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 ABSTRACT 

Article History: 
The concept of the locating rainbow connection number of a graph is an innovation in 
graph coloring theory that combines the concepts of rainbow vertex coloring and 

partition dimension on graphs. This concept aims to determine the smallest positive 

integer 𝑘 such that there exists a locating rainbow 𝑘-coloring on the graph, ensuring that 

every vertex has a unique rainbow code. In this study, we investigate the locating rainbow 

connection number of the lollipop graph 𝐿(𝑚, 𝑛) and barbell graph 𝐵(𝐾𝑛). Using a 

literature study method, hypotheses were formulated and proven through theoretical 

analysis. The results show that 𝑟𝑣𝑐𝑙(𝐿(𝑚, 𝑛)) = 𝑚𝑎𝑥{𝑚, 𝑛} and 𝑟𝑣𝑐𝑙(𝐵(𝐾𝑚)) = 𝑚. 
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1. INTRODUCTION 

The concept of the locating rainbow connection number of a graph is novel in graph coloring theory, 

introduced by Bustan et al. in 2021 [1]. This concept combines the ideas of partition dimension and rainbow 

vertex coloring of a graph. The partition dimension concept in graphs is related to the minimum size of a 

partition of the vertex set such that each vertex can be uniquely identified based on its distance vector to each 

part in the partition [2]. Meanwhile, the rainbow vertex coloring concept involves coloring the vertices of a 

graph in such a way that every two distinct vertices in the graph are connected by a rainbow vertex path [3]. 

This concept is an extension of the rainbow coloring concept introduced by Chartrand et al. in 2008 [4]. The 

rainbow coloring of a graph is one of the NP-hard problems [5]. Consequently, many researchers are 

interested in developing this concept further. Several results related to the rainbow connection number in 

graphs can be found in [6] and [7]. In a related line of research, the locating chromatic number has also been 

studied as a vertex-coloring parameter that combines identifying codes with proper coloring ([8], [9], [10]). 

Let 𝐺 =  (𝑉 (𝐺), 𝐸(𝐺)) be a finite connected graph, and let 𝑘 be a positive integer. A 𝑘-rainbow vertex 

coloring of 𝐺 is a mapping 𝑐: 𝑉(𝐺) → [1, 𝑘] such that for every two distinct vertices 𝑢 and 𝑣 in 𝑉(𝐺), there 

exists a path connecting them whose internal vertices have distinct colors. A path 𝑃 in 𝐺 whose internal 

vertices have distinct colors is called a rainbow vertex path. The rainbow vertex connection number of a 

graph 𝐺, denoted as 𝑟𝑣𝑐(𝐺), is the smallest positive integer 𝑘 such that there exists a 𝑘-rainbow vertex 

coloring of 𝐺. The concept of rainbow vertex coloring is also classified as an NP-hard problem ([11], [12]). 

Some of the latest studies on the rainbow vertex connection number for certain graph classes can be found in 

[13]. Additionally, studies on the rainbow vertex connection number of graphs resulting from operations can 

be found in [14], [15], and [16]. 

For 𝑖 ∈ [1, 𝑘],  let 𝑅𝑖 be the set of vertices assigned a color 𝑖, and let 𝛱 = 𝑅1, 𝑅2, … , 𝑅𝑘 be an ordered 

partition of 𝑉(𝐺). The rainbow code of a vertex 𝑣 ∈ 𝑉(𝐺) with respect to 𝛱, denoted as 𝑟𝑐Π(𝑣), is the ordered 

𝑘-tuple defined as 𝑟𝑐𝛱(𝑣) = (𝑑(𝑣, 𝑅1), 𝑑(𝑣, 𝑅2), … , 𝑑(𝑣, 𝑅𝑘)) with 𝑑(𝑣, 𝑅𝑖) = {𝑚𝑖𝑛 𝑑(𝑣, 𝑦)|𝑦 ∈ 𝑅𝑖} for 

every 𝑖 ∈  [1, 𝑘]. If each vertex in 𝐺 has a distinct rainbow code, then the coloring 𝑐 is called a 𝑘-locating 

rainbow coloring of 𝐺. The locating rainbow connection number of 𝐺, denoted as 𝑟𝑣𝑐𝑙(𝐺), is defined as the 

smallest positive integer 𝑘 for which there exists a 𝑘-locating rainbow coloring of 𝐺. To simplify notation, 

the term "entry" is used to denote the distance of a vertex to a color set [17]. 

The locating rainbow connection number is useful in building security systems by optimizing the 

placement of biometric scanners. In this system, doors represent graph vertices, and edges denote hallways. 

Assigning the same scanner type to all doors poses a security risk-if one is compromised, all rooms become 

vulnerable. A more secure yet cost-effective solution is to minimize the number of scanner types while 

ensuring secure access, which can be achieved using the rainbow vertex connection concept. Additionally, 

assigning unique codes to doors based on scanner types enhances security by allowing quick identification 

of compromised access points [17]. 

The locating rainbow connection number of a graph has been studied in trees and bipartite graphs by 

providing characterizations of their locating rainbow connection numbers [17]. Additionally, it has been 

examined in amalgamation graphs, particularly in the amalgamation of complete graphs [18]. Furthermore, 

Bustan et al. [19] have also investigated the locating rainbow connection number in several classes of vertex-

transitive graphs, including cycle graphs. 

Graph coloring, particularly the locating rainbow connection number, is an intriguing topic of study. 

The novelty of this concept implies that, for many classes of graphs, their locating rainbow connection 

numbers remain undetermined. Bustan et al. demonstrated that the locating rainbow connection number of a 

complete graph is equal to its order. Therefore, we aim to determine the locating rainbow connection number 

for graphs that contain a complete graph, including the lollipop graph and the barbell graph, and analyze its 

relationship with the locating rainbow connection number of the complete graph itself. The lollipop graph, 

denoted as 𝐿(𝑚, 𝑛), is a graph obtained by connecting a complete graph 𝐾𝑚 of order 𝑚 to a path graph 𝑃𝑛 of 

order 𝑛 using a bridge. The barbell graph, denoted as 𝐵(𝐾𝑚), is a simple graph obtained by connecting two 

copies of a complete graph 𝐾𝑚 with a bridge. 
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2. RESEARCH METHODS 

The research employs a literature study method, following these stages: 

1. Literature review 

At this stage, an in-depth examination is conducted on facts, observations, lemmas, and theorems related 

to the concept of the locating rainbow connection number of a graph, as well as the characteristics of 

both the lollipop graph and the barbell graph. Additionally, an analysis is performed to determine the 

most appropriate proof methods for the lemmas and theorems that will be established. 

2. Formulating hypotheses 

Based on the literature review, a hypothesis is proposed regarding the value of the locating rainbow 

connection number for the lollipop graph and the barbell graph. This hypothesis is then formulated into 

a lemma or theorem. 

3. Theorem proof 

This stage involves proving the hypothesis concerning the locating rainbow connection number for both 

the lollipop and barbell graphs. The proof consists of two main steps: Lower bound proof: Established 

using contradiction and direct proofs involving lemmas or factual statements. Upper bound proof: 

Established by defining an appropriate coloring function. 

4. Conclusion 

Once the hypothesis is successfully proven, it is formally stated as a theorem. 

3. RESULTS AND DISCUSSION 

To simplify notation, we define [𝑎, 𝑏] = {𝑥 ∈ ℤ| 𝑎 ≤ 𝑥 ≤ 𝑏}. We divide the results of this study into 

two subsections: Subsection 3.1 discusses the locating rainbow connection number of the lollipop graph, 

while Subsection 3.2 focuses on the locating rainbow connection number of the barbell graph. 

The following are some previous research results related to the locating rainbow connection number 

of a graph. 

Lemma 1 [1] Let 𝑚 be a positive integer with 𝑚 ≥ 3. If 𝐺 be a connected graph of order 𝑚, then 2 ≤
𝑟𝑣𝑐𝑙(𝐺) ≤ 𝑚. 

Lemma 2 [1] Let 𝑐 be a locating rainbow coloring of 𝐺, and let 𝑢 and 𝑣 be two distinct vertices in 𝐺. If 

𝑑(𝑢, 𝑥) = 𝑑(𝑣, 𝑥) for all 𝑥 ∈ 𝑉(𝐺) − {𝑢, 𝑣} then 𝑐(𝑢) ≠ 𝑐(𝑣). 

Lemma 3 [20] If 𝑝 is the number of cut vertices in a graph 𝐺, then 𝑟𝑣𝑐𝑙(𝐺) ≥ 𝑝. 

Lemma 4 [17] Let 𝐺 is a connected graph of order 𝑚 ≥ 3.  𝑟𝑣𝑐𝑙(𝐺) = 𝑚 if and only if  𝐺 is isomorphic to 

complete graph. 

Lollipop and barbell graphs are two classes of graphs that both contain a clique, which is a set of vertices 

forming a complete subgraph. Therefore, before discussing the main results, we present a lemma concerning 

the coloring rules of a graph that contains a clique whose locating rainbow connection number is smaller than 

the number of vertices in the maximum clique of the graph. 

Lemma 5. If 𝐺 is a connected graph with a maximum clique 𝐾, and 𝑟𝑣𝑐𝑙(𝐺) = 𝑟 < |𝐾|, then the vertices in 

𝐾 must be colored using at most 𝑟 − 1 colors. 

Proof. Suppose that there exists a locating rainbow coloring of 𝐺 using exactly 𝑟 colors, and all vertices in a 

maximum clique 𝐾 ⊆ 𝑉(𝐺)  are colored using these 𝑟 colors. Since 𝐾 is a clique, every pair of distinct 

vertices in 𝐾 is adjacent, and thus 𝐾 forms a complete subgraph. Assume that |𝐾|  >  𝑟,  since there are only 

𝑟 available colors, by the pigeonhole principle, at least two vertices in 𝐾 must receive the same color. In this 

context, the pigeonhole principle asserts that if a set of |𝐾| vertices is assigned labels from a set of only 𝑟 

colors with |𝐾| > 𝑟, then at least one color must be assigned to more than one vertex. Let the two vertices be 

𝑣 and 𝑤 such that 𝑐(𝑣) = 𝑐(𝑤) = 𝑏. For each 𝑖 ≠ 𝑏, we have 𝑑(𝑣, 𝑅𝑖) =  𝑑(𝑤, 𝑅𝑖) =  1. Therefore, 

𝑟𝑐Π(𝑣) = 𝑟𝑐Π(𝑤), contradicting the assumption that the coloring is a locating rainbow coloring. Thus, it is 



2730 Bustan, et al.    THE LOCATING RAINBOW CONNECTION NUMBERS OF LOLLIPOP AND BARBELL…  

 

not possible for all 𝑟 colors to be used in 𝐾 if |𝐾| > 𝑟,  and the vertices in 𝐾 must be colored using at most 

𝑟 − 1 colors. ∎ 

 

Figure 1. A graph 𝑮 with Locating Rainbow 4-Coloring 

 

 

Figure 2. A graph 𝑮 with Vertex 4-Coloring 

Observe Figure 1 and Figure 2, where 𝑟𝑣𝑐𝑙(𝐺) = 4. Both figures illustrate the same graph and are 

colored using four colors, but in different ways. In Figure 1, it is shown that if one of the colors is not used 

in the clique, then the coloring with four colors is a locating rainbow coloring. Conversely, if all colors are 

used in the clique, then there exist at least two vertices with the same rainbow code, as shown in Figure 2. 

Therefore, such coloring is not a locating rainbow coloring. 

3.1 Locating Rainbow Connection Number of Lollipop Graphs 

Let the vertex set and edge set of the lollipop graph be defined, respectively, as follows: 𝑉(𝐿(𝑚, 𝑛)) =

{𝑣𝑖|𝑖 ∈ [1, 𝑚]} ∪ {𝑤𝑗|𝑗 ∈ [1, 𝑛]} and 𝐸(𝐿(𝑚, 𝑛)) = {𝑣𝑖𝑣𝑗|𝑖, 𝑗 ∈ [1, 𝑚], i ≠ j} ∪ {𝑤𝑗𝑤𝑗+1|𝑗 ∈ [1, 𝑛 − 1]}. 

(See Figure 3 for illustration) 
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Figure 3. 𝑳(𝒎, 𝒏) 

As explained in the introduction chapter, one of the lower bounds of the locating rainbow connection 

number is the rainbow vertex connection number of a graph. Therefore, before presenting the main results in 

this subsection, we first provide findings related to the rainbow vertex connection number of the lollipop 

graph. 

Theorem 1. Let 𝑚 ≥ 3 and 𝑛 ≥ 1 be integers. If 𝐿(𝑚, 𝑛) be a lollipop graph of order 𝑚 + 𝑛, then 

𝑟𝑣𝑐(𝐿(𝑚, 𝑛)) = 𝑛. 

Proof. It is known that the number of cut vertices in the graph 𝐿(𝑚, 𝑛) is 𝑛. Therefore, based on Lemma 3, 

we have 𝑟𝑣𝑐(𝐿(𝑚, 𝑛)) ≥ 𝑛. Furthermore, by coloring all cut vertices with 𝑛 distinct colors, it follows that 

any two vertices in 𝐿(𝑚, 𝑛) are connected by a rainbow vertex path. Thus, 𝑟𝑣𝑐(𝐿(𝑚, 𝑛)) = 𝑛. ∎ 

Figure 4 illustrates a rainbow vertex coloring for the lollipop graph 𝐿(𝑚, 𝑛) for any 𝑚 and 𝑛. 

 

Figure 4. A rainbow Vertex Coloring of 𝑳(𝟔, 𝟓). 

Theorem 2. Let 𝑚 ≥ 3 and 𝑛 ≥ 1 be integers. If 𝐿(𝑚, 𝑛) be a lollipop graph of order 𝑚 + 𝑛, then 

𝑟𝑣𝑐𝑙(𝐿(𝑚, 𝑛)) = 𝑚𝑎𝑥{𝑚, 𝑛} 

Proof. The proof of the lower bound is divided into two cases as follows: 

Case 1, m ≥ n. 

Suppose that 𝑟𝑣𝑐𝑙(𝐿(𝑚, 𝑛)) = 𝑚 − 1. If all colors are used in the subgraph 𝐾𝑚, based on Lemma 5, 

there must exist at least two distinct vertices 𝑣𝑖 and 𝑣𝑗  such that 𝑟𝑐𝛱(𝑣𝑖) = 𝑟𝑐𝛱(𝑣𝑗) which contradicts the 

definition of a locating rainbow coloring. Conversely, if not all colors are used in the subgraph 𝐾𝑚, without 

loss of generality, suppose that the vertices in 𝐾𝑚 use only 𝑚 − 2 colors. Since only 𝑚 − 2 colors are used; 

there must be at least two distinct vertices 𝑣𝑖 and 𝑣𝑗  (with 𝑖, 𝑗 ≠ 1) that share the same color. Given that the 

distances from these two vertices to all other vertices in 𝐿(𝑚, 𝑛) are identical, Lemma 2 implies that they 

have the same rainbow code, which leads to a contradiction. Thus, we conclude that 𝑟𝑣𝑐𝑙(𝐿(𝑚, 𝑛)) ≥ 𝑚. 

Case 2, 𝑚 < 𝑛. 

Observe that the graph 𝐿(𝑚, 𝑛) has 𝑛 cut vertices. Thus, by Lemma 3, it follows that 𝑟𝑣𝑐𝑙(𝐿(𝑚, 𝑛)) ≥ 𝑛. 

From the two cases above, we obtain  𝑟𝑣𝑐𝑙(𝐿(𝑚, 𝑛)) ≥ 𝑚𝑎𝑥{𝑚, 𝑛}.  

Next, we establish that 𝑟𝑣𝑐𝑙(𝐿(𝑚, 𝑛)) ≤ 𝑚𝑎𝑥{𝑚, 𝑛} by defining a coloring rule as follows: 𝑐(𝑉(𝐿(𝑚, 𝑛)) →

[1, 𝑚𝑎𝑥{𝑚, 𝑛}]. 
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𝑐(𝑣𝑖) = {
1, 𝑓𝑜𝑟 𝑖 = 1

𝑖 − 1, for 𝑖 ∈ [2, 𝑚]
 

𝑐(𝑤𝑗) = {
𝑗 + 1, 𝑓𝑜𝑟 𝑗 ∈ [1, 𝑛 − 1]

𝑚𝑎𝑥 {𝑚, 𝑛}, 𝑓𝑜𝑟 𝑗 = 𝑛
 

Based on the coloring defined above, it is evident that all cut vertices have distinct colors.  Furthermore, 

apart from adjacent vertices, any two vertices in 𝐿(𝑚, 𝑛) are always connected by a path whose internal 

vertices are all cut vertices, as shown in the proof of the upper bound in Theorem 1. This ensures that every 

pair of vertices in 𝐿(𝑚, 𝑛) is connected by a rainbow vertex path.  

The following table presents the rainbow vertex 𝒖 − 𝒗  paths, demonstrating that for every pair of 

vertices in 𝐿(𝑚, 𝑛), there always exists a rainbow vertex path connecting them. 

Table 1. Rainbow Vertex 𝒖 − 𝒗 Paths 

𝒖 𝒗 Condition Rainbow Vertex 𝒖 − 𝒗 Path 

𝑣𝑖 𝑣𝑗 𝑖, 𝑗 ∈ [1, 𝑚], 𝑖 ≠ 𝑗 𝑣𝑖𝑣𝑗 

𝑣𝑖 𝑤𝑗 𝑖 ∈ [1, 𝑚], 𝑗 ∈ [1, 𝑛] 𝑣𝑖𝑣1𝑤1𝑤2𝑤3 … . 𝑤𝑗−1𝑤𝑗 

𝑤𝑖 𝑤𝑗 𝑖, 𝑗 ∈ [1, 𝑛], 𝑖 ≠ 𝑗 𝑤𝑖𝑤𝑖+𝑖𝑤𝑖+2, … . 𝑤𝑗 

Additionally, from the given coloring, several conditions regarding the rainbow code can be derived as 

follows. 

1. 𝑐(𝑣1) = 𝑐(𝑣2) = 1, but 𝑑(𝑣1, 𝑅𝑧) < 𝑑(𝑣2, 𝑅𝑧) with 𝑧 = 𝑚𝑎𝑥{𝑚, 𝑛}. 

2. Every vertex in the subgraph 𝐾𝑚 except 𝑣1 is assigned a unique color. As a result, although they have 

the same distance to other vertices in 𝐿(𝑚, 𝑛) all these vertices have distinct rainbow codes. 

3. Every vertex in the subgraph 𝑃𝑛 except 𝑤𝑛 is assigned a unique color, ensuring that these vertices 

have distinct rainbow codes. 

4. For 𝑛 <  𝑚, 𝑐(𝑤𝑛) = 𝑐(𝑤𝑛−1) = 𝑛, but 𝑑(𝑤𝑛, 𝑅1) > 𝑑(𝑤𝑛−1, 𝑅1). Otherwise, the color of 𝑤𝑛 and 

𝑤𝑛−1 are different. Therefore, these two vertices have different rainbow codes. 

5. Every vertex in the subgraph 𝐾𝑚 is at distance one from a set of vertices colored with 𝑚 different 

colors for 𝑚 ≥ 3 whereas every vertex in the subgraph 𝑃𝑛 is at most distance one from at most two 

different color sets. Therefore, 𝑟𝑐Π(𝑣𝑖) ≠ 𝑟𝑐Π(𝑤𝑗). 

Based on the five conditions mentioned above, it follows that every vertex in 𝐿(𝑚, 𝑛) has a unique 

rainbow code. Therefore, the bound has been established, leading to the conclusion that 𝑟𝑣𝑐𝑙(𝐿(𝑚, 𝑛)) =

𝑚𝑎𝑥{𝑚, 𝑛}. ∎ 

Figure 5 illustrates a locating rainbow coloring of 𝐿(𝑚, 𝑛) for 𝑚 ≥ 𝑛, while Figure 6 illustrates a 

locating rainbow coloring of 𝐿(𝑚, 𝑛) for 𝑚 < 𝑛. 

 

 

Figure 5. A Locating Rainbow Coloring of 𝑳(𝒎, 𝒏) for 𝒎 ≥ 𝒏 
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Figure 6. A Locating Rainbow Coloring of 𝑳(𝒎, 𝒏) for 𝒎 < 𝒏 

Based on Theorem 1 and Theorem 2, it can be observed that the order of the complete graph does not 

affect the value of the rainbow vertex connection number of the lollipop graph and only depends on the 

number of cut vertices. In contrast, the locating rainbow connection number of a lollipop graph is influenced 

by the maximum of 𝑚 and 𝑛. Additionally, in rainbow vertex coloring, each vertex 𝑣𝑖 for 𝑖 ∈ [2, 𝑚] can be 

assigned the same color, whereas in locating rainbow coloring, each of these vertices must be assigned a 

distinct color. 

3.2 Locating Rainbow Connection Number of Barbell Graphs 

Let the vertex set and edge set of the barbell graph be defined, respectively, as follows: 𝑉(𝐵(𝐾𝑚)) =

{𝑣𝑖|𝑖 ∈ [1, 𝑚]} ∪ {𝑤𝑗|𝑗 ∈ [1, 𝑚]} and 𝐸(𝐵(𝐾𝑚)) = {𝑣𝑖𝑣𝑘|𝑖, 𝑘 ∈ [1, 𝑚], i ≠ k} ∪ {v1𝑤1} ∪ {𝑤𝑗𝑤𝑙|𝑗, 𝑙 ∈

[1, 𝑚], 𝑗 ≠ 𝑙}. (See Figure 7 for illustration). 

 

Figure 7. 𝑩(𝑲𝒎) 

Theorem 3. Let 𝑚 be a natural number with 𝑚 ≥ 3. If 𝐵(𝐾𝑚) be a barbell graph of order 2𝑚, then 

𝑟𝑣𝑐(𝐵(𝐾𝑚)) = 2. 

Proof. Based on Lemma 3, we have 𝑟𝑣𝑐(𝐵(𝐾𝑚)) ≥ 2. By assigning 𝑐(𝑣𝑖) = 1 and 𝑐(𝑤𝑖) = 2 we obtain 

𝑟𝑣𝑐(𝐵(𝐾𝑚)) = 2 since, apart from the two adjacent vertices, all other vertices in the graph are connected by 

a rainbow vertex path whose internal vertices are 𝑣1 and/or 𝑤1. ∎ 

Figure 8 illustrates a rainbow vertex coloring of the graph 𝐵(𝐾𝑚). 
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Figure 8. A Rainbow Vertex Coloring of 𝑩(𝑲𝒎) 

Theorem 4. Let 𝑚 be a natural number with 𝑚 ≥ 3. If 𝐵(𝐾𝑚) be a barbell graph of order 2𝑚, then 

𝑟𝑣𝑐𝑙(𝐵(𝐾𝑚)) = 𝑚. 

Proof. Suppose that 𝑟𝑣𝑐𝑙(𝐵(𝐾𝑚)) = 𝑚 − 1. Without loss of generality, consider the vertices 𝑣𝑖 for 𝑖 ∈
[1, 𝑚]. Consequently, there exist at least two distinct vertices, 𝒗𝒊 and 𝒗𝒋, that share the same color. Consider 

the following possibilities: 

1. Suppose that only 𝑚  −  2 colors are used for all vertices 𝑣𝑖, 𝑖 ∈ [1, 𝑚]. Then, by the pigeonhole 

principle, there exist at least two vertices 𝑢 and 𝑣 such that 𝑐(𝑢)  =  𝑐(𝑣). If 𝑢 and 𝑣 also have identical 

rainbow codes, then this contradicts Lemma 2, which states that any two vertices with identical codes 

must be assigned different colors. Hence, at least 𝑚  −  1 colors are necessary. 

2. If the vertices 𝒗𝒊 use at most 𝑚 − 3 distinct colors and 𝒗𝟏 is not one of the two vertices sharing the same 

color, then this situation reduces to the first case. 

3. If the vertices 𝒗𝒊 use at most 𝑚 − 3 distinct colors and 𝑣1 is one of the two vertices sharing the same 

color, then there exist two other vertices, excluding 𝑣1, that share the same color, reducing the situation 

again to the first case. 

From these three possibilities, it is concluded that when using only 𝑚 − 1 colors, there must exist at 

least two vertices in 𝐵(𝐾𝑚) with the same color and same rainbow codes, leading to a contradiction. 

Therefore, it must hold that 𝑟𝑣𝑐𝑙(𝐵(𝐾_𝑚) ≥ 𝑚. 

Next, we establish that 𝑟𝑣𝑐𝑙(𝐵(𝐾𝑚) ≤ 𝑚 by defining a coloring rule as follows: 𝑐(𝑉(𝐵(𝐾_𝑚)) →
[1, 𝑚]. 

𝑐(𝑣𝑖) = {
1, for 𝑖 = 1

𝑖 − 1, for 𝑖 ∈ [2, 𝑚]
 

𝑐(𝑤𝑗) = {
2, for 𝑗 = 1

𝑗, for 𝑗 ∈ [2, 𝑚]
 

Based on the coloring defined above, it is evident that 𝑣1 and 𝑤1 have distinct colors. Furthermore, 

apart from adjacent vertices, any two vertices in 𝐵(𝐾𝑚) are always connected by a path whose internal 

vertices are cut vertices, as shown in the proof of the upper bound in Theorem 3. So that every pair of vertices 

in 𝐵(𝐾𝑚) is connected by a rainbow vertex path.  

The following table presents the rainbow vertex 𝒖 − 𝒗  paths, demonstrating that for every pair of 

vertices in 𝐵(𝐾𝑚), there always exists a rainbow vertex path connecting them. 

Table 2. Rainbow Vertex 𝒖 − 𝒗 Paths 

𝒖 𝒗 Condition Rainbow Vertex 𝒖 − 𝒗 Path 

𝑣𝑖 𝑣𝑗 𝑖, 𝑗 ∈ [1, 𝑚], 𝑖 ≠ 𝑗 𝑣𝑖𝑣𝑗 

𝑣𝑖 𝑤𝑗 𝑖, 𝑗 ∈ [1, 𝑚] viv1w1wj 

𝑤𝑖 𝑤𝑗 𝑖, 𝑗 ∈ [1, 𝑚], 𝑖 ≠ 𝑗 𝑤𝑖𝑤𝑗 

 

Additionally, from the given coloring, several conditions regarding the rainbow code can be derived 

as follows. 
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1. Color 1 appears exclusively at vertices 𝑣1 and 𝑣2., while color 2 is assigned only to vertices 𝑤1, 𝑤2, and 

𝑣3.  

2. 𝑐(𝑣1) = 𝑐(𝑣2) = 1, but 𝑑(𝑣1, 𝑅𝑚) < 𝑑(𝑣2, 𝑅𝑚). 

3. 𝑐(𝑤1) = 𝑐(𝑤2) = 𝑐(𝑣3) = 2, but 𝑑(𝑤1, 𝑅1) = 𝑑(𝑣3, 𝑅1) = 1, 𝑑(𝑤2, 𝑅1) > 1, and 𝑑(𝑤1, 𝑅𝑚) <
𝑑(𝑣3, 𝑅𝑚). 

4. Every vertex 𝑣𝑖 for 𝑖 ∈ [2, 𝑚] is assigned a unique color. As a result, although they have the same 

distance to other vertices in 𝐵(𝐾𝑚) all these vertices have distinct rainbow codes. 

5. Every vertex 𝑤𝑗 for 𝑗 ∈ [2, 𝑚] is assigned a unique color. As a result, although they have the same 

distance to other vertices in 𝐵(𝐾𝑚) all these vertices have distinct rainbow codes. 

6. In our construction, aside from colors 1 and 2, each remaining color is used exactly twice, once for a 

vertex in the set {𝑣ᵢ} and once for a vertex in the set {𝑤ⱼ}. For any two vertices 𝑣ᵢ and 𝑤ⱼ such that 

𝑐(𝑣ᵢ)  =  𝑐(𝑤ⱼ)  =  𝑏, there always exists a color 1 ≠  𝑏, particularly color 1, such that 𝑑(𝑣𝑖 , 𝑅1) =

1, while 𝑑(𝑤𝑗, 𝑅1) = 2. This ensures that their rainbow codes are distinct. As for the case where 𝑐(𝑣ᵢ)  ≠

 𝑐(𝑤ⱼ), it is obvious that their rainbow codes differ since the vertex colors themselves are already 

different. 

Based on the five conditions mentioned above, it follows that every vertex in 𝐵(𝐾𝑚) has a unique 

rainbow code. Therefore, the bound has been established, leading to the conclusion that 𝑟𝑣𝑐𝑙(𝐵(𝐾𝑚)) =

𝑚.  ∎ 

Figure 9 illustrates the locating rainbow coloring of the graph 𝐵(𝐾𝑚). 

 
Figure 9. A Locating Rainbow Coloring of 𝑩(𝑲𝒎) 

Based on Theorem 3 and Theorem 4, it is obtained that the rainbow vertex connection number of the 

barbell graph and the locating rainbow connection number of the barbell graph differ significantly. 

Specifically, 𝑟𝑣𝑐(𝐵(𝐾𝑚)) = 2, whereas the value of 𝑟𝑣𝑐𝑙(𝐵(𝐾𝑚)) is directly proportional to the order of the 

complete graph. 

4. CONCLUSION 

In conclusion, we have determined the locating rainbow connection number for two specific types of 

graphs. It is observed that the locating rainbow connection number of the barbell graph is always equal to the 

order of the complete graph. In contrast, for the lollipop graph, this number depends on the maximum value 

of its two structural components. These findings contribute to a deeper understanding of locating rainbow 

coloring properties in structured graph classes. 
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