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ABSTRACT

The concept of the locating rainbow connection number of a graph is an innovation in
graph coloring theory that combines the concepts of rainbow vertex coloring and
partition dimension on graphs. This concept aims to determine the smallest positive
integer k such that there exists a locating rainbow k-coloring on the graph, ensuring that
every vertex has a unique rainbow code. In this study, we investigate the locating rainbow
connection number of the lollipop graph L(m,n) and barbell graph B(K,,). Using a
literature study method, hypotheses were formulated and proven through theoretical
analysis. The results show that rvcl(L(m,n)) = max{m,n} and rvcl(B(K,,)) = m.
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1. INTRODUCTION

The concept of the locating rainbow connection number of a graph is novel in graph coloring theory,
introduced by Bustan et al. in 2021 [1]. This concept combines the ideas of partition dimension and rainbow
vertex coloring of a graph. The partition dimension concept in graphs is related to the minimum size of a
partition of the vertex set such that each vertex can be uniquely identified based on its distance vector to each
part in the partition [2]. Meanwhile, the rainbow vertex coloring concept involves coloring the vertices of a
graph in such a way that every two distinct vertices in the graph are connected by a rainbow vertex path [3].
This concept is an extension of the rainbow coloring concept introduced by Chartrand et al. in 2008 [4]. The
rainbow coloring of a graph is one of the NP-hard problems [5]. Consequently, many researchers are
interested in developing this concept further. Several results related to the rainbow connection number in
graphs can be found in [6] and [7]. In a related line of research, the locating chromatic number has also been
studied as a vertex-coloring parameter that combines identifying codes with proper coloring ([8], [9], [10]).

LetG = (V (G), E(G)) be afinite connected graph, and let k be a positive integer. A k-rainbow vertex
coloring of G is a mapping c: V(G) — [1, k] such that for every two distinct vertices u and v in V(G), there
exists a path connecting them whose internal vertices have distinct colors. A path P in G whose internal
vertices have distinct colors is called a rainbow vertex path. The rainbow vertex connection number of a
graph G, denoted as rvc(G), is the smallest positive integer k such that there exists a k-rainbow vertex
coloring of G. The concept of rainbow vertex coloring is also classified as an NP-hard problem ([11], [12]).
Some of the latest studies on the rainbow vertex connection number for certain graph classes can be found in
[13]. Additionally, studies on the rainbow vertex connection number of graphs resulting from operations can
be found in [14], [15], and [16].

Fori € [1,k], let R; be the set of vertices assigned a color i, and let IT = R, R,, ..., R}, be an ordered
partition of V(G). The rainbow code of a vertex v € V(G) with respect to 17, denoted as rcp; (v), is the ordered
k-tuple defined as rcyp(v) = (d(v, Ry),d(v,Ry), ..., d(v, Rk)) with d(v,R;) = {mind(v,y)|y € R;} for
every i € [1,k]. If each vertex in G has a distinct rainbow code, then the coloring c is called a k-locating
rainbow coloring of G. The locating rainbow connection number of G, denoted as rvcl(G), is defined as the
smallest positive integer k for which there exists a k-locating rainbow coloring of G. To simplify notation,
the term "entry" is used to denote the distance of a vertex to a color set [17].

The locating rainbow connection number is useful in building security systems by optimizing the
placement of biometric scanners. In this system, doors represent graph vertices, and edges denote hallways.
Assigning the same scanner type to all doors poses a security risk-if one is compromised, all rooms become
vulnerable. A more secure yet cost-effective solution is to minimize the number of scanner types while
ensuring secure access, which can be achieved using the rainbow vertex connection concept. Additionally,
assigning unique codes to doors based on scanner types enhances security by allowing quick identification
of compromised access points [17].

The locating rainbow connection number of a graph has been studied in trees and bipartite graphs by
providing characterizations of their locating rainbow connection numbers [17]. Additionally, it has been
examined in amalgamation graphs, particularly in the amalgamation of complete graphs [18]. Furthermore,
Bustan et al. [19] have also investigated the locating rainbow connection number in several classes of vertex-
transitive graphs, including cycle graphs.

Graph coloring, particularly the locating rainbow connection number, is an intriguing topic of study.
The novelty of this concept implies that, for many classes of graphs, their locating rainbow connection
numbers remain undetermined. Bustan et al. demonstrated that the locating rainbow connection number of a
complete graph is equal to its order. Therefore, we aim to determine the locating rainbow connection number
for graphs that contain a complete graph, including the lollipop graph and the barbell graph, and analyze its
relationship with the locating rainbow connection number of the complete graph itself. The lollipop graph,
denoted as L(m, n), is a graph obtained by connecting a complete graph K,,, of order m to a path graph B, of
order n using a bridge. The barbell graph, denoted as B(K,,), is a simple graph obtained by connecting two
copies of a complete graph K,,, with a bridge.
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2. RESEARCH METHODS

The research employs a literature study method, following these stages:
1. Literature review

At this stage, an in-depth examination is conducted on facts, observations, lemmas, and theorems related
to the concept of the locating rainbow connection number of a graph, as well as the characteristics of
both the lollipop graph and the barbell graph. Additionally, an analysis is performed to determine the
most appropriate proof methods for the lemmas and theorems that will be established.

2. Formulating hypotheses

Based on the literature review, a hypothesis is proposed regarding the value of the locating rainbow
connection number for the lollipop graph and the barbell graph. This hypothesis is then formulated into
a lemma or theorem.

3. Theorem proof

This stage involves proving the hypothesis concerning the locating rainbow connection number for both
the lollipop and barbell graphs. The proof consists of two main steps: Lower bound proof: Established
using contradiction and direct proofs involving lemmas or factual statements. Upper bound proof:
Established by defining an appropriate coloring function.

4. Conclusion
Once the hypothesis is successfully proven, it is formally stated as a theorem.

3. RESULTS AND DISCUSSION

To simplify notation, we define [a, b] = {x € Z| a < x < b}. We divide the results of this study into
two subsections: Subsection 3.1 discusses the locating rainbow connection number of the lollipop graph,
while Subsection 3.2 focuses on the locating rainbow connection number of the barbell graph.

The following are some previous research results related to the locating rainbow connection number
of a graph.

Lemma 1 [1] Let m be a positive integer with m > 3. If G be a connected graph of order m, then 2 <
rvcl(G) < m.

Lemma 2 [1] Let ¢ be a locating rainbow coloring of G, and let u and v be two distinct vertices in G. If
d(u,x) = d(v,x) forall x € V(G) — {u, v} then c(u) # c(v).

LLemma 3 [20] If p is the number of cut vertices in a graph G, then rvcl(G) = p.

Lemma 4 [17] Let G is a connected graph of order m > 3. rvcl(G) = m if and only if G is isomorphic to
complete graph.

Lollipop and barbell graphs are two classes of graphs that both contain a clique, which is a set of vertices
forming a complete subgraph. Therefore, before discussing the main results, we present a lemma concerning
the coloring rules of a graph that contains a clique whose locating rainbow connection number is smaller than
the number of vertices in the maximum clique of the graph.

Lemma 5. If G is a connected graph with a maximum clique K, and rvcl(G) = r < |K|, then the vertices in
K must be colored using at most r — 1 colors.

Proof. Suppose that there exists a locating rainbow coloring of G using exactly r colors, and all vertices in a
maximum clique K < V(G) are colored using these r colors. Since K is a clique, every pair of distinct
vertices in K is adjacent, and thus K forms a complete subgraph. Assume that |K| > r, since there are only
r available colors, by the pigeonhole principle, at least two vertices in K must receive the same color. In this
context, the pigeonhole principle asserts that if a set of |K| vertices is assigned labels from a set of only r
colors with |K| > r, then at least one color must be assigned to more than one vertex. Let the two vertices be
v and w such that c(v) = c(w) = b. For each i # b, we have d(v,R;) = d(w,R;) = 1. Therefore,
req(v) = reg(w), contradicting the assumption that the coloring is a locating rainbow coloring. Thus, it is
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not possible for all r colors to be used in K if |K| > r, and the vertices in K must be colored using at most
r —1colors. m

®4(1,2,2,0)

(011117]) 1

(1,1,0,2)3

(1,1,0,1)3

2(1,0,1,2)
4(2,2,1,0) (2,1,2,0) 4

Figure 1. A graph G with Locating Rainbow 4-Coloring

Q

Figure 2. A graph G with Vertex 4-Coloring

Observe Figure 1 and Figure 2, where rvcl(G) = 4. Both figures illustrate the same graph and are
colored using four colors, but in different ways. In Figure 1, it is shown that if one of the colors is not used
in the clique, then the coloring with four colors is a locating rainbow coloring. Conversely, if all colors are
used in the clique, then there exist at least two vertices with the same rainbow code, as shown in Figure 2.
Therefore, such coloring is not a locating rainbow coloring.

3.1 Locating Rainbow Connection Number of Lollipop Graphs

Let the vertex set and edge set of the lollipop graph be defined, respectively, as follows: V(L(m, n)) =
{vili e [1L,ml}u {Wj|j €[1,n]} and E(L(mn))= {vivj|i,j €[1,m]i#j}u {ijj+1|j €[1,n—-1]}
(See Figure 3 for illustration)



BAREKENG: J. Math. & App., vol. 19(4), pp. 2727- 2738, December, 2025. 2731

U,

@ ® ®----0—@
wq ws w3  Wp-1 Wy,

(%

Figure 3. L(m,n)

As explained in the introduction chapter, one of the lower bounds of the locating rainbow connection
number is the rainbow vertex connection number of a graph. Therefore, before presenting the main results in
this subsection, we first provide findings related to the rainbow vertex connection number of the lollipop
graph.

Theorem 1. Let m =3 and n =1 be integers. If L(m,n) be a lollipop graph of order m + n, then
rvc(L(m, n)) =n.

Proof. It is known that the number of cut vertices in the graph L(m, n) is n. Therefore, based on Lemma 3,
we have rvc(L(m, n)) > n. Furthermore, by coloring all cut vertices with n distinct colors, it follows that
any two vertices in L(m, n) are connected by a rainbow vertex path. Thus, rvc(L(m, n)) =n.m

Figure 4 illustrates a rainbow vertex coloring for the lollipop graph L(m, n) for any m and n.

Um—1 Um
1 1

U] U wy Wn-2 Wp—-1 Wy
Uy O O-------- @ @ @
9 3 n—1 n n

U3 Loy

Figure 4. A rainbow Vertex Coloring of L(6, 5).

Theorem 2. Let m =3 and n =1 be integers. If L(m,n) be a lollipop graph of order m + n, then
rvcl(L(m,n)) = max{m,n}

Proof. The proof of the lower bound is divided into two cases as follows:
Casel, m = n.

Suppose that rvcl(L(m, n)) = m — 1. If all colors are used in the subgraph K,,,, based on Lemma 5,
there must exist at least two distinct vertices v; and v; such that rc; (v;) = rep(v;) which contradicts the
definition of a locating rainbow coloring. Conversely, if not all colors are used in the subgraph K,,, without
loss of generality, suppose that the vertices in K,,, use only m — 2 colors. Since only m — 2 colors are used;
there must be at least two distinct vertices v; and v; (with i, j # 1) that share the same color. Given that the
distances from these two vertices to all other vertices in L(m,n) are identical, Lemma 2 implies that they
have the same rainbow code, which leads to a contradiction. Thus, we conclude that rvcl(L(m, n)) >m.

Case 2, m < n.
Observe that the graph L(m, n) has n cut vertices. Thus, by Lemma 3, it follows that rvcl(L(m, n)) > n.
From the two cases above, we obtain rvcl(L (m, n)) = max{m,n}.

Next, we establish that rvcl(L(m, n)) < max{m,n} by defining a coloring rule as follows: c(V (L(m, n)) -
[1, max{m, n}].
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_ 1,fori=1
c(v) = {i —1,fori € [2,m]

_(jt1,forje[l,n—1]
c(w;) = { max {m,n}, forj=n

Based on the coloring defined above, it is evident that all cut vertices have distinct colors. Furthermore,
apart from adjacent vertices, any two vertices in L(m,n) are always connected by a path whose internal
vertices are all cut vertices, as shown in the proof of the upper bound in Theorem 1. This ensures that every
pair of vertices in L(m,n) is connected by a rainbow vertex path.

The following table presents the rainbow vertex u — v paths, demonstrating that for every pair of
vertices in L(m, n), there always exists a rainbow vertex path connecting them.

Table 1. Rainbow Vertex u — v Paths

u v Condition Rainbow Vertex u — v Path
v; v; i,je[l,m],i+#j v;v;

v; w; i €[1,m],j €[1,n] ViV Wi WaW3 . Wj_1 W
w; w; i,jell,n]i+j WiW; 1 iWii2, . Wi

Additionally, from the given coloring, several conditions regarding the rainbow code can be derived as
follows.

1. c¢(vy) =c(vy) =1,butd(vy, R,) < d(vy, R,) with z = max{m,n}.
2. Every vertex in the subgraph K,,, except v, is assigned a unique color. As a result, although they have
the same distance to other vertices in L(m, n) all these vertices have distinct rainbow codes.

3. Every vertex in the subgraph P, except w,, is assigned a unique color, ensuring that these vertices
have distinct rainbow codes.

4. Forn < m, c(w,) = c(w,_1) =n, but d(wy,, Ry) > d(wy,_1, R1). Otherwise, the color of w,, and
w,,_, are different. Therefore, these two vertices have different rainbow codes.

5. Every vertex in the subgraph K, is at distance one from a set of vertices colored with m different
colors for m > 3 whereas every vertex in the subgraph B, is at most distance one from at most two

different color sets. Therefore, ey (v;) # rep(w;).

Based on the five conditions mentioned above, it follows that every vertex in L(m,n) has a unique
rainbow code. Therefore, the bound has been established, leading to the conclusion that rvcl(L(m, n)) =
max{m,n}. m

Figure 5 illustrates a locating rainbow coloring of L(m,n) for m = n, while Figure 6 illustrates a
locating rainbow coloring of L(m,n) for m < n.

(1,1,1,...1,0,1,n+ 1) (1,1,1,....,1,1,0,n+ 1)
U?’rb—l ,Ujr”, (" '?35 2: 1:0! 1!2) (" '?554:3:?!.1![})
m — 2 ,— 1 A )
(1,0,1,2,3,....n—3,n—2,n—1) i !
A i i
U1 w1 wy  Wn—2 Wpn—1 Wy
V4 O Q-------- @ @ @
(1,1,0,1,...,1,1,1,n+1) 2 3 m — 2 m—1 m
(0,1,1,1,...,1,1,1,n) : i
2 \j

\ o
1 (2,1,0,1,2, ..,n—3,n—2) (-.,4,3,2,1,0,1)
U3 U9
(1,0,1,1,...,1,1,1,n+ 1) (0,1,1,1,...,1,1,1,n+ 1)

Figure 5. A Locating Rainbow Coloring of L(m,n) form > n
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Ay Ly :l).l.\'n’i‘_law"':" '7’”‘_:3177'_23”’_ 1)
| (4,i—1,1—2,....2,1,0)

v, w; W2 Wp_p Wu_1 Wy
e I o o
9 3 n—1 n mn
; : (6 — 15— 2,..2,0)
(1,0,1,2,3,....,n — (i + 1)) :'
1 \J
'Ug (i:i_1:3'_2:----27]:0:1)
,1,1,..,,1,m...,n—3,n—2,n—1)

Figure 6. A Locating Rainbow Coloring of L(m,n) form < n

Based on Theorem 1 and Theorem 2, it can be observed that the order of the complete graph does not
affect the value of the rainbow vertex connection number of the lollipop graph and only depends on the
number of cut vertices. In contrast, the locating rainbow connection number of a lollipop graph is influenced
by the maximum of m and n. Additionally, in rainbow vertex coloring, each vertex v; for i € [2,m] can be
assigned the same color, whereas in locating rainbow coloring, each of these vertices must be assigned a
distinct color.

3.2 Locating Rainbow Connection Number of Barbell Graphs

Let the vertex set and edge set of the barbell graph be defined, respectively, as follows: V(B (Km)) =
{vilie[Lmlyu{w;]j €1, m]} and E(B(Kp))={vyve|i,k € [1,m]i#Kk}U{vyw;}U{wjwjle€
[1,m],j # (}. (See Figure 7 for illustration).

,U?TL —1 ’Uﬂ'\;)

Wy, Wip—1

Figure 7. B(K,,)
Theorem 3. Let m be a natural number with m > 3. If B(K,,,) be a barbell graph of order 2m, then
rvc(B(Kyy)) = 2.

Proof. Based on Lemma 3, we have rvc(B(K,,)) = 2. By assigning c(v;) = 1 and c(w;) = 2 we obtain
rvc(B (Km)) = 2 since, apart from the two adjacent vertices, all other vertices in the graph are connected by
a rainbow vertex path whose internal vertices are v; and/or w;. m

Figure 8 illustrates a rainbow vertex coloring of the graph B(K,,).
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Um—1 Uin
1 1

Wim—1
2

Wy
2

U3 Vs w3 2 W3

Figure 8. A Rainbow Vertex Coloring of B(K,,)

Theorem 4. Let m be a natural number with m > 3. If B(K,,) be a barbell graph of order 2m, then
rvcl(B(Ky)) = m.

Proof. Suppose that rvcl(B(Km)) =m — 1. Without loss of generality, consider the vertices v; for i €
[1,m]. Consequently, there exist at least two distinct vertices, v; and vj, that share the same color. Consider
the following possibilities:

1. Suppose that only m — 2 colors are used for all vertices v;, i € [1,m]. Then, by the pigeonhole
principle, there exist at least two vertices u and v such that c(u) = c(v). If u and v also have identical
rainbow codes, then this contradicts Lemma 2, which states that any two vertices with identical codes
must be assigned different colors. Hence, at least m — 1 colors are necessary.

2. Ifthe vertices v; use at most m — 3 distinct colors and v is not one of the two vertices sharing the same
color, then this situation reduces to the first case.

3. If the vertices v; use at most m — 3 distinct colors and v, is one of the two vertices sharing the same
color, then there exist two other vertices, excluding v,, that share the same color, reducing the situation
again to the first case.

From these three possibilities, it is concluded that when using only m — 1 colors, there must exist at
least two vertices in B(K,,) with the same color and same rainbow codes, leading to a contradiction.
Therefore, it must hold that rvcl(B(K_m) = m.

Next, we establish that rvcl(B(K,,) < m by defining a coloring rule as follows: c¢(V(B(K_m)) —
[1,m].
( _)_{ 1,fori=1
W =i —1,fori € [2,m]
2,forj=1
C(Wj) - {j, for j € [2,m]
Based on the coloring defined above, it is evident that v; and w; have distinct colors. Furthermore,
apart from adjacent vertices, any two vertices in B(K,,) are always connected by a path whose internal

vertices are cut vertices, as shown in the proof of the upper bound in Theorem 3. So that every pair of vertices
in B(K,,,) is connected by a rainbow vertex path.

The following table presents the rainbow vertex u — v paths, demonstrating that for every pair of
vertices in B(K,,), there always exists a rainbow vertex path connecting them.

Table 2. Rainbow Vertex u — v Paths

u v Condition Rainbow Vertex u — v Path
v; v; L,je[l,mli#j Vivj

v; w; i,j €[1,m] ViViWi W

w; w; LjeElLm]i#] WiW;

Additionally, from the given coloring, several conditions regarding the rainbow code can be derived
as follows.
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1. Color 1 appears exclusively at vertices v, and v,., while color 2 is assigned only to vertices w;, w,, and
V3.

2. c(v)) =c(vy) =1,butd(vy,Ry) < d(wy, Ry).
3. C(Wl) = C(Wz) = C(U3) = 2, but d(Wl,Rl) = d(v3,R1) = 1, d(Wz,Rl) > 1, and d(Wl,Rm) <
d(v3!Rm)'

4. Every vertex v; for i € [2,m]is assigned a unique color. As a result, although they have the same
distance to other vertices in B(K,,) all these vertices have distinct rainbow codes.

5. Every vertex w; for j € [2,m] is assigned a unique color. As a result, although they have the same
distance to other vertices in B(K,,,) all these vertices have distinct rainbow codes.

6. In our construction, aside from colors 1 and 2, each remaining color is used exactly twice, once for a
vertex in the set {v;} and once for a vertex in the set {w;}. For any two vertices v; and w; such that
c(vi) = c(w;) = b, there always exists a color 1 # b, particularly color 1, such that d(v;,R;) =
1, while d(w;, R, ) = 2. This ensures that their rainbow codes are distinct. As for the case where c(v;) #
c(wj), it is obvious that their rainbow codes differ since the vertex colors themselves are already
different.

Based on the five conditions mentioned above, it follows that every vertex in B(K,,) has a unique
rainbow code. Therefore, the bound has been established, leading to the conclusion that rvcl(B (Km)) =
m. i

Figure 9 illustrates the locating rainbow coloring of the graph B(K,;,).

(111111--1]1]a1:033) (211111---113.1;1.\0)
211:1:---11:.1:0.\1
(lalala--‘:l:]ao:l:s) ’Uﬁ’b—l ’UT” u}?” u‘}?”b—].( '- )
m — 24 m—1 m )m, — 1

m—2
i—1/
’U.:,<
(l? l: --]-;Q: .15--111113} \‘\

(1,0,1,.,1,1,
i \

1,
(i—1)" K

1 No(2,1,1,0,1,0,1,.,1,1,1)
W i
(] wh R jth

2| 1 2 ’
(1~01117];J¢3) v3 UQ H)Q 3 u)3(2*110‘:]‘]‘1‘1’1)
0,1,1,,1,1,3)  (20,1,.,1,1,1)
s m—2

Figure 9. A Locating Rainbow Coloring of B(K,)

Based on Theorem 3 and Theorem 4, it is obtained that the rainbow vertex connection number of the
barbell graph and the locating rainbow connection number of the barbell graph differ significantly.
Specifically, rvc(B(K,,)) = 2, whereas the value of rvcl(B(K,,)) is directly proportional to the order of the
complete graph.

4. CONCLUSION

In conclusion, we have determined the locating rainbow connection number for two specific types of
graphs. It is observed that the locating rainbow connection number of the barbell graph is always equal to the
order of the complete graph. In contrast, for the lollipop graph, this number depends on the maximum value
of its two structural components. These findings contribute to a deeper understanding of locating rainbow
coloring properties in structured graph classes.
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