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 ABSTRACT 

Article History: 
Skeletal malocclusion, a common orthodontic condition, affects jaw function and dental 

health. It is often caused by genetic factors, abnormal growth, bad habits, or trauma. 

Conventional diagnostic models often fail to generalize across diverse datasets, leading 

to overfitting and poor test performance. This study aimed to improve diagnostic accuracy 

by incorporating Vision Attention mechanisms into a custom Convolutional Neural 

Network (CNN), enabling the model to focus on critical regions in X-ray images. A total 

of 491 radiographic images depicting facial skeletal structures with various malocclusion 

types (Classes 1, 2, and 3) were used in this study. A custom CNN was developed and 

evaluated both with and without attention mechanisms—specifically, Scaled Dot Product 

Attention and Multihead Attention—to assess their impact on classification performance. 

The baseline CNN without attention achieved an accuracy of 0.68. With Scaled Dot 

Product Attention, accuracy improved to 0.72, while Multihead Attention achieved the 

highest accuracy of 0.76. Evaluation using weighted average precision, recall, and F1-

score showed that attention mechanisms significantly enhanced the model’s ability to 

differentiate between malocclusion classes. Notably, the Multihead Attention model 

yielded the best performance, reducing misclassification errors and improving 

generalization. Confusion matrix analysis revealed that it had the lowest classification 

errors, especially in distinguishing between Class 0 and Class 1. These results suggest 

that incorporating attention mechanisms, particularly Multihead Attention, enhances 

CNN performance by improving feature extraction and classification accuracy. Future 

research should explore more diverse datasets and implement advanced augmentation 

techniques to improve clinical reliability. 
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1. INTRODUCTION  

Malocclusion is a significant dental and jaw health issue, as it can affect oral function and lead to 

various complications. Globally, its prevalence is estimated at around 56%, with the highest rates reported in 

Africa (81%) and Europe (72%) [1]. In Indonesia, a study in Yogyakarta found that 57.3% of children suffer 

from Class I malocclusion, 41.6% from Class II, and 3.3% from Class III, emphasizing the need for 

appropriate and early treatment [2]. This highlights the importance of accurate and accessible diagnostic tools 

to support orthodontic care and early intervention.  

Table 1. Malocclusion Characteristics 

Malocclusion Class Main Characteristics 

Class I (Normal/Mild Malocclusion) 

Relatively normal bite with slight misalignment of the teeth. The upper teeth 

slightly overlap the lower teeth, but the relationship between the upper and 

lower jaws remains normal. 

Class II (Retrognathic/Overbite) 

The upper jaw is positioned ahead of the lower jaw, resulting in an overbite 

(upper teeth covering most of the lower teeth). It can be divided into Division 

1 (protruding upper incisors) and Division 2 (upper incisors tilted inward). 

Class III (Prognathic/Underbite) 
The lower jaw is positioned ahead of the upper jaw, resulting in an underbite 

(lower teeth in front of the upper teeth). 

Based on Table 1, these malocclusion classes also affect the overall facial profile and jaw positioning. 

In Class I, there are usually no significant issues with jaw alignment, although dental problems such as 

crowding or spacing may occur. In Class II cases, the lower jaw appears smaller or recessed, leading to a 

convex facial profile. Conversely, Class III malocclusion often presents with a prominent lower jaw, resulting 

in a concave facial appearance or a more pronounced chin. Understanding these distinctions is essential in 

orthodontic diagnosis and treatment planning [3]. 

Biologically and medically, these distinctions are critical because each class has different etiologies, 

implications for facial growth, and treatment strategies. For instance, Class II and III malocclusions may 

require orthopedic or even surgical intervention, while Class I might be managed with dental braces alone. 

From a medical imaging perspective, these differences are visible in the relative positioning and angles of the 

jaw bones and dental arches on lateral skull radiographs. Accurate classification helps clinicians develop 

appropriate treatment plans, predict growth patterns, and avoid complications in long-term oral health. 

Therefore, automating this classification using deep learning can support orthodontists in diagnosis and 

reduce subjectivity in clinical assessments [3]. 

Deep learning, particularly Convolutional Neural Networks (CNNs), has shown great potential in 

classifying skeletal malocclusion from radiographic images by automatically extracting features related to 

jaw positioning and facial anatomy [4], [5]. However, CNNs often struggle to emphasize the most relevant 

regions in complex medical images, which can result in suboptimal classification accuracy. To overcome this 

limitation, vision attention mechanisms have been introduced to help the model focus on important image 

areas while minimizing the influence of irrelevant features [6], [7]. 

Despite prior successes, existing deep learning models still face challenges such as generalizing across 

diverse patient data and imaging conditions. Additionally, many models operate as “black boxes”, offering 

little transparency in how predictions are made. To address these issues, interpretability techniques like Grad-

CAM (Gradient-weighted Class Activation Mapping) are employed to visually reveal the image regions that 

influence model predictions. This not only improves trust in AI-driven diagnostics but also provides clinicians 

with deeper insights.  

This study proposes a skeletal malocclusion classification model based on a custom CNN architecture 

integrated with Scaled Dot Product Attention and Multihead Attention mechanisms. These attention modules 

are designed to guide the model in identifying critical regions in radiographic images, thus improving 

diagnostic precision. By comparing the performance of CNN models with and without attention mechanisms, 

the research evaluates the effectiveness of attention in enhancing classification accuracy. 

Numerous studies have explored CNNs for malocclusion and medical image classification. For 

example, CNNs were utilized to classify malocclusion from cranio-spinal cephalometric images, both with 

and without jaw masking [8], and to predict orthognathic surgery needs in patients with dentofacial 

dysmorphisms using cephalograms [9]. DenseNet161, ResNet152, GoogleNet, and VGG16 have been 
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applied to automatically classify sagittal craniofacial patterns, with DenseNet161 reportedly performing best, 

although clear accuracy metrics were not provided [10]. Additionally, CNNs with Grad-CAM were used to 

predict mandibular growth trends in children with anterior crossbite [11], and the cut-out method was 

implemented to focus on incisors in malocclusion classification, though results were not optimal [3]. CNNs 

have also been widely used in broader medical imaging tasks, such as brain tumor classification using MRI 

images, demonstrating their versatility in handling complex visual data [12]. 

Hybrid methods combining CNNs with other machine learning models have also been proposed. An 

ensemble approach was used to detect periodontal disease and malocclusion, although details on data 

evaluation were limited [13]. CNNDWNet, combined with Gradient Boosting, was applied for COVID-19 

and pneumonia classification from CT and X-ray images [14]. These studies highlight the potential of hybrid 

models, but many lacked transparency in evaluation or failed to demonstrate superior performance over 

standalone CNNs. 

Outside of CNNs, other studies used rule-based and machine learning algorithms for early prediction 

of Class III malocclusion from profile images, with traditional machine learning performing better than deep 

learning in that specific context [15]. Heuristic methods were also employed to detect Class III malocclusion 

using facial landmarks, but their performance varied across skeletal classes [16]. Another work classified 

sagittal spinal patterns in children using lateral cephalograms and profile photos [17]. 

Although previous works have demonstrated the utility of CNNs in malocclusion detection, several 

challenges remain. Many models struggle with generalization, lack interpretability, and do not leverage 

attention mechanisms to focus on critical image regions. Moreover, few studies evaluate or compare the 

impact of integrating attention into CNN architectures. Our research addresses these gaps by proposing a 

Custom CNN enhanced with Scaled Dot Product Attention and Multihead Attention. We explicitly assess 

their effects on classification performance and interpretability using tools like Grad-CAM, providing a more 

transparent and clinically relevant diagnostic model. 

2. RESEARCH METHODS 

2.1 Research Stages 

As shown in Figure 1, the first stage involves identifying relevant data sources and collecting or 

downloading the data, as well as checking the authenticity and quality of the data. Next, the data is processed 

through pre-processing to clean, tidy, and prepare the data for further analysis. The next stage is model 

building, which involves building a model or algorithm that is appropriate to the research being conducted. 

In the context of CNN and vision attention, this involves creating a CNN architecture that fits skeletal 

malocclusion data, as well as using vision attention techniques to improve model performance. After the 

model is created, the next step is training the model on previously processed data. The model validation stage 

is then carried out by testing the model on data that has never been seen before to measure model performance 

objectively. This also involves a model optimization process, if necessary. Model evaluation is carried out to 

analyze the results of the model that has been trained and validated, including identifying the strengths, 

weaknesses, and limitations of the model developed.  

 
Figure 1. Research Stages 
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2.2 Dataset 

The dataset, as shown in Figure 2, used in this study was originally collected by researchers from 

Universiti Teknologi Malaysia (UTM). It comprises 491 radiographic images of facial skeletal structures 

categorized into three malocclusion classes: Class I with 240 images, Class II with 184 images, and Class III 

with 67 images. This study utilizes the dataset solely for training and evaluating the proposed classification 

model.  

 
Figure 2. Dataset Malocclusion 

2.3 Data Pre-Processing 

Data pre-processing ensures that the dataset is of high quality and ready for CNN training and testing. 

Several techniques are used in data processing. First, image loading and normalization are performed to 

transform the images into a suitable format for processing by the Convolutional Neural Network (CNN). 

Normalization is applied to scale pixel values between 0 and 1, which enhances model stability and 

accelerates convergence during training. Subsequently, cropping and resizing techniques are employed to 

remove irrelevant parts of the images while maintaining the critical regions that contribute to classification 

accuracy. After cropping, the images are resized to a standard dimension to ensure uniformity across the 

dataset. 

Categorical labels are converted into one-hot encoded format. This transformation ensures that the 

model can effectively process multi-class classification tasks by representing each class as a separate binary 

vector. Next, the dataset is split into training, validation, and testing subsets with an 80:10:10 ratio. This 

ensures that the model is trained on a portion of the data while another portion remains unseen for evaluation, 

allowing an assessment of the model’s ability to generalize beyond the training data. Oversampling 

techniques are applied to address class imbalance issues. This process involves duplicating samples from 

underrepresented classes to achieve a balanced distribution, thereby preventing the model from becoming 

biased toward majority classes.  

All training and experiments were performed using the free tier of Google Colaboratory, a cloud-based 

development environment equipped with GPU acceleration. The implementation was done in Python using 

TensorFlow and Keras, along with libraries such as NumPy, Pandas, scikit-learn, Matplotlib, and Seaborn. 

2.4 CNN Custom 

The main structure of a CNN consists of several layers, including convolutional layers responsible for 

performing convolution operations on the input image, followed by other layers such as pooling layers and 

fully connected layers [18], [19]. The application process involves loading pre-processed images (resized, 

cleaned, and augmented) into the model, which represents them as 3D tensors. These tensors contain height, 

width, and color dimensions. 
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The convolutional layers apply a series of filters to extract basic visual features such as edges, textures, 

and colors. After convolution, the ReLU activation function introduces non-linearity by setting negative 

values to zero, helping the model capture complex relationships between features and preventing vanishing 

gradients. Max pooling reduces image dimensions by selecting the maximum value from sub-areas, retaining 

essential information. 

Once features are extracted, they are flattened into a 1D tensor for the fully connected layer, which 

learns the non-linear relationships between features and class labels. During training, the model minimizes 

prediction errors by optimizing parameters using the Adam optimizer, which adjusts learning rates for each 

parameter to reach convergence quickly and stably. After training, the model is used to make predictions on 

new images, and performance is evaluated using metrics such as accuracy, precision, recall, and F1-score 

[20]. 

 
Figure 3. Architecture of CNN  

As shown in Figure 3 and Table 2, this CNN architecture is designed to accept color images with 

dimensions of 224×224×3, meaning that each image has a height of 224 pixels, a width of 224 pixels, and 3 

color channels (RGB). This input serves as a starting point in processing the features that will be extracted 

by the subsequent layers. This architecture has three main blocks consisting of convolutional layers. 

Table 2. Summary Table of Architecture CNN 

Layer (Type) Output Shape Param  

InputLayer (None, 224, 224, 3) 0 

Conv2D (32 filters) (None, 224, 224, 32) 896 

MaxPooling2D (None, 112, 112, 32) 0 

Conv2D (64 filters) (None, 112, 112, 64) 18,496 

MaxPooling2D (None, 56, 56, 64) 0 

Layer (Type) Output Shape Param 

Conv2D (128 filters) (None, 56, 56, 128) 73,856 

MaxPooling2D (None, 28, 28, 128) 0 

Flatten (None, 100352) 0 

Dense (128 units) (None, 128) 12,845,184 

Dropout (None, 128) 0 

Dense (Output, 3 classes) (None, 3) 387 

The first block consists of a single convolution layer with 32 3×3 filters, using the ReLU activation 

function and “same” padding. The main purpose of this convolution layer is to extract basic features from the 

input image, such as edges and textures. After that, a max pooling operation with a size of 2×2 is performed 

to reduce the spatial dimension and retain important information. The second block follows the same pattern 

but with an increased number of filters to 64. The increase in the number of filters aims to capture more 

complex features, such as broader shape and contour patterns. The third block has a convolution layer with 

128 filters, which allows for the refinement of more abstract high-level features from the image. After this 

convolution process, max pooling is applied again to reduce the dimensionality and increase computational 

efficiency. The convolutional layers in this architecture play a role in extracting features with increasing 

complexity as the network deepens. Meanwhile, the pooling layers help reduce the number of parameters and 

prevent overfitting by retaining the most significant information from the extracted features. 
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After going through a series of convolution and pooling layers, the extracted features are flattened into 

a one-dimensional vector through a flattening process. This vector is then passed to a fully connected layer 

with 128 neurons and a ReLU activation function. This layer is responsible for connecting the previously 

extracted features into a more meaningful representation for the classification task. To reduce the risk of 

overfitting, a 50% dropout is applied, which randomly deactivates half of the neurons during the training 

process. This technique improves the generalization of the model by reducing over-reliance on a particular 

subset of neurons. The last layer consists of several neurons corresponding to the number of classes in the 

classification task. Each neuron in this layer uses a softmax activation function, which transforms the output 

into a probability distribution. The softmax function ensures that the sum of the probabilities of all classes is 

1, allowing the model to produce predictions that can be interpreted well.  

2.5 Scaled Dot Product Attention 

Vision Scaled Dot Product Attention is a mechanism used in image-processing models like 

Transformers for tasks such as image segmentation and restoration. This attention mechanism helps the model 

focus on important parts of the image during processing. As shown in Figure 4 and Table 3, attention is 

applied before the flattened data is processed in the fully connected layer. 

 
Figure 4. CNN Architecture with Scaled Dot Product Attention 

Table 3 shows the architecture summary of the CNN model enhanced with Scaled Dot Product 

Attention. The model begins with three convolutional blocks (Conv2D + MaxPooling), gradually increasing 

the number of filters (32, 64, 128), followed by flattening the feature maps. Three parallel Dense layers 

generate the Query, Key, and Value vectors, which are fed into the Scaled Dot Product Attention mechanism. 

The attention output is then concatenated with the original flattened features to enrich contextual 

understanding. This combined feature vector is passed through a Dense layer, dropout for regularization, and 

finally a softmax output layer for 3-class classification. The architecture integrates attention to enhance 

feature weighting and interpretability while maintaining the CNN backbone for spatial feature extraction. 

Table 3. Summary Table of CNN Architecture with Scaled Dot Product 

Layer (Type) Output Shape Param  Connected to 

InputLayer (None, 224, 224, 3) 0 - 

Conv2D (32 filters) (None, 224, 224, 32) 896 InputLayer 

MaxPooling2D (None, 112, 112, 32) 0 Conv2D 

Conv2D (64 filters) (None, 112, 112, 64) 18,496 MaxPooling2D 

MaxPooling2D (None, 56, 56, 64) 0 Conv2D 

Conv2D (128 filters) (None, 56, 56, 128) 73,856 MaxPooling2D 

MaxPooling2D (None, 28, 28, 128) 0 Conv2D 

Flatten (None, 100352) 0 MaxPooling2D 

Dense (128 units) x3 (None, 128) 38,535,552 
Flatten (shared 

connection) 

ScaledDotProductAttention (None, 128) 0 Dense x3 

Concatenate (None, 100480) 0 Flatten + Attention Output 

Dense (128 units) (None, 128) 12,861,568 Concatenate 

Dropout (None, 128) 0 Dense 

Dense (Output, 3 classes) (None, 3) 387 Dropout 
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As shown in Figure 5 and Equation (1), the attention process involves receiving input features from 

the CNN, which are then projected into three different matrices: Query (Q), Key (K), and Value (V), where 

√𝑑𝑘 is the dimension of the query and key vectors,  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 is the function calculating the weights, 𝑇 is 

the transpose operation, and  √𝑑𝑘 is a scaling factor to stabilize calculations [7]. 

 

Figure 5. Scaled Dot Product Attention Mechanism [7] 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (1) 

where: 

𝑄  : Query matrix 

𝐾  : Key matrix 

𝑉  : Value matrix 

𝑑𝑘   : Dimension of the key vectors 

𝑄𝐾𝑇  : Dot product between query and transposed key 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 : Normalizes scores to probabilities 

The query focuses on specific parts of the image, the key identifies correlations between features, and 

the value stores the relevant information. The dot product of the query and key is scaled by the square root 

of the key’s dimension to stabilize the output, followed by the application of softmax to compute attention 

weights. These weights are then multiplied by the value to produce the attention output, highlighting the 

important parts of the image [7]. 

2.6 Multihead Attention 

 
Figure 6. Multihead Attention Mechanism [7] 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂                                        (2) 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)                                                                  (3) 

 
Where: 

ℎ𝑒𝑎𝑑𝑖  : Output of the  ith attention head 
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ℎ   : Total number of heads 
𝑊𝑂  : Output projection matrix 
𝐶𝑜𝑛𝑐𝑎𝑡  : Concatenation operation over all heads 

𝑊𝑖
𝑄

, 𝑊𝑖
𝐾 , 𝑊𝑖

𝑉  : Linear projection matrices of queries, keys, and values for ℎ𝑒𝑎𝑑𝑖   
𝑄, 𝐾, 𝑉  : Query, Key, Value matrices 

In the Vision Multihead Attention mechanism, shown in Figure 6 and Equation (2) and Equation (3), 

multiple sets of queries, keys, and values are created, with each set processed in parallel through different 

linear projections. Each set, or "head," independently runs scaled dot-product attention, where the dot product 

between query and key is computed, scaled, and passed through softmax to calculate attention weights. After 

processing, the output from each head is concatenated into a single representation, integrating various 

perspectives obtained from each head [7]. 

Figure 7. CNN Architecture with Multihead Attention 

This final representation is then projected back through linear projection to produce the final output. 

By simultaneously focusing on different subspaces of the input data, Multihead Attention enhances the 

model’s ability to capture complex data patterns. Shown in Figure 7 and Table 4 after processing by the 

multihead layer, features are combined and processed by fully connected and output layers, allowing the 

CNN model to classify skeletal malocclusion based on the extracted and processed features. 

Table 4. Summary Table of the Multihead Attention Architecture  

Layer (Type) Output Shape Param  Connected to 

InputLayer (None, 224, 224, 3) 0 - 

Conv2D (32 filters) (None, 224, 224, 32) 896 InputLayer 

MaxPooling2D (None, 112, 112, 32) 0 Conv2D 

Conv2D (64 filters) (None, 112, 112, 64) 18,496 MaxPooling2D 

MaxPooling2D (None, 56, 56, 64) 0 Conv2D 

Conv2D (128 filters) (None, 56, 56, 128) 73,856 MaxPooling2D 

MaxPooling2D (None, 28, 28, 128) 0 Conv2D 

Flatten (None, 100352) 0 MaxPooling2D 

Dense (128 units) (None, 128) 12,845,184 Flatten 

Reshape x3 (None, 1, 128) 0 Dense 

MultiHeadAttention (None, 1, 128) 263,808 Reshape x3 

Flatten (None, 128) 0 MultiHeadAttention 

Concatenate (None, 100480) 0 Flatten (CNN) + Flatten (MHA) 

Dense (128 units) (None, 128) 12,861,568 Concatenate 

Dropout (None, 128) 0 Dense 

Dense (Output, 3 

classes) 
(None, 3) 387 Dropout 
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2.7 Training Configuration  

Table 5. Training Configuration 

Item Value / Setting 

Optimizer Adam (learning rate = 0.0001) 

Loss Function Categorical Crossentropy 

Metrics Accuracy 

Epochs 70 

Batch Size 64 

Early Stopping patience=5 

Input image size 224 x 224 x 3 

As shown in Table 5, the models are trained using the Adam optimizer with a learning rate of 0.0001. 

Adam is an efficient optimizer that helps the model learn quickly and smoothly. A small learning rate ensures 

the model doesn’t overshoot and learns in small, stable steps. The loss function used is categorical cross-

entropy, which is suitable for classification tasks with more than two categories. The accuracy metric is used 

to measure how often the model predicts the correct class. 

The training process runs for up to 70 full passes (epochs) over the training data. However, an early 

stopping mechanism is included to stop the training early if the model’s performance on the validation data 

does not improve for 5 consecutive epochs, helping prevent overfitting. The training data is divided into 

smaller batches of 64 images at a time. This is called the batch size and helps make training more efficient 

and stable. The validation data is prepared as a separate dataset (not split automatically), so the model can be 

evaluated on unseen data during training. Each input image is resized to 224 x 224 pixels with 3 color 

channels (RGB) — a standard size that balances detail and training speed, commonly used in CNN models 

like ResNet. 

2.8 Model Comparison 

After the evaluation of CNN models in classifying skeletal malocclusion using vision attention-based 

CNNs with image data is conducted using several common evaluation metrics for classification, such as 

accuracy, recall, precision, F1-score, and the confusion matrix.  

The confusion consists of: 

 True Positive (TP) : correctly predicted as a positive class. 

 False Positive (FP) : incorrectly predicted as a positive class. 

 False Negative (FN) : incorrectly predicted as a negative class. 

 True Negative (TN) : correctly predicted as a negative class. 

This evaluation helps examine the performance of the CNN and vision attention models in classifying 

radiographic images of skeletal malocclusion into the correct classes. Accuracy measures the ratio of correct 

predictions to the total number of data points. Precision measures how accurate the model is in identifying 

the positive class. Recall measures how well the model detects the positive class. F1-score is the mean of 

precision and recall, balancing both metrics. In this study, we use the weighted average (weight average) for 

precision, recall, and F1-score to account for class imbalances. The weighted average ensures that the 

contribution of each class to the final score is proportional to the number of samples in that class, preventing 

classes with fewer samples from disproportionately affecting the evaluation. This approach provides a more 

reliable overall assessment of the model’s performance across all classes. 

Accuracy is the ratio of the number of correct predictions to the total amount of data. This metric gives 

an idea of how well the CNN model is at classifying skeletal malocclusion radiographic images. This accuracy 

can be found by using the formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑃𝑖𝑘

𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖)𝑘
𝑖=1

(4) 
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where: 

𝑇𝑃𝑖  : True Positives for class 𝑖 
𝐹𝑃𝑖  : False Positives for class 𝑖 
𝐹𝑁𝑖 : False Negative for class 𝑖 
𝑘 : Number of classes 

Precision is the ratio between the number of positive classes that are correctly predicted and the total 

number of positive classes predicted by the model. This metric gives an idea of how accurate the model is in 

identifying skeletal malocclusion classes. Precision can be found using the formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑖) =  
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
(5) 

where: 

𝑇𝑃𝑖 : True Positives for class 𝑖 
𝐹𝑃𝑖 : False Positives for class 𝑖 

Recall is the ratio of the number of positive classes that are correctly predicted to the total number of 

positive classes that should be present. This metric gives an idea of how well the model can recognize skeletal 

malocclusion classes. This recall can be found by using the formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑖) =  
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
(6) 

where: 

𝑇𝑃𝑖 : True Positives for class 𝑖 
𝐹𝑁𝑖 : False Negatives for class 𝑖 

F1-score is the harmonic mean of precision and recall. This metric gives an idea of how well the 

model can maintain a balance between precision and recall. The F1-score can be found using the formula: 

F1 − score = 2 ×
 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑖) ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑖) + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖)
(7) 

where: 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑖) : Recall for class 𝑖 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖) : Precision for class 𝑖 

3. RESULTS AND DISCUSSION 

As seen in the training and validation curves for the CNN model, as shown in Figure 8 and Figure 9, 

the performance dynamics throughout the epochs provide insight into their learning behavior and 

generalization ability. The baseline CNN model exhibited a steady increase in training accuracy, reaching 

approximately 80% by the final epoch. However, its validation accuracy plateaued around 60–65% and 

fluctuated after the 15th epoch. This gap between training and validation performance indicates overfitting, 

where the model memorizes training data but struggles to generalize to unseen data. The training loss 

decreased significantly throughout the epochs, but the validation loss stopped improving and slightly 

increased, further confirming the presence of overfitting in the baseline model. 

 
Figure 8.  Training and Validation Accuracy of the CNN Model 
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Figure 9. Training and Validation Loss of the CNN Model 

In comparison shown in Figure 10 and Figure 11, the CNN model enhanced with Scaled Dot Product 

Attention showed improved learning stability. Training accuracy steadily rose to about 78%, while validation 

accuracy consistently increased to approximately 70% without drastic fluctuations. Both training and 

validation loss declined in parallel throughout the training, suggesting that this attention mechanism helped 

reduce overfitting and improved generalization. The model was better able to capture relevant feature 

relationships, leading to a more balanced and reliable performance. 

 
Figure 10. Training and Validation Accuracy of the CNN Model with Scaled Dot Product 

 
Figure 11.  Training and Validation Loss of the CNN Model with Scaled Dot Product 

The best results were observed in the CNN model incorporating Multihead Attention, shown in Figure 

12 and Figure 13, which achieved the highest training accuracy of around 92% and a validation accuracy of 

nearly 78%. The smaller gap between training and validation accuracy suggests strong generalization ability. 

The loss curves also support this, as both training and validation loss decreased significantly, with only minor 

fluctuations near the end. These results highlight that the Multihead Attention mechanism enables the model 

to learn richer feature representations, ultimately leading to superior classification performance. 
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Figure 12. Training and Validation Accuracy of the CNN Model with Multihead Attention 

 
Figure 13. Training and Validation Loss of the CNN Model with Multihead Attention 

The performance of the three models—CNN, CNN with Scaled Dot Product, and CNN with Multihead 

Attention—was evaluated based on the confusion matrix and classification report, as shown in Figure 14, 

Figure 15, Figure 16, and Table 6. The primary objective of this study was to enhance the classification 

accuracy of skeletal malocclusion.  

The baseline CNN model achieved an accuracy of 68%, the lowest among the three models. The 

addition of the Scaled Dot Product Attention mechanism improved the accuracy to 72%, indicating that this 

technique helps the model better capture feature relationships. The best-performing model was the CNN with 

Multihead Attention, achieving an accuracy of 76%, demonstrating that this mechanism provides richer 

feature representations and improves generalization. 

In precision analysis, the CNN model with Multihead Attention showed the highest precision, 

achieving an average weighted precision of 0.76. This indicates that it is more effective in reducing false 

positives compared to the other models. Similarly, for recall, the CNN with Multihead Attention 

outperformed the other models, suggesting its superior capability in recognizing samples across all classes. 

The F1-score, which balances precision and recall, showed that the CNN model with Multihead 

Attention consistently performed the best across all classes. The improved balance between precision and 

recall highlights the model's ability to detect samples with fewer errors. 

From the confusion matrices, the baseline CNN model exhibited a higher number of misclassifications, 

particularly between classes 0 and 1, showing that it struggles to distinguish between these two categories. 

The CNN model with Scaled Dot Product Attention reduced misclassification in class 2 but still had errors 

in class 1. The CNN model with Multihead Attention demonstrated the best prediction distribution, 

minimizing classification errors across all classes. This suggests that the Multihead Attention mechanism 

plays a crucial role in improving classification performance and reducing errors.  
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Figure 14. Confusion Matrix of the CNN Model 

 
Figure 15. Confusion Matrix of the CNN Model with Scaled Dot Product Attention 

 
Figure 16. Confusion Matrix of the CNN Model with Multihead Attention 
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Table 6. Classification Report 

Metric CNN 
CNN+Scaled 

Dot Product 

CNN+Multihead 

Attention 

Accuracy 0.68 0.72 0.76 

Avg Weight Precision 0.68 0.72 0.76 

Avg Weight Recall 0.68 0.72 0.76 

Avg Weight F1-Score 0.67 0.72 0.76 

Table 6 shows that the CNN + Multihead Attention model achieves the highest accuracy (0.76), 

outperforming both the baseline CNN model (0.68) and the CNN + Scaled Dot Product Attention model 

(0.72). This improvement can be attributed to the ability of Multihead Attention to capture multiple 

representation subspaces simultaneously, allowing the model to focus on different parts of the image in 

parallel. Unlike standard Scaled Dot Product Attention, which uses a single attention mechanism, Multihead 

Attention provides richer contextual understanding by combining diverse attention outputs. This leads to a 

more robust feature representation, especially in complex classification tasks like skeletal malocclusion, 

where fine-grained spatial patterns across facial structures are crucial for accurate prediction. Consequently, 

the model becomes better at distinguishing subtle variations between malocclusion classes, resulting in 

improved overall performance. 

  
(a) (b) 
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(c)  

Figure 17. ROC-AUC Result from (a) CNN, (b) CNN with Scaled Dot Product, and (c) CNN with 

Multihead Attention 

As shown in Figure 17 and Table 7, the ROC-AUC results for malocclusion classification using three 

different models: standard CNN, CNN with Scaled Dot Product Attention, and CNN with Multihead 

Attention, demonstrate strong overall performance, particularly for Class 2, which consistently achieved high 

AUC scores above 0.96 across all models. The CNN struggled with Class 0, showing the lowest AUC of 

0.76, indicating difficulty in distinguishing that class. The incorporation of attention mechanisms improved 

the model’s ability to handle more subtle features, as seen in the Scaled Dot Product Attention model, which 

raised Class 0 and Class 1 performance. The CNN with Multihead Attention achieved the best overall results, 

with AUC scores of 0.82, 0.86, and 0.97 for Class 0, Class 1, and Class 2, respectively. These findings suggest 

that attention mechanisms, particularly multihead attention, enhance the model’s discriminative capacity 

across all classes, especially for those previously harder to classify. 

Table 7. ROC-AUC Result 

Model Class 0 Class 1 Class 2 

CNN 0.76 0.83 0.96 

CNN + Scaled Dot Product 0.82 0.85 0.96 

CNN + Multihead Attention 0.82 0.86 0.97 

The Grad-CAM visualizations across the three models—namely the baseline CNN, CNN with Scaled 

Dot Product Attention, and CNN with Multihead Attention—demonstrate a progressive enhancement in 

model interpretability. The baseline CNN exhibits relatively dispersed activation regions, indicating less 

precision in localizing diagnostically relevant features within the cephalometric X-ray images. By 

incorporating Scaled Dot Product Attention, the model shows improved focus on key anatomical structures, 

reflecting an increased ability to capture salient patterns associated with skeletal malocclusion. The CNN 

model equipped with Multihead Attention further refines this capability, generating more concentrated and 

consistent heatmaps. This suggests that the model is able to attend to multiple informative regions 

simultaneously, enhancing both its predictive performance and explainability. These findings indicate that 

the integration of attention mechanisms can significantly improve the transparency and diagnostic relevance 

of deep learning models in medical image classification tasks. 
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Figure 18. Visualization Grad-Cam CNN 

 
Figure 19. Visualization Grad-Cam CNN with Scaled Dot Product 

 

 
Figure 20. Visualization Grad-Cam CNN with Multihead Attention 
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4. CONCLUSION 

4.1 Result Summary 

From the experimental results, it can be concluded that incorporating attention mechanisms into the 

custom CNN architecture significantly improves the model’s performance in classifying skeletal 

malocclusion images. The CNN model integrated with Multihead Attention (4 heads) achieved the highest 

accuracy of 0.76, outperforming the CNN with Scaled Dot Product Attention (0.72) and the baseline CNN 

without attention (0.68). These results indicate that attention mechanisms enhance the model’s ability to focus 

on important features, leading to better classification performance. Additionally, the use of attention was 

shown to increase the generalization ability of the model, as reflected in improved validation accuracy. 

4.2 Limitations 

Despite these improvements, the overall accuracy remains relatively modest at 0.76. This suggests that 

the model still struggles with certain classification tasks, particularly in classes with fewer training samples. 

A key limitation is the limited size and imbalance of the dataset despite using an oversampling method to fix 

the inbalance data, which negatively impacts the model’s ability to learn representative features across all 

classes. Furthermore, the architecture used in this study was relatively simple, and there was limited 

exploration of advanced feature extraction or optimization strategies, such as using augmented data. 

4.3 Future Research Directions 

Future studies should aim to address the data imbalance and size constraints by expanding the dataset 

and ensuring a more uniform class distribution. Exploring more advanced CNN architectures or integrating 

attention mechanisms with pre-trained models (such as Vision Transformers or hybrid CNN-Transformer 

models) could further enhance classification accuracy. Additionally, employing more sophisticated data 

augmentation techniques and tuning hyperparameters—such as learning rate, number of filters, and kernel 

size—may improve model robustness. Exploring transfer learning or adversarial training could also lead to 

performance gains. 
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