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 ABSTRACT 

Article History: 
Real-world applications frequently necessitate optimization of chaotic response surfaces 

and constrained functions, which present difficult challenges for conventional methods. 
In order to effectively manage constraints and uncertainty, these complexities necessitate 

sophisticated algorithms. The objective of this research is to optimize the Rider 

Optimization Algorithm (ROA) by incorporating chaotic maps—namely, Logistic, 

Sinusoidal, and Iterative—to enhance exploration and exploitation. The chaotic ROA 
consistently outperforms the standard ROA in convergence speed, accuracy, and 

robustness, as evidenced by benchmark evaluations. For instance, in the multiple disk 

clutch brake design problem, the chaotic ROA obtained the highest objective value of 
0.2352, which was equivalent to or greater than the leading algorithms TSO, MFO, and 

WOA. The chaotic ROA variants (ROAC1, ROAC2, ROAC3) exhibited superior stability 

by achieving low standard deviations (e.g., 0.3321 in the Branin function at high noise 

levels) across noisy response surface benchmarks. The integration of constraint-handling 
mechanisms guaranteed that practicable solutions were achieved without sacrificing 

optimality. The chaotic ROA is established as a robust and adaptable solution for 

complex, noisy, and constrained optimization challenges in industrial scheduling, 

resource allocation, and engineering design by the proposed approach. 
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1. INTRODUCTION 

Nature-inspired optimization algorithms have attracted considerable interest in recent decades for their 

efficacy in addressing complicated, nonlinear, and multimodal optimization challenges. Metaheuristic 

algorithms, including the Rider Optimization Algorithm (ROA) [1], have exhibited significant potential. 

ROA, informed by the operational conduct of entities, provides a distinctive framework to equilibrate 

exploration and exploitation, rendering it appropriate for diverse complex optimization challenges. 

Nonetheless, the efficacy of these methods may be compromised when utilized in noisy or limited 

optimization scenarios. The incorporation of chaotic maps into optimization algorithms has proven to be an 

effective method for improving their performance. Chaotic maps, originating from deterministic nonlinear 

systems, have characteristics including ergodicity, sensitivity to initial conditions, and randomness. This 

makes them effective for expanding the search space and averting premature convergence. Incorporating 

chaotic maps into metaheuristic algorithms enhances their convergence speed, solution precision, and 

robustness [2], [3]. This work investigates the synergistic potential of chaotic maps combined with ROA to 

tackle optimization issues defined by noisy response surfaces and constraints. 

Noisy response surface optimization introduces uncertainty that can obscure the true landscape of the 

objective function, making it difficult for conventional optimization techniques to navigate effectively and 

frequently resulting in suboptimal solutions. The ROA is enhanced in its capacity to locate optimal solutions 

in noisy environments by incorporating chaotic maps, which improve its ability to manage uncertainties. 

Furthermore, the search for viable solutions can be substantially complicated by the presence of constraints 

in optimization problems, which can result in a reduction in the feasible search space. In order to overcome 

these obstacles, this investigation integrates constraint-handling techniques into the chaotic map-enhanced 

ROA framework, which allows the algorithm to maintain feasibility while pursuing optimality. This work 

advances metaheuristic optimization by integrating chaotic dynamics with ROA, thereby improving 

exploration, exploitation, and resilience beyond the capabilities of conventional methods in the presence of 

uncertainty and constraint limitations. The integration of constraint-handling techniques to balance feasibility 

and optimality in constrained problems, the development of a chaotic map-enhanced ROA to mitigate 

premature convergence and increase solution diversity, and a comprehensive comparative analysis using 

benchmark functions to evaluate the proposed algorithm against standard ROA and state-of-the-art methods 

are among the key contributions. The findings emphasize the benefits and constraints of incorporating chaos 

theory into metaheuristic optimization, providing valuable insights for practical applications in engineering, 

scheduling, and machine learning. 

By means of benchmark trials on normal test functions, this study intends to assess and compare the 

efficacy of the ROA enhanced with chaotic maps in addressing noisy and constrained optimization challenges 

by determining the optimal method in terms of convergence speed, accuracy, resilience, and constraint-

handling efficiency. It makes a major contribution to the field by means of creative integration of chaotic 

maps with ROA, thorough comparative analysis emphasizing the advantages and drawbacks of these 

advanced techniques, and inclusion of strong constraint-handling strategies to guarantee solution viability in 

constrained environments. With the paper organized to review ROA and chaotic maps, detail the 

methodology and experimental setup, present findings and analysis, and conclude with key insights and future 

research recommendations, the paper clarifies the role of chaotic maps in enhancing metaheuristic algorithms, 

establishes a foundation for future advancements, and demonstrates practical applications in many sectors 

including engineering design, resource allocation, machine learning, scheduling, supply chain management, 

and robust parameter estimation. 

2. RESEARCH METHODS 

2.1 Literature Review 

Recent studies have demonstrated the transformative impact of hybrid optimization algorithms across 

diverse domains. Askarali and Fredrik [1] introduced an Enhanced Crow Search and Rider Optimization 

Algorithm for diagnosing spinal tuberculosis from CT images with 86% accuracy, while Roopa et al. [4] 

proposed a Chaotic Rider Optimization-Based Clustering Protocol to enhance energy efficiency and security 

in wireless sensor networks. Kumbhare et al. [5] leveraged a Federated Learning framework combined with 

a Hybrid Dragon-Rider Optimization Algorithm for breast cancer detection, achieving 95% accuracy, and 
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Sarangi et al. [6] developed the Exploitation-Assisted Driving Training-Rider Optimization (EDT-RO) model 

for multicast routing in MANETs to optimize QoS metrics. Addressing energy efficiency in IoT-enabled 

WBANs, Dinesh and Rangaraj [7] integrated a fuzzy logic system with a Modified Rider Optimization 

Algorithm, while Alazab et al. [8] introduced the Fitness Averaged Rider Optimization Algorithm for cluster 

head selection in IoT networks, targeting delay minimization and energy sustainability. Prasad and Jaya [9] 

developed an Adaptive Rider Optimization Algorithm for efficient spectrum sharing in Cognitive Radio 

Networks, and Deelip and Govinda [10] presented an Exponential Sunflower Rider Optimization Algorithm-

driven deep residual network for IoT-based plant disease monitoring. 

In secure drone communication, Raja et al. [11] employed ROA for deep learning-based image 

encryption to ensure optimal key generation, while Xu and Li [12] explored an Improved Whale Optimization 

Algorithm for uncertain utility portfolio optimization in financial markets. Further advancing hybrid 

strategies, Benghazouani et al. [13] combined WOA with other nature-inspired techniques for feature 

selection in breast cancer diagnosis, and Chen et al. [14] introduced the Competition of Tribes and 

Cooperation of Members Algorithm, demonstrating superior global optimization compared to WOA. 

Mehmood et al. [2] applied chaotic maps integrated with Atom Search Optimization for modeling electro-

hydraulic actuator systems, and Roeva and Zoteva [3] enhanced chaotic electromagnetic field optimization 

using ten chaotic maps. Alibeigi et al. [15] employed deep learning and machine learning approaches, 

integrating hybrid models like DNN-GOA and SVR-WOA, to optimize high-temperature proton exchange 

membrane fuel cells with errors below 6%, while Palaniappan and Subramaniam [16] developed a WOA-

based optimization model with response surface methodology to improve turning process parameters for mild 

steel.  

Rajamani et al. [17] demonstrated multi-response optimization of plasma arc cutting parameters for 

Monel 400 alloys using WOA, and Kalita et al. [18] compared metaheuristic algorithms, including the Non-

Dominated Sorting WOA, for Pareto optimization in wire electrical discharge machining. Kawecka [19] 

applied WOA to optimize parameters in abrasive water jet machining of tool steel, and Kumar et al. [20] 
utilized a hybrid ANN-WOA model for parametric optimization in fused deposition modeling, reducing 

surface roughness and production time. Finally, Liu et al. [21] introduced a quantum theory-based improved 

WOA to predict seismic responses in short structures by optimizing an ANN, thereby capturing complex 

structural behaviors with high reliability. These studies demonstrate algorithms’ adaptability and 

effectiveness in tackling diverse optimization challenges, spanning energy systems, structural engineering, 

manufacturing, and agriculture. The findings collectively underscore the algorithm’s potential to 

revolutionize problem-solving across scientific and industrial domains. 

2.2 Rider Optimization Algorithm with Chaotic Maps Mechanisms (ROAC) 

 The Rider Optimization Algorithm is a metaheuristic technique inspired by the strategies of riders 

navigating challenging terrains. It categorizes riders into four roles to balance exploration and exploitation: 

bypass riders (leaders) guide the search, followers ensure steady progress, overtakers introduce diversity to 

avoid local optima, and attackers explore uncharted paths to enhance global search. These dynamic 

interactions enable the algorithm to adapt to complex optimization problems, making it effective for 

applications in engineering, resource allocation, and multi-objective decision-making. The methods described 

in this paper are intended to offer a comprehensive approach to optimization by addressing both theoretical 

and practical aspects. The solutions generated are not only optimal but also feasible and implementable in 

real-world scenarios as a result of the integration of sophisticated algorithms with domain-specific 

requirements. The subsequent sections provide a comprehensive examination of the specific integration 

strategies, the evaluation criteria, and the comparative performance analysis of the ROAC. It emulates the 

actions of riders, including the initial solution (𝑋𝑡(𝑖, 𝑗)) (Equation (1)), bypass riders (𝑋𝑡+1
𝐵 (𝑖, 𝑗)), followers 

(𝑋𝑡+1
𝐹 (𝑖, 𝑘)), overtakers(𝑋𝑡+1

0 (𝑖, 𝑘)), and attackers (𝑋𝑡+1
𝐴 (𝑖, 𝑗)), who employ a variety of strategies to reach 

their goal. 

The ROAC is composed of four primary components: the bypass rider, follower, overtaker, and 

assailant. Each is essential in maintaining a balance between exploitation and exploration. Navigating the 

search space by combining the weighted coordinates of selected riders, the bypass rider functions as the 

leader, directing the population toward promising regions (Equation (2)). Followers closely model the 

circumvent rider’s trajectory, thereby preserving diversity while refining convergence (Equation (3)). By 

incorporating both individual and leader positions, overtakers introduce dynamic search behaviors, enabling 

broader exploration to avoid local optima (Equation (4)). Attackers accelerate rapidly toward the leader, 
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guaranteeing rapid convergence (Equation (5)). In optimization problems that are constrained and 

unpredictable, these components function in a synergistic manner to ensure adaptability and robustness. 

Chaotic maps enhance ergodicity and allow the algorithm to effectively navigate complex landscapes. 

𝑋𝑡 = {𝑋𝑡(𝑖, 𝑗)}, 1 ≤ 𝑖 ≤ 𝑅, 1 ≤ 𝑗 ≤ 𝑄, 0 ≤ 𝑡 ≤ 𝑇 (1) 

𝑋𝑡+1
𝐵 (𝑖, 𝑗) = 𝛿[𝑋𝑡(𝜂, 𝑗)∗𝛽(𝑗) + 𝑋𝑡(𝜉, 𝑗)

∗[1 − 𝛽(𝑗)]] (2) 

𝑋𝑡+1
𝐹 (𝑖, 𝑘) = 𝑋𝐿(𝐿, 𝑘) + ⌊𝑐𝑜𝑠(𝑇𝑖,𝑘

𝑡 )
∗
𝑋𝐿(𝐿, 𝑘)∗𝑑𝑖

𝑡⌋ (3) 

𝑋𝑡+1
0 (𝑖, 𝑘) = 𝑋𝑡(𝑖, 𝑘) + ⌊𝐷𝑡

𝐼(𝑖)∗𝑋𝐿(𝐿, 𝑘)⌋,𝑤ℎ𝑒𝑟𝑒 𝐷𝑡
𝐼(𝑖) =  [

2

1 − log(𝑆𝑡
𝑅(𝑙))

] − 1 (4) 

𝑋𝑡+1
𝐴 (𝑖, 𝑗) =  𝑋𝐿(𝐿, 𝑗) + [𝑐𝑜𝑠(𝑇𝑖,𝑗

𝑡 ) ∗ 𝑋𝑙(𝐿, 𝑗)] + 𝑑𝑖
𝑡 (5) 

The position updates for all riders are based on specific strategies: the bypass rider combines weighted 

positions of randomly selected riders, followers mimic the bypass rider’s trajectory with adjustments guided 

by chaotic sequences, overtakers refine their movement by incorporating both self-information and the 

leader’s position, and attackers accelerate toward the leader’s position. The following provides a detailed 

explanation of the incorporation of chaotic maps into ROA’s update rules in order to define their role in 

improving the algorithm’s performance. The ROA incorporates chaotic maps by substituting the standard 

uniform random numbers used in the algorithm’s position update rules with chaotic sequences generated by 

the selected maps (Logistic, Sinusoidal, and Iterative). The coordinates of the bypass rider, follower, 

overtaker, and assailant, as well as control parameters such as steering angle, gear, and acceleration 

coefficients, are initialized and updated by these sequences. This substitution incorporates deterministic but 

non-repetitive perturbations into the search process, thereby fostering ergodicity and diversity in the search 

space, thereby augmenting exploration and reducing the risk of premature convergence. This integration 

guarantees that the ROA maintains robustness in chaotic and constrained environments while maintaining a 

balanced exploration-exploitation trade-off.  

The dynamic properties of chaotic maps and their documented efficacy in augmenting metaheuristic 

algorithms were carefully considered when selecting them for integration with the ROA. The Logistic, 

Sinusoidal, and Iterative maps were selected due to their unique ergodic characteristics and nonlinear 

behaviors, which enhance search diversity, prevent stagnation, and enhance robustness in chaotic and 

constrained environments. The algorithm is further improved by the incorporation of chaotic maps, which 

introduce dynamic, non-linear modifications to the search process, thereby improving exploration and 

exploitation. Chaotic sequences are generated by employing chaotic maps, including Logistic, Sinusoidal, 

and Iterative. These sequences are then used to initialize and update the motorcyclists’ positions and control 

parameters. By investigating promising areas of the search space, the bypass rider (leader) in ROAC 

establishes a path for others. By closely imitating the bypass rider’s trajectory, the followers ensure 

convergence toward the leader and update their positions. In order to achieve a balance between exploration 

and exploitation, overtakers integrate their information and the leader’s position to refine their movement. 

Attackers accelerate the convergence process by approaching the leader’s position at maximal speed. 

Parameters such as the steering angle, distance traveled, and weights are dynamically adjusted by the 

integration of chaotic maps, thereby facilitating a more robust search mechanism.  

A boundary-handling mechanism is implemented to prevent constraint violations and guarantee that 

the solutions produced by the ROAC remain within the established boundaries. The following techniques are 

employed to correct a solution that exceeds the upper or lower limits: clamping, which ensures feasibility by 

restricting the value to the nearest boundary; and random reinitialization, which reassigns the solution within 

the valid range to maintain diversity in the search space. These strategies effectively prevent the algorithm 

from investigating infeasible regions and maintain a well-distributed population of solutions. The algorithm 

assures the stability of the optimization process, mitigates premature convergence caused by constraint 

violations, and enhances robustness by incorporating these boundary-handling methods. The ROAC 

parameters and their definitions are in Table 1. With 10 replicates, the ROAC parameters of [R, G, A, B, It] 

were set at [20, 5, Random[0,1], Random[0,1], 5000]. 
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Table 1. ROA Parameters and Variables 

Parameter or 

variable 

Definition Parameter or 

variable 

Definition 

𝑡 Time instant 
𝑋𝑡(𝑖, 𝑘) Position of the 𝑖th rider in the 𝑘th 

coordinate 

𝑄 
Dimension of the optimization 

problem 

𝐷𝑡
𝐼(𝑖) Route pointer of the 𝑖𝑡ℎ rider with 

the 𝑡 prompt  

𝑋𝑡 Position of 𝑖th rider at time 𝑡 
𝑆𝑡

𝑅(𝑖) The 𝑖th rider’s success rate with the 

𝑡 instant time 

δ A random number within [0, 1] 𝑋𝐿(𝐿, 𝑗) The leader’s position 

𝜂 A random number within [1, 𝑅] 𝑇𝑖,𝑗
𝑡  The steering angle of the 𝑖th rider in 

the 𝑗th coordinate 

𝜉 
A random number that can be 

selected from 1 to 𝑅 
𝑅 Number of riders 

𝛽 A random number within [0, 1], but 

of size 1 × 𝑄 
𝑆 Steering Angle 

𝑘 Coordinate selector 𝐺 Gear 

𝐿 Index of bypass rider 𝐴 Accelerator 

𝑋𝐿  Position of bypass rider  𝐵 Brake 

𝑇𝑖,𝑘
𝑡  Steering angle in the 𝑘th coordinate 

along  with  distance  traveled by  

the 𝑖𝑡ℎ rider 

It Number of iterations 

𝑑𝑖
𝑡 Distance to be traveled by the 𝑖th 

rider 

  

Chaotic maps are frequently employed in optimization algorithms to generate well-distributed initial 

solutions, enhance search efficiency, and mitigate premature convergence by improving solution diversity. 

Unlike purely random initialization, chaotic sequences are deterministic yet non-repetitive, enabling 

comprehensive exploration of the search space. In this study, the chaotic sequences derived from the selected 

maps (Logistic, Sinusoidal, and Iterative) were first normalized to fit the predetermined boundaries of the 

decision variables. These normalized values were then projected onto the feasible solution space to ensure 

that the initial population remained both evenly distributed and diverse. By using chaotic maps during the 

early iterations, the global search capability of the algorithm is improved, thereby increasing the likelihood 

of identifying an optimal or near-optimal solution. This structured yet dynamic initialization process reduces 

the risk of getting trapped in local optima and improves the balance between exploration and exploitation. In 

particular, the Logistic map (Equation (6)) incorporates bifurcation behavior for controlled chaos, the 

Sinusoidal map (Equation (7)) provides seamless periodicity that is beneficial for convergence stability, and 

the Iterative map (Equation (8)) offers a higher level of complexity that is appropriate for robust search 

processes. The ROAC employs a structured process that capitalizes on the dynamic properties of chaos to 

optimize. The exploration and exploitation equilibrium during the search process are significantly enhanced 

by chaotic maps, where 𝑥𝑖  is the current solution, 𝑥𝑖+1 is the new solution, a = 0.5, it generates a chaotic 

sequence in (0, 1) 

𝑥𝑖+1 = 𝑎𝑥𝑖(1 − 𝑥𝑖) (6) 

𝑥𝑖+1 = 𝑎𝑥𝑖
2 𝑠𝑖𝑛( 𝜋𝑥𝑖) (7) 

𝑥𝑖+1 = 𝑠𝑖𝑛 (
𝑎𝜋

𝑥𝑖
) (8) 

Although other chaotic maps, including the Tent map [22] and Chebyshev map [23], also demonstrate 

valuable dynamic features, this study prioritized a focused selection to ensure diversity in search dynamics 

and maintain experimental manageability. The ROAC consistently outperforms conventional methods across 

key metrics, including computational efficiency, solution accuracy, and constraint management, as confirmed 

by comparative analysis. Consequently, it is a potent instrument for addressing real-world optimization 

challenges. This foundation may be further developed in future research by assessing additional chaotic maps 

to improve the ROAC’s performance across a variety of optimization problems. In real-world 

implementations, a chaotic system should ideally possess a large key space, exhibit complex dynamic 

behavior, and maintain an approximately uniform distribution 

These maps introduce deterministic randomness, which allows the algorithm to circumvent local 

optima and obtain superior convergence. The positions of the motorcyclists within the defined search space 
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are initially initialized by a chaotic sequence generated by the selected chaotic map. The conventional ROA 

framework identifies four distinct strategic groups. Each of them follows different strategies aiming to 

accomplish its goals: A bypass rider attempts to approach the target point by avoiding the leader’s trajectory 

to avoid direct competition. An overtaker aligns itself parallel to the leader by following it closely along a 

specified axis. The follower evaluates its present position by checking its nearby points to find a proper 

direction toward the goal. The attacker’s goal is to try to force the leader to change his position by using 

maximum speed to reach its goal faster. 

The utilization of chaotic maps in these revisions improves the exploration of the search space and 

increases the diversity of solutions. Boundary conditions are enforced following each update to guarantee 

that all passengers remain within the search space, and chaotic parameters are dynamically updated to 

facilitate exploration and exploitation. This iterative process persists until a stopping criterion is satisfied, 

such as convergence or a limit number of iterations. The algorithm’s robustness is considerably enhanced by 

the integration of chaotic maps, which diversify the search trajectories and prevent premature convergence. 

The algorithm ultimately returns the optimal solution and its corresponding fitness value, thereby 

illustrating the efficacy of integrating chaotic dynamics with ROAC to address intricate optimization 

problems. The pseudocode illustrating the ROAC and its key parameters is presented below. 

Begin;  
Initialize positions using a chaotic sequence and define algorithm parameters 
steering angle: 𝑆, gear: 𝐺, accelerator: 𝐴,  
Brake: 𝐵 and maximum time: Toff  

For i = 1 to Max replication; 
For j = 1 to Max Iteration; 

Initialise and rank the initial solution R (No. of riders) 
Evaluate the fitness values of all riders and partition them into four groups 
Calculate the success rate 
Update positions for all riders: 
- Bypass rider: Weighted combination of random positions. 
- Follower: Mimics leader with chaotic adjustments. 
- Overtaker: Combines self and leader positions. 
- Attacker: Moves directly toward the leader. 
Rider’s positions are arranged based on the success rate  
The rider showing the highest success rate is referred to as the leading rider. 
Update the rider’s parameters 
Enforce boundaries and update chaotic parameters. 

End for;  
End for;  
End;  
End procedure; 

3. RESULTS AND DISCUSSION 

Three chaotic maps (Logistic, Sinusoidal, and Iterative) were added to the Rider Optimization 

Algorithm to address two classes of optimization problems. The first class includes eight noisy response 

surface benchmarks—Branin (Equation (9)), Camelback (Equation (10)), Goldstein-Price (Equation (11)), 

Parabolic (Equation (12)), Rastrigin (Equation (13)), Rosenbrock (Equation (14)), Shekel (Equation (15)), 

and Styblinski (Equation (16))—selected for their complicated landscapes, including non-convexity, 

multimodality, and irregular structures where 𝑥𝑖 denotes the dimension of the optimization problem, 

𝑎𝑗 and 𝑎𝑖𝑗 denote the constant of the optimization problem. 

These benchmarks assessed the algorithm’s performance in noisy and difficult terrain. The noise is 

normally distributed with a mean of 0 and standard deviations of 0.5 and 1.  

𝑓(𝑥) = −5 log10 [(𝑥2 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)

2

+ (10 −
5

4𝜋
cos(𝑥1)) + 10] (9) 

𝑓(𝑥) = 10 − log10 [𝑥1
2 (4 − 2.1𝑥1

2 +
1

3
𝑥1

4) + 𝑥1𝑥2 + 4𝑥2
2(𝑥2

2 + 1)] (10) 

𝑓(𝑥) = 10 + log10 [

1

{1 + (1 + 𝑥1 + 𝑥2)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2

2)}

∗ {30 + (2𝑥1 − 3𝑥2)
2(18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2)}

] (11) 

𝑓(𝑥) = 12 − ∑[
(−𝑥𝑗)

2

100
]

𝑘

𝑗=1

(12) 
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𝑓(𝑥) = 80 − [20 + ∑𝑥𝑖
2

𝑛

𝑖=1

− 10(∑cos 2𝜋𝑥𝑖

𝑛

𝑖=1

)] (13) 

𝑓(𝑥) = 70

[
 
 
 
 ({20 − ((−

𝑥1

𝑎1
)

2

+ ∑ [(
𝑥𝑗

𝑎𝑗
) − (

𝑥1

𝑎1
)

2

]
2

𝑘
𝑗=2 )} + 150)

170

]
 
 
 
 

+ 10 (14) 

𝑓(𝑥) = 100∑
1

𝑐𝑖 + ∑ (𝑥𝑗 − 𝑎𝑖𝑗)
2𝑘

𝑗=1

𝑛

𝑖=1

(15) 

𝑓(𝑥) = 275 − [(
(𝑥1

4 − 16𝑥1
2 + 5𝑥1)

2
) + (

(𝑥2
4 − 16𝑥2

2 + 5𝑥2)

2
) + ∑(𝑥𝑖 − 1)2

5

𝑖=3

] (16) 

The second class includes two multi-objective optimization problems: the first model is to optimize 

machining parameters like cutting speed (𝑇𝑃), feed rate (𝐶𝑃), and depth of cut (𝑅𝑎) while meeting equipment 

and safety constraints (Equation (17)) [24], and the second is to design a multiple-disk clutch brake system 

to minimize material volume (𝑓1(𝑧)) and torque (𝑓2(𝑧)) under strict engineering and dimensional constraints 

(Equation (18)) [25]. 

𝑀𝑖𝑛 𝑇𝑃 = 0.12 + 231376(1 + 0.26 𝑇⁄ )𝑀𝑅𝑅 + 0.04 (17)

𝑀𝑖𝑛 𝐶𝑃 = (13.55 𝑇⁄ + 0.39)𝑇𝑃

𝑀𝑖𝑛 𝑅𝑎 = 0.0088𝑣 + 0.3232𝑓 + 0.3144𝑎 
 

 Subject to: 

𝑇 = 1575134.21(𝑣−1.7𝑓−1.55𝑎−1.22) 
𝑀𝑅𝑅 = 1000𝑣𝑓𝑎

70 ≤ 𝑣 ≤ 90
0.1 ≤ 𝑓 ≤ 2
0.1 ≤ 𝑎 ≤ 5

0.000626(𝑣𝑓1.18𝑎1.26) ≤ 5

1.38(𝑓1.18𝑎1.26) ≤ 230

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1(𝑧) = 𝑀 = 𝜋(𝑟0
2 − 𝑟𝑖

2)𝑡(𝑍 + 1)𝑝𝑚 (18)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2(𝑧) = 𝑇 =
𝐼𝑧𝑤

𝑀ℎ + 𝑀𝑓

 

Subject to: 

𝑔1(𝑧) = 𝑟0 − 𝑟𝑖 − ∆𝑅 ≥ 0

𝑔2(𝑧) = 𝐿𝑚𝑎𝑥 − (𝑍 + 1)(𝑡 + 𝛿) ≥ 0,

𝑔3(𝑧) = 𝑝𝑚𝑎𝑥 − 𝑝𝑟𝑧  ≥ 0,

𝑔4(𝑧) = 𝑝𝑥𝑎𝑥𝑉𝑠𝑟,𝑚𝑎𝑥 − 𝑝𝑟𝑧𝑉𝑠𝑟  ≥ 0,

𝑔5(𝑧) = 𝑉𝑠𝑟,𝑚𝑎𝑥 − 𝑉𝑠𝑟  ≥ 0,

𝑔6(𝑧) = 𝑀ℎ − 𝑠𝑀𝑠  ≥ 0,

𝑔7(𝑧) = 𝑇 ≥ 0,

𝑔8(𝑧) = 𝑇𝑚𝑎𝑥 − 𝑇 ≥ 0,
60 ≤ 𝑟𝑖 ≤ 80 𝑚𝑚,

90 ≤ 𝑟0 ≤ 100 𝑚𝑚,
1.5 ≤ 𝑇 ≤ 3 𝑚𝑚,
0 ≤ 𝐹 ≤ 1000 𝑁,

2 ≤ 𝑍 ≤ 9

 

The ROAC framework enhances both exploration and exploitation, accelerating convergence and 

improving solution quality in high-dimensional and constrained optimization problems. The notations and 

abbreviations employed in the multi-objective machining optimization problem ensure that all symbols and 

parameters are explicitly defined in Table 2. Parameter settings are followed: ∆𝑅 = 20 mm, 𝐿𝑚𝑎𝑥  = 30 mm,  

𝑉𝑠𝑟,𝑚𝑎𝑥 = 10 m/s, 𝜇 = 0.5, 𝛿 = 0.5 mm, 𝑀𝑠 = 40 Nm, 𝑀𝑓 = 3 Nm, 𝑛 = 250 rpm, 𝑝𝑚𝑎𝑥 = 1 MPa, 𝐼𝑧 = 55 kg.m2, 

𝑇𝑚𝑎𝑥  = 15s,  and 𝜌 = 7800 kg/m3, 𝑟𝑖  ∈ (60, 61, 62,…, 80), 𝑟0 ∈ (90, 91,…,110), 𝑡 ∈ (1, 1.5, 2, 2.5, 3), 𝐹 ∈ 

(600, 610, 620,…,1000) and 𝑍 ∈ (2, 3, 4, 5, 6, 7, 8, 9). 
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Table 2. Notations and Abbreviations Used in the Multi-Objective Machining Optimization Problem 

Parameters Definition Parameters Definition 

𝑇𝑝 Unit machining time (min) 𝐶𝑡 Tool cost ($) 

𝜋 Mathematical constant (3.1415) 𝐶𝐼 Labor cost ($/min) 

𝐶𝑝 Unit machining cost per product 

($) 
𝐶𝑜 Overhead cost ($/min) 

𝑅𝑎  Roughness of the finished 

surface (µm) 
𝐾𝐹 , 𝐾𝑛 , 𝑘, 𝑥1, 𝑥2, 𝑥3 Constants relevant to a 

specific tool–work piece 

𝑀𝑅𝑅 Material removal rate 

(mm3/min) 
𝐾𝑇 , 𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽2, 𝛽3 Positive constant 

parameters 

𝑇𝑠 Tool setup time (min)  𝑉 Volume of the removed 

metal (mm3) 

𝑇𝑐 Tool change time (min) 𝜂 Mechanical efficiency of 

the machine (%) 

𝑇𝑖 Tool non-cutting time (min) 𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥 Boundary of cutting speed 

(m/min) 

𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥  Boundary of feed rate (mm/rev) 𝐹𝑚𝑎𝑥 , 𝑃𝑚𝑎𝑥 Maximum cutting force 

(N) and cutting power 

(kw) 

𝑎𝑚𝑖𝑛 , 𝑎𝑚𝑎𝑥 Boundary of depth of cut (mm)   

The ROAC was selected for its ability to tackle complex optimization problems involving noisy 

response surfaces and constrained search spaces. Traditional algorithms often struggle with premature 

convergence and local optima entrapment, while ROA maintains a strong balance between exploration and 

exploitation for adaptive search [26]-[28]. However, its standard version may underperform in irregular 

landscapes and is sensitive to initial conditions. To enhance performance, Logistic, Sinusoidal, and Iterative 

chaotic maps were integrated into the standard ROA [29], leveraging their ergodicity and randomness to 

improve search diversity, accelerate convergence, and enhance robustness. Benchmark tests and real-world 

applications confirmed that chaotic ROA outperformed the conventional variant in convergence speed, 

accuracy, stability, and constraint management. Lower standard deviations indicated greater solution stability 

in noisy environments. Multi-objective tasks, such as clutch brake optimization, validated its effectiveness in 

maintaining feasibility without compromising optimality. The comparative analysis further demonstrated that 

chaotic maps significantly enhance metaheuristic algorithms, establishing ROAC as a powerful tool for 

solving complex real-world optimization challenges. 

3.1 Response Surface Benchmarks 

The ROAC increased resilience, precision, and adaptability across both problem domains by using 

chaotic maps’ dynamic, nonlinear features. This paper examines the algorithm’s performance to see how well 

this hybrid technique handles noisy response surfaces and complex multi-objective optimization problems 

(Figure 1). The ROAC and its chaotic map-enhanced variants—Logistic (ROAC1), Sinusoidal (ROAC2), 

and Iterative (ROAC3)—are demonstrated to be effective in optimizing eight benchmark response surfaces 

under varying noise levels (0, 0.5, and 1.0) in the experiments. The effectiveness and stability of various 

optimization methods are contingent upon the function in a noise-free environment. ROAC3 consistently 

produces the most consistent results, exhibiting the lowest standard deviation across the majority of functions. 

In the Branin function, ROA exhibits minimal variability and near-optimal results. In the meantime, ROAC1 

maintains resilient stability and excels in the Goldstein-Price and Shekel functions. ROAC3 guarantees 

superior consistency and near-optimal values for the Rastrigin and Styblinski functions (Figure 2), which are 

extremely sensitive. Parabolic and Rosenbrock functions are undisturbed by any method, exhibiting no 

variation. In general, ROAC3 is the preferred procedure in noise-free conditions because of its high 

robustness and negligible variance. 
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Figure 1. Comparison of the Mean and Standard Deviation of ROA Across Different Noise Levels for Each 

Function 

 

 
Figure 2. Convergence of the Algorithms When the Response Is Noise-Free 

At a moderate noise level of 0.5, different methods adapt with varying effectiveness, causing slight 

performance shifts. ROAC3 remains highly resilient in the Rastrigin and Styblinski functions, while ROAC1 

excels in Camelback and Shekel functions due to its superior handling of fluctuations. ROAC2 shows the 

highest variance and lowest average response in the Goldstein-Price function, making it more noise-sensitive, 

whereas ROA demonstrates strong noise resistance in the Branin function. Parabolic and Rosenbrock 

functions remain stable across all methods. Overall, ROAC3 ensures the best stability, but ROAC1 is 

preferable for noise-sensitive functions. At a higher noise level of 1.0, method distinctions become more 

pronounced. ROAC1 is the most stable across Branin, Camelback, and Shekel functions, maintaining low 

variance. ROAC3 continues to perform well in Rastrigin, showcasing its ability to navigate complex search 

spaces. ROAC2 delivers reliable average responses in Goldstein-Price but suffers from high standard 

deviation, making it less dependable in fluctuating conditions.  

Standard ROA struggles in Camelback and Goldstein-Price, proving unsuitable for high-noise 

environments. Parabolic and Rosenbrock functions remain stable across all methods. ROAC3 is the most 

effective in noise-free conditions, while ROAC1 provides the most consistent performance at higher noise 

levels, making it the best choice for managing extreme noise scenarios. In terms of overall performance, 

stability, and resilience to noise fluctuations, ROAC3 is the most effective optimization method when taking 

into account all noise levels and function responses. Although ROAC1 exhibits significant adaptability in 

high-noise environments, ROAC3 maintains its dominance across a broader spectrum of functions. ROAC3 

is the optimal choice for optimization tasks across a variety of function types and noise levels due to its 

capacity to consistently produce optimal results with minimal variance (Figure 3). 
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Figure 3. Central Tendency and Dispersion Effect for all Levels of Shekel Function 

The ROAC variants demonstrated their robustness under moderate noise (0.5), with ROAC1 and 

ROAC2 achieving higher Branin function averages (5.0702 and 4.9764) than ROA (4.8451), while ROAC1 

also minimized standard deviation (0.1951). ROAC3 excelled in the Camelback function with the highest 

average (17.3029) and competitive stability (stdev 0.7577). In chaotic multimodal functions like Rastrigin, 

ROAC2 and ROAC3 maintained superior consistency with low standard deviations (0.0051 and 0.0153), 

ensuring reliable performance in uncertain conditions. At higher noise levels (1.0), chaotic maps further 

improved performance. ROAC3 achieved the highest average fitness in Branin (4.8893) with balanced 

stability (stdev 0.3321), while ROAC2 maintained accuracy and stability in complex landscapes like Shekel 

(stdev 0.11). Despite increased uncertainty, chaotic maps enhanced ROA’s ability to explore and exploit 

effectively, leading to superior outcomes when compared to Data Envelopment Analysis-based Ranking 

(DEAR) [30]. The experimental results confirm the adaptability of the standard ROA and its chaotic variants 

(ROAC1, ROAC2, ROAC3), achieving an optimal balance between exploration and exploitation. With 

parameters set at R = 20, G = 5, iterations = 5000, and replications = 15, the chaotic-enhanced ROA 

consistently converged to global optima in constrained and multi-variable scenarios. 

3.2 Multi-Objective Optimization Problems 

ROAC and its chaotic variants exhibited robust performance in the multiple disk clutch brake design 

problem, demonstrating their effectiveness in constrained engineering optimization. ROAC3 achieved the 

global minimum objective value (0.2352), performing on par with benchmark algorithms such as Transient 

Search Algorithm (TSO), Moth-Flame Optimization (MFO), Whale Optimization Algorithm (WOA), Coot 

Optimization Algorithm (COOT), Multi-Verse Optimization (MVO), Arithmetic Optimization Algorithm 

(AOA), Sine Cosine Algorithm (SCA), Seagull Optimization Algorithm (SOA), and Pelican Optimization 

Algorithm (POA). The numerical results were obtained from previous literature [31] and validated through 

multiple independent runs to ensure consistency. ROA and its chaotic variants were programmed using Visual 

Studio 2022, leveraging built-in numerical optimization libraries to efficiently handle complex search spaces 

and computational constraints. The integration of chaotic maps improved the algorithm’s adaptability and 

enhanced its ability to navigate high-dimensional constrained landscapes, further reinforcing its suitability 

for real-world engineering applications. The algorithm’s stability and reliability were considerably improved 

by the chaotic maps, as demonstrated by the minimal deviation in design parameters across ROAC1, ROAC2, 

and ROAC3. Although ROAC1 and ROAC2 generated objective values that were marginally higher (0.2356 

and 0.2354, respectively), their performance was competitive, thereby validating the ability of chaotic 

enhancements to manage complex constraints (Table 3). 

Table 3. Comparison of the Best Optimal Solutions of Multiple Disks Clutch Brake Design Problem 

Algorithm X1 X2 X3 X4 X5 Min 

TSO 70.00 90.00 1.00 871.24 2.00 0.235 

MFO 70.00 90.00 1.00 958.62 2.00 0.235 

WOA 70.00 90.00 1.00 1000.00 2.00 0.235 

COOT 70.00 90.00 1.00 859.81 2.00 0.235 

MVO 69.99 90.00 1.00 999.83 2.00 0.235 

AOA 70.01 90.04 1.00 1000.00 2.00 0.235 
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Algorithm X1 X2 X3 X4 X5 Min 

SCA 69.99 90.00 1.00 1000.00 2.00 0.235 

SOA 70.00 90.00 1.00 965.93 2.00 0.235 

POA 62.32 94.44 2.77 659.55 4.39 0.235 

ROA 69.94 89.99 1.00 966.88 2.00 0.236 

ROAC1 69.55 89.67 1.00 971.13 2.00 0.236 

ROAC2 69.17 89.36 1.00 962.56 2.00 0.235 

ROAC3 69.77 89.82 1.00 964.33 2.00 0.235 

In particular, ROAC3 demonstrated exceptional convergence reliability by effectively balancing early-

stage exploration and late-stage exploitation (Figure 4). In problems with limited feasible regions, this hybrid 

dynamic is particularly advantageous, as the chaotic maps diversify the search process, thereby preventing 

premature convergence. The efficacy of ROAC3 as a dependable instrument for constrained design 

optimization is further substantiated by its comparable performance to top-tier algorithms. 

 
Figure 4. Performance Measures of ROA and Its Variants on the Response 

 The ROAC variants in the multi-pass turning problem successfully balanced a variety of conflicting 

objectives, such as machining time, cost, surface imperfection, material removal rate (MRR), and energy 

consumption. Although the Hybrid Self-Adaptive Firefly Algorithm (HSFLA3) and base ROA obtained 

higher cutting speeds and MRR, the chaotic-enhanced variants provided a more comprehensive trade-off. 

ROAC1, ROAC2, and ROAC3 consistently achieved competitive MRR while preserving superior surface 

finish and reduced energy consumption, rendering them highly suitable for scenarios that necessitate multi-

objective optimization [31]. The consistent clustering of objective function values (Z = 0.8186) across 

ROAC1, ROAC2, and ROAC3 was indicative of the robustness of chaotic maps. Additionally, these variants 

exhibited decreased variability in machining parameters while maintaining a balance between quality, cost 

efficiency, and productivity (Table 4). This balanced approach emphasizes the potential of chaotic ROA 

variants in practical manufacturing applications, where precision and efficiency must coexist. 

Table 4. Comparison of the Best Optimal Solutions of the Multi-Pass Turning Problem 

Parameter ROA ROAC1 ROAC2 ROAC3 

𝑣 (𝑚𝑚/𝑚𝑖𝑛)  99.692 99.177 98.930 99.226 

𝑓 (𝑚𝑚/𝑟𝑒𝑣) 1.9921 1.9807 1.9860 1.9943 

𝑎 (𝑚𝑚) 4.9850 4.9970 5.0000 4.9984 

𝑇𝑃 (𝑚𝑖𝑛) 0.3957 0.3977 0.3975 0.3959 

𝐶𝑃 ($) 0.3300 0.3291 0.3291 0.3297 

𝑅𝑎 (𝜇𝑚) 3.0884 3.0840 3.0845 3.0892 

𝑀𝑅𝑅 (𝑚𝑚3/𝑚𝑖𝑛) 990004.68 981626.56 982394.49 989121.14 

𝑇 (𝑚𝑖𝑛) 30.5148 30.9680 30.9481 30.6055 

𝐹 (𝑁) 23.5574 23.4696 23.5616 23.6679 

𝑃 (𝑘𝑤) 0.0879 0.0873 0.0872 0.0875 

𝑍 0.8186 0.8186 0.8186 0.8186 
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The incorporation of chaotic maps into the standard ROA significantly improved its adaptability, 

reliability, and robustness in both optimization problems. For instance, ROAC3 obtained the highest objective 

value of 0.2352 in the multiple disk clutch brake design problem, which was equivalent to or greater than 

benchmark algorithms such as TSO, MFO, and WOA [28]. The chaotic ROA variants consistently exhibited 

superior stability, as evidenced by their lower standard deviations across noisy response surface benchmarks, 

such as 0.3321 in the Branin function at noise level 1.0. In the same benchmark, ROAC1 and ROAC2 

delivered competitive performance, with best objective values of 0.236, while ROAC3 consistently 

demonstrated superior precision and convergence reliability. The algorithm’s efficiency was underscored by 

the ROA’s comparable performance to its chaotic variants in simpler optimization landscapes, such as the 

Rosenbrock and Parabolic functions [31]. Nevertheless, the ROAC variants considerably enhanced the 

algorithm’s ability to balance exploration and exploitation, resulting in superior results in complex and 

multimodal functions such as Rastrigin and Camelback. These quantitative results underscore the practical 

value of ROAC1, ROAC2, and ROAC3 as adaptable instruments for real-world engineering problems that 

necessitate the simultaneous optimization of conflicting objectives and constraints. 

4. CONCLUSION 

The increasing complexity of optimization problems involving chaotic response surfaces and 

constrained functions has driven interest in enhancing metaheuristic techniques. This study improves the 

standard Rider Optimization Algorithm (ROA) by integrating chaotic maps or ROAC, leveraging their 

stochastic and ergodic properties to enhance constraint management, prevent premature convergence, and 

navigate complex landscapes. Experimental results confirm that the ROAC variants consistently outperform 

its conventional counterpart by balancing exploration and exploitation, improving accuracy, and accelerating 

convergence. For instance, in the multiple disk clutch brake design problem, the algorithm achieved the best 

objective value of 0.2352, matching or surpassing benchmark algorithms such as TSO, MFO, and WOA. 

Additionally, in noisy response surface benchmarks, the ROAC achieved lower standard deviations (e.g., 

0.3321 in the Branin function at noise level 1.0), demonstrating superior stability and robustness. Integrated 

constraint-handling mechanisms ensured feasible solutions without sacrificing optimality, further 

highlighting the potential of chaotic maps in advancing metaheuristic optimization. 

In practice, the ROAC variants demonstrate exceptional adaptability and dependability in the face of 

scheduling, resource allocation, and engineering design challenges. It is notably advantageous for real-world 

applications in manufacturing, where it optimizes machining processes, reduces costs, and increases 

productivity, due to its capacity to manage constraints and uncertainties. In the renewable energy sector, it 

effectively allocates resources for wind and solar systems, optimizing output and cost, while the aerospace 

and automotive industries benefit from its precision in designing intricate components. These discoveries 

provide a basis for optimization algorithms that are specific to the requirements of a particular industry. In 

addition to manufacturing and energy, the ROAC variants can enhance the efficacy of medical imaging, 

optimize hospital scheduling, and expedite supply chain operations by optimizing routing and inventory 

management in constrained environments. It is an effective instrument for complex decision-making due to 

its capacity to manage multiple conflicting objectives. Future research should concentrate on the scalability 

of the ROAC variants for large-scale optimization problems, the hybridization of other chaotic maps, such as 

Tent and Chebyshev, with other metaheuristic techniques, and the exploration of broader applications in 

artificial intelligence, renewable energy, and healthcare. Ultimately, this study underscores the transformative 

potential of the ROAC variants in addressing real-world optimization challenges, fostering innovation, and 

enhancing operational efficiency across a variety of industries. 
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