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ABSTRACT

The COVID-19 pandemic, first identified in China, rapidly spread worldwide and
significantly impacted various sectors, including health and insurance. In Indonesia,
regional disparities in case trends have highlighted the need for localized risk assessment.
This study applies a Markov Chain model to estimate life insurance premiums and
benefits by forecasting long-term COVID-19 transmission probabilities across 30 sub-
districts in Bandung City. The analysis uses daily confirmed case data collected between
September 18, 2020, and April 17, 2022, a period marked by multiple infection waves and
heightened transmission risk. COVID-19 trends were categorized into discrete states—
decrease, no change, and increase—and modeled to construct transition probability
matrices and stationary distributions. These long-term probabilities were then used to
generate a regional risk map and inform actuarial pricing of insurance products. The
results reveal spatial heterogeneity in case increase probabilities, with Coblong,
Arcamanik, and Antapani exhibiting the highest long-term risk. A strong correlation (R?
= 0.9473) was found between case increase probabilities and projected insurance
benefits and premiums. The practical implication of this study lies in its provision of a
data-driven framework that enables insurance companies to align policy pricing with
region-specific and evolving pandemic risks, including long-term health consequences
such as post-COVID-19 conditions. This approach enhances both the fairness of premium
structures and the financial resilience of insurers in managing future public health crises.
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1. INTRODUCTION

The COVID-19 pandemic, initially identified in December 2019 in Wuhan, China, has since led to a
global health crisis and rapidly evolved into a worldwide emergency [1]-[9]. As of January 2023, there have
been over 670 million confirmed cases and nearly 7 million deaths globally [10]. In Indonesia, more than 6.8
million infections and 161,900 deaths were recorded as of August 2023 [11]. The pandemic has significantly
impacted healthcare systems, disrupted daily life, and caused widespread economic instability, including job
losses and financial uncertainty [4] — [6], [8], [12] — [14].

Given the unpredictable nature of the COVID-19 virus and its long-term implications, adopting data-
driven strategies is essential to mitigate its effects. These strategies enable policymakers and researchers to
develop more effective interventions, minimizing disruptions to public health and economic stability. One
such approach is the application of stochastic models, Markov Chains, to forecast future pandemic trends
based on observed data. Markov Chain is a stochastic process in which the system moves between states
according to probabilities [15] — [19]. The strength and effectiveness of Markov Chains in modeling complex
systems have been well established over the years. This model is a powerful tool for predicting the
progression of stochastic processes, where future states depend on the present state rather than on past events
[19]—-122], [22] —[28]. By capturing the inherent uncertainty and randomness of the pandemic’s progression,
Markov Chains allow for the estimation of transition probabilities between various states.

Insurance companies were affected by the pandemic, as increased health risks heightened the financial
burden on policyholders and insurers [29] — [35]. To ensure financial sustainability and equitable coverage,
life insurance premiums and benefits must adapt to evolving epidemiological risks. This study employs a
Markov Chain model to analyze daily COVID-19 case data and estimate long-term transmission probabilities
across Bandung’s sub-districts. These probabilities inform a regional risk map that enables insurers to
calibrate premiums and benefits based on localized risk levels, aligning pricing with actual exposure. While
lower-risk zones could support cheaper pricing, high-risk areas would require greater payments. Beyond
acute infection trends, insurers must also consider the actuarial implications of post-COVID-19 conditions—
such as persistent respiratory, cardiovascular, and neurological complications—which can elevate long-term
morbidity, mortality, and claims. By integrating forecasted case trajectories with the emerging burden of post-
acute effect, this model offers a robust framework for dynamic and risk-adjusted insurance valuation. It
supports more responsive pricing strategies that reflect both immediate transmission risk and the protracted
health impacts of the pandemic.

Although Markov Chain models have been extensively applied in modeling the progression of
infectious diseases, including COVID-19, most existing studies have centered around simulating epidemic
dynamics or evaluating transmission patterns over time. For instance, prior research has developed both
continuous and discrete stochastic Markov models to simulate epidemic dynamics and forecast outbreaks,
analyze clinical risk factors, and capture spatio-temporal patterns in transmission. These include works by
[20], [23], [25], [28]. In addition, other studies have investigated national trend predictions [36], long-term
epidemic behaviors such as extinction and stationarity [37], and general insurance applications [24]. While
these contributions have significantly advanced understanding of the epidemiological dynamics of COVID-
19, they tend to focus either on the statistical modeling of the disease or on general spatial-temporal
visualization without integrating those insights into a practical financial or actuarial framework.

In this study, we adopt discrete-time Markov Chain as the primary modeling framework for estimating
day-to-day progression of COVID-19 cases in Bandung. Markov Chains provide a probabilistic structure that
captures stochastic transitions between states over time, making them well-suited for modeling the evolution
of infectious disease outbreaks [38]. This modeling approach has previously been applied across various
epidemiological contexts, including in the spread of the citrus tristeza virus [39], the HIN1 influenza
pandemic [40], and Ebola outbreaks [41]. In the context of COVID-19, it has been used to simulate epidemic
progression, forecast trends, analyze spatial dependencies, and explore hidden spatio-temporal structures.
However, these studies have largely remained within the boundaries of epidemiological modeling, without
extending their results to inform region-specific actuarial decision-making. In contrast, this study applies a
discrete-time Markov Chain to categorize daily new COVID-19 cases into states to construct transition
probabilities and derive long-term stationary distributions. These serve as the basis for estimating regionally
adjusted life insurance benefits and premiums, grounded in a probabilistic understanding of the local
transmission risk.
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Despite the methodological diversity in prior studies, there remains a notable gap in linking Markov
Chain-based disease modeling with financial risk frameworks in a spatially disaggregated context. The
integration of epidemic trends into actuarial pricing at the sub-district level has not been sufficiently explored.
Existing approaches to insurance modeling rarely incorporate epidemiological dynamics or adapt premiums
based on localized transmission risks. To address this gap, this research develops a novel framework that
combines stochastic modeling of COVID-19 case progression with spatially sensitive life insurance
valuation. By applying this approach to 30 sub-districts in Bandung, we generate a data-driven risk map and
quantify region-specific life insurance premiums and benefits. This contributes to the literature by bridging
epidemiological modeling with actuarial science, offering a dynamic, equitable, and regionally responsive
method for managing financial protection in the context of public health crises.

The primary objective of this research is to integrate long-term COVID-19 case probabilities into life
insurance assessments, providing an innovative framework for risk-based pricing. By combining Markov
Chain modeling with regional risk mapping, this study offers a novel perspective on pandemic risk
management in the insurance industry. The findings contribute to the broader literature on actuarial science
and provide actionable insights for insurers seeking to navigate the uncertainties of global health crises.
Ultimately, this research highlights the importance of dynamic, data-driven models in managing the economic
and health-related risks posed by COVID-19.

2. RESEARCH METHODS

This research employs a stochastic modeling approach using Markov Chain to estimate long-term
COVID-19 case trends and its implications for life insurance premiums and benefits in Bandung.
Methodology consists of several key stages, including the formulation of the Markov Chain model, estimation
of transition probabilities, stationary distribution analysis, calculation of life insurance benefits and
premiums, risk mapping, discussion and model limitations.

The data used in this study comprises confirmed COVID-19 cases from September 18, 2020, to April
17, 2022, in Bandung, Indonesia. The dataset contains information on active cases, deaths, and recoveries,
with 577 data points recorded for each date across 30 sub-districts in Bandung. The data were obtained from
the official Bandung COVID-19 information portal https://covid19.bandung.go.id/.

2.1 Markov Chain Model for COVID-19 Case Trends

Markov Chain is a stochastic process that represents a sequence of probable events in which the
probability of transitioning to a future state depends only on the present state and not on the sequence of
preceding events [15]. This property, known as the memoryless property, makes Markov Chains highly
suitable for modeling dynamic systems such as the spread of infectious diseases [17]. A stochastic process is
considered to be a Markov chain if for all circumstances i, i4, ..., iz—», i, j meet the following equation

PXe = 1Xem1 = 6X =14, X9 = i) = P(Xy = j|Xem1 = 0) = Pij (D

where P;; denotes the probability that the transition from a process in state i at time ¢t and will be in event j

at time t + 1. Hence, the occurrence of X, depends only on the occurrence X;_; and is independent of the
preceding events Xo, X1, ..., X¢_1.

The implementation of the Markov Chain model in this study involves several structured stages. First,
the state space was defined by categorizing daily COVID-19 case trends into three states: decrease (-1), no
change (0), and increase (1). Next, transition frequencies between these states were calculated from historical
data to construct a 3 x 3 transition probability matrix for each sub-district. The model was then evaluated to
ensure it satisfied key Markov properties—irreducibility, aperiodicity, and positive recurrence—which
confirm the existence of a unique stationary distribution. This stationary distribution represents long-term
state probabilities, was computed and interpreted as the likelihood of persistent case trends within each
region. These probabilities serve as critical inputs for subsequent actuarial modeling of life insurance
premiums and benefits, allowing the integration of long-term epidemiological risk into financial forecasting.
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2.2 Transition Probability

Transition probability in this study refers to the probability of shifting from one COVID-19 case trend
state to another in the Markov Chain model. The states in this Markov model are defined as Table 1:

Table 1. State Space Definition

State Description

-1 Represents a decrease in COVID-19 cases compared to the previous day
0 Represents no change in COVID-19 cases compared to the previous day
1 Represents an increase in COVID-19 cases compared to the previous day

The possible states include an increase from the previous day (denoted as 1), no change from the
previous day (denoted as 0), and a decrease from the previous day (denoted as -1). If the number of cases
decreased, the day was classified as State (-1), and so on. Transition probability quantifies the probability of
moving from one of these states to another in the next time step, based only on the present state, following
the Markov property (memoryless process).

Transition between these states occurs probabilistically, based on observed historical data of COVID-
19 case trends. Transition probability matrix is derived using the Chapman-Kolmogorov equation, allowing
the model to estimate long-term trends in the spread of COVID-19. Chapman-Kolmogorov equation is used
to model the transition probabilities between states over time. This equation provides the mathematical
foundation to calculate the probability of being in a particular state after n steps, considering the initial state.
The general form of the Chapman-Kolmogorov equation consists of the following formula [15]:

p®™ =p p-D )

where P(V represents the state probability after n transitions, and P is the transition probability matrix.
Consider P as a one-step transition probability matrix for the transition probabilities P;;, where i, j = 0,1,2, ...
The transition probability matrix is defined as follows [15]:

Poo Po1 Po2
p = |P1o P11 P12z - (3)
Pgo Pgo Pgo

2.3 Stationary Distribution of the Markov Chain

The model assumes that the Markov Chain will reach a stationary distribution over time, where the
state probabilities no longer change with additional transitions. The stationary distribution is essential for
estimating the long-term probabilities of COVID-19 case trends, which directly inform the life insurance
calculations. The Markov Chain is considered stationary if it is aperiodic, positive recurrent, and irreducible,
as these properties guarantee convergence to a unique stationary distribution. Irreducibility ensures that all
states are accessible from any other state, meaning that no sub-district is permanently stuck in one trend.
Aperiodicity guarantees that system does not follow a strict cycle. It allows probabilities to settle into a stable
distribution. Positive recurrence ensures that every state is revisited within a finite period. Thus, the system
does not diverge indefinitely. Mathematically, stationary distribution is defined as a probability vector:

P =P (4)

where P is the transition probability matrix, and 7t is the stationary probability vector that represents the long-
term probabilities of being in each state. The stationary probabilities are obtained by solving this equation
under the condition that the sum of all probabilities equals 1:

Im; =1 (5)
Stationary distribution results provide a critical foundation for analyzing the long-term impact of COVID-19
trends in Bandung City. These probabilities are later used for risk assessment.
2.4 Life Insurance Benefits Estimation

To estimate life insurance premiums and benefits, two main components are considered. Benefits are
calculated using the following formula:
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s n .. ..
Als]:m = f bevtepg pg dt (6)
0

where i represents initial state of the policyholder, j is the final state of the policyholder,
Alsfﬁl define the expected benefits value paid upon the transition from state i to state j at location s over n
years, b, shows benefit at time ¢, v* represents discounted factors, tpsij define probability of an individual

transitioning from state i to state j at location s, and the ué’ is a transition rate.

2.5 Life Insurance Premiums Estimation

The estimation of life insurance premiums in this study is based on the expected life insurance benefits
and the long-term probability distribution of COVID-19 case trends. Since life insurance premiums must
accurately reflect the risks associated with different regions, the Markov Chain stationary distribution is used
to assess the probability of case fluctuations over time. Areas with higher probabilities of sustained case
increases are assigned higher premiums, while lower-risk areas receive lower premium rates.

To calculate life insurance premiums, this study applies actuarial pricing models that consider the
relationship between expected benefit amounts, transition probabilities, and annuity factors. The premium
estimation follows the formula:

Ts:q| b= (7)

_i"
a J

i fon btvttpsij .Uéj dt
= n oY)
fo btvttp;] dt

(8)

where the following notations apply: ns:,—”” represents expected premium value paid by the policyholder

when transitioning from state i to state j at location s over a period of n years, A ;’ means expected benefits

value paid upon the transition from state i to state j at location s over n years, and a 2'] is annuity from state
i to state j at location s.

2.6 Limitations of the Model

This study's Markov Chain model provides a structured approach to estimating COVID-19 risk trends
and their impact on life insurance. However, limitations exist that must be considered. One key limitation is
the model assumes static mortality rates and discount factors, even though these variables fluctuate due to
medical advancements and economic changes. The stationary distribution assumption also simplifies reality,
as pandemics are unpredictable and influenced by sudden epidemiological shifts. Data limitations present
another challenge. The available COVID-19 case data is incomplete, potentially leading to inaccuracies in
transition probability estimation. A more comprehensive dataset could improve prediction accuracy and
provide a stronger foundation for insurance calculations. Moreover, the model does not account for spatial
dependencies between sub-districts, meaning interactions between neighboring regions are not considered.

Despite these limitations, the model remains a valuable tool for actuarial risk assessment. For future
improvements, such as incorporating dynamic transition probabilities, economic variables, and complete
datasets, could enhance its predictive power and real-world applicability.

3. RESULTS AND DISCUSSION

3.1 Descriptive Statistics

The data used in this study comprises confirmed COVID-19 cases from September 18, 2020, to April
17, 2022, in Bandung, Indonesia. The dataset contains information on active cases, deaths, and recoveries.
Observations were recorded for 577 data points per date across 30 sub-districts in Bandung. Daily confirmed
COVID-19 cases across 30 sub-districts in Bandung City are presented in Fig. 1 as follows.
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Figure 1 Daily Confir?ned COVID-19K Cases in 30 Sumb-Districts of B%andung

The graphs shown in Fig. 1 presents the descriptive statistics for the daily confirmed COVID-19 cases
across the 30 sub-districts of Bandung from September 18, 2020, to April 17, 2022. The mean number of
daily cases varied considerably across sub-districts, ranging from 1.702 in Cinambo to 8.109 in Antapani,
indicating a heterogeneous distribution of the disease burden throughout the city. The standard deviations
were generally high, with a maximum standard deviation of 16.68 observed in Antapani and a minimum of
4.88 in Cinambo, suggesting substantial day-to-day fluctuations in case counts within each sub-district.
Skewness values were positive for all sub-districts, ranging from 2.88 to 7, implying a rightward skew in the
distribution of daily cases, with occasional surges leading to a long tail. Kurtosis values were also high,
ranging from 8.84 to 82.27, showing leptokurtic distributions. Leptokurtic distributions show sharper peaks
and heavier tails than normal distributions. These high kurtosis values suggest the presence of outlier events
(e.g., superspreading events) that disproportionately contributed to the overall case counts. The daily case
counts across 30 sub-districts, illustrated in Fig. 1, reflected the wave-like pattern of the pandemic during the
study period. The higher mean cases and standard deviations observed in Antapani, Coblong, and Arcamanik,
may attributable to higher population densities, increased mobility, or differences in adherence to public
health measures.

3.2 Transition Probability

Following the determination of state frequencies and the classification of daily COVID-19 case trends
into the defined states (decrease, no change, increase), the next step involved calculating the transition
probabilities between states. Transition probabilities quantify the probability of moving from one state to
another between consecutive days, providing insights into COVID-19 transmission. This study's transition
probability p;; represents probability of transitioning from state i to state j. Key findings from the transition
probability analysis reveal a diverse range of transition patterns across 30 sub-districts. A summary of
transition patterns across sub-districts can be seen from the transition probability matrix. This underscore
spatially heterogeneous transmission across sub-district in Bandung.

To illustrate the process of state classification and transition, this figure presents a snapshot of
confirmed COVID-19 cases and state transitions over six consecutive days in three representative sub-
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districts (Andir, Antapani, Arcamanik). Each sub-district’s state was derived by comparing the cumulative
number of confirmed cases with those of the preceding day.

Table 2. Daily State Transitions of COVID-19 Cases

Date Andir  Andir State Antapani Antapani State Arcamanik Arcamanik State
18/09/2020 57 1 49 0 53 1
19/09/2020 58 1 51 1 53 0
20/09/2020 58 0 53 1 54 1
21/09/2020 58 0 53 0 60 1
22/09/2020 58 0 53 0 60 0
23/09/2020 58 0 53 0 60 0

After classifying daily COVID-19 case trends into discrete states, the subsequent step involves
calculating the frequency of each state across the observed period. This step provides the empirical basis for
estimating transition probabilities. As shown, each sub-district (Andir, Antapani, and Arcamanik) exhibits a
distribution of state occurrences with comparable totals (576 observations per district), reflecting a balanced
representation of each state. These frequencies are then used to construct the one-step transition probability
matrix, where each entry p;; represents the likelihood of transitioning from state i to state j, forming the
foundation for further analysis of long-term COVID-19 trends through stationary distribution modeling.

Table 3. Cumulative State Transitions of COVID-19 Cases

State Description Andir Antapani  Arcamanik
Frequency of State "-1" 208 207 206
Frequency of State "0" 161 149 147
Frequency of State "1" 207 220 223

Total 576 576 576

Based on Cumulative State Frequencies on Table 3, the empirical one-step transition probability matrix
was constructed for 30 sub-district by dividing the number of transitions from a given state i to another state
j by total occurrences of state i. This matrix captures the probability of changes in COVID-19 case trends
between consecutive days and provides insights into the stochastic behavior of case dynamics. The transition
probability matrices for Andir, Antapani, and Arcamanik are presented below.

Table 4. Transitions Probability Matrices of COVID-19 Cases

Andir Antapani Arcamanik
From/To -1 0 1 From/To -1 0 1 From/To -1 0 1
5 L o m 1 o s Il PO T A V)

208 208 208 207 207 207 206 206 206
o 1o s s 0 1 80 53 o B8 0»

161 161 161 149 149 149 147 147 147
A S ) . L (O 1 , s 12 s

207 207 207 220 220 220 223 223 223

To provide a clearer view of how the transition probabilities were empirically derived, each element
in the transition matrix is expressed in its fractional form. The numerators represent the observed number of
transitions from state i to state j, while the denominators indicate the total frequency of the originating state
i in each sub-district.

51 55 102 42 54 111 42 37 127

208 208 208 207 207 207 206 206 206

ii 19 86 56 16 80 53 8 929 40

ij _| 2 86 56 ij R ij I
tp(Andir) 161 161 161 tP (Antapani) 149 149 149 tp(Arcamanlk) 147 147 147
137 21 49 149 16 55 140 12 56

207 207 207 182 182 182 223 223 223

3.3 Stationary Distribution Markov Chain for COVID-19

Stationary probabilities denoted by 7, represent long-term distribution of states under Markov Chain
model for each sub-district. These probabilities indicate steady-state probability of a sub-district experiencing
a decrease, no change, or an increase, in COVID-19 cases after many time steps. As shown in Table 5 below,
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each sub-district converges to a distinct long-term distribution. These stationary probabilities 7_,, 7y, T, are
critical for the subsequent calculation of insurance premiums and benefits. It reflects underlying long-term
epidemic risk in each area and serve as a probabilistic baseline for risk-based decision-making.

Table 5. Stationary Probability of COVID-19 Cases

State Andir  Antapani  Arcamanik
1_4 (Decrease) 3590%  35.80% 35.50%
1y (No change) 2820%  26.20% 25.90%
14 (Increase) 3590%  38.00% 38.60%

Each transition matrix contains a single communication class, indicating that the Markov chains are
irreducible. Furthermore, all states were found to be aperiodic and recurrent, and positive recurrence was
confirmed through n-step transition matrix evaluations as n approaches infinity. Consequently, each Markov
chain admits a unique stationary distribution.

Given the focus on high-risk scenarios, this study prioritizes the transition rate associated with state in
Eq. (1), representing an increase in COVID-19 cases from the previous day. Transition rate, denoted as u®/,
guantifies the frequency of movement into this state. These calculated transition rates, presented in Table 6
as the foundation for the subsequent stationary distribution analysis, which further examines the long-term
probabilities of COVID-19 case trends. The results of this analysis will then be integrated into the estimation
of insurance premiums and benefits.

Table 6. Transition Rates of States (u®/)
Sub-District  (u~t1) (u®YH) (u'YH)

Andir 0.184 0.104 0.082
Antapani 0.178 0.096 0.085

Arcamanik 0.219 0.066 0.093

After determining transition probabilities, the next step is to compute the stationary distribution.
Understanding stationary distribution of COVID-19 case trends is essential for predicting the pandemic's
long-term behavior and its implications for public health planning. Policymakers can design targeted
interventions in high-risk areas by analyzing how case states (decrease. stability. or increase) stabilize over
time. In this research, stationary distribution represents long-term behaviour of COVID-19 case trends across
30 sub-districts in Bandung. Stationary distribution occurs when the probabilities of being in each state
stabilize over time, meaning they no longer fluctuate with additional transitions. Markov Chain satisfies the
key properties necessary for the existence of a stationary distribution:

1. Irreducibility ensures that all states remain accessible over time, meaning no sub-district is
permanently locked in a single trend.

2. Aperiodicity: System must not be cyclic. It allows to settle into a stable probability distribution
over time. Since the transitions between states are observed daily, no fixed periodic cycle in
Markov Chain satisfies this condition.

3. Positive Recurrence: Each state must eventually be revisited in a finite time. ensuring the system
does not diverge. The transition probability matrix was evaluated as n — oo that demonstrate
every state is positively recurrent. Thus. it confirms that the Markov Chain converges to a
stationary distribution.

These properties confirm that the probabilities will converge to a stable long-term distribution and
allow for a robust assessment of sub-district-level COVID-19 risk. High probability of sustained case
increases in Coblong (39.91%), Arcamanik (38.87%), and Antapani (37.62%) may be attributed to several
factors. These sub-districts have higher population densities, leading to increased human interactions and
greater transmission risk. Additionally. they are commercial hubs where significant daily movement
contributes to higher exposure rates. Conversely, Bandung Kulon (15.14%), Cibiru (15.62%), and Bandung
Wetan (22.30%) have lower probabilities of sustained case increases. These areas are characterized by lower
population densities and less urban mobility.

The chart shown in Fig. 2 is a heatmap visualization created to help with a more precise assessment of
these long-term probabilities. This heatmap categorizes sub-districts based on their stationary probabilities.
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providing a spatial representation of areas where COVID-19 cases are most likely to remain high over time.
The following section expands this visualization through a risk map. The probabilities are listed sequentially
as 1wq.my. T_q.
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Figure 2. Heatmap of Stationary Distribution Across 30 Sub-Districts of Bandung City

The chart shown in Fig. 2 presents the highest probability trends in each sub-district. It classify regions
based on their probability of remaining in an increasing, stable, or decreasing state. Three of these trends
include an increase, stability, or decrease in COVID-19 cases compared to the previous day. For instance,
sub-districts of Bandung Wetan and Bandung Kidul both display a yellow color. However, the intensity of
the yellow color differs between the two sub-districts. In Bandung Wetan, the yellow is more intense due to
a higher probability of stability in COVID-19 cases compared to the previous day, in contrast to Bandung
Kidul. These long-term probabilities serve as input for the subsequent insurance premium and benefit
estimation analysis. By incorporating stationary distributions, insurers can better anticipate future claim rates

and set appropriate pricing structures to ensure financial sustainability.
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3.4 Risk Map of COVID-19 in Bandung
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Figure 3. Risk Map: Distribution of COVID-19 Case Increase Probabilities in Bandung

The risk map in Fig. 3 serves as a tool for translating numerical stationary probabilities into insights
for public health and insurance risk assessment. By categorizing sub-districts based on their probability of
sustained case increases, a risk map helps identify COVID-19 hotspots. Color gradient in risk map directly
reflects probability of case increases. Darker red shades indicate a higher probability of sustained COVID-19
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transmission, while lighter shades correspond to areas with lower long-term risk. For example, Coblong
(40%), Arcamanik (39%), and Antapani (38%), exhibit intense red shading, aligning with their high
stationary probabilities of case increases. In contrast, Bandung Kulon (15%), Cibiru (15%), and Bandung
Wetan (22%) appear in lighter hues, consistent with their lower probability values. This visualization
reinforces the spatial heterogeneity of COVID-19 transmission risk across Bandung.

Risk map has implications for both public health policy and insurance risk assessment. For
policymakers. the identification of high-risk areas enables the prioritization of testing efforts. vaccination
campaigns. and healthcare resource allocation. While for insurance providers. the risk classification can
inform data-driven adjustments to premium pricing and benefit structures based on localized COVID-19
risks. Through the combination of spatial visualization and stationary distribution analysis. the risk map offers
a thorough framework for evaluating the long-term effects of COVID-19 on various sub-districts. The next
chapter extends this analysis into the financial domain. which examines how these long-term probabilities
influence life insurance premiums and benefits estimation.

3.5 Life Insurance Benefit Estimation

This study uses Markov model to estimate life insurance payouts based on the long-term probability
of COVID-19 trends. Insurers provide these advantages as compensation to reduce the financial risks related
to COVID-19's consequences. Discount factors. transition rates. and stationary distribution probabilities are
used to calculate the estimated payoff for different risk levels over 30 sub-districts in Bandung.

Table 7. Projected Life Insurance Benefit (in million IDR)

Sub-District -1.1 0.1 1.1
Andir 2.34 0.94 0.50
Antapani 2.47 0.89 0.55
Arcamanik 3.50 0.47 0.60
Astana Anyar 2.06 0.80 0.19
Babakan Ciparay 1.71 0.71 0.29
Bandung Kidul 2.38 0.55 0.28
Bandung Kulon 2.16 0.90 0.57
Bandung Wetan 0.50 0.57 0.15
Batununggal 2.28 0.69 0.47
Bojongloa Kaler 0.93 0.77 0.22
Bojongloa Kidul 1.06 0.65 0.21
Buahbatu 2.51 0.52 0.73
Cibeunying Kaler 1.37 0.64 0.19
Cibeunying Kidul 2.51 0.69 0.73
Cibiru 2.25 0.95 0.42
Cicendo 2.29 0.77 0.56
Cidadap 1.15 0.82 0.15
Cinambo 0.69 0.64 0.08
Coblong 2.79 1.02 0.78
Gedebage 1.35 0.54 0.38
Kiaracondong 1.54 0.68 0.30
Lengkong 2.46 0.73 0.39
Mandalajati 1.92 0.93 0.49
Panyileukan 2.23 0.42 0.20
Rancasari 2.33 0.60 0.59
Regol 1.97 0.41 0.52
Sukajadi 2.61 0.84 0.39
Sukasari 2.60 0.76 0.38
Sumur Bandung 0.49 0.73 0.08
Ujungberung 1.78 0.98 0.48

Results show that sub-districts with higher probabilities of transitioning to a state of increasing cases.
such as Coblong (39.91%). Arcamanik (38.87%), and Antapani (37.62%), receive the highest estimated
benefits: Rp 2.79 million, Rp 3.50 million, and Rp 2.47 million, respectively. In contrast. sub-districts with
lower probabilities of case increases including Cinambo (15.14%), Sumur Bandung (15.62%), and
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Bandung Wetan (22.30%), have lower estimated benefit values with payouts of Rp 0.69 million, Rp 0.49
million, and Rp 0.5 million, respectively.

The value of life insurance benefits (in IDR) represents the financial amount required to be provided
by the government or insurance firms in the event of an adverse risk occurrence. The estimated payouts are
calculated based on state transitions, where COVID-19 case numbers are expected to increase. Given the
significant risk involved, the study focuses on state transitions that result in an escalation of daily cases,
specifically (—1,1),(0,1),and (1,1). These transitions reflect scenarios where case counts shift from a
decrease to an increase (—1,1), from stability to an increase (0,1), and from an increase to a sustained increase
(1,1). The estimated life insurance benefits for each transition provide insight into financial compensation
required for these risk scenarios. The (—1,1) transition represents expected benefit to be disbursed when
daily cases shift from a decrease to an increase, indicating a sudden resurgence of infections. The (0,1)
transition signifies the anticipated benefit for a shift from stable case numbers to an increase. It highlights
transmission risks. Lastly, the (1,1) transition reflects estimated benefit value for the persistence of case
increases and represents prolonged pandemic conditions. Fig. 4 illustrates the relationship between
probability of case increases and corresponding life insurance benefits, demonstrating how higher pandemic
risks correlate with more financial compensation requirements.

aM

. ,?

Life Insurance Benefit

0.1 02 03 04 05 06
COVID-19 Case Increases

Figure 4. COVID-19 Case Increases vs. Life Insurance Benefits

It is evident that as the probability of a rise in COVID-19 cases increases, so does the amount of benefits
that the government and insurance companies are required to provide. To determine the nature of this
relationship, the selection of the most appropriate trend model can be made by comparing coefficient of
determination (R?) values and values and examining the model curve that best aligns with historical data.
The coefficient of determination is a statistical measure that evaluates the proportion of variance in dependent
variable that evaluates the proportion of variance in dependent variable and can be explained by independent
variable in a regression model. In this context, R? quantifies the goodness of fit of the regression model to
historical data. It is indicate how well the model represents the observed relationship between COVID-19
case probabilities and insurance benefit estimations. It is calculated by comparing the sum of squared
differences between the predicted values ( ¥;) and mean of the observed values (¥) to total sum of squared
differences between the observed values (Y;) and its mean. A higher R? value indicates a better fit of the
model to data and suggest that independent variables account for a greater proportion of variability in
dependent variable. Coefficient of determination is mathematically expressed as follows:

O ©
Qr.-Y)

Below are several trend model options along with their respective coefficients of determination.
illustrated in Fig. 5.
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Figure 5. COVID-19 Case Increases vs. Life Insurance Benefits Trend model options
(a) Linear Trend, (b) Exponential Trend, (c) Logarithmic Trend, (d) Second Order Polynomial.

The trend model options illustrating the relationship between the probability of a rise in COVID-19
cases and life insurance benefits is presented in Fig. 5. Among the models, the second-order polynomial trend
demonstrates the best coefficient of determination (R? = 0.9473) that indicates the strongest fit to data. The
R? values for the remaining models are as follows: Linear (R? = 0.8936). Exponential (R* = 0.9393). and
Logarithmic (R? = 0.8039). These results suggest that the relationship between the probability of an
increase in COVID-19 cases and life insurance benefits is best represented by a second-order polynomial
trend, which captures the nonlinear nature of the data more accurately than other models. A polynomial trend
is beneficial for identifying patterns in datasets with curvature, which is often observed in large datasets with
significant variability. The polynomial model is a better option as additional data becomes available since the
connection between variables no longer follows a linear pattern.

3.6 Life Insurance Premium Estimation

Life insurance premiums estimation in this study is based on the long-term probabilities of COVID-19
case trends, as derived from the Markov Chain model. Premiums are determined using the annuity factor over
a given period and the estimated benefit amounts. The calculation incorporates transition probabilities
between states, discount factors, and expected payout values to ensure that premiums accurately reflect
regional risk variations. Life insurance premium estimation for each sub-district was computed using equation
(8). Life insurance premium estimation for each transition are summarized in Table 8.

Table 8. Projected Life Insurance Premium (million IDR)

Sub-District -1.1 0.1 1.1
Andir 1.84 1.04 0.82
Antapani 1.78 096 0.85
Arcamanik 2.19 0.66 0.93
Astana Anyar 1.59 1.07 0.47
Babakan Ciparay 1.37 1.04 0.58
Bandung Kidul 1.86 0.82 0.60
Bandung Kulon 1.70 1.04 0.88
Bandung Wetan 0.52 1.18 0.33
Batununggal 1.84 0.85 0.82
Bojongloa Kaler 0.90 1.15 0.41
Bojongloa Kidul 1.01 0.99 0.38
Buahbatu 1.93 0.71 1.01
Cibeunying Kaler 1.23 1.04 0.41
Cibeunying Kidul 1.84 0.82 1.10

Cibiru 1.81 1.04 0.74
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Sub-District -1.1 0.1 1.1
Cicendo 1.75 0.90 0.88
Cidadap 1.10 1.21 0.33
Cinambo 0.74 1.18 0.25
Coblong 2.05 0.93 1.15
Gedebage 1.21 0.99 0.68
Kiaracondong 1.32 1.01 0.58
Lengkong 1.75 0.93 0.71
Mandalajati 1.67 1.07 0.82
Panyileukan 1.67 0.79 0.49
Rancasari 1.78 0.82 0.90
Regol 1.56 0.74 0.74
Sukajadi 1.97 0.90 0.66
Sukasari 1.92 0.96 0.71
Sumur Bandung 0.60 1.21 0.16
Ujungberung 1.51 1.10 0.85

The findings show that the largest projected premiums are found in subdistricts with greater
probabilities of constant case increases, such as Coblong (2.05 million IDR), Arcamanik (2.19 million IDR),
and Antapani (1.78 million IDR). These higher premiums reflect the increased financial risk associated with
persistent COVID-19 transmission. In contrast, sub-districts with lower probabilities of case increases,
including Cinambo (0.74 million IDR), Sumur Bandung (0.60 million IDR), and Bandung Wetan (0.52
million IDR), have lower estimated premium values, as these areas are characterized by lower transmission
risks. The relationship between COVID-19 risk and insurance premiums follows a second-order polynomial
trend, with a high coefficient of determination (R* = 0.9473). Thus, it is confirmed that as the probability
of COVID-19 case increases rises, required premium also increase non-linearly.

Structure of life insurance premium is designed to balance financial sustainability and fairness. Several
factors influence premium variations across sub-districts. High-risk sub-districts typically have higher
population densities, greater mobility, and frequent public interactions, leading to higher premiums.
Conversely, lower insurance contributions benefit low-risk areas with less urban activity and lower
population densities. Additionally, actuarial adjustments ensure long-term financial stability while offering
affordable coverage. The transition probability matrix enables a dynamic pricing structure.

Findings from this study provide insights for insurance companies and policymakers in structuring fair
and risk-based premium models. Insurance providers can adjust premiums dynamically based on real-time
pandemic risk assessments and ensure that contributions align with regional COVID-19 exposure levels.
Higher sub-district premiums with persistent case increases help maintain sufficient insurance reserves to
cover potential policyholder claims. Estimating life insurance premiums based on Markov Chain modelling
and risk mapping provides a scientific approach to pricing insurance policies during a pandemic.

4. CONCLUSION

This study provides insights into the long-term behavior of COVID-19 transmission across sub-
districts in Bandung, revealing significant spatial variation in case trends. The highest probabilities of
sustained case increases were observed in Coblong (40%), Arcamanik (39%), and Antapani (38%), while
Bandung Kulon (15%), Cibiru (15%), and Bandung Wetan (22%) exhibited the lowest. These findings reflect
the geographic heterogeneity of pandemic risk, influenced by factors such as population density, mobility
patterns, and urban infrastructure.

By employing a Markov Chain framework, the study effectively modeled daily transitions in COVID-
19 case trends—capturing increases, decreases, and stability—and demonstrated that the model satisfies
essential stochastic properties, including irreducibility, aperiodicity, and positive recurrence. These properties
guarantee convergence to a unique stationary distribution, which accurately represents the long-term
probabilities of transmission dynamics.

Crucially, these stationary probabilities were integrated into actuarial pricing models to estimate life
insurance benefits and premiums. The analysis revealed a strong nonlinear relationship, modeled using a
second-order polynomial with a high coefficient of determination (R? = 0.9473), between the probability of
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case increases and corresponding insurance payouts. This confirms that as regional COVID-19 risk rises, so
too must insurance contributions and benefits to ensure actuarial fairness and financial sustainability. Overall,
the findings highlight the utility of Markov Chain model as data-driven approach for forecasting
epidemiological trends and informing dynamic, risk-based insurance strategies in public health crises.
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