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ABSTRACT

Precise rainfall classification is most important for meteorological forecasting and
disaster risk mitigation, particularly in regions such as Yogyakarta, which are vulnerable
to extreme weather events. Although previous studies have examined rainfall
classification through the lens of meteorological variables, a notable lack of research has
systematically evaluated the effectiveness of diverse machine learning algorithms for
categorizing rainfall types within this specific locale. This study aims to rectify this gap
by incorporating essential weather variables, specifically temperature, humidity,
atmospheric pressure, and precipitation, into predictive models that utilize K-Nearest
Neighbors (KNN), decision trees, and logistic regression techniques. Among the
evaluated models, the decision tree demonstrated the highest degree of accuracy across
both training and testing datasets. An examination of feature significance indicated that
precipitation emerged as the most pivotal variable, aligning with the fundamental
physical mechanisms associated with rainfall. This study contributes significantly to the
evolving field of weather informatics by illustrating the utility of machine learning
approaches in classifying regional rainfall. However, the parameters of this research are
limited to specific meteorological variables and do not account for spatial or temporal
variations, which could potentially influence the model’s broader applicability. Future
research endeavors could augment this framework by integrating remote sensing data
and methodologies for spatiotemporal modeling.
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1. INTRODUCTION

Weather classification, an essential meteorological component, entails systematically categorizing
atmospheric phenomena based on empirical evidence rather than predictive models of forthcoming
conditions. Conventional classification techniques were predominantly dependent on observational
heuristics, such as the interpretation of a red sunset as an indication of forthcoming clear weather, which,
despite their intuitive attractiveness, were deficient in scientific rigor and methodological consistency. This
circumstance prompted the development of data-centric approaches bolstered by technological innovations
and systematic observational practices [1]. Contemporary meteorological sciences utilize a comprehensive
temperature, humidity, dew point, wind velocity and orientation, solar irradiance, and precipitation levels
gathered from terrestrial observation stations, satellite systems, and numerical weather prediction (NWP)
frameworks [2]. While conventional forecasting predominantly seeks to project forthcoming weather
conditions, the process of weather classification is crucial for the identification of anomalies, the
establishment of early warning mechanisms, and the ongoing assessment of climatic changes. The
incorporation of machine learning (ML) methodologies, particularly classification algorithms, has facilitated
the identification of intricate patterns within multivariate datasets, thereby enhancing both the precision and
promptness of decision-making in sectors significantly influenced by climatic variables.

Numerous investigations have elucidated the efficacy of machine learning methodologies, including
logistic regression, decision trees, and K-Nearest Neighbors (KNN), in meteorological classification tasks.
These analytical models leverage historical meteorological datasets to forecast future weather classifications
predicated upon a defined array of input features, with their predictive accuracy typically enhancing as the
quantity of variables increases [3]. Classification methodologies rooted in machine learning have exhibited
notable potential in differentiating various types of precipitation or rainfall, thereby facilitating enhanced
resource allocation and disaster management strategies [4], [5], [6].

In Indonesia, specifically in Yogyakarta, rainfall patterns are integral to various sectors, including
agriculture, water resource management, and disaster preparedness. The region is characterized by two
primary types of rainfall, each exhibiting distinct microphysical properties and resultant implications. The
precise categorization of these rainfall types is paramount for enhancing flood forecasting, optimizing
irrigation practices, and advancing crop resilience strategies.

Combining weather variables, including temperature, humidity, and atmospheric pressure, with
machine learning methodologies can yield a more intricate comprehension of rainfall dynamics in
Yogyakarta. By utilizing historical meteorological data alongside real-time observations, this study seeks to
establish robust predictive models that effectively categorize types of rainfall. Such classifications are
imperative for enhancing quantitative precipitation estimations, which are important for agricultural
strategizing and flood risk mitigation [7], [8]. Another investigation in the climatic field analyzed
precipitation and thermal patterns in North Sumatra Province. The findings indicated a progressive
augmentation in precipitation levels, with Medan exhibiting higher mean monthly values and a positive
thermal trend aligning with the broader weather change phenomenon. Nonetheless, the relationship between
precipitation and temperature exhibited a lack of robustness. These findings are instrumental in formulating
effective adaptation strategies to mitigate the impacts of climate change within the region [9].

Incorporating ML algorithms into meteorological forecasting, particularly in rainfall prediction,
represents a notable progression in the field. The investigation introduced a service-oriented architecture for
meteorological forecasting employing Artificial Neural Networks (ANN) alongside Decision Tree
methodologies. The findings indicated an enhancement in the precision of average weather variable
classifications [10]. Research conducted by Adhane demonstrated that the amalgamation of ANN with fuzzy
logic yields superior results compared to conventional techniques in meteorological forecasting, utilizing
parameters such as temperature, humidity, pressure, and wind velocity [11]. Furthermore, another study
applied six meteorological parameters in conjunction with Learning Vector Quantization (LVQ) to classify
rainfall. Despite the successful implementation of the LVQ methodology, the classification outcomes were
deemed inadequate [12]. This presents a clear research gap in leveraging more robust ML algorithms to
classify rainfall types with higher accuracy and relevance to local weather conditions.

This study addresses this gap by constructing a rainfall classification model predicated on historical
meteorological data from Yogyakarta, incorporating essential variables such as temperature, humidity, and
atmospheric pressure. The principal objective is to assess the efficacy of ML algorithms in precisely
differentiating between types of rainfall phenomena. This classification is a fundamental precursor to
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enhancing quantitative precipitation estimation and bolstering early warning systems in regions susceptible
to flooding. For example, discerning whether an impending rain event is convective or stratiform can assist
farmers in preparing for the consequent effects on soil moisture and agricultural health [13]. Furthermore,
this research can potentially improve flood forecasting and management initiatives. By categorizing rainfall
occurrences according to their characteristics, governing bodies can more effectively predict flooding hazards
linked to various types of precipitation. Convective rainfall, for instance, is frequently correlated with intense,
short-duration incidents that may result in flash floods, whereas stratiform rainfall generally exhibits a more
extended duration and reduced intensity [4], [14]. Enhanced classification facilitates timely interventions and
the judicious allocation of resources during extreme meteorological events.

2. RESEARCH METHODS

This study uses meteorological variables from the Yogyakarta area to classify rainfall types such as
cloudy, light rain, moderate rain, heavy rain, and very heavy rain. The chosen input parameters encompass
precipitation, temperature, humidity, duration of sunshine, wind speed, and wind direction, which serve as
critical indicators of atmospheric conditions pertinent to rainfall classification. These variables were chosen
owing to their significant correlation with precipitation attributes in tropical climatic conditions. The
preprocessing procedures encompassed normalization, imputation of missing values, and the categorical
transformation of wind direction to improve interpretability. The classification of rainfall types and the
selection of influencing variables were based on predefined threshold parameters provided by the Yogyakarta
Meteorology, Climatology, and Geophysics Agency (BMKG).

This study focuses strictly on classification methodologies rather than predictive forecasting, thereby
allowing for determining rainfall types for the same day contingent upon extant meteorological conditions,
without extrapolating future climatic trends. Temporal granularity is established daily, and the principal
objective is to facilitate immediate decision-making processes rather than engage in prolonged climatic
forecasting endeavors. Several constraints have been recognized: the predictive models, particularly the K-
Nearest Neighbors (KNN) algorithm, exhibit a heightened sensitivity to noise, decision trees are susceptible
to overfitting unless adequately regularized, and incomplete or inconsistent records from meteorological
stations may compromise the integrity of the data. Furthermore, given that the model is exclusively trained
on datasets from Yogyakarta, its generalizability may be constrained to other geographical areas characterized
by divergent climatic conditions.

2.1 K-Nearest Neighbor

K-Nearest Neighbor (KNN) is an instance-based learning framework prevalently employed for
classification and regression. This algorithm functions by allocating data points into distinct categories based
on their proximity to preexisting labeled instances within the training dataset. The foundational tenet of KNN
posits that analogous data points typically reside nearby within the feature space, thereby facilitating
classification determinations based on the predominant class of neighboring instances [15].

One of the foremost benefits of the KNN algorithm is its straightforward implementation and high
degree of interpretability. It necessitates minimal training duration, as it merely retains the training dataset
and executes computations at the point of prediction [16]. Furthermore, KNN demonstrates a proficient
capability to address multi-class classification challenges, rendering it adaptable for various applications,
such as meteorological forecasting, particularly in classification tasks.

The KNN methodology ascertains the classification of a specific test instance by examining its k
nearest neighbors, wherein k is a user-specified parameter that signifies the number of the closest training
examples to be considered. The classification procedure is executed utilizing various distance metrics, with
the Euclidean distance being one of the most extensively utilized. This metric quantifies the straight-line
distance between two points in Euclidean space, thereby measuring resemblance among data points.

From a mathematical perspective, the Euclidean distance between two points P (x4, y;) and Q (x5, y,)
within a two-dimensional space can be expressed as:

d(P,Q) = \/(xz —x1)% + (¥, —y1)? (D
In the context of higher-dimensional feature spaces, the Euclidean distance extends to:
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d(P,Q) = (2)

where x; and y; denote the feature values of the two data points across n dimensions.
The following steps outline the process of implementing KNN for classification:

1. Determine the optimal number of neighbors k for classification. A small value of k can make the model
sensitive to noise, while a large value may oversmooth the decision boundary. Cross-validation
techniques can be used to find the best k that minimizes classification error [17].

2. For each instance in the dataset, the KNN algorithm calculates the distance between the new data point
(the instance to be classified) and all other points in the training dataset.

3. After calculating the distances, the algorithm identifies the k nearest neighbors to the input data point
based on the calculated distances. These neighbors will be used to determine the classification of the new
instance [18].

4. Once the nearest neighbors are identified, the algorithm employs a voting mechanism to classify the new
instance. Each neighbor votes for its class, and the class with the majority votes is assigned to the new
data point. In the case of a tie, various strategies can be employed, such as choosing the class of the
nearest neighbor or using weighted voting based on distance [19].

2.2 Decision Tree

The algorithm that incorporates condition control statements is called a decision tree. It assists in
discerning a strategy or methodology most likely to achieve the desired objective. A decision tree (DT)
structure contains internal nodes indicating that the structure is a test on a particular attribute. At the same
time, the branches depict the experiment’s outcomes, and each leaf node signifies a class label. The pathway
from the roots to the leaves represents the classification rules. Three types of nodes exist: decision nodes,
chance nodes, and end nodes [20]. The Algorithm functions in the following steps:

1. When all scenarios are categorized under the same class, the resulting tree is designated as a leaf, and
this leaf is subsequently assigned the Class label once more.

2. For each value, one must compute the necessary metrics derived from the testing parameters and
subsequently ascertain the gain of information garnered from examining these parameters.

3. Utilizing a selection criterion, one must identify the most suitable parameter to utilize on the branch.
The calculation of entropy can be performed as follows:
Cc

Entropy(S) = z —p; log(p;) (3)
i=1
where:
S is the dataset
c is the number of classes
p; is the probability of class i in the dataset.

Information Gain quantifies the decrease in entropy after the partitioning of the dataset. It is represented

by:
Syl

IG(S,A) = Entropy(S) — Z llTlEntropy(Sv) (€))

vev
where:

S is the original dataset,

A is the attribute used for splitting,

V is the set of possible values for the attribute A4,

S, is the subset of S corresponding to the attribute value v,
|S,1/1S| represents the proportion of S, in S.
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2.3 Logistic Regression

Logistic regression is a special case of the Generalized Linear Model (GLM) specifically designed
for binary classification problems, where the dependent variable takes only two possible values, typically 0
or 1. The model predicts the probability that a given observation belongs to one of these two classes. While
multinomial logistic regression is used when the dependent variable consists of more than two unordered
categories [21].

Suppose that categorical variables Y with more than two possible levels, namely {{1, 2, ..., C}. Given
the predictors Xy, X5, ..., X;, , multinomial logistic regression models the probability of each level ¢ of Y by
[22],

eﬁoc"’ﬁlcxl +"'+ﬁpcxp

pC(X) = ]P)[Y = C|X1 = X1, ...,Xp = xp ] = 1+ Zlc:ll eﬁol+ﬁ1lx1+"’+ﬁplxp (5)
forc=1,2,...,C — 1 and (for the last level C)
1
pC(X) = ]P)[Y = Cle = X1, ...,Xp = Xp ] = T Z?;ll eBol+BllX1+"'+BplXp (6)

The multinomial logistic model has an interesting interpretation in terms of logistic regressions. Taking
the quotient between Equation (5) and Equation (6) gives

pC(X) = eBOc+ﬁch1+"'+chXp (7)
pc(®)
forc =1,2,...,C — 1. Therefore, applying a logarithm to both sides, we have:
Pc(X)
log (PZ(X)> = Boc + B1cX1 + -+ BpcXp (8)

3. RESULTS AND DISCUSSION

The dataset employed in this study comprises secondary daily data sourced from the Yogyakarta
Meteorology, Climatology, and Geophysics Agency (BMKG). The sample utilized in this research
encompasses climate condition data, including variables such as precipitation, temperature, wind, humidity,
sunshine duration, wind speed, and wind direction, covering the period from 2021 to 2023. Subsequently, the
comprehensive dataset is partitioned into sub-datasets, specifically 80% for training purposes and the
remaining for testing, to optimize the model’s performance that yields the most favorable outcomes.
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Figure 1. The Variables Distribution

From the analysis presented in Figure 1, it is evident that the dataset predominantly comprises
instances of cloudy (code: 0) and light rain (code: 2) weather conditions, encompassing approximately
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45.11% and 44.20% of the total dataset, respectively. In contrast, weather phenomena such as moderate rain
(code: 3), heavy rain (code: 1), and very heavy rain (code: 4) constitute less than 10% of the overall dataset.
The scarcity of data about moderate rain, heavy rain, and very heavy rain may significantly undermine the
model’s predictive accuracy when classifying these specific weather conditions due to insufficient training
data. This imbalance poses a significant challenge, as it can potentially introduce bias into the learning process
and diminish the model’s efficacy, particularly in classifying minority classes. In the current investigation,
no methodologies, such as Synthetic Minority Over-sampling Technique (SMOTE), random oversampling,
or class weighting, were employed to mitigate the imbalance. Consequently, the model may demonstrate
commendable accuracy for the majority classes, while significantly underperforming in minority classes,
which is an inherent limitation that warrants careful consideration when interpreting the findings. Subsequent
research endeavors are strongly suggested to integrate strategies for addressing imbalance to enhance model
generalization and predictive accuracy across all climatic conditions, particularly for infrequent yet
consequential phenomena such as heavy and very heavy precipitation.
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Figure 2. The Variables Distribution

Figure 2 illustrates the comprises a matrix of histograms accompanied by Kernel Density Estimation
(KDE) curves, which delineate the distributions of multiple meteorological variables. In the upper-left
quadrant, the precipitation variable (green) demonstrates a markedly right-skewed distribution, signifying
that most days experience minimal or no precipitation. At the same time, significant rainfall occurrences
characterize a minority of days. The upper-middle quadrant illustrates the maximum temperature (red), which
adheres to an approximately normal distribution centered around 31-32°C, indicative of a standard daily
temperature range. The upper-right quadrant presents the minimum temperature (light blue), which similarly
appears to be normally distributed, with values aggregating around 22—-24°C but exhibiting a slight leftward
skew.

Transitioning to the middle row, the left quadrant exemplifies the wind variable (orange), which reveals
a bimodal distribution, thereby indicating the presence of two predominant wind conditions that manifest
with notable frequency. The middle quadrant depicts the average temperature (dark blue), conforming to a
near-normal distribution centered around 26-28°C, which suggests a prevalent temperature range. The right
quadrant visualizes the average humidity (pink), characterized by a right-skewed distribution, with most
values concentrated around 85-95%, implying a generally humid climate.

The bottom-left quadrant illustrates the duration of sunshine (gray), where the distribution appears
relatively uniform with a slight right skew, indicating a diversity of sunshine durations. However, extended
sunshine periods appear more prevalent. The bottom-middle quadrant presents wind speed (magenta) and
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exhibits a bimodal distribution, suggesting that specific wind speed values occur with greater frequency.
Lastly, the bottom-right quadrant denotes wind direction (cyan), where peaks around 200-250 degrees imply
a prevailing wind direction within that range, while other directional occurrences are less frequent.

A square root transformation was employed on the dataset to mitigate skewness and address potential
outliers. This transformation is frequently utilized to diminish right skewness and stabilize variance while
preserving the relative relationships among the data points. Significant alterations can be discerned in the
graphical representation upon executing the transformation, encompassing a more symmetric distribution and
a probable attenuation of extreme values.

In the KNN algorithm, the parameter representing the number of neighbors (k) is instrumental in
ascertaining the resultant classification or regression output. In this instance, k is designated as 5, indicating
that the algorithm evaluates the five closest neighbors for any specified data point to generate a prediction.
This selection balances bias and variance, ensuring that the model does not exhibit excessive sensitivity to
noise (as observed with minimal k values) while simultaneously capturing localized patterns within the data.
A specification of k = 5 facilitates the smoothing of predictions by averaging across multiple neighbors,
thereby diminishing the probability of misclassification attributable to outliers or slight variations in the
dataset.

The decision tree constitutes a supervised learning algorithm employed for classification endeavors,
wherein data is partitioned into branches predicated on feature values to facilitate predictive modeling. In this
instance, the classifier is parameterized with max_depth = range (1, 8), indicating that the model will evaluate
various tree depths from 1 to 7 to ascertain the optimal depth that reconciles complexity with performance.
Furthermore, max_leaf_nodes = 15 constrains the maximum quantity of terminal nodes, averting excessive
branching and mitigating the potential for overfitting. The parameter random_state = 0 guarantees
reproducibility by regulating the stochasticity inherent in tree partitioning. The model aspires to attain a
harmonious balance between accuracy and generalization by calibrating these hyperparameters, rendering it
apt for classification undertakings involving structured data.

The logistic regression model, characterized by the designated parameters, constitutes a prevalent
classification methodology that employs L2 regularization (ridge penalty) to mitigate the propensity for
overfitting. The tolerance (tol = 0.0001) specifies the cessation criteria for the optimization procedure,
thereby ensuring convergence when the loss function variation diminishes beneath this stipulated threshold.
The regularization strength (C = 1.0) modulates the balance between attaining minimal error and preserving
model complexity, where reduced values necessitate more rigorous regularization. The intercept scaling
(intercept_scaling = 1) holds significance in scenarios where the model is fitted without prior feature scaling,
consequently influencing the magnitude of the intercept coefficient. The Ibfgs’ solver (Limited-memory
Broyden—Fletcher—Goldfarb—Shanno) represents an efficient optimization technique tailored for small to
medium-sized datasets, adept at accommodating L2 regularization. Ultimately, the maximum number of
iterations (max_iter = 100) guarantees that the optimization endeavor concludes after 100 iterations should
convergence remain unachieved. These configurations yield a methodical framework for training a logistic
regression model, integrating regularization with numerical stability.

Accuracy of Different Models

100

90.3% 87.79% 88.7%

Accuracy (%)

0

Decision Tree KNN Logistic Regression

Models
Figure 3. The Comparison of the Accuracy of Training Data
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The bar chart in Figure 3 shows the training accuracy associated with three machine learning
algorithms: KNN, decision tree, and logistic regression. The decision tree model attains the apex of training
accuracy at 90.30%, succeeded by logistic regression at 88.70%, and KNN at 87.79%.

The elevated accuracy of the decision tree model implies a proficient fitting of the training data;
however, this may concurrently signify a potential risk of overfitting, particularly in instances where the
model exhibits excessive complexity. The logistic regression model demonstrates marginally superior
performance compared to KNN, likely attributable to its efficacy in identifying a linear decision boundary.
Conversely, the slightly diminished accuracy of KNN may be influenced by hyperparameter considerations,
including the number of neighbors (k) and the selection of the distance metric. While the decision tree model
showcases the highest accuracy, validating these models on a test dataset is imperative to evaluate their
generalization capabilities.

0 0 0 0 BR 100 0 2 0 0
— 0 0 0 3 0 — 0 3 0 0 0 — 0 0 0 3 0
© © ©
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Figure 4. The Confusion Matrix of Different Models

Figure 4 illustrates the confusion matrices corresponding to three distinct classification algorithms:
Figure 4 (a) KNN depicted in red, Figure 4 (b) decision tree illustrated in green, and Figure 4 (c) logistic
regression represented in blue. The matrices provide a comparative analysis of actual versus predicted class
labels within a five-class classification challenge. KNN exhibits difficulties with light rain (code: 2),
erroneously categorizing 20 instances as belonging to cloudy (code: 0) while accurately predicting 80
instances. The decision tree algorithm demonstrates enhanced efficacy, accurately classifying 83 instances of
light rain (code: 2) and reducing overall misclassifications. Logistic regression emerges as the most effective
approach, achieving 85 correct predictions for light rain (code: 2) and displaying fewer inaccuracies across
all class categories. Both decision tree and logistic regression surpass the performance of KNN.

Accuracy of Different Models
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Figure 5. The Comparison of the Accuracy of Testing Data
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Based on Figure 5, the decision tree model exhibits the highest classification accuracy, achieving a
remarkable 91.78%, and is succeeded by logistic regression with an accuracy of 89.50% and KNN with an
accuracy of 86.76%. This finding suggests that the decision tree model demonstrates superior performance
in classification accuracy, resulting in a lower frequency of overall misclassifications. Logistic regression
also demonstrates commendable performance, marginally exceeding KNN yet falling short of the decision
tree’s efficacy. KNN is characterized by the lowest accuracy among the three models. This accuracy is
corroborated by the confusion matrix analysis, which indicates its pronounced challenges with
misclassifications, especially concerning class light rain (code: 2).

Furthermore, Table 1 presents the contribution of nine key variables in influencing the type of rainfall
classification. These variables likely include meteorological factors such as precipitation, minimum
temperature, maximum temperature, average temperature, wind, average humidity, sunshine duration, wind
speed, and wind direction, which are crucial in determining rainfall patterns. The decision tree model’s high
accuracy suggests it effectively captures and leverages these influential factors, making it a reliable choice
for rainfall classification. The importance of these variables in the model helps provide deeper insights into
how specific climatic conditions contribute to rainfall, enabling better decision-making for rainfall
classifications and climate-related analyses.

Table 1. Features Importance

Feature Importance
precipitation 0.925798
minimum temperature 0.015525
maximum temperature 0.005102
average temperature 0.000000
wind 0.000000
average humidity 0.019682
sunshine duration 0.025015
wind speed 0.000000
wind direction 0.008877

Table 1 presents the feature importance scores from the decision tree model for classifying type of
rainfall in Yogyakarta. The most influential factor is precipitation, which is expected since rainfall directly
determines rainy conditions. Other weather-related factors, such as humidity average and durative sunshine,
play a minor role, as humidity influences cloud formation, while sunlight duration affects evaporation and
atmospheric moisture. Temperature variables, including maximum and minimum temperatures, have minimal
impact, suggesting that temperature fluctuations alone are not strong variables of rain. Interestingly, wind,
wind speed, and average temperature have no contribution, indicating they do not significantly influence the
type of rainfall classification in this dataset. Wind direction shows slight importance, possibly due to its effect
on moving moisture-laden air masses. Overall, the model heavily relies on precipitation as the primary factor,
with humidity and sunshine duration providing additional but limited support in classifying rainfall.

4. CONCLUSION

Among the three machine learning models, KNN, decision tree, and logistic regression, the decision
tree model demonstrates superior accuracy in type of rainfall classification, attaining 90.30% on the training
dataset and 91.78% on the test dataset. Among the input variables, precipitation emerges as the predominant
influencing factor, which is anticipated given its direct correlation with rainy conditions. Other
meteorological factors, such as average humidity and duration of sunlight, assume a secondary significance
as humidity plays a pivotal role in cloud genesis. In contrast, sunlight duration impacts evaporation rates and
atmospheric moisture content. Temperature variables, encompassing maximum and minimum temperatures,
exert a negligible influence, suggesting that variations in temperature alone do not serve as robust indicators
of precipitation.
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Notwithstanding these encouraging outcomes, the investigation is not devoid of limitations. Firstly,
the dataset is confined to a particular geographic locale (Yogyakarta) and may lack generalizability to other
tropical or non-tropical regions characterized by divergent climatic conditions. Secondly, the analysis
incorporated only a limited selection of meteorological variables; additional potentially pertinent factors, such
as wind direction, atmospheric pressure, or cloud cover, were excluded due to data availability constraints.
Thirdly, the research utilized solely conventional machine learning models. Implementing more sophisticated
methodologies, such as ensemble learning or deep neural networks, may enhance classification accuracy and
improve generalizability. Prospective inquiries could rectify these limitations by integrating various climatic
variables, broadening the geographic focus, and employing more advanced modeling methodologies.
Moreover, incorporating real-time data and external environmental determinants, such as topography or land
utilization, could significantly augment model robustness and applicability within operational forecasting
frameworks.
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