
 

https://doi.org/10.30598/barekengvol20no1pp0137-0154 
   

 

137 
     

 

 

 

March 2026     Volume 20 Issue 1 Page 0137–0154 

P-ISSN: 1978-7227   E-ISSN: 2615-3017 
 

BAREKENG: Journal of Mathematics and Its Applications 

UNILEVER STOCK PRICES FORECASTING WITH ENSEMBLE 

AVERAGING APPROACH ARIMA-GARCH AND SUPPORT 

VECTOR REGRESSION  

Elly Pusporani 1*, Alfi Nur Nitasari 2, Fatiha Nadia Salsabila 3,  

Irma Ayu Indrasta 4, M. Fariz Fadillah Mardianto 5 

 
1,2,3,4,5Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga 

Jln. Dr. Ir. H. Soekarno, Mulyorejo, Surabaya, Jawa Timur, 60115, Indonesia 

Corresponding author’s e-mail: * elly.pusporani@fst.unair.ac.id 

 

Article Info ABSTRACT 

Article History: 
Investment, mainly in stock prices, plays a significant role in the Indonesian economy. 

Accurate stock price forecasting can help investors make informed decisions. Unilever 

Indonesia Tbk (UNVR) exhibits high volatility in its closing stock prices, making it crucial 

to develop a reliable forecasting model. This study applies an ensemble averaging method 

that integrates the ARIMA-GARCH model and Support Vector Regression (SVR) to 

predict UNVR's closing stock prices from January 6, 2019, to November 5, 2023. The 

results indicate that the data can be modeled using ARIMA (0,2,1). However, the squared 

residuals of the model show heteroscedasticity, necessitating variance modeling using the 

ARCH-GARCH approach. The best combination of mean and variance modeling is 

achieved with ARIMA (0,2,1) – GARCH (1,1), yielding a Mean Absolute Percentage 

Error (MAPE) of 2.865%. Additionally, a nonparametric SVR model with parameters C 

= 4 and ε = 0 is applied, resulting in a MAPE of 2.94%. An ensemble averaging approach 

is implemented to optimize forecasting accuracy further, combining ARIMA-GARCH and 

SVR models. This ensemble approach improves predictive performance, achieving a final 

MAPE of 1.682%. These findings demonstrate that ensemble averaging effectively 

enhances stock price forecasting accuracy by leveraging linear and nonlinear modeling 

techniques. 
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1. INTRODUCTION 

Stock price analysis plays a crucial role in the investment decision-making process, as it enables 

investors to determine the optimal steps to take when buying and selling stocks [1]. Ideally, investors seek 

stocks with stable price trends that tend to increase over time. However, in reality, the market often exhibits 

high volatility and unexpected price fluctuations [2]. This situation underscores the importance of accurate 

stock price forecasting as a strategic tool for managing investment risk and improving the quality of decision-

making. Stock price forecasting has gained increasing attention in both academic research and financial 

practice, driving the development of various statistical and computational approaches. Among the most 

commonly used methods are time series models such as Autoregressive Integrated Moving Average 

(ARIMA) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH), which can capture 

temporal dependencies and model volatility in financial data 

Unilever Indonesia Tbk. (UNVR), a company that distributes consumer products in Indonesia, is a 

multinational company and one of the suppliers of care and beauty products. According to disclosure 

information by the Indonesian Stock Exchange (IDX) at the end of 2022, UNVR owned 32,424,387,500 

shares, accounting for around 84.99% [3].The closing value of UNVR's share price has very high volatility, 

requiring investors to consider future stock price movements to profit from their investment transactions  [4]. 

Ilma in [5] analyzed the comparison of the results of the prediction of the closing price of PT—Unilever 

Indonesia Tbk. using the fuzzy time series Chen and Lee’s fuzzy time series (FTS). The results of this study 

showed that the predictions produced by Chen and Lee's FTS methods showed good prediction results with 

MAPE below 10% and low MAE values. Permatasari in [6] analyzed the closing price of UNVR shares by 

taking the period from 2012 to 2021 using the decomposition method. This study's best decomposition model 

is an additive decomposition model with a MAPE of 0.1349. Irawan in [7] predicted UNVR's share price 

using the ARIMA model for data from 24 May 2010 to 26 May 2014. The results of this study obtained the 

best ARIMA model, namely ARIMA (1,1,1), but heteroscedasticity symptoms occurred, so the ARCH-

GARCH approach was carried out. Forecasting using the ARIMA model (1,1,1) managed to approximate the 

actual stock price value, and the impact of residual volatility of the ARCH model was minimal, so the addition 

of these effects did not significantly affect the results of stock price forecasting. 

To support the achievement of the eighth point of the Sustainable Development Goal (SDG), which 

relates to inclusive and sustainable economic growth and the creation of decent jobs, analyzing the financial 

performance of well-known companies, such as PT Unilever Indonesia Tbk (UNVR), plays a strategic role. 

UNVR is one of the companies classified as a blue-chip stock, characterized by a market capitalization 

exceeding 40 trillion rupiah, being a market leader in its industry, having high liquidity, and possessing strong 

fundamentals  [8]. As a leading company in the consumer goods sector, UNVR's stock performance reflects 

not only investor sentiment but also the stability of the domestic consumer market. This study focuses on 

forecasting the closing price of UNVR shares from January 6, 2019, to November 5, 2023, to provide insights 

for investors, portfolio managers, and policymakers in anticipating market fluctuations. In the face of 

increasingly uncertain market conditions, forecasting has become an essential tool in risk management and 

investment decision-making [9], [10]. The high volatility in UNVR's closing stock prices serves as the basis 

for selecting the appropriate predictive method to enhance the accuracy of estimates and the resilience of 

investment strategies. 

To address these issues, this study proposes an ensemble averaging approach that combines ARIMA-

GARCH and Support Vector Regression (SVR) models. ARIMA-GARCH is effective in capturing linear 

patterns and volatility dynamics [11], while SVR is capable of recognizing nonlinear relationships in complex 

stock market data [12]. Previous studies have demonstrated the strengths of each approach separately, such 

as the study by Dalimunthe et al. in predicting inflation using the ARCH-GARCH method [13] and by 

Soewignjo et al. in predicting the exchange rate of the Yuan against the Rupiah using SVR with high accuracy 

(MAPE <10%) [14]. By combining both, this ensemble model is expected to address the irregularity of 

variance in time series data while improving prediction accuracy. The simple averaging technique (equal-

weight averages) was chosen due to its efficiency, stability, and ease of implementation [15]. The main 

novelty of this research lies in the integration of statistical and machine learning models in the context of 

consumer sector stocks in Indonesia, as well as in the explicit evaluation of the performance of individual 

and combined models. The results of this research are expected to provide empirical contributions that support 

investment strategies, strengthen risk assessment, and enhance supervision in the Indonesian capital market. 
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2. RESEARCH METHODS 

2.1 Autoregressive Integrated Moving Average (ARIMA) 

ARIMA is an Autoregressive Moving Average (ARMA) model that handles non-stationary data. In 

overcoming the non-stationary nature of this data, a differencing process is carried out so that the data 

becomes stationary, and the amount of differencing is noted with 𝑑. In addition to stationary in the mean, the 

data to be analyzed should also satisfy the assumption of stationarity in variance. Stationary identification in 

variance can be known through the Box-Cox plot, so if the data is not stationary, the Box-Cox transformation 

must be carried out as follows. 

𝑍𝑡
(𝜆)

=
𝑍𝑡

(𝜆)
− 1

𝜆
,   − 1 < 𝜆 < 1, (1) 

by declaring the data 𝑍𝑡  at the time 𝑡 and symbolizing the value of the transformation parameter 𝜆. The 

following is the form of Box-Cox transformation on the data presented in Table 1. 

Table 1. Transformation Forms Box-Cox  

Transformation parameters values −𝟏 −𝟎. 𝟓 𝟎 𝟎. 𝟓 𝟏 

Transformation Forms 
1

𝑍𝑡

 
1

√𝑍𝑡

 ln 𝑍𝑡 √𝑍𝑡 𝑍𝑡 

Basis differencing is subtracting between today’s observations (𝑍𝑡) and previous observations 𝑍𝑡−𝑘 

[16]. The general form of the autoregressive model is denoted as ARIMA (𝑝, 𝑑, 𝑞) as follows [17]. 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝜃𝑞(𝐵)𝜀𝑡 , (2) 

where the AR operator is defined by  

𝜙𝑝(𝐵) = (1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝 ), (3) 

and the MA operator is defined by 

𝜃𝑞(𝐵) = (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞), (4) 

by being a 𝐵 backward shift operator and (1 − 𝐵)𝑑𝑍𝑡 expressing a stationary time series at the 𝑑𝑡ℎ 

differencing. This process is denoted by ARIMA (𝑝, 𝑑, 𝑞). How to choose the order of the ARIMA model 

(𝑝, 𝑞) is using the pattern of autocorrelation function (ACF) and partial autocorrelation function (PACF) 

concerning Table 2 as follows. 

Table 2. ARIMA Models 

Type ACF PACF 

ARIMA(𝒑, 𝒅, 𝟎) Heading gradually or wavily Towards zero after the 𝑞𝑡ℎ lag 

ARIMA(𝟎, 𝒅, 𝒒) Towards zero after the 𝑞𝑡ℎ lag Gradual decline or wavy 

ARIMA(𝒑, 𝒅, 𝒒) 
Gradually decreasing or wavy (until the 𝑞𝑡ℎ lag 

is still different from zero) 

Gradually decreased/wavy (until the 𝑞𝑡ℎ lag 

is still different from zero) 

2.2 ARCH-GARCH 

ARCH (Autoregressive Conditional Heteroscedastic) is used to handle heteroscedasticity in data. The 

general form of the ARCH model is as follows [18]. 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−1

2

𝑚

𝑖=1

;      𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑚 (5) 

where 𝜎𝑡 and 𝜀𝑡 mutually independent. 

GARCH (Generalized Autoregressive Conditional Heteroscedastic) is a development of ARCH that 

reduces the number of high orders in the ARCH model. The general form of the GARCH model is as follows. 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + ⋯ + 𝛼2𝜀𝑡−𝑝
2 + 𝜆1𝜎𝑡−1 

2 + 𝜆𝑞𝜎𝑡−𝑞
2 (6) 
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ARCH-GARCH influence testing was carried out after obtaining the ARIMA model by testing the 

quadratic residual from the best model obtained to detect the effect of heteroscedasticity using the Q-Ljung 

Box test with the following hypotheses [18]. 

𝐻𝑂: 𝜌(1) = 𝜌(2) = ⋯ = 𝜌(𝑘) = 0 ((Model does not have the effect of heteroscedasticity) 

𝐻1: there is at least one 𝑘 𝜖 1, 2, . . . , 𝑚 with 𝜌(𝑘) ≠ 0 (There is an effect of heteroscedasticity in the model) 

The test statistics used is  

𝑄 = (𝑛 + 2) ∑
𝑝𝑖

𝑛 − 1

𝑚

𝑖=1

; 𝑖 = number of lags, (7) 

where reject 𝐻0 if 𝑄 > 𝜒(1)
2 , accept 𝐻0 if 𝑄 < 𝜒(1)

2 . 

The Lagrange Multiplier (LM) test for ARCH tests the presence or absence of conditional 

heteroscedasticity against the ARCH model. This test is carried out by progressing the 𝑡th residual square 

against the constant and the value coefficients of 𝑡 − 1 lag to 𝑡 − 𝑘 lag as below. 

𝛼𝑡
2 = 𝛼0 + 𝛼1𝑎𝑡−1

2 + ⋯ + 𝛼𝑘𝑎𝑡−𝑘
2 (8) 

where 𝑘 is the maximum lag. The test hypothesis for detecting the presence of ARCH/GARCH elements in 

the residual mean model is as follows. 

𝐻0: 𝛼1 = ⋯ = 𝛼𝑘 = 0;  

𝐻1: There is at least one 𝛼𝑞 ≠ 0 for 𝑞 = 1, 2, . . . , 𝑘. 

The statistics of the ARCH-LM test 𝐿𝑀 = 𝑇𝑅2 where 𝑇 is the coefficient of the number of 

observations and 𝑅2 is the coefficient of determination in the regression results Eq. (8). With the critical area 

of reject 𝐻0 if 𝑇𝑅2 > 𝜒𝛼

2
,𝑘

2 , thus indicating the presence of symptoms of heteroscedasticity and ARCH-

GARCH modeling can be done. 

If there is an ARCH-GARCH effect, the next step is the determination of the order ARCH-GARCH 

based on the PACF plot of residuals 𝜎𝑡
2 . If the residual 𝜎𝑡

2 exhibits a pattern of autoregressive behavior 

AR(𝑝), then the residual follows an ARCH(𝑝) model. The determination of the order ARCH-GARCH uses 

the Akaike Information Criterion (AIC) value with the following formulas [18]. 

𝑨𝑰𝑪 = −𝟐𝒍𝒐𝒈𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 + 𝟐(𝒒 + 𝟏) (
𝑵

𝑵 − 𝒒 − 𝟐
) , not constant,

𝑨𝑰𝑪 = −𝟐𝒍𝒐𝒈𝒍𝒊𝒌𝒆𝒍𝒐𝒉𝒐𝒐𝒅 + 𝟐(𝒒 + 𝟏) (
𝑵

𝑵 − 𝒒 − 𝟑
) , constant.

(𝟗) 

2.3 Support Vector Regression 

The SVR method can be used to determine the hyperplane best as a regression function, minimizing 

the chance of error by maximizing limits. The concept of the SVR method is to have training data 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑖, 𝑦𝑖) with 𝑥𝑖𝜖ℝ2 is the to-𝑖 vector where  𝑖 = 1,2, … , 𝑛, 𝑑 is the dimension and 𝑦𝑖 is 

the value of the goal or target. The general equation of the SVR model is written as follows [19]. 

𝑓(𝑥) = 𝑤′𝜙(𝑥) + 𝑏, (10) 

where 𝑤 is a 𝑛 dimension of weighting vector, 𝜙(𝑥) is a function that maps 𝑥 in 𝑛 dimensional space, and 𝑏 

expresses bias. The next step is to minimize 𝑤 to obtain a suitable generalization of the regression function 

𝑓(𝑥). Based on this, the solution to the optimization problem is as follows. 

𝑚𝑖𝑛𝑤

1

2
||𝑤||

2
{
𝑦𝑖 − 𝑤′𝑥𝑖 − 𝑏 ≤ 𝜀;

𝑤′𝑥𝑖 + 𝑏 − 𝑦𝑖 .
(11)  

In the regression function 𝑓(𝑥), all points within the interval 𝑓(𝑥) ± 𝜀 are considered qualified, while 

points outside this interval are considered unqualified. Therefore, slack variables 𝜉 and 𝜉∗ are added to 

address inappropriate constraints in optimization issues. Consequently, Eq. (11) can be converted into the 

following form. 
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𝑚𝑖𝑛𝑤

1

2
||𝑤||

2
+ 𝐶(𝜉𝑖 + 𝜉𝑖

∗). (12) 

The following constraint functions are used to overcome optimization problems. 

{

𝑦𝑖 − 𝑤′𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖;

𝑤′𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗;

𝜉𝑖, 𝜉𝑖
∗ ≥ 0.

(13) 

By solving optimization problems Eq. (13), it is obtained that 

𝑤 = ∑(𝛼𝑖
∗ − 𝛼𝑖)

𝑛

𝑖=1

𝜙(𝑥𝑖). (14) 

The information contained in the vector 𝒙 from the input space can be transformed into a higher-

dimensional feature space using functions 𝜙 that approximate kernel functions. With this approach, the 

functions can be defined as follows. 

𝑓(𝑥) = ∑(𝛼𝑖
∗ − 𝛼𝑖)

𝑛

𝑖=1

𝐾(𝑥𝑖, 𝑥) + 𝑏 (15) 

In SVR, several kernel functions are used to address problems in high-dimensional, nonlinear spaces 

by transforming the multiplication of 𝑥𝑖  and 𝑥, as presented in Table 3. 

Table 3. Kernel Functions 
Kernel Type Formula 

Linear 𝐾(𝑥𝑖 , 𝑥) = (𝑥𝑖
′, 𝑥) 

Polynomials 𝐾(𝑥𝑖 , 𝑥) = (𝛾(𝑥𝑖
′, 𝑥) + 𝑟)𝑝,     𝑝 = 1,2, … 

Radial Basic Function 𝐾(𝑥𝑖 , 𝑥) = exp (−𝜆||𝑥𝑖 − 𝑥||
2

) 

Sigmoid 𝐾(𝑥𝑖 , 𝑥) = tanh(𝛾(𝑥𝑖
′, 𝑥) + 𝑟) 

The kernel function used in this study is the Linear kernel, which requires the determination of two 

parameters, namely cost (𝐶) and epsilon (𝜀). To search for the optimal parameter values, one possible method 

is the grid search methods.  

2.4 Nonlinearity Test 

A nonlinearity test, consisting of the White Test and the Terasvirta Test, is necessary to determine 

whether the data follows a linear or nonlinear pattern. The Terasvirta nonlinearity test is recognized as the 

most effective method for identifying the presence of nonlinearity in data derived from neural network model 

development, including the Lagrange Multiplier (LM) test developed by Taylor [20]. The nonlinear neural 

network model is presented in Eq. (16) as follows. 

𝑍𝑡 = 𝜙(𝛾′𝑤𝑡) + 𝛽′𝑤𝑡 + 𝜀𝑡 (16)  

with 𝛽′𝑤 represent the linier component, while 𝜙(𝛾′𝑤) denotes the non-linier component, 𝛾′ is weight in the 

neural network model from the input layer to output layer for the linear components, and 𝜙 represent the 

sigmoid activation function. Eq. (16) also can be expressed as 

𝑍𝑡 = 𝛽′𝑤𝑡 + ∑ 𝜃0𝑗 (𝜙(𝛾′𝑤𝑡) −
1

2
) + 𝜀𝑡

𝑞

𝑗=1

(17) 

with 𝜃0𝑗 represent the weight in the neural network model from the hidden layer to the output layer for 

nonlinear elements. If the number of nonlinear elements is zero, the data is considered to follow a linear 

pattern. The hypothesis tested in the Terasvirta test can be defined as follows. 

𝐻0 : 𝜃01 = 𝜃02 = ⋯ = 𝜃0𝑞 (data contains linear patterns);  

𝐻1 : There is at least one 𝜃0𝑞 ≠ 0 (data contains nonlinear patterns).  

By applying Taylor series to develop the parameter values of the neural network in the Terasvirta test, 

the time series model is defined as follows.  
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𝑍𝑡 = 𝛽′𝑤𝑡 + ∑ ∑ 𝛿𝑖𝑗𝑍𝑡−1𝑍𝑡−𝑗 +

𝑝

𝑗=1

𝑝

𝑖=1

∑ ∑ ∑ 𝛿𝑖𝑗𝑘𝑍𝑡−1𝑍𝑡−𝑗𝑍𝑡−𝑘

𝑝

𝑘=1

𝑝

𝑗=1

𝑝

𝑖=1

+ 𝜀𝑡 (18) 

If the values of the quadratic and cubic components are zero, then accept the 𝐻0, indicating that the 

resulting model is a linear. The Terasvirta test can be performed using chi-square and F distributions, similar 

to that White Test. The detailed steps for conducting the Terasvirta test with the chi-squared distribution are 

described as follows [20]. 

1. Regress 𝑍𝑡 on 1, 𝑍𝑡−1, … , 𝑍𝑡−𝑝 and calculate the residual values  𝜀𝑡̂. 

2. Regress 𝜀𝑡̂ on 1, 𝑍𝑡−1, … , 𝑍𝑡−𝑝 and 𝑚 additional predictors, then calculate the coefficient of 

determination (𝑅2). 

3. Compute 𝜒2 = 𝑛𝑅2, where 𝑛 is the number of observations. If 𝑛𝑅2 > 𝜒𝑚
2 , then reject 𝐻0. 

2.5 Ensemble Averaging 

According to [21], forecasting in time series using the ensemble method or combination method, is a 

prediction technique that combines output values from multiple prediction models to obtain final predictive 

values. The ensemble approach integrates the forecasting results of two or more individual models. Thus, to 

construct an ensemble model, the best model from each method is first selected. Then, each of the 𝑛 model 

produces a predicted value 𝑍̂𝑡
(𝑖)

, which is subsequently combined using an averaging approach. In this study, 

the combination method employed is the simple average method, with the forecasting combination equation 

defined as follows.  

𝑍̂𝑡 =
1

𝑛
∑ 𝑍̂𝑡

(𝑖)

𝑛

𝑖=1

, 𝑖 = 1,2, … , 𝑛 (19) 

Simple average is the most consistent and stable method, even compared to adaptive and more complex 

weighting methods, especially when dealing with extreme data such as during the COVID-19 period [22]. 

2.6 Model Goodness of Fit 

MAPE (Mean Absolute Percentage Error) is a metric used to evaluate the accuracy of a model. It can 

be calculated using the following formula. 

𝑀𝐴𝑃𝐸 =
∑ |

𝑍𝑡 − 𝑍̂𝑡
𝑍𝑡

| × 100𝑛
𝑡=1

𝑛
(20)

 

with 𝑍𝑡 represents actual data, 𝑍̂𝑡 is the forecasted data, and 𝑛 denotes the total number of data. The MAPE 

forecasting categories are presented in Table 4 are as follows. 

Table 4. MAPE Categories 
MAPE Range Information 

𝐌𝐀𝐏𝐄 < 𝟏𝟎% Excellent forecasting model 

𝟏𝟎% ≤ 𝐌𝐀𝐏𝐄 < 𝟐𝟎% Good forecasting model 

𝟐𝟎% ≤ 𝐌𝐀𝐏𝐄 < 𝟓𝟎% Decent forecasting model 

𝐌𝐀𝐏𝐄 ≥ 𝟓𝟎% Bad forecasting model 

Root Mean Squared Error (RMSE) is a commonly used metric for evaluating how well forecasted 

values approximate actual values by calculating the square root of the average squared errors. A lower RMSE, 

or one close to zero, indicates that the forecasted results closely match the actual data, making it a reliable 

measure for future forecasting calculations. 

𝑅𝑀𝑆𝐸 = √∑ (𝑍𝑡 − 𝑍̂𝑡)𝑛
𝑡=1

2

𝑛
(21) 

R-Squared (𝑅2) is a statistical measure that evaluates how well model fits the data or how effectively 

the model explains the variance in the dependent variable. 
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𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
= 1 −

∑ (𝑍𝑡 − 𝑍̂𝑡)
2𝑛

𝑡=1

∑ (𝑍𝑡 − 𝑍̅𝑡)2𝑛
𝑡=1

(22) 

with 𝑛 represents the number of data points, 𝑍𝑡 denotes the actual data at time 𝑡, 𝑍̂𝑡 denotes the predicted data 

at time 𝑡, and 𝑍̅𝑡 represents the average of the actual data. 

2.7 Research Method 

This study employs a quantitative approach, focusing on time series analysis. The data used in this 

research consists of Unilever Tbk (UNVR) stock prices obtained from the Investing.com website. The dataset 

includes weekly stock prices from January 6, 2019, to November 5, 2023. The study is divided into two 

phases: training and testing. The training data, spanning January 6, 2019, to July 30, 2023, is used to develop 

the model, while the testing data, covering August 6, 2023, to November 5, 2023, is used to evaluate the 

model’s accuracy. The research variable analyzed is the closing price of Unilever stock. The procedures and 

stages of the analysis method are systematically presented in the flowchart shown in Fig. 1. 

 
Figure 1. Analysis Flowchart 

3. RESULTS AND DISCUSSION 

Based on the research methodology, the results obtained and discussed in detail in the Results and 

Discussion section are as follows.  

3.1 Time Series Plot and Descriptive Statistics 

Descriptive statistics provide an initial observation to understand the characteristics of the variables. 

Fig. 2 presents a time series plot of daily Unilever stock prices from January 6, 2019, to November 5, 2023. 
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Figure 2. Time Series Plot UNVR Share Price 

(Source: SAS Output) 

Based on Fig. 2, the time series plot indicates fluctuations in Unilever's stock price, showing both 

declines and increases over time. The initial stock price on January 6, 2019, was IDR 9,690.00, while the 

final price at the end of the period was IDR 3,470.00. Table 5 presents a summary of the descriptive statistics 

for the variable. 

Table 5. Descriptive Statistics 

Variable N Mean Variance 
Standard 

Deviance 
Median Min Max 

Unilever’s Stock Price 252 6219 4311497 2076 5325 3360 10000 

3.2 Data Stationarity 

Stationarity is important in classical time series modeling, such as ARIMA, because it ensures that the 

data has a constant mean and covariance over time. Non-stationary data tends to fluctuate in a way that 

violates this assumption. The Augmented Dickey-Fuller (ADF) test and the Box-Cox transformation are 

commonly used to assess stationarity.  

If the ADF test gives a p-value below 0.05, the data is considered stationary. On the other hand, the 

Box-Cox transformation is used to address non-stationarity in variance. If the 𝜆 (lambda) value is not equal 

to 1, the data must undergo further transformation. Based on the Box-Cox result from the actual data shown 

in Fig. 3, a rounded lambda value of 0.5 was obtained, so the data needs to be transformed using √𝑍𝑡 to bring 

it closer to 𝜆 = 1 before continuing with further testing. The ADF test result on the actual data shows a p-

value of 0.4964, indicating that the data is not yet stationary and further steps, such as differencing, are still 

necessary. 

 
Figure 3. Box-Cox Plot for Original Data  
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Next, first-order differencing was applied to the actual data, followed by plotting the autocorrelation 

function (ACF) and partial autocorrelation function (PACF). The Autocorrelation Function (ACF) measures 

the correlation between current and past observations, helping to determine the appropriate Moving Average 

(MA) order. Meanwhile, the Partial Autocorrelation Function (PACF) captures the direct relationship 

between observations while controlling for the influence of intermediate lags, which helps identify the Auto-

Regressive (AR) order. 

Fig. 4 shows the ACF and PACF plots of Unilever’s stock price data after the first differencing. The 

ADF test on this differenced data produced a p-value of 0.0100, indicating that the data is now stationary. 

However, based on the ACF and PACF plots, there appears to be no significant lag observed in either plot, 

which suggests that the AR and MA terms are minimal or unnecessary in the model. 

  
(a) (b) 

Figure 4. (a) The ACF Plot of the First Differencing, (b) The PACF Plot of the First Differencing 

Therefore, a second differencing was applied to identify emerging lag patterns better, as illustrated in 

Fig. 5, which displays the updated ACF and PACF plots with more visible lag significance. It is further 

supported by the ADF test result, which shows a p-value of 0.0100, indicating that the data is now stationary. 

Based on the ACF and PACF plots, several potential ARIMA models were considered, including 

ARIMA(1,2,0), ARIMA(6,2,1), and ARIMA(0,2,1). To determine the best-fitting model, further evaluation 

was conducted using parameter significance tests, white noise checks, residual normality tests, and a 

comparison of Akaike Information Criterion (AIC) scores. 

  
(a) (b) 

Figure 5. (a) The ACF Plot of the Second Differencing, (b) The PACF Plot of the Second Differencing 

3.3 Selection of the Best ARIMA Model 

In the ACF and PACF plots shown in Fig. 5, several potential ARIMA models can be identified for 

estimation. Table 6 is a summary of the best ARIMA model selection. 
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Table 6. Descriptive Statistics 
Model Parameters Significances White Noise Residual Normality AIC Score 

ARIMA (1, 2, 0) Yes No Yes 3396.95 

ARIMA (2, 2, 0) Yes No No 3351.12 

ARIMA (3, 2, 0) Yes No Yes 3335.76 

ARIMA (4, 2, 0) Yes No No 3316.35 

ARIMA (5, 2, 0) Yes Yes No 3311.92 

ARIMA (6, 2, 0) Yes No Yes 3304.23 

ARIMA (1, 2, 1) No Yes No 3281.05 

ARIMA (2, 2, 1) No Yes No 3278.53 

ARIMA (3, 2, 1) No Yes No 3280.45 

ARIMA (4, 2, 1) No Yes No 3282.28 

ARIMA (5, 2, 1) No Yes No 3282.56 

ARIMA (6, 2, 1) No Yes No 3284.55 

ARIMA (0, 2, 1) Yes Yes No 3281.09 

The model diagnostic tests revealed that none of the models fully met the requirements, with only 

ARIMA(5,2,0) and ARIMA(0,2,1) passing the four key evaluation criteria: parameter significances, white 

noise residuals, residual normality, and relatively lower AIC scores. Next, we examined the ACF and PACF 

plots after applying second differencing. As shown in Fig. 5, the ACF peaks at the first lag, while the PACF 

declines exponentially. According to [23] in Table 2, if the ACF returns to zero after the q-th lag and the 

PACF decreases gradually, ARIMA(0,2,1) is recommended. Although ARIMA(0,2,1) can be interpreted as 

a simple moving average (MA(1)) process applied to second-differenced data, its selection is supported by 

both diagnostic performance and theoretical pattern alignment. This model reflects short-term shock 

dependencies without autoregressive persistence, which is consistent with the stochastic nature of the series. 

To further explore why the residuals of this model do not satisfy the normality assumption, a residual 

histogram was analyzed, as shown in Fig. 6. 

 
Figure 6. The Histogram of Residuals of ARIMA (0, 2, 1) 

(Source: SAS Output) 

Fig. 6 illustrates that the histogram of the ARIMA (0,2,1) model exhibits residual abnormalities due to 

an excess of zero values, resulting in a high peak and positive kurtosis (leptokurtic). This suggests that the 

residuals fluctuate around zero, indicating that the model's predictions closely align with the actual values. 

Consequently, the diagnostics for the ARIMA (0,2,1) model are considered satisfactory for period 𝑡. Fig. 7 

presents a comparison between the actual Unilever stock price and the estimated price derived from the 

ARIMA (0,2,1) model. It show the results are very close to the original data. 
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Figure 7. Comparison Chart of Actual Stock Price with Stock Price Estimation of ARIMA Model (0,2,1) 

3.4 ARIMA Model 

Based on Table 6, the ARIMA (0,2,1) model is identified as the one that meets the required 

assumptions. Table 7 presents the complete estimates for the ARIMA (0,2,1) model. 

Table 7. The Estimated Model of ARIMA (0, 2, 1)  
Parameter Coefficient Standard Error 𝒑-Value AIC MSE 

MA (1) -0.9999 0.012511 0.000 3281.09 254.3628 

Therefore, the ARIMA (0, 2, 1) model estimation will be used for ARIMA-GARCH estimation. 

The mathematical equation for the transformed ARIMA (0, 2, 1) model is written as follows. 

𝑍𝑡
∗ = 2𝑍𝑡−1

∗ − 𝑍𝑡−2
∗ + 𝜀𝑡 + 0.9999𝜀𝑡−1                                                                     (23) 

with 𝑍𝑡
∗ =  √𝑍𝑡  where 𝑍𝑡 represents the value of Unilever’s stock price in the UNVR closing stock price 

data. 

3.5 Heteroscedasticity Detection of Residual Variance 

In the ARIMA model, residuals are assumed to follow a normal distribution with a mean of µ =  0 and 

a homogeneous variance 𝜎². However, economic data, such as exchange rates and stock prices, often exhibit 

high volatility, violating this assumption. To address this issue, a heteroscedasticity test was conducted on the 

squared residuals from the ARIMA (0, 2, 1) model estimation, which were used to estimate residual variance. 

The ACF and PACF plots for the squared residuals are presented below. 

  
(a) (b) 

Figure 8. (a) The ACF Plot of Squared Residual of ARIMA (0,2,1), (b) The PACF Plot of Squared Residual of 

ARIMA (0,2,1)  

There is a significance lag in the ACF and PACF plots in Fig. 8, indicating autocorrelation. This suggest 

that the squared residuals are correlated with previous data and residual, implying that the variance of the 

residuals is not homogeneous and that heteroscedasticity may be present. In addition to using ACF and PACF 

plots, heteroscedasticity can be tested with the ARCH-LM test (Autoregressive Conditional 
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Heteroskedasticity - Lagrange Multiplier), where the null hypothesis states that there is no heteroscedasticity 

in the ARIMA model residuals.  

Table 8. ARCH-LM Test of ARIMA (0, 2, 1) Residual 
Orders LM Test Statistics Significances 

1 7.5252 0.0061 

2 10.8186 0.0045 

3 14.8422 0.0020 

4 15.2453 0.0040 

5 17.9237 0.0030 

6 20.3538 0.0024 

7 21.0259 0.0037 

The results in Table 8 show that for the first seven lags, all p-values are significant (less than the 5% 

significance level, α=0.05 indicating the presence of autocorrelation in the squared residuals of the ARIMA 

(0, 2, 1) model. Further modeling is required to address the detected heteroscedasticity. 

3.6 ARCH-GARCH Model Estimation 

The ARIMA (0, 2, 1) model exhibited heteroscedasticity in its residuals, necessitating variance 

modeling using ARCH-GARCH approach. The appropriate ARCH model was identified based on the ACF 

plot in Fig. 8, suggesting an ARCH (1) process. Meanwhile, the PACF plot guided the selection of GARCH 

models, leading to the identification of GARCH (1, 0) and GARCH (1, 1) for variance estimation.  

Table 9. ARCH-GARCH Model Estimation 

Models Parameters 
Coefficient 

Estimation 
Significances AIC Score 

GARCH (1, 0) 
𝜔 2.0777 < 0.0001 

890.201533 𝛼1 0.2395 0.0030 

GARCH (1, 1) 

𝜔 0.8864 0.0007 

883.361187 𝛼1 0.2173 0.0011 
𝛾1 0.4599 0.0006 

The selection of the ARCH-GARCH model is based on parameter significance and the AIC, where a 

lower AIC value indicates a better model. Table 9 shows that both models have significant parameters. 

However, based on the AIC value, the GARCH (1, 1) model is selected as the optimal model. Therefore, the 

variance model equation for the ARIMA (0, 2, 1) is as follows. 

𝜎𝑡
2 = 0.8864 + 0.2173𝜀𝑡−1

2 + 0.4599𝜎𝑡−1
2                                                 (24) 

𝜀𝑡 = 𝛾𝑡𝜎𝑡                                                                               (25) 

where 𝛾𝑡 represents the standardized ARIMA residual (0, 2, 1), assumed to follow a normal distribution 

𝑁(0, 1). Fig. 9 presents the residual estimation of the ARIMA model using the GARCH (1, 1) model. 

 
Figure 9. The Plot of Residual Estimation of ARIMA (0, 2, 1) Based on GARCH (1, 1) 

(Source: SAS Output) 
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3.7 ARIMA-GARCH Model Estimation 

By combining Eqs. (23) and (24), it obtains a unified equation that integrates the ARIMA mean model 

and the GARCH variance model. Thus, the ARIMA (0, 2, 1) – GARCH (1, 1) model can be expressed as 

follows.  

𝑍𝑡
∗ = 2𝑍𝑡−1

∗ − 𝑍𝑡−2
∗ + 𝜀𝑡 + 𝜃1𝜀𝑡−1 (26) 

with 𝜀𝑡 = 𝛾𝑡√0.8864 + 0.2173𝜀𝑡−1
2 + 0.4599𝜎𝑡−1

2  and 𝑍𝑡
∗ represents the square root-transformed stock 

price for UNVR with ARIMA (0, 2, 1) – GARCH (1, 1) model. Below is a comparison of the actual stock 

prices and the model estimates. 

The UNVR stock price modeling results in Fig. 10 exhibit a fluctuating pattern, closely following the 

actual data.  

 
Figure 10. Comparative Plot of Actual Data and Estimated Values of ARIMA and ARIMA – GARCH Model 

The ARIMA-GARCH model's performance is evaluated using three criteria. For in the in-sample data, 

the 𝑅2 value is 0.998, categorizing the model as very good. The RMSE value is 100.26, considered 

unfavorable. The MAPE value is 0.712%, placing it in the very good category.  

The forecasting results for UNVR’s stock price exhibit a highly volatile pattern that aligns with actual 

data. Although some predictions exceed the observed stock prices, they remain within the upper and lower 

prediction limits, making them reasonable. For the out-sample data, the ARIMA (0, 2, 1) - GARCH (1, 1) model 

is assessed using the same three criteria. The 𝑅2 value is 0.382, indicating a less favorable fit. The RMSE 

value is 107.6 categorized as poor. However, the MAPE value for the out-sample data is 2.865%, which falls 

within the excellent category. Since the out-sample MAPE is classified as very good, the ARIMA (0, 2, 1) - 

GARCH (1, 1) model provides a reliable interpretation of UNVR’s stock price prediction for the upcoming 

periods. Fig. 11 presents the forecasted results for the out-sample data. 

 
Figure 11. UNVR Stock Price Prediction Plot of ARIMA (0, 2, 1) - GARCH (1, 1)  
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3.8 Support Vector Regression (SVR) 

The initial stage in analyzing data using SVR is to determine whether the research data follows a linear 

or non-linear functions using the White Tests and the Terasvirta Tests. 

Table 10. Linearity Test Results 
Linear Test X-Squares df 𝒑-value 

White Test 2.2208 2 0.3294 

Terasvirta Test 1.969 2 0.3736 

Table 10 indicates that the 𝑝-value is less than the significance level (𝛼 =  5%), suggesting that the 

data follows a linear pattern. Prior to modeling, the data must be transformed into a time-lagged format for 

input. The appropriate time lag can be determined from the PACF plot in Fig. 12. 

 
Figure 12. PACF Plot of SVR Analysis  

(Source: RStudio Output) 

Based on Fig. 12, a significant lag is observed: at lag 1, which is used as the input. The initial modeling 

of SVR was performed using a linear kernel function with parameter 𝐶 = 1 and 𝜀 = 0.1. The results show 

that this model configuration, yield a RMSE of 255.0733 and MAPE 3.03%. Since MAPE value is below 

10%, the model is considered highly accurate for in-sample data or training data. The results of the actual 

data plot and the predicted values using SVR model are illustrated in Fig. 13. 

  
(a) (b) 

Figure 13. (a) The Training Data Plot Using Linear Kernel Functions, (b) The Predicted Value Plot Using Linear 

Kernel Functions  

(Source: RStudio Output) 

After constructing the initial model using the optimal linear kernel function, SVR parameter tuning is 

performed through a two-stage grid search. The first stage applies a coarse grid search to identify a broad 

optimal range, followed by a finer grid search to refine parameter selection. According to [24] the range of 

parameter values used for the loose grid stage in Table 11 is as follows.  

Table 11. Parameter Value Range of Loose Grid Method  
Parameter Range Value 

Cost (C) 2−5, 2−4, … , 26, 27 

Epsilon (𝜀) 0;  0,01, … , 0;  0,09;  0,1 
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Therefore, to determine the optimal parameter values, this research employs a two-stage grid search. 

The optimal parameter is the parameter that produces the best accuracy with the lowest error value. The 

results of both the coarse and fine grid searches are presented in Table 12. 

Table 12. Grid Search Methods Comparison  

Grid Search Method 
Optimal Combination of Parameters 

Coat (C) Epsilon (𝜀) 

Loose Grid 4 0.1 

Finer Grid 4 0 

The optimal grid search method was achieved using the finer grid technique, with parameters 𝐶 =  4 

and 𝜀 =  0, as shown in Table 12. Fig. 14 illustrates the tuning results, highlighting optimal performance in 

the dark area. After parameter tuning, the SVR model was applied to predict Unilever’s stock price, 

leveraging these optimized parameters for improved accuracy.  

  
(a) (b) 

Figure 14. (a) Loose Grid Plot, and (b) Finner Grid Plot 

(Source: RStudio Output) 

The comparison of RMSE and MAPE for kernel functions in training data resulted in an RMSE of 

255.6638 and a MAPE of 2.99%. Meanwhile, for testing data, the RMSE was 138.7148, with a MAPE of 2.94%. 

The predicted results of applying the SVR model to training and testing data are visualized on the plot, 

which shows that the prediction results are similar to the actual data. Furthermore, the accuracy level of 

MAPE training and testing data is either less than 10% or classified as very accurate. The prediction plot 

alongside actual data for both training and testing is presented in Fig. 15.  

  
(a) (b) 

Figure 15. (a) Plot Prediction Data Training Using the SVR Method, (b) Plot Prediction Data Testing Using the 

SVR Method 

Although the possibility of overfitting is a valid concern in SVR models, the slight difference between 

training and testing MAPE values suggests that the model generalizes well. In typical overfitting scenarios, 

testing errors would be substantially higher than training errors. Furthermore, the close alignment between 
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actual and predicted values in both training and testing plots in Fig. 15 supports the model’s robustness. 

Therefore, the SVR model is not only accurate but also reliable in terms of generalization performance. 

3.9 Ensemble Averaging Forecasting GARCH-SVR  

The forecast results using the GARCH and SVR methods presented in Table 13 as follows. 

Table 13. ARIMA-GARCH and SVR Method Forecast Results  
Forecast ARIMA-GARCH SVR Average APE 

1 3556.366 3700 3628.183 0.019 

2 3567.160 3685.455 3626.307 0.017 

3 3651.348 3681.818 3666.583 0.025 

4 3548.903 3707.273 3628.088 0.009 

5 3502.406 3670.909 3586.657 0.006 

6 3394.299 3652.727 3523.513 0.007 

7 3751.914 3612.727 3682.320 0.044 

8 3645.720 3740 3692.860 0.013 

9 3719.604 3700 3709.802 0.024 

10 3543.592 3721.818 3632.705 0.005 

11 3793.462 3667.273 3730.367 0.034 

12 4042.200 3743.636 3892.918 0.022 

13 3406.770 3787.273 3597.021 0.013 

14 3491.072 3630.909 3560.991 0.008 

15 3342.852 3545.454 3444.153 0.007 

Table 13 presents the predicted UNVR stock prices for the next 15 periods. The model's performance for 

out-sample data can be assessed based on these predictions. The ensemble averaging model is evaluated using 

three criteria: the 𝑅² value is 0.69, categorized as good; the RMSE value is 76.13, categorized as poor; and the 

MAPE value for out-sample data is 1.682%, categorized as excellent. Therefore, the ARIMA (0,2,1) – GARCH 

(1,1) ensemble model provides an excellent interpretation for forecasting UNVR’s stock price over the next 15 

periods. 

 
Figure 16. Comparison Graph of Data Forecasting Three Methods 

Data visualization facilitates comparing forecasting results from different methods with actual data is 

presented in Fig. 16. It presents the forecasting outcomes of ARIMA (0, 2, 1) - GARCH (1, 1), SVR, and 

ensemble averaging. The ARIMA-GARCH model closely follows the data pattern, albeit with some 

discrepancies. The SVR model produces values relatively close to the actual data but captures the underlying 

pattern less effectively, making it less optimal. In contrast, the ensemble model closely aligns with the data, 

demonstrating strong forecasting performance. 
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4. CONCLUSION 

Based on the analysis of Unilever Tbk (UNVR) 's daily stock price data from January 6, 2019, to 

November 5, 2023, it was found that the data can be modeled using an ARIMA (0,2,1) model. However, the 

squared residuals of the model indicated heteroscedasticity, necessitating variance modeling with the ARCH-

GARCH method. The best-combined model was determined to be ARIMA (0, 2, 1) - GARCH (1, 1), which 

achieved a MAPE of 2.865%, classified as very good. Additionally, independent modeling using the Support 

Vector Regression (SVR) method with parameters 𝐶 =  4 and 𝜀 =  0 resulted in a MAPE of 2.94%. To 

further optimize prediction accuracy, an ensemble averaging approach combining ARIMA-GARCH and 

SVR models was employed, yielding a MAPE of 1.682%, which is also classified as very good. These results 

indicate that short-term investors may benefit from the SVR model for capturing short-term price patterns, 

while medium- to long-term investors should consider the ARIMA-GARCH model due to its sensitivity to 

volatility. Meanwhile, the ensemble approach offers the best predictive performance and is recommended as 

the primary strategy for designing UNVR stock price forecasting systems. Furthermore, for policymakers, 

strategic decision-making is crucial to minimizing adverse impacts on both the company and its employees. 

For future research, it is recommended to add parameter variations and combine other methods to improve 

prediction accuracy. 
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