
donors interested in improving educational outcomes in underdeveloped areas. However, 

the analysis is limited by the scope of available data and the assumption of homogeneity 

within clusters. 
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1. INTRODUCTION 

The Human Development Index (HDI) is a crucial indicator used to measure the level of human 

development in a region, encompassing three main dimensions: health, education, and a decent standard of 

living [1], [2], [3]. In Indonesia, HDI is often used by the government and international institutions to evaluate 

and compare welfare levels across regions [4]. Papua, as one of the provinces facing significant development 

challenges, exhibits striking disparities in the education dimension, particularly in terms of the average length 

of schooling across different districts. Despite improvements in recent years, regional disparities remain a 

key issue in efforts to enhance the quality of education in Papua [5], [6]. Previous studies have analyzed HDI 

using various statistical and computational approaches [1]–[6], but they have generally focused on national 

or provincial-level aggregates. Few have explored the use of probabilistic and clustering methods for sub-

provincial educational disparities in Papua, which presents unique challenges due to its geographical and 

socio-political context.   

This study focuses on analysing the average length of schooling data as an essential component of the 

HDI for 26 districts in Papua from 2010 to 2023. Through a clustering approach, this research aims to identify 

patterns or groups of regions with similar characteristics based on the average length of schooling [7], [8], 

and to determine the most appropriate probability distribution model for the data [9], [10]. Probability 

distribution methods, such as the Weibull, Generalized Extreme Value (GEV), and Nakagami distributions, 

are employed to depict the variability patterns in education in Papua. The choice of these three distributions 

is based on their ability to accommodate different statistical characteristics of educational data. Weibull is 

particularly well-suited for modeling duration-type variables such as schooling due to its flexibility in shape 

and scale [24], [25], [26]. GEV is used to model extreme values and long-tailed distributions, which are 

important for capturing outlier regions with exceptionally high or low education indicators [41], [42]. 

Meanwhile, Nakagami is valuable in modeling asymmetric and highly variable data patterns that reflect the 

diverse conditions across Papua’s districts [30], [43], [45]. 

Despite the frequent use of HDI in evaluating education policies, limited studies have combined 

clustering techniques with probability distribution modeling to address within-region disparities. This study 

fills that gap by applying statistical modeling to sub-provincial HDI indicators in Papua. The primary 

objective of this research is to provide deeper insights into the educational variation in Papua and offer a 

scientific basis for more accurate policy decisions. With the findings obtained, the government and other 

stakeholders can develop more effective policies to address educational disparities in underdeveloped areas, 

thereby enabling a more optimal allocation of resources [11], [12], [13], [14], [15]. 

It is also hoped that this research will attract the attention of these parties so that they can design more 

effective intervention programs. The novelty of this study lies in its integration of probability distribution 

modeling with sub-provincial clustering analysis to uncover intra-regional educational disparities in Papua—

an approach that has rarely been explored in previous literature. 

2. RESEARCH METHODS 

The methodology employed in this study integrates various statistical techniques for data analysis to 

identify the most suitable probability distribution model for the average length of schooling across 26 districts 

in Papua Province. The dataset includes the average years of schooling in each district from 2010 to 2023, 

collected through official surveys conducted by the Central Bureau of Statistics (BPS) of Papua Province, 

including the National Socioeconomic Survey (SUSENAS). The data were validated to ensure consistency 

and completeness, making it a reliable source for further statistical analysis. 

K-Means clustering is utilized to classify data into distinct groups based on similarity, as it is 

computationally efficient, scalable, and suitable for continuous numerical data such as schooling duration. It 

also allows for clear interpretation and performs well when cluster boundaries are distinct, making it 

appropriate for this study’s objective of detecting region-based patterns. The optimal number of clusters is 

determined using the Silhouette Coefficient and Davies-Bouldin Index, which assess cluster validity. 

Once the optimal clustering structure is established, Maximum Likelihood Estimation (MLE) is applied 

for parameter estimation to ensure robust statistical modeling. Subsequently, Goodness-of-Fit (GoF) testing 

using the Anderson-Darling statistic is conducted to evaluate the suitability of various univariate probability 
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distributions. The best-fitting distribution is further assessed through information criteria, such as the Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC), to select the most appropriate model 

by balancing model complexity and GoF. This systematic approach ensures the selection of the most suitable 

probability distribution model for understanding educational disparities across districts, which is crucial for 

regional policy-making. 

2.1 Data Sources 

The primary dataset in this study was obtained from the Central Bureau of Statistics (BPS) of Papua 

Province and consists of the average length of schooling from 26 districts over the period 2010 to 2023. The 

data were sourced from systematic censuses and sample surveys, including the National Socioeconomic 

Survey (SUSENAS), which periodically measures education indicators in each region. 

In this study, the data collection and preparation were carried out as follows: 

1. Secondary Data Collection: Data were retrieved from official BPS publications, annual statistical 

reports, and open-access datasets curated for academic and research purposes. 

2. Data Validation and Consistency: The dataset was checked for completeness and accuracy by comparing 

values with national education records and official reports from the Papua Department of Education. 

Outliers were identified using interquartile range analysis, and missing values were handled using linear 

interpolation for short gaps or listwise deletion for entries with significant missingness to maintain data 

integrity. 

3. Data Processing: The data were organized in a time-series format across districts. Prior to analysis, the 

data were standardized using z-score normalization to ensure comparability between districts with 

varying scales and to improve the performance of clustering and distribution modeling methods. 

This approach enabled a rigorous and reliable evaluation of schooling distribution patterns across 

Papua and ensured that the data used in this study were consistent, cleaned, and ready for statistical modeling. 

2.2 K-Means Clustering 

To address the issue of schooling distribution in Papua, we employed the 𝑘-means clustering method, 

which divided the 26 districts into two clusters based on the average length of schooling from 2010 to 2023. 

This clustering process was conducted to identify significant differences between regions in terms of access 

to education. The 𝑘-means method was selected due to its ability to group regions with similar characteristics 

based on educational variables. The 𝑘-means clustering approach was used to classify the districts according 

to their similarities in the average length of schooling. The steps involved in 𝑘-means are as follows: first, 

the number of clusters, 𝑘, is determined, and centroids are randomly selected. The distance between each data 

point and the centroid is calculated using the Euclidean distance formula [16], [17], [18], [19], [20], [21]: 

𝑑𝑖𝑘 = √∑(𝑥𝑘𝑗 − 𝑐𝑖𝑗)
2

𝑚

𝑗=1

 (1) 

Where 𝑑𝑖𝑘 is the distance between the 𝑖-th data point and the centroid of the cluster 𝑘, 𝑥𝑘𝑗  is the 

coordinate of the 𝑘-th data point, and 𝑐𝑖𝑗 is the coordinate of the 𝑖-th centroid. Each data point is then assigned 

to the cluster with the nearest centroid. After that, a new centroid is calculated as the mean of the data points 

in the cluster:  

𝐶𝑖𝑗 =
∑ 𝑥𝑘𝑗

𝑝
𝑘=1

𝑝
 (2) 

This process is repeated until no further significant changes occur in the position of the centroids, 

indicating that convergence has been reached. Convergence here refers to the condition where the centroids 

stabilize, and no more data points switch clusters in subsequent iterations. 𝐾-means was chosen for its 

efficiency in handling large datasets and its suitability for identifying hidden structures in numerical data such 

as education indicators. The selection of two clusters was based on evaluation using the Silhouette Coefficient 

(SC) and the Davies-Bouldin Index (DBI), where both indices indicated optimal values when 𝑘 =  2, 
suggesting that two clusters represented the best grouping structure for the available data. 
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2.3 Optimal 𝒌 Estimation 

The estimation of the optimal 𝑘 value was carried out using the 𝐾-Means Clustering method, evaluated 

by two indices: the Silhouette Coefficient (SC) and the Davies-Bouldin Index (DBI). SC evaluates cluster 

compactness, while DBI measures the degree of separation between clusters. A high SC value indicates well-

separated and compact clusters, whereas a low DBI suggests minimal overlap and greater distance between 

centroids. These two indices are used in combination to assess the quality of different cluster configurations 

by computing SC and DBI values for several values of 𝑘 (e.g., 2 to 5), and selecting the k that yields the 

highest SC and lowest DBI simultaneously. The final decision for 𝑘 =  2 was based on this dual-criteria 

evaluation, where both SC and DBI showed optimal values at 𝑘 =  2, supporting the identification of two 

main schooling groups in Papua. These results reinforce the probability distribution analysis and are useful 

for developing localized educational policies. The Silhouette Coefficient (SC) is calculated using the formula 

[22], [23]: 

𝑆̅ =
1

𝑛
∑ (

𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))
)

𝑛

𝑖=1

 (3) 

Where 𝑎(𝑖) is the average distance from the data point to its cluster centroid, and 𝑏(𝑖) is the average 

distance to the nearest centroid of another cluster. The Davies-Bouldin Index (DBI) is calculated as: 

IDB =
1

𝑘
∑ 𝑅𝑖

𝑘

𝑖=1

 (4) 

Where 𝑅𝑖 is the ratio between the average distance of each data point to its cluster centroid and the 

distance between centroids. Once the optimal 𝑘 value is selected, each data point is assigned to the nearest 

centroid based on Euclidean distance, and the centroids are iteratively updated until no further changes occur 

in assignments—indicating convergence. SC and DBI thus provide a quantitative and statistical basis for 

finalizing cluster formation and ensuring that the grouping is optimal, valid, and meaningful. 

2.4 Parameter Estimation with MLE 

Parameter estimation was conducted using the Maximum Likelihood Estimation (MLE) method due 

to its ability to produce efficient and consistent parameter estimates. MLE aims to maximize the likelihood 

function to obtain distribution parameters that best fit the observed data in each cluster. This method was 

chosen for the Weibull, Generalized Extreme Value (GEV), and Nakagami distributions to describe the 

variation in schooling duration patterns across clusters. For the Weibull distribution, MLE estimates the shape 

and scale parameters by fitting the exponential growth behavior typically observed in duration data. In the 

case of the GEV distribution, MLE estimates the location, scale, and shape parameters, allowing it to 

accurately model extreme values in the data distribution tails. For the Nakagami distribution, MLE is used to 

estimate the shape (m) and spread (𝛺) parameters, which are well-suited for modeling asymmetric and highly 

variable data patterns. Using MLE, the resulting parameters reflect the actual conditions of the average 

schooling duration distribution, providing a strong basis for evaluating the probability models used. MLE 

was selected because it offers efficient and consistent parameter estimates. The likelihood function for a 

random sample  𝑋1, 𝑋2, … , 𝑋𝑛 from 𝑓(𝑥; 𝜃) is given by [24], [25], [26], [27], [28]: 

𝐿(𝜃) = ∏ 𝑓(𝑥𝑖|𝜃)

𝑛

𝑖=1

 (5) 

MLE aims to find the parameter value 𝜃 that maximizes this likelihood function. The estimation is 

carried out using optimization techniques to ensure that the resulting parameters are the most likely based on 

the observed data. 

2.5 Goodness-of-Fit (GOF) 

To evaluate the fit of the distribution models to the observed data, we used the Goodness-of-Fit (GoF) 

test, particularly the Anderson-Darling (AD) test. The AD test was chosen for its sensitivity to tail differences 

in the distribution, which is critical in analyzing schooling duration, especially for capturing extreme values 

in districts with limited access to education. The hypothesis tested in this method is that the observed data 

follow the theoretical distribution model (e.g., Weibull, GEV, or Nakagami). The decision-making process 
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is based on comparing the AD test statistics across candidate distributions; the distribution with the lowest 

AD statistic is considered to have the best fit. The GoF test results indicate that the Weibull distribution 

provides the best fit for representing the schooling duration distribution patterns in both clusters, compared 

to the GEV and Nakagami distributions. This preference is supported by the fact that the Weibull distribution 

effectively captures positively skewed and bounded duration data, which is typical for educational indicators 

such as years of schooling. While GEV and Nakagami models are suitable for modeling extremes and 

asymmetric patterns, the AD test statistics consistently favored Weibull in both clusters, highlighting its 

superior performance in modeling the overall distribution. 

The Anderson-Darling (AD) test was used to evaluate the fit of the probability distributions to the 

observed data. The AD test statistic is calculated using the formula [29], [30], [31], [32], [33]: 

𝐴𝑛
2 = −𝑛 −

1

𝑛
 ∑(2𝑖 − 1)[log 𝐹(𝑥𝑖) + log(1 − 𝐹(𝑥𝑛+1−𝑖)]

𝑛

𝑖=1

 (6) 

Where 𝐹(𝑥𝑖) is the cumulative distribution function of the hypothesized distribution, and 𝑛 is the 

sample size. The AD test was chosen due to its high sensitivity to deviations in the tails of the distribution, 

which is relevant in analyzing the schooling duration distribution that may show extreme values. 

2.6 Univariate Probability Distribution 

Several probability distributions were used in this study, including Weibull, Generalized Extreme 

Value (GEV), and Nakagami, to describe the schooling duration distribution in Papua. The Weibull 

distribution is particularly suitable due to its flexibility in modeling positively skewed duration data, which 

is common in educational contexts. Its probability density function is defined as, 

𝑓(𝑥) =
𝑏

𝑎
(

𝑥

𝑎
)

𝑏−1

exp (− (
𝑥

𝑎
)

𝑏

) , 𝑥 ≥ 0 , 𝛼 > 0 , 𝑏 > 0 (7) 

where 𝑎 is the scale parameter controlling spread, and 𝑏 is the shape parameter determining tail behavior and 

skewness [33]–[39].  

The Generalized Extreme Value (GEV) distribution is used to model extreme values in schooling 

duration, particularly in districts with very high or very low educational attainment. Its probability density 

function is given by: 

𝑓(𝑥) =
1

𝜎
[1 + 𝜉 (

𝑥 − 𝜇

𝜎
)]

−
1
𝜉

−1

exp {− [1 + 𝜉 (
𝑥 − 𝜇 

𝜎
)]

−
1
𝜉

} (8) 

defined for 1 + 𝜉 (
𝑥−𝜇

𝜎
)  >  0, where 𝜇 is the location parameter, 𝜎 >  0 is the scale parameter, and 𝜉 is the 

shape parameter that controls the tail thickness [40], [41], [42]. 

The Nakagami distribution is appropriate for modeling asymmetric and highly variable distributions 

of schooling duration, reflecting substantial disparities in access to education across different districts. Its 

probability density function is  

𝑓(𝑥) = 2 (
𝜇

𝜔
)

𝜇 1

Γ(𝜇)
𝑥(2𝜇−1)𝑒𝑥𝑝 (

−𝜇

𝜔
𝑥2) ;    𝑥 > 0 (9) 

where 𝜇 ≥  1/2 is the shape parameter, 𝜔 >  0 is the spread parameter, and 𝛤(𝜇) is the gamma function 

[30], [43]−[47].  

The selection of these distributions was based on their theoretical ability to represent diverse schooling 

duration behaviors: Weibull for general flexible modeling, GEV for tail-sensitive extreme values, and 

Nakagami for representing asymmetric and variable patterns in the data. 

2.7 Distribution Selection Criteria 

To determine the best-fitting probability distribution, various information criteria were used, including 

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Corrected Akaike Information 

Criterion (AICc), Consistent Akaike Information Criterion (CAIC), and Hannan-Quinn Criterion (HQC). The 
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model with the lowest criteria value is considered the most appropriate for the data [48]–[51]. The formulas 

for each criterion are as follows: 

1. Akaike Information Criterion 

𝐴𝐼𝐶 =  −2 ln(𝐿) + 2𝑘 (10) 

2. Bayesian Information Criterion  

𝐵𝐼𝐶 =  −2 ln(𝐿) +  𝑘 ln(𝑛) (11) 

3. Corrected Akaike Information Criterion 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + (
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
) (12) 

4. Consistent Akaike Information Criterion 

𝐶𝐴𝐼𝐶 =  −2 ln(𝐿) + 𝑘 (1 + ln (
𝑛

𝑘
)) (13) 

5. Hannan-Quinn Criterion 

𝐻𝑄𝐶 = −2 ln(𝐿)  +  2𝑘 ln(ln(𝑛)) (14) 

Using multiple criteria ensures that the chosen distribution model not only fits the data well but is also 

not overly complex, avoiding overfitting. 

3. RESULTS AND DISCUSSION 

This study analyzed the average schooling duration data across 26 districts in Papua Province to 

identify the most suitable probability distribution model. Following clustering with the 𝑘-means method and 

model evaluation using information criteria, the findings are discussed in several stages. 

3.1 Regional Clustering Based on Average Schooling Duration 

The 𝑘-means clustering method was used to group 26 districts in Papua based on the average years of 

schooling from 2010 to 2023. This process generated two main clusters: Cluster 1 consists of districts with 

higher average schooling durations (7.53 to 9.67 years), indicating more advanced educational access; while 

Cluster 2 consists of districts with lower average schooling durations (2.61 to 4.32 years), reflecting 

educational challenges. As shown in Table 1, the optimal number of clusters was determined to be 𝑘 =  2, 

supported by the highest Silhouette score (0.8612) and the lowest Davies-Bouldin Index (0.3787), indicating 

well-separated and compact clusters. 

This clustering structure reveals educational disparities between regions. Districts in Cluster 1 benefit 

from better school infrastructure, teacher availability, and access to technology, whereas those in Cluster 2 

face multiple constraints such as geographic remoteness, limited resources, and a lack of qualified personnel. 

These findings highlight the need for targeted policies and interventions to address the gaps, especially for 

regions in Cluster 2 where educational improvement is most urgently needed. 

Table 1. Clustering Results and Optimal 𝒌 Estimation Using Silhouette and DBI 

𝒌 Silhouette DBI 

2 0.8612 0.3787 

3 0.7859 0.4760 

4 0.7103 0.5597 

5 0.6967 0.5489 

Cluster 1 

Year 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 

7.53 7.76 7.97 8.2 8.48 8.59 8.67 8.76 8.94 9.11 9.3 9.32 9.53 9.67 
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Cluster 2 

Year 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 

2.61 2.77 3 3.17 3.26 3.34 3.45 3.6 3.71 3.79 3.91 4.05 4.2 4.32 

Based on the data in Table 1 and Figure 1, it can be concluded that Cluster 1 represents districts with 

a higher average length of schooling, whereas Cluster 2 consists of districts with a lower average length of 

schooling. Cluster 1 represents areas with higher educational attainment and better infrastructure. Districts in 

this cluster have an average length of schooling close to the national standard, indicating that government 

efforts to improve education quality in these areas have yielded positive results. To assess the clustering 

quality, the Davies-Bouldin Index (DBI) was used, which evaluates the clustering structure based on the 

distance between centroids and the variability within clusters. Policy interventions for Cluster 1 could focus 

on maintaining and further enhancing educational quality. 

 
Figure 1. Bar and Area Chart of Clusters 1 and 2 

Generated using MATLAB 2024b (Statistics and Machine Learning Toolbox) 

Conversely, Cluster 2 highlights regions facing greater challenges. The lower average length of 

schooling in this cluster suggests barriers to accessing education, potentially due to geographic limitations, 

infrastructure gaps, or limited human resources. These findings underscore the need to focus additional 

attention on Cluster 2 districts by improving educational facilities, providing teacher training, and supporting 

educational programs in these underserved areas. 

3.2 Parameter Estimation and Goodness-of-Fit (GoF) Test 

After clustering using the 𝑘-means method, the next step involved estimating parameters for each 

hypothesized probability distribution: Generalized Extreme Value (GEV), Nakagami, and Weibull. 

Parameter estimation was conducted using Maximum Likelihood Estimation (MLE), known for its efficiency 

and consistency in identifying probability distribution parameters. Once parameters for each distribution were 

estimated, the Anderson–Darling (AD) Test was used as a Goodness-of-Fit (GoF) test to assess how well 

each hypothesized distribution fit the observed data. 

In this study, the selected distribution models—GEV, Nakagami, and Weibull—were chosen for their 

ability to capture the variability patterns in the schooling data from Papua. GEV is effective for capturing 

extreme values, which may appear in districts with either very high or very low lengths of schooling. 

Nakagami is suitable for reflecting high variability, which aligns with the diverse educational conditions 

across districts. Weibull, with its flexibility, is ideal for modeling duration-based variables like schooling 

length, the primary focus of this research. Table 2 presents the parameter estimation results for each 

distribution and the GoF test outcomes for each cluster (Cluster 1 and Cluster 2). 
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Table 2. GEV, Nakagami, and Weibull (Clusters 1 and 2) 

Distribution 

 Cluster 1  Cluster 2 

Parameter 𝒑-Value  GoF AD Test Parameter 𝒑-Value GoF AD Test 

GEV Shape: -0.591 

Scale: 0.7145 

Location: 8.567 

0.9946 𝐻0 received Shape: -0.485 

Scale: 0.5417 

Location: 3.3861 

0.9988 𝐻0 received 

Nakagami Shape: 46.293 

Scale: 76.135 

0.9967 𝐻0 received Shape: 12.217 

Scale: 12.593 

0.9995 𝐻0 received 

Weibull Shape: 16.1273 

Scale: 8.993 

0.9872 𝐻0 received Shape: 8.077 

Scale: 3.7301 

0.9992 𝐻0 received 

After reviewing the results in Table 2, it can be concluded that all three probability distributions—

GEV, Nakagami, and Weibull—demonstrate a good fit to the average schooling length data. This conclusion 

is supported by the high 𝑝-values obtained from the Anderson–Darling (AD) Test, all of which exceed 0.98. 

In statistical terms, a high 𝑝-value indicates a failure to reject the null hypothesis (𝐻0), which implies that 

there is no significant difference between the observed data and the theoretical distribution. Therefore, the 

distributions successfully represent the schooling duration data. Although all three distributions show 

satisfactory results in terms of 𝑝-values, the distribution parameters provide additional insight into the shape 

and characteristics of the data. For example, the GEV distribution exhibits negative shape parameters in both 

clusters, which corresponds to a left-skewed distribution—an indication that a majority of districts in both 

clusters have relatively longer schooling durations, but some extremely low values exist. This is particularly 

evident in Cluster 2. The Nakagami distribution, characterized by a high shape parameter, indicates a narrow 

and symmetric distribution with low skewness in Cluster 1. However, in Cluster 2, the lower shape parameter 

reflects higher variability, which aligns with the broader spread of schooling data in underserved districts. 

The Weibull distribution demonstrates flexibility in capturing both narrow and wide spreads, with high shape 

values indicating low variability in Cluster 1 and moderate variability in Cluster 2. The relatively high shape 

parameters also suggest a right-skewed distribution, especially in Cluster 2, where lower education levels 

dominate. 

Overall, the combination of high 𝑝-values and interpretable parameter estimates (shape, scale, and 

location) support the conclusion that these three distributions are statistically appropriate for modeling 

schooling length. Their ability to reflect skewness, variability, and tail behavior in the data provides a strong 

basis for further modeling and policy interpretation in subsequent sections. 

 
Figure 2. Probability Models of GEV, Nakagami, and Weibull for Clusters 1 and 2 

Generated using MATLAB 2024b (Statistics and Machine Learning Toolbox) 

Figure 2 presents the probability distribution models of Generalized Extreme Value (GEV), 

Nakagami, and Weibull applied to Cluster 1 and Cluster 2, which consist of districts with higher and lower 

average schooling durations, respectively. In Cluster 1, which includes areas with better educational access, 
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the GEV distribution depicts a pattern with a longer left tail, indicating lower variability in schooling duration 

across some districts, even though the majority have higher values. This reflects that while educational access 

in Cluster 1 is generally better, there are still some regions facing challenges. The Nakagami distribution in 

Cluster 1 appears more concentrated around the median value, suggesting relatively low variability, 

indicating greater educational stability. The Weibull distribution is the most suitable for describing long and 

stable education durations in Cluster 1, as shown by its long right tail representing higher schooling lengths. 

Conversely, Cluster 2 includes districts with lower average schooling durations. The GEV distribution 

effectively captures extreme values in this cluster, particularly in areas with very low educational attainment. 

Its long-left tail indicates many districts with persistently low schooling durations, though a few outliers show 

improvement. The Nakagami distribution captures high heterogeneity in Cluster 2 with a wider spread, 

indicating significant variation among districts. Meanwhile, the Weibull distribution is less suitable in Cluster 

2, evidenced by its shorter tail and limited representation of variation. Overall, GEV and Nakagami 

distributions perform better in modeling schooling duration in Cluster 2, while Weibull is more appropriate 

for Cluster 1, which is characterized by a more stable distribution. 

3.3 Criteria for the Best Distribution Model 

After estimating parameters and conducting the Goodness-of-Fit (GoF) tests for each distribution, the 

next step is to evaluate the probability distribution models based on information criteria to determine which 

model best fits the schooling duration data in Cluster 1 and Cluster 2. Table 3 presents the values of AIC, 

BIC, AICc, CAIC, and HQC for each probability distribution (GEV, Nakagami, and Weibull) in both clusters. 

AIC and AICc focus more on model fit with lighter penalties for the number of parameters, while BIC and 

CAIC impose greater penalties on model complexity, especially with larger sample sizes. HQC provides a 

balanced evaluation, particularly when dealing with larger sample sizes, with more moderate penalties 

compared to BIC. These information criteria values are used to determine which model best fits the data and 

to ensure that the chosen model is not overfit, which often occurs if the model is too complex. 

Table 3.  AIC, BIC, AICc, CAIC, and HQC (Clusters 1 and 2) 

Cluster 1 

Distribution AIC BIC AICc CAIC HQC 

GEV 31.6286 33.5458 34.0286 34.5076 31.4512 

Nakagami 31.2364 32.5145 32.3273 32.5559 31.1181 

Weibull 30.7368 32.0149 31.8277 32.0563 30.6184 

Cluster 2 

Distribution AIC BIC AICc CAIC HQC 

GEV 25.5903 27.5074 27.9903 28.4692 25.4128 

Nakagami 24.5479 25.8260 25.6388 25.8674 24.4296 

Weibull 24.3574 25.6355 25.4483 25.6769 24.2391 

Based on the results in Table 3, it is evident that for Cluster 1, the Weibull distribution has the lowest 

information criteria values across all categories (AIC, BIC, AICc, CAIC, HQC), indicating that this model is 

the best fit for describing the schooling duration distribution in areas with better educational access. The 

lower AIC and AICc values for Weibull suggest that this model provides an optimal balance between fit and 

parameter complexity, while the lower BIC and CAIC values compared to other models indicate that Weibull 

is not overly complex for the sample size used. Therefore, Weibull is considered the best model for Cluster 

1, as it captures the stable and long education duration patterns effectively. 

For Cluster 2, the Weibull distribution also has the lowest information criteria values compared to GEV 

and Nakagami, particularly in AIC, AICc, and HQC. Although GEV and Nakagami provide good fits in the 

GoF tests, the Weibull distribution shows superior overall performance in capturing the schooling duration 

distribution pattern in Cluster 2, with lower complexity penalties. The low AIC and AICc values for Weibull 

in Cluster 2 indicate that this distribution can describe the extreme variability present in the data, but with a 

simpler model compared to the others. 

Overall, based on the evaluation results using information criteria, Weibull is the best probability 

model for both clusters. While GEV and Nakagami perform well in capturing extreme patterns and high 

variability, Weibull provides a better balance between fit and complexity, making it a more optimal model 
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for describing schooling duration distributions in regions with diverse educational characteristics, in both 

Cluster 1 and Cluster 2. These findings support the decision to use Weibull as the primary model in this 

analysis, as it offers a clearer representation of education duration patterns and their implications for 

educational policy in Papua. 

3.4 Weibull Model of Education Duration in Papua Province (2010-2023) Based on Regional Clusters 

The Weibull distribution has been identified as the most suitable model for describing the average 

schooling duration in Papua Province from 2010 to 2023, covering both Cluster 1 and Cluster 2. The selection 

of the Weibull distribution is based on its effectiveness in modeling schooling duration variables, particularly 

in capturing the variability in education across different regencies. This model is characterized by scale and 

shape parameters, which enable a more precise representation of educational trends and disparities. 

To further illustrate the disparities in schooling duration across Papua Province, Figure 3 presents a 

spatial clustering of the 26 regencies. The 𝑘-means clustering algorithm classifies the districts into two main 

groups based on their average years of schooling (2010–2023): 

• Cluster 1 (Blue): Represents regencies with higher average schooling duration, indicating better 

educational infrastructure and accessibility. 

• Cluster 2 (Red): Represents districts with lower schooling duration, which suggests limited access to 

education, inadequate infrastructure, and educational disparities. 

This clustering provides a clearer visualization of the regional disparities in education and serves as an 

important reference for targeted policy interventions. Although this study attempted to employ area-colored 

maps to enhance the spatial differentiation of clusters, the final map visualization was generated using 

MATLAB’s Mapping Toolbox, which has limited support for full polygon-based area color rendering 

using shapefile data under certain attribute conditions. Specifically, the color assignment relies on the 

accuracy of region name matching in the shapefile attributes and the rendering capabilities of MATLAB’s 

default plotting engine. As a result, the current visualization retains region boundaries and labeled cluster 

points, while polygon fill color may not appear due to technical limitations in the shapefile’s attribute 

integration. Nonetheless, the clustering patterns remain visually interpretable and align with the analytical 

results presented in subsequent sections. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Clustering of Papua Province based on Schooling Duration 

Generated using MATLAB 2024b (Mapping Toolbox) 

Figure 3 highlights the spatial patterns of educational disparities in Papua Province, emphasizing the 

clear separation between the two clusters. The blue-marked regencies demonstrate stronger educational 

performance, while the red-marked regencies struggle with lower schooling durations. These visual insights 

reinforce the statistical findings presented in Table 4, which provides a quantitative comparison between the 



BAREKENG: J. Math. & App., vol. 19(4), pp. 2693- 2708, December, 2025. 2703 

 

 

two clusters based on key statistical indicators such as mean, standard deviation, minimum, maximum, and 

median schooling duration. 

Table 4.  Descriptive Statistics Table 

Cluster Mean 
Standard 

Deviation 
Minimum Maximum Median 

Cluster 1 (Higher 

schooling duration) 
8.70 0.66 7.53 9.67 8.71 

Cluster 2 (Lower 

schooling duration) 
3.51 0.52 2.61 4.32 3.52 

Table 4 provides statistical evidence of the disparities observed in Figure 3: 

• Cluster 1 has a higher mean schooling duration (8.70 years) with a relatively low standard deviation 

(0.66), indicating homogeneity in educational outcomes. The minimum and maximum values range from 

7.53 to 9.67 years, with a median of 8.71 years, suggesting that most regencies in this cluster align with 

or slightly exceed the national average schooling duration, which is approximately 8.5 years (BPS, 

2023). 

• Cluster 2 consists of regencies with lower schooling duration, exhibiting a mean of 3.51 years and a 

standard deviation of 0.52, which still reflects noticeable disparities in educational attainment. The 

distribution of schooling duration in this cluster ranges from 2.61 to 4.32 years, with a median of 3.52 

years. 

These findings underscore significant educational inequalities, highlighting the necessity of targeted 

policies in Cluster 2 to enhance education access and bridge disparities among regencies. 

For Cluster 1, which includes districts with higher average schooling durations, such as Merauke, 

Jayapura, Nabire, Kepulauan Yapen, Biak Numfor, Mimika, Boven Digoel, Sarmi, Keerom, Waropen, and 

Supiori, the Weibull distribution has a shape parameter 𝛽 of 16.1272 and a scale parameter 𝜂 of 8.9931.  

𝑓(𝑥) =
16.1272 

8.9931 
(

𝑥

8.9931 
)

16.1272 −1

exp (− (
𝑥

8.9931 
)

16.1272 

) (15) 

The large shape parameter indicates that this distribution has a long tail, illustrating the variability 

among individuals in completing their education, even though the majority of the population in this area has 

a relatively long schooling duration. Meanwhile, the large-scale parameter signifies that the average 

schooling duration in Cluster 1 is relatively high. In other words, most districts in this cluster exhibit stability 

in access to and quality of education, reflecting better infrastructure and educational support compared to 

other regions. For Cluster 2, which includes areas with lower average schooling durations, such as 

Mamberamo Raya, Nduga, Lanny Jaya, Mamberamo Tengah, Yalimo, Puncak, Dogiyai, Jayawijaya, Paniai, 

Puncak Jaya, Mappi, Asmat, Yahukimo, Pegunungan Bintang, and Tolikara, the Weibull distribution also 

provides a good fit, but with different parameters. In this cluster, the shape parameter 𝛽 of the Weibull 

distribution is 8.07662, while the scale parameter 𝜂 is 3.73006.  

𝑓(𝑥) =
8.07662 

3.73006 
(

𝑥

3.73006 
)

8.07662 −1

exp (− (
𝑥

3.73006 
)

8.07662 

) (16) 

The smaller shape parameter compared to Cluster 1 indicates greater variability in educational duration 

among these districts. With a long right tail in the distribution, the Weibull model captures a more diverse 

pattern of schooling duration, where some individuals take significantly longer to complete their education. 

The lower scale parameter also reflects that the average schooling duration in Cluster 2 is generally lower, 

indicating that educational access in these areas is still limited and that there are significant challenges 

regarding educational infrastructure and the quality of teaching staff. 

Overall, the Weibull distribution provides deep insights into the educational characteristic differences 

between Cluster 1 and Cluster 2. In Cluster 1, the Weibull model indicates stability and a long duration of 

education, with the distribution being more concentrated around higher schooling durations. Conversely, in 

Cluster 2, the Weibull model reveals a wider distribution with high variability, indicating disparities in access 

to and quality of education in this region. These findings have important implications for policymakers, 

particularly in designing educational improvement programs in Cluster 2 areas, such as Yahukimo, Nduga, 

and Pegunungan Bintang, which require more significant interventions in terms of accessibility and 

educational facilities. 
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3.5 Implications for Policy Based on Analysis Results 

Based on the analysis of the probability distribution of average schooling duration in Papua Province, 

there are significant policy implications to improve the quality and accessibility of education. Cluster 1, which 

encompasses areas with better educational access and higher average schooling durations, indicates that 

policy interventions in this region can focus on enhancing the quality of education and infrastructure, such as 

teacher training and educational technology. Conversely, Cluster 2, which includes districts with lower 

average schooling durations and significant challenges in educational access, requires more targeted policies 

to improve physical infrastructure and enhance accessibility, such as building schools and transportation 

facilities in remote areas. The government and related institutions should allocate resources more effectively, 

particularly in areas that exhibit high educational variability, such as Yahukimo, Nduga, and Pegunungan 

Bintang. Sustainable policies, involving collaboration between the central government, regional authorities, 

and international agencies, are crucial to addressing existing educational disparities and achieving overall 

improvements in educational quality in Papua. 

4. CONCLUSION 

Based on the analysis of the Human Development Index (HDI) data regarding average schooling 

duration in Papua Province from 2010 to 2023, classified using the 𝑘-means clustering method, this study 

successfully identified two main clusters that reflect significant differences in educational characteristics 

across 26 districts. Cluster 1, consisting of districts with higher average schooling durations such as Merauke, 

Jayapura, and Nabire, shows a more uniform and stable educational distribution pattern. The Weibull 

distribution model applied to this cluster indicates better educational access, with the majority of the 

population able to complete education over a longer duration. In contrast, Cluster 2, which includes districts 

with lower average schooling durations such as Mamberamo Raya, Nduga, and Yahukimo, presents more 

serious challenges related to access and educational quality. The Weibull distribution is also suitable for this 

cluster, but with parameters reflecting greater educational variability, where some individuals take longer to 

complete their education, and the overall average schooling duration is lower compared to Cluster 1. This 

model demonstrates good Goodness-of-Fit (GoF) results, indicating that Weibull is the most appropriate 

model to describe educational distribution in both clusters. These findings are significant for policymakers, 

providing guidance for designing more effective and targeted educational interventions, particularly in 

Cluster 2, which still lags in access and quality. By leveraging these results, the government and related 

institutions are expected to allocate educational resources more efficiently, especially in districts requiring 

special attention, such as Yahukimo, Nduga, and Pegunungan Bintang, to enhance educational quality and 

achieve better educational equity in Papua. 
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