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ABSTRACT                                                                                                 

Article History: 
Conjugate Gradient (CG) methods are widely used for solving unconstrained optimization 

problems due to their efficiency and low memory requirements. However, standard CG 

methods may not always guarantee sufficient descent condition, which can impact their 

robustness and convergence behavior. Additionally, their effectiveness in training artificial 

neural networks (ANNs) remains an area of interest. In response, this paper presents a three-

term conjugate gradient (CG) method for unconstrained optimization problems. The new 

parameter is formulated so that the search direction satisfies the sufficient descent condition. 

The global convergence result of the new algorithm is discussed under suitable assumptions. 

To evaluate the performance of the new method we considered some standard test problems 

for unconstrained optimization and applied the proposed method to train different ANNs on 

some benchmark data sets contained in the NN toolbox. The experimental results show that 

performance is encouraging for both unconstrained minimization test problems and in 

training neural networks. 
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1. INTRODUCTION 

Unconstrained optimization problems (UOP) play a fundamental role in various scientific and 

engineering applications, including pattern recognition [1], machine learning [2], [3], security [4], signal 

processing [5], robotics [6], self-driving cars [7], and meteorology [8]. Over the years, numerous numerical 

algorithms have been developed to solve these problems efficiently. Early approaches include first-order 

methods such as the steepest descent method, which, despite its simplicity, suffers from slow convergence. 

More advanced second-order methods, including Newton’s and quasi-Newton’s algorithms, leverage second 

derivative (Hessian) information to achieve faster convergence [9]. However, these methods often require 

significant computational and storage resources, making them impractical for large-scale problems. 

To address these challenges, conjugate gradient (CG) methods emerged as a preferred choice due to 

their low memory requirements, strong convergence properties, and ability to handle large-scale optimization 

problems effectively [10]. Unlike steepest descent, CG methods iteratively construct search directions using 

gradient information and a conjugacy condition to ensure efficient exploration of the search space [11]. 

Among the classical CG algorithms, the Fletcher-Reeves [12], Polak-Ribière-Polyak [13], [14], Hestenes-

Stiefel [15], Dai-Yuan [16], and Liu-Storey [17] methods have been widely studied and applied in various 

fields. Despite their theoretical advantages, classical CG methods exhibit certain limitations, such as 

numerical instability and slow convergence, particularly when dealing with ill-conditioned functions or small 

gradient norms [18]. To enhance performance, recent research has focused on developing three-term 

conjugate gradient (TTCG) methods, which incorporate additional information from previous iterations to 

improve stability and descent properties. While TTCG methods have demonstrated improved robustness, they 

still face challenges such as parameter tuning complexities and occasional inefficiency in high-dimensional 

optimization problems. For recent advances on this topic see [19], [20], [21] 

Motivated by these advancements, this study develops a new TTCG method called NEWTT based on 

modification of the Barzilai-Borwein [22] step size and DY method. The proposed method incorporates both 

gradient information and the search direction in determining the step size. The proposed approach aims to 

achieve superior performance in large-scale unconstrained optimization problems, including applications in 

training feed-forward neural networks. Theoretical analysis will be conducted to establish convergence 

guarantees, and extensive numerical experiments will be performed with application to evaluate its efficiency 

on standard benchmark problems and real-life application problems.  

The contributions of the paper are highlighted as follows 

1. Proposing a simple three-term CG method based on the methods of DY and BB step size that is 

effective for training artificial neural networks and solving unconstrained optimization problems. 

2. The new method presented is such that it satisfies the descent condition which is a crucial element 

in proving global convergence 

3. Showing that the global convergence of the new method under the Wolfe condition and the 

assumption of a Lipschitz condition 

4. Showing the efficiency of the proposed method through numerical experiments conducted with 

recent methods. 

The remaining sections of the paper are structured as follows: the formulation process of the proposed 

method is given in the next section, while Section 3 presents the global convergence of the new method under 

appropriate assumptions. Section 4 provides numerical experiments; section 5 contains the application of the 

proposed method in training neural networks and the last section includes concluding remarks. 

2. RESEARCH METHOD 

Generally, the CG method is employed to solve the following unconstrained optimization problems 

[23]: 

min 𝑓(𝑥),   𝑥 ∈ 𝑅𝑛 (1) 

by generating a sequence of points {𝑥𝑘}, 𝑘 ≥ 1 via: 
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𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (2) 

where 𝑓: 𝑅𝑛 → 𝑅 from (1) is a continuously differentiable function, 𝛼𝑘 > 0 from Equation (2) is the step 

length computed along the direction 𝑑𝑘. The direction is generally required to satisfy the descent condition 

𝑔𝑘
𝑇𝑑𝑘 < 0 (3) 

to guarantees that 𝑑𝑘 is a descent direction of 𝑓(𝑥) at 𝑥𝑘. The direction is generated using 

𝑑𝑘 = −𝑔𝑘 + 𝛽𝑘𝑑𝑘,      𝑑0 = −𝑔0 (4) 

for 𝑘 ≥ 1. From the iteration Equation (2), 𝛼𝑘 is the line search parameter in CG formulas and is often based 

on the general Wolfe condition  

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑘)  ≤ 𝜌𝜎𝑘𝑔𝑘
𝑇𝑑𝑘 (5) 

𝑔𝑘+1
𝑇 𝑑𝑘 ≥ 𝜎𝑔𝑘

𝑇𝑑𝑘 (6) 

where 𝑑𝑘 is a descent direction and 0 < 𝜌 ≤ 𝜎 < 1. The stronger version of the Wolfe line search condition 

is given by Equation (5) and  

|𝑔𝑘+1
𝑇 𝑑𝑘|  ≤ −𝜎𝑔𝑘

𝑇𝑑𝑘 (7) 

to enhance stability and guarantee convergence. If the direction is exact, then Equation (4) satisfies the 

descent condition given as: 

𝑔𝑘
𝑇𝑑𝑘 = −𝑔𝑘

𝑇𝑔𝑘 ≤ 0  

The parameter 𝛽𝑘 in Equation (4) is the CG parameter and  𝑔𝑘 = ∇𝑓(𝑥𝑘) is the gradient of 𝑓 at 𝑥𝑘. 

The selection of the parameter 𝛽𝑘 varies when considering the minimization of a strongly convex function 

and the general nonlinear functions. For the minimization of a strongly quadratic convex function, the 

parameter 𝛽𝑘 is selected so that the directions of 𝑑𝑘 and 𝑑𝑘+1 are subject to the Hessian of the quadratic 

function [24]. The effectiveness of these algorithms relies on the precision of the line search. However, when 

applied to general nonlinear functions, the parameter 𝛽𝑘 is often determined using alternative formulas that 

do not satisfy the conjugacy condition [24]. 

2.1 Related Work 

Several well-known CG methods include those proposed by Polak, Ribiere, and Polyak (PRP) [13], 

[14], Fletcher and Reeves (FR) [12], Hestenes and Stiefel (HS) method [15], Liu and Storey (LS) [17], Dai 

and Yuan (DY) [16], Dai and Liao (DL) [25], Fletcher’s conjugate descent (CD) method [26]. The 

corresponding CG parameters are as follows: 

𝛽𝑘
𝐹𝑅 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

, 𝛽𝑘
𝑃𝑅𝑃 =

𝑦𝑘
𝑇𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

, 𝛽𝑘
𝐿𝑆 =

−𝑦𝑘
𝑇𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

, 𝛽𝑘
𝐻𝑆 =   

𝑔𝑘
𝑇𝑦𝑘

𝑑𝑘−1
𝑇 𝑦𝑘−1

  

𝛽𝑘
𝐷𝑌 =  

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

, 𝛽𝑘
𝐷𝐿 =  

𝑔𝑘+1
𝑇 (𝑦𝑘 − 𝑡𝑠𝑘)

𝑦𝑘
𝑇𝑠𝑘

, where 𝑡 > 0, 𝛽𝑘
𝐶𝐷 =   

𝑔𝑘
𝑇𝑔𝑘

𝑑𝑘−1
𝑇 𝑔𝑘−1

  

where 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘, and 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘. By extension, we refer to all these as CG algorithms, even 

though some parameters, such as 𝛽𝑘
𝐹𝑅 , and 𝛽𝑘

𝐷𝑌do not satisfy the conjugacy condition [24]. Assuming that 

the function 𝑓 is a strongly convex function, and that the exact line search is employed, then in theory, all the 

choices for the parameter 𝛽𝑘 in Equation (4) are equivalent. However, in the case of the non-quadratic 

objective function, the choice of the parameter 𝛽𝑘 performs differently depending on the algorithm used. 

In this study, the authors are more interested in three-term CG methods. These classes of CG techniques 

are designed to improve the convergence rate of CG methods. Among the early three-term CG is that 

proposed by Beale [27] as  

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘 + 𝛾𝑘𝑑𝑡 (8) 

where the choice of 𝛽𝑘 can be 𝛽𝑘
𝐻𝑆(𝑜𝑟 𝛽𝑘

𝐹𝑅 , 𝛽𝑘
𝐷𝑌etc) and  
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𝑑𝑘+1 = {

0 ,                    𝑘 = 𝑡 + 1

𝑔𝑘+1
𝑇 𝑦𝑡

𝑑𝑡
𝑇𝑦𝑡

          𝑘 > 𝑡 + 1
 

the 𝑑𝑡 in Equation (9) is the restart direction. 

Another three-term CG method was proposed by Nazareth [28] to achieve finite convergence for an 

arbitrary initial search direction, based on a three-term recurrence 

𝑑𝑘+1 = −𝑦𝑘 +
𝑦𝑘

𝑇𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

𝑑𝑘 +
𝑦𝑘−1

𝑇 𝑦𝑘

𝑑𝑘−1
𝑇 𝑦𝑘−1

𝑑𝑘−1 (9) 

where 𝑑−1 = 0 and 𝑑0 an arbitrary descent direction. Although both methods Equation (8) and Equation 

(9) exhibit finite termination properties, they are not practically efficient [29].  

Furthermore, these methods do not always ensure the generation of descent directions, meaning they 

are not classified as descent methods [30]. 

Dai and Yuan [16] and Deng and Li [31] studied the general three-term CG formula given as  

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘 + 𝛾𝑘𝑑𝑡(𝑝) (10) 

and 𝑡(𝑝) in Equation (10) is the number of the 𝑝𝑡ℎ restart iteration satisfying 𝑡(𝑝) < 𝑘 ≤ 𝑡(𝑝 + 1) ≤ +∞.  

Demonstrating that, under certain mild conditions, the algorithm achieves global convergence. 

Hager and Zhang [32] developed a three-term CG method given as  

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘
𝑁𝑑𝑘, 𝛽𝑘

𝑁 =  
1

𝑑𝑘
𝑇𝑦𝑘

(𝑦𝑘 − 2𝑑𝑘

‖𝑦𝑘‖2

𝑑𝑘
𝑇𝑦𝑘

)

𝑇

𝑔𝑘+1 (11) 

They established the global convergence for strongly convex functions and general nonlinear functions 

by utilizing the Goldstein conditions [33] and the Wolfe condition, respectively. 

Another three-term CG method was presented by Zhang, Zhou, and Li [30] by considering the (HS) CG 

method as presented below 

𝛽𝑘
𝑍𝐻𝑆 = {

−𝑔𝑘                                     𝑖𝑓 𝑘 = 0

−𝑔𝑘 + 𝛽𝑘
𝐻𝑆𝑑𝑘−1 − 𝜃𝑦𝑘−1     𝑖𝑓 𝑘 ≥ 1   

 

where 𝛽𝑘
𝐻𝑆 =

𝑔𝑘
𝑇𝑦𝑘−1

𝑑𝑘−1
𝑇 𝑦𝑘−1

,  and  𝜃 =
𝑔𝑘

𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇 𝑦𝑘−1

. 

Another efficient three-term parameter was given by Lukman and Muhammad [34] as 

𝛽𝑘
𝑁𝑇𝑇 = {

−𝑔𝑘                                                                                       if 𝑘 = 0

−𝑔𝑘 + 𝛽𝑘
𝐻𝑆𝑑𝑘 − (1 − 𝜃)

𝑦𝑘−1
𝑇 𝑦𝑘𝑔𝑘

𝑇𝑑𝑘−1

𝑦𝑘−1
𝑇 𝑣𝑘−1𝑑𝑘−1

𝑇 𝑦𝑘−1

𝑦𝑘−1     otherwise
(12) 

which is a modification of the (𝐻𝑆) conjugate gradient method. When 𝜃 = 1 or the exact line search is 

satisfied then the three-term parameter becomes the HS method. 

Despite the extensive research on conjugate gradient (CG) methods, there remains a gap in developing 

a three-term CG scheme that integrates both the Dai-Yuan (DY) [16] parameter and a modified Barzilai-

Borwein (BB) step size [22] while ensuring descent properties independent of the line search. The DY method 

is known for its strong theoretical convergence properties; however, its performance can be inconsistent due 

to its sensitivity to line search strategies, often leading to slow convergence in practical applications. 

Additionally, most existing three-term CG methods do not fully exploit step-size modifications that can 

enhance numerical stability and efficiency. To address these issues, this study proposes a novel three-term 

CG method (NEWT) that incorporates an additional memory term while leveraging a modified BB step size. 

This approach improves robustness in large-scale optimization and mitigates the DY method’s sensitivity to 

line search, leading to better numerical performance across different problem classes. 
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2.2 New Three-Term Conjugate (NEWTT) Gradient Method 

The proposed three-term conjugate gradient method satisfying the descent condition independent of 

the line search is formulated as follows. Consider the Barzilai-Borwein (BB) [22] step size defined as: 

𝛾𝑘
1 =

𝑠𝑘
𝑇𝑠𝑘

𝑦𝑘
𝑇𝑠𝑘

 and 𝛾𝑘
2 =

𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑦𝑘

Inverting 𝛾𝑘
2 and subtracting from 𝛾𝑘

1 we get  

(𝑠𝑘
𝑇𝑠𝑘 − ‖𝑦𝑘‖2)

𝑦𝑘
𝑇𝑠𝑘

𝑔𝑘−1 (13) 

Now, considering the Dai and Yuan conjugate gradient parameter (𝛽𝑘
𝐷𝑌 =  

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

) and Equation 

(13), we have our three-term scheme as 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘 − 𝜃𝑘
𝑔𝑘−1

𝑦𝑘
𝑇𝑠𝑘

(14)

where 𝛽𝑘 =
𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

, and 𝜃𝑘 = 𝑠𝑘
𝑇𝑠𝑘 − ‖𝑦𝑘‖2. 

The following algorithm illustrates the computational process of the proposed NEWTT algorithm. 

Algorithm 2.1: NEWTT Algorithm 

Step 1: Input 𝑥0 ∈ 𝑅𝑛, 𝜃 ∈ (0,1) Set 𝑘 = 0 and 𝑑0 = −𝑔0 

Step 2: If ‖𝑔𝑘‖ < 𝜖, stop; otherwise, continue with step 3 

Step 3: Compute 𝑑𝑘 by Equation (14) 

Step 4: Find the step length 𝛼𝑘 by Equation (4) and Equation (5) 

Step 5: Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. 

Step 6: Proceed to Step 2 after setting 𝑘 = 𝑘 + 1. 

3. RESULTS AND DISCUSSION 

This section will discuss the convergence results of the proposed method and further demonstrate its 

computational efficiency and real-life applications.  

3.1 Convergence Analysis 

This subsection presents the global convergence result of the NEWTT algorithm. We consider the line 

search that satisfies Equation (5) and Equation (6). 

Assumption 3.1 

(𝐴1): The level set 𝐿 = {𝑥 ∈ 𝑅𝑛: 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded below. Thus, for some constant 𝐿 > 0 it follows 

that ‖𝑥‖ ≤ 𝐿 for all 𝑥 ∈ 𝐿0. 

(𝐴2): The function 𝑓 is smooth in some neighborhood 𝑁  of the level set 𝐿0,with Lipschitz continuous 

gradient, implying that, for some 𝐿 > 0, the following holds 

‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖      ∀𝑥, 𝑦 ∈ 𝑁. (15) 

Considering the assumptions on 𝑓, it is obvious that there exists a constant 𝛾 ≥ 0 such that ‖𝑔(𝑥)‖ ≤
𝛾 for all 𝑥 ∈ 𝑁. However, we shall consider the assumption that the level set is bounded which is a stronger 

assumption than the assumption that states the function is bounded below. 

Note that the search direction in Equation (2) always ensures a descent direction. To establish 

convergence, we restrict the selection of 𝛼𝑘 by proposing that the Wolfe line search consistently provides a 

lower bound for the step length 𝛼𝑘. Consider the following proposition. 
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Proposition 1: Let 𝑑𝑘 be a descent direction and assume that ∇𝑓 satisfies the Lipschitz condition  

‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ 

for all 𝑥 on the line segment between 𝑥𝑘 and 𝑥𝑘+1, where 𝐿 is a positive constant. If the line search adheres 

to the Wolfe conditions Equation (5) and Equation (6), then 

𝛼𝑘 ≥
(1 − 𝜎)|𝑔𝑘

𝑇𝑑𝑘|

𝐿‖𝑑𝑘‖2
(16) 

Proof: from Equation (6) subtract 𝑔𝑘
𝑇𝑑𝑘 from both sides 

𝑔𝑘+1
𝑇 𝑑𝑘 − 𝑔𝑘

𝑇𝑑𝑘  ≥ 𝜎𝑔𝑘
𝑇𝑑𝑘 −  𝑔𝑘

𝑇𝑑𝑘 

(𝑔𝑘+1 − 𝑔𝑘)𝑇𝑑𝑘  ≥ (𝜎 −  1)𝑔𝑘
𝑇𝑑𝑘       

               𝑦𝑘
𝑇𝑑𝑘  ≥ (𝜎 −  1)𝑔𝑘

𝑇𝑑𝑘 

Now using the Lipschitz continuity, we get 

(𝜎 −  1)𝑔𝑘
𝑇𝑑𝑘 ≤ (𝑔𝑘+1 − 𝑔𝑘)𝑇𝑑𝑘 = 𝑦𝑘

𝑇𝑑𝑘  ≤ ‖𝑦𝑘
𝑇‖‖𝑑𝑘‖ ≤ 𝛼𝑘𝐿‖𝑑𝑘‖2 

Since 𝑑𝑘 is a descent direction and 𝜎 <  1, Equation (16) follows immediately. ∎ 

For the proof of the global convergence, the Zoutendijk condition is applied to nonlinear conjugate 

gradient algorithms. The following proposition proves that our proposed method satisfies the Zoutendijk 

condition under the general Wolfe line search Equation (5) and Equation (6). 

Proposition 2: Assume that conditions(𝐴1) and (𝐴2)  hold. Given Equation (2) and Equation (14), where 

𝑑𝑘 is a descent direction and 𝛼𝑘 is determined using the standard Wolfe line search, then 

∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2

∞

𝑘=0

< +∞ (17) 

From Equation (4) and proposition 1 

𝑓(𝑥𝑘) − 𝑓(𝑥𝑘+1) ≥ −𝜌𝜎𝑘𝑔𝑘
𝑇𝑑𝑘 ≥

𝜌(1 − 𝜎)(𝑔𝑘
𝑇𝑑𝑘)2

𝐿‖𝑑𝑘‖2
 

Hence, from assumption 1 we get the Zoutendijk condition Equation (16). ∎ 

Proposition 3: Assume that conditions(𝐴1) and (𝐴2)  hold. Given Equation (2) and Equation (14), where 

𝑑𝑘 is a descent direction and 𝛼𝑘 is determined using the standard Wolfe line search, if 

∑
1

‖𝑑𝑘‖2

∞

𝑘≥1

= ∞ (18) 

Then 

𝑙𝑖𝑚 Inf
𝑘→∞

‖𝑔𝑘‖ = 0 (19) 

 

Theorem 1. Suppose that assumption (𝐴1) and (𝐴2) holds. Consider Equation (2) and Equation (14), and 

𝛼𝑘 satisfies the standard Wolfe condition, then 

𝑙𝑖𝑚 Inf
𝑘→∞

‖𝑔𝑘‖ = 0 

 

Proof. From Lipschitz continuity, we have ‖𝑦𝑘‖ ≤ 𝐿‖𝑠𝑘‖. On the other hand, from uniform convexity 

𝑦𝑘
𝑇𝑠𝑘 ≥ 𝜇‖𝑠𝑘‖2. Now from Equation (14) 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −𝑔𝑘+1

𝑇 𝑔𝑘+1 + 𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

𝑑𝑘 − (𝑠𝑘
𝑇𝑠𝑘 − ‖𝑦𝑘‖2)

1

𝑦𝑘
𝑇𝑠𝑘

𝑔𝑘+1
𝑇 𝑔𝑘−1 

Multiplying by 𝑔𝑘+1
𝑇 , we have 



BAREKENG: J. Math. & App., vol. 19(3), pp. 1973- 1988, September, 2025 1979 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −𝑔𝑘+1

𝑇 𝑔𝑘+1 + 𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

𝑑𝑘 − (𝑠𝑘
𝑇𝑠𝑘 − ‖𝑦𝑘‖2)

1

𝑦𝑘
𝑇𝑠𝑘

𝑔𝑘+1
𝑇 𝑔𝑘−1 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘‖2 +

‖𝑔𝑘‖2

𝑦𝑘
𝑇𝑠𝑘

𝑔𝑘+1
𝑇 𝑑𝑘 − (𝑠𝑘

𝑇𝑠𝑘 − ‖𝑦𝑘‖2)
1

𝑦𝑘
𝑇𝑠𝑘

‖𝑔𝑘‖2 

for exact line search  𝑔𝑘
𝑇𝑑𝑘 = −𝑔𝑘

𝑇𝑔𝑘 ≤ 0 , we have 

𝑔𝑘+1
𝑇 𝑑𝑘+1 =

𝑔𝑘+1
𝑇 𝑑𝑘

𝑦𝑘
𝑇𝑠𝑘

−
(𝑠𝑘

𝑇𝑠𝑘 − ‖𝑦𝑘‖2)

𝑦𝑘
𝑇𝑠𝑘

(20) 

But from Lipschitz's continuity, we can write as 

𝑔𝑘+1
𝑇 𝑑𝑘+1 =

1

𝑦𝑘
𝑇𝑠𝑘

−
(1 − 𝐿)‖𝑠𝑘‖

𝑦𝑘
𝑇𝑠𝑘

(21) 

Also, from uniform convexity 𝑦𝑘
𝑇𝑠𝑘 ≥ 𝜇‖𝑠𝑘‖2 

𝑔𝑘+1
𝑇 𝑑𝑘+1 =

1

𝜇‖𝑠𝑘‖2
−

(1 − 𝐿)

𝜇‖𝑠𝑘‖
 

‖𝑑𝑘+1‖ ≤
(1 − 𝐿)

𝜇‖𝑠𝑘‖
+

1

𝜇‖𝑠𝑘‖2
(23) 

Showing that Equation (18) is true. ∎ 

3.2. Numerical Efficiency 

This section presents the report on the numerical performance of the proposed conjugate gradient 

algorithm (NEWTT) by considering some standard test problems on UOP sourced from Andrei [35]. For 

each test problem, arbitrary initial points are considered together with the range of dimensions from small-

scale problems (2 variables) and large-scale problems (1,000 variables). To compare the accuracy of the 

computed results from the proposed method, we considered results obtained from the following conjugate 

gradient methods: 

1. The Dai-Yuan (DY) [16] algorithm with conjugate gradient parameter given as 𝛽𝑘
𝐷𝑌 =  

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

. 

2. The three-term conjugate gradient algorithm by Zhang, Zhou, and Li [30] with CG parameter as  

𝛽𝑘
𝑍𝐻𝐴𝑁𝐺𝑇𝑇 = −𝑔𝑘 + 𝛽𝑘

𝐻𝑆𝑑𝑘−1 − 𝜃𝑦𝑘−1, 𝛽𝑘
𝐻𝑆 =

𝑔𝑘
𝑇𝑦𝑘−1

𝑑𝑘−1
𝑇 𝑦𝑘−1

, 𝜃 =
𝑔𝑘

𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇 𝑦𝑘−1

 

The algorithms were implemented in MATLAB® R2023b environment, utilizing double-precision 

arithmetic for numerical computation. The experiments were carried out on a personal computer with 

Windows 10 pro, equipped with Intel (R) Pentium (R) Dual CPU T3400 @2.16GHz 2.17GHz. We considered 

the Wolfe line search method throughout the numerical computation with the parameter values defined as 

𝜌 = 0.01 and 𝜎 = 0.5 for all the algorithms. 

The termination criteria for all algorithms were ‖𝑔(𝑥𝑘)‖ ≤ 10−6 or any of the following 

1. The iteration number reaches 1000 

2. The code fails to execute as a result of low memory. 

The results from numerical experiment are illustrated in Figure 1 – Figure 2 using performance profile 

tool introduced by Dolan and More [36]. The plots represent the CPU time to execute the problem (Figure 

1) and the number of iterations across problems of different dimensions (Figure 2).  
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Figure 1. Performance Profile Based on CPU time 

Figure 1 illustrates the performance profile of three unconstrained optimization methods: NEWTT, 

DY, and ZHANGTT based on CPU time. The proposed NEWTT method (red) demonstrates the best overall 

performance, solving the majority of problems with the least computational time, followed closely by 

ZHANGTT (blue). Both methods exhibit rapid convergence, reaching a high probability of success at lower 

τ values. The DY method (green) is less efficient, requiring significantly more computational time, as 

indicated by its slower rise in profile. Overall, NEWTT and ZHANGTT are more computationally efficient, 

making preferable choices for solving UOP when minimizing CPU time is crucial. This shows that the 

numerical result for the new method is encouraging. 

 
Figure 2. Performance Profile Based on the Number of Iterations 

Also, the results based on the number of iterations as illustrated in Figure 2 demonstrate superiority 

performance of the proposed method in terms of iteration efficiency. The performance profile, based on the 

number of iterations, evaluates the effectiveness of three unconstrained optimization methods: NEWTT, DY, 

and ZHANGTT. The proposed NEWTT method (red) achieves the highest percentage of problem solutions 

with fewer iterations, followed closely by ZHANGTT (blue). Both algorithms exhibit rapid convergence, 

attaining high performance probabilities at lower τ values. On the other hand, the DY algorithm (green) 

requires more iterations on average, as evidenced by its slower rise in the profile. This suggests that the 
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proposed NEWTT method is the most efficient in terms of iteration count, making it the preferred choice for 

solving unconstrained optimization problems. 

3.3. Application in Neural Networks 

Artificial neural networks (ANN) are widely known for their versatility, accuracy, and powerful 

predictive capabilities, and as such they are developed and applied in various areas like computer science, 

and autonomous driving [7], [37], [38] digital twin [39], prognostics and health management [40], reliability 

analysis [41], topology optimization [42], security [4], and multi-objective optimization [43]. However, 

training a neural network is an UOP where the weight function is minimized [44], [45], [46]. For prediction 

and minimization of the cost functions the weights 𝑊 of an artificial neural network (ANN) are optimized by  

𝑤 = 𝑎𝑟𝑔 min
𝑤

𝑓(𝑤) (24) 

and the weights are updated as follows  

𝑤𝑘+1 = 𝑤𝑘 + 𝛼𝑘𝑑𝑘  𝑑𝑘 = ∇𝐸(𝑤𝑘) 

where 𝑑𝑘 and the 𝛼𝑘 denotes the search direction (first-moment vector) and the step size (learning rate). 𝑤𝑘 

is a vector representing the weight at the iteration (epoch) step 𝑘.  

As earlier stated, the technique of the gradient method is to minimize the cost function by determining 

the search direction as the first-order gradient ∇𝐸(𝑤𝑘), whereas the step size is calculated by adopting any of 

the available line search methods. Though no single best optimization method has been adopted, many 

existing adaptive methods use the first-order gradient for the search direction, including the conjugate 

gradient method. In this paper, we propose a simple three-term conjugate gradient algorithm. To illustrate the 

performance of the proposed method MATLAB program was used to code the algorithm and its 

implementation. 

3.3.1. Experiments and Results 

The numerical experiment was carried out using the standard data set contained in the Neural Network 

(NN) Toolbox version 4.0.2 (R13).  

 

Problem 1. A chemical sensor data set was used to train the neural network applying our algorithm. The 

network architecture contains one hidden layer with 10 neurons and a single output layer. A maximum of 

1000 iterations is set as the termination criterion, and all the parameters are as specified in the NN toolbox. 

Table 1. CPU Time and Number of Iterations 

CG Parameter CPU Time Min Epoch  

(Number of 

Iterations) 

Best Validation 

Performance 

Zhang three-term 0.00.05 358 5.7016 at epoch 350 

FR 0.00.02 141 3.9003 at epoch 135 

New method 0.00.02 68 7.6443 at epoch 62 

Table 1 shows the simulation performance of our proposed method compared with FR and ZhangTT 

conjugate gradient methods. The table shows the number of iterations (Epoch), CPU time, and the best 

validation performance. It is clear from the table that our new method is more efficient compared to the other 

methods.  

Table 2. Regression Analysis 

CG parameter Training Validation Test 

Zhang three-term 0.95393 0.95868 0.95616 

FR 0.94917 0.96056 0.94769 

New method 0.94649 0.92198 0.95864 

Table 2 shows the performance of the regression analysis of our proposed method against FR and 

Zhang three-term conjugate methods. From the table, it is obvious that our method is promising and can be 

appropriate for training and testing neural networks. 
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3.3.2. Mean Square Error 

 
Figure 3. Mean Square Error Performance. 

Figure 3 shows the best validation performance of our proposed method as 9.5811 at epoch 35. 

However, the total number of iterations (epoch) for the testing and training of the data set for the chemical 

sensor is 41 iterations.  

3.3.3 Regression Analysis 

 
Figure 4. R-Values 

Figure 4 shows the performance of regression analysis of our new method. The R-values for training 

output, validation output, and test output show that our proposed method is promising and encouraging. 
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3.3.4. Training State 

 
Figure 5. Training state 

Figure 5 shows that the gradient value of our method is 34.7 at iteration (epoch) 41. At epoch 41, the 

validation checks equal 6 and the value of the step size is 0.03. 

Problem 2: The second problem analyzed is the Cholesterol dataset from the neural network toolbox. The 

network structure consists of 21 input nodes, 10 hidden layers, and three output nodes. All parameters are set 

to their default values as specified in the NN toolbox, with a maximum of 1000 iterations as the termination 

criterion. Performance is evaluated by over 100 simulations based on the number of iterations (epochs), CPU 

time, and best validation epoch performance. Table 3 presents the training and validation performance of the 

training functions for the FR method, Zhang’s three-term method, and the proposed approach. The results 

clearly indicate that the proposed method is efficient and has potential applications in other fields. 

Table 3. CPU Time and Number of Iterations 

CG parameter CPU Time Min Epoch (Number of 

Iterations) 

Best Validation 

Performance 

Zhang three-term 0.00.02 118 698.2119 at epoch 112 

FR 0.00.02 117 4.667 at epoch 111 

New method 0.00.01 44 5.3113 at epoch 38 

Table 3 shows the simulation performance of our proposed method compared with FR and ZhangTT 

conjugate gradient methods. The table shows the number of iterations (Epoch), CPU time, and the best 

validation performance. It is clear from the table that our new method is more efficient compared to the other 

methods.  

Table 4. Regression Analysis 

CG parameter Training Validation Test 

Zhang three-term 0.92452 0.89466 0.88531 

FR 0.95804 0.94916 0.94656 

New method 0.94317 0.94206 0.91462 

Table 4 shows the performance of the regression analysis of our proposed method against FR and 

Zhang's three-term conjugate methods. From the table, it is clear that our method is promising and can be 

appropriate for training and testing neural networks. 
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3.3.5. Mean Square Error  

 
Figure 6. Mean Square Error Performance. 

Figure 6 shows the best validation performance of our proposed method as 9.5811 at epoch 35. 

However, the total number of iterations (epoch) for the testing and training of the data set for the chemical 

sensor is 41 iterations.  

3.3.6. Regression Analysis 

 
Figure 7. R-values 

Figure 7 shows the performance of the regression analysis of our new method. The R-values for 

training output, validation output, and test output show that our proposed method is promising and 

encouraging. 
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3.3.7 Training State 

 
Figure 8. Training state 

Figure 8 shows that the gradient value of our method is 777.6379 at iteration (epoch) 37. At epoch 37, 

the validation checks equal 6 and the value of the step size is 0.0092474. 

4. CONCLUSIONS 

In this paper, we propose a new conjugate gradient method for UOP. This method is a simple three-

term conjugate gradient method based on the Dai-Yuan conjugate gradient method and Barzilai-Borwein 

method. An interesting feature of the proposed method is that the method possesses sufficient descent 

property independent of the line search strategy. From the rigorous numerical results and analysis, the new 

method demonstrated overwhelming performance as compared to other methods for UOP and neural 

networks.   
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