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 ABSTRACT 

Article History: 
The Cutting Stock Problem (CSP) is a common challenge in many industries, involving 

the optimization of material cutting to minimize waste while meeting customer demands. 

Various methods can be used to address this issue. This paper applies the heuristic 

Particle Swarm Optimization (PSO) method to solve CSP in the case of one-dimensional 
aluminum roll cutting. First, we identify feasible cutting pattern combinations. A 

mathematical model and constraints are then formulated based on these patterns. Next, 

the PSO algorithm is employed to determine the optimal combination of cutting patterns, 

minimizing material waste. The results yield the optimal aluminum roller cutting pattern. 
Furthermore, we compare the results between the PSO method and the exact method. 
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1. INTRODUCTION 

The cutting stock problem (CSP) is one of the problems that we often find in many manufacturing 

industries, such as textile, garment, metal equipment, paper, shipbuilding, and sheet metal. Cutting stock 

problem (CSP) is a well-known optimization problem where large materials need to be cut into smaller pieces 

to meet specific demands while minimizing waste.  

The cutting stock problem (CSP) has several variants, including one-dimensional CSP [1], [2], which 

involves cutting rolls, rods, or beams; two-dimensional CSP [3], [4], which deals with cutting sheets of 

material like wood, fabric, or glass; and three-dimensional CSP [5] , which focuses on cutting blocks used in 

industries such as packaging and furniture making. 

Several techniques have been proposed to solve the cutting stock problem. Exact methods include 

integer linear programming (ILP), branch-and-price, and dynamic programming, which were introduced by 

Gilmore and Gomory in 1961 and 1963 [6], [7]. These methods guarantee optimal solutions but can be 

computationally expensive for large problems. In contrast, heuristic methods such as genetic algorithms (GA) 

[8], [9], simulated annealing (SA) [10], [11], and particle swarm optimization (PSO) [12], [13] provide faster, 

though not necessarily optimal solutions, making them suitable for large-scale and complex cutting stock 

problems. 

This study addresses the one-dimensional cutting stock problem in the context of cutting large 

aluminum rolls into smaller ones. The primary objective is to determine an optimal cutting pattern that 

satisfies demand requirements while minimizing trim loss. A comprehensive analysis is conducted on solving 

the CSP using a heuristic approach based on the Particle Swarm Optimization (PSO) algorithm. The paper 

presents the formulation of the CSP model specific to aluminum roll cutting and demonstrates how it is solved 

using PSO. Additionally, the trim loss results obtained from the PSO method are compared with those 

generated by an exact optimization method. 

2. RESEARCH METHODS 

This section describes how the particle swarm optimization method is applied to solve the one-

dimensional cutting stock problem. Following the explanation of the particle swarm optimization method, 

the data used in the cutting stock problem model will also be presented. 

2.1 Particle Swarm Optimization Method 

Particle swarm optimization (PSO) was first introduced by Kennedy and Eberhart in 1995 [14]. PSO 

uses a simple mechanism that mimics the behavior of flocking birds and fish to guide particles to find the 

global optimal solution [15]. PSO has been applied to various problems, such as training artificial neural 

networks, combinatorial optimization problems, and multi-objective optimization problems, and also 

provides better results in many fields. This is because of the hybridization of evolutionary metaheuristics, 

multi-objective concepts, and swarm theory [16]. The implementation of the PSO algorithm makes PSO a 

popular optimizer and has been successfully applied in various fields, including the optimization of many 

vehicles and the total travel distance in goods delivery problems [17], 0-1 knapsack problems [18], lecture 

scheduling [19], etc. 

Theoretical studies and algorithm performance improvements are important and interesting to do. 

Some improvements that have been made include convergence analysis and optimization stability [20],  [21], 

[22], and [23]. While research on improving PSO performance, including parameter studies, combinations 

with additional operations, and topological structures has been widely carried out [24], [25]. 

The PSO algorithm is based on the social behavior of a flock of birds or a school of fish. This social 

behavior consists of the actions of each individual in a population and the influence of other individuals in 

the population. An example of social behavior in a flock of birds is if a bird finds the right or shortest path to 

a food source, other birds in the population will follow the path even though their location is far away. In 

PSO, the bird population is called a swarm, and individual birds are called particles. Each particle moves at 

a speed adapted to the search area and always stores the best position ever reached. The position of the 𝑖-th 

particle in a flock is denoted by 𝑥𝑖  while the best position of a particle’s journey is called 𝑃𝑏𝑒𝑠𝑡𝑖. Each particle 
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will know the best position globally found by one of the members of the flock. The best position of all 

particles in the flock is called 𝐺𝑏𝑒𝑠𝑡. 

In PSO, a swarm of particles is represented as a set of problems, and each particle is associated with 

two vectors, namely, a velocity vector, where 𝑉𝑖 = [𝑣𝑖
1, 𝑣𝑖

2, … , 𝑣𝑖
𝐷] and a position vector 𝑋𝑖 = [𝑥𝑖

1, 𝑥𝑖
2, … , 𝑥𝑖

𝐷], 
where 𝐷 is the dimension of the solution space. The algorithm is guided by personal experience (𝑃𝑏𝑒𝑠𝑡), 

overall experience (𝐺𝑏𝑒𝑠𝑡) and the current particle movement to determine the next position in the search 

space. Furthermore, the particle movement is accelerated by two factors 𝑐1 and 𝑐2 [26]. The mathematical 

model that describes the mechanism of updating the particle’s status of velocity and position is as follows: 

𝑉𝑖
𝑡+1 = 𝑤 𝑉𝑖

𝑡 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡) + 𝑐2 𝑟2(𝐺𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡) (1) 

𝑋𝑖
𝑡+1 =  𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 

Where: 

𝑉𝑖
𝑡+1 : velocity of the individual 𝑖 at iteration 𝑡 + 1 

𝑋𝑖
𝑡+1 : position of the individual 𝑖 at iteration 𝑡 + 1 

𝑤 : inertial weight parameter 

𝑤 = 𝑤𝑚𝑎𝑥 − (
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
) 𝑡 (2) 

𝑐1, 𝑐2 : acceleration constant (learning rate) 

𝑟1, 𝑟2 : random parameter 0 to 1 

𝑃𝑏𝑒𝑠𝑡𝑖
𝑡: local best of individual 𝑖 at iteration 𝑡 

𝐺𝑏𝑒𝑠𝑡𝑡: global best of all individuals. 

 

This model will be simulated in a space with a certain dimension, with a number of iterations, so that 

in each iteration, the particle position will increasingly lead to the intended target (minimization or 

maximization of the function). This is done until the maximum iteration is reached, or another stopping 

criterion can also be used, namely, the value of the objective function or goal has converged to the optimum 

value. The following steps outline the use of the PSO algorithm. 

1. Generate parameter values 𝑤𝑚𝑖𝑛, 𝑤𝑚𝑎𝑥, 𝑐1 and 𝑐2. 

2. Initialize the position of each particle population 𝑋𝑖
𝑡  and the particle velocity 𝑉𝑖

𝑡. 

3. Set iteration 𝑡 = 1. 

4. Calculate the fitness value of each particle 𝐹𝑖(𝑡) based on the formula and model that have been 

determined according to the optimization problem. Then find the best fitness value 𝐹𝑏(𝑡). 

5. Choose 𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 = 𝑋𝑖

𝑡  and 𝐺𝑏𝑒𝑠𝑡𝑡 = 𝑋𝑏
𝑡 . 

6. Calculate the inertial weight value 𝑤 using Equation (2). 

7. Update the velocity value 𝑉𝑖
𝑡+1 and particle position 𝑋𝑖

𝑡 using Equation (1). 

8. Evaluate the fitness value 𝐹𝑖(𝑡 + 1) = 𝑓(𝑋𝑖
𝑡+1) for each particle and find the best fitness value 

𝐹𝑏1(𝑡 + 1). 

9. Update the velocity value 𝑉𝑖
𝑡+1, if 𝐹𝑖(𝑡 + 1) < 𝐹𝑖(𝑡)  then 𝑃𝑏𝑒𝑠𝑡𝑖

𝑡+1 = 𝑋𝑖
𝑡+1,  otherwise 𝑃𝑏𝑒𝑠𝑡𝑖

𝑡+1 = 𝑋𝑖
𝑡 . 

10. Update the value of 𝐺𝑏𝑒𝑠𝑡𝑡,  if 𝐹𝑏1(𝑡 + 1) < 𝐹𝑏(𝑡)  then 𝐺𝑏𝑒𝑠𝑡𝑡+1 = 𝑃𝑏𝑒𝑠𝑡𝑏1
𝑡+1  and 𝑏 = 𝑏1,  otherwise 

𝐺𝑏𝑒𝑠𝑡𝑡+1 = 𝐺𝑏𝑒𝑠𝑡𝑡. 

11. If iteration 𝑡 < 𝑡𝑚𝑎𝑥  then 𝑡 = 𝑡 + 1. Then, if it has reached the final condition (reaching the optimum 

iteration value or the loop has reached a value that converges to the minimum function value), then the 

loop stops and the optimum value is obtained, but if not, then repeat from step 6. 

The following is an example of a problem solved using the particle swarm optimization algorithm steps. 

min 𝑓(𝑥) =  (4 − 𝑥)2;    −10 ≤ 𝑥 ≤ 10 .  

 

 

The following are the steps for the particle swarm optimization algorithm to solve the problem above: 
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1. Initialize the population size 𝑁 = 4, determine the initial population randomly, for example, we get 

𝑋1
0 = 7, 𝑋2

0 = 2, 𝑋3
0 = −1,  𝑋4

0 = −5. 

2. Evaluate the value of the objective function for each particle 𝑋𝑖
0 for 𝑖 = 1,2,3,4 

𝑓1(0) = 𝑓(7) = 9,   𝑓2(0) = 𝑓(2) = 4,  𝑓3(0) = 𝑓(−1) = 25,  𝑓4(0) = 𝑓(−5) =  81. 

3. Initialize the initial velocity for each particle, for example, 𝑉1
0 = 𝑉2

0 = 𝑉3
0 = 𝑉4

0 = 0. 

Set iteration 𝑡 = 1 with 𝑡 = 1, 2, 3, 4. 

4. Find 𝑃𝑏𝑒𝑠𝑡𝑖
1 and 𝐺𝑏𝑒𝑠𝑡1, for 𝑖 = 1,2,3,4, 

𝑃𝑏𝑒𝑠𝑡1
1 = 7,  𝑃𝑏𝑒𝑠𝑡2

1 = 2,  𝑃𝑏𝑒𝑠𝑡3
1 =  −1,  𝑃𝑏𝑒𝑠𝑡4

1 =  −5, 𝐺𝑏𝑒𝑠𝑡1 = 2. 

5. Calculate the velocity of each particle with parameter values 𝑤𝑚𝑎𝑥 = 0.9, 𝑤𝑚𝑖𝑛 = 0.4, 𝑐1 = 𝑐2 = 1. 

Suppose the random values obtained are 𝑟1 = 0.3,  𝑟2 = 0.6 and 𝑡𝑚𝑎𝑥 = 4. 

By using Equation (2), 𝑤 = 0.9 − (
0.9−0.4

4
) 1 = 0.775. 

 

𝑉𝑖
1 = 𝑤 𝑉𝑖

0 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
1 − 𝑋𝑖

0) + 𝑐2 𝑟2(𝐺𝑏𝑒𝑠𝑡1 − 𝑋𝑖
0) 

𝑉1
1 = (0.775)(0) + (1)(0.3 )(7 − 7) + (1)(0.6)(2 − 7) = −3 

𝑉2
1 = (0.775)(0) + (1)(0.3 )(2 − 2) + (1)(0.6)(2 − 2) = 0 

𝑉3
1 = (0.775)(0) + (1)(0.3 )(−1 + 1) + (1)(0.6)(2 + 1) = 1.8 

𝑉4
1 = (0.775)(0) + (1)(0.3 )(−5 + 5) + (1)(0.6)(2 + 5) = 4.2. 

Meanwhile, the value of 𝑋𝑖
1 is 𝑋𝑖

1 =  𝑋𝑖
0 + 𝑉𝑖

1, so 

𝑋1
1 = 7 − 3 = 4,   𝑋2

1 = 2 + 0 = 2, 𝑋3
1 = −1 + 1.8 = 0.8, 𝑋4

1 = −5 + 4.2 = −0.8. 

6. Evaluate the value of the objective function for each particle 𝑋𝑖
1 for 𝑖 = 1,2,3,4 

𝑓1(1) = 𝑓(4) = 0,  𝑓2(1) = 𝑓(2) = 4,  𝑓3(1) = 𝑓(0.8) = 10.24,   𝑓4(1) = 𝑓(−0.8) = 23.04. 

Meanwhile, in the previous iteration, the objective function values obtained were as follows: 

𝑓1(0) = 𝑓(7) = 9,   𝑓2(0) = 𝑓(2) = 4,  𝑓3(0) = 𝑓(−1) = 25,  𝑓4(0) = 𝑓(−5) =  81. 

The value of 𝑓 in the previous iteration is not better so that 𝑃𝑏𝑒𝑠𝑡 for each particle is equal to the 

value of 𝑋𝑖
1.  𝐺𝑏𝑒𝑠𝑡2 = 4. 

Advance to the next iteration 𝑡 = 2. 

7. Repeat step 4 to find 𝑃𝑏𝑒𝑠𝑡𝑖
2 and 𝐺𝑏𝑒𝑠𝑡2, for 𝑖 = 1,2,3,4,   

𝑃𝑏𝑒𝑠𝑡1
2 = 4,  𝑃𝑏𝑒𝑠𝑡2

2 = 2,  𝑃𝑏𝑒𝑠𝑡3
2 = 0.8,  𝑃𝑏𝑒𝑠𝑡4

2 = −0.8,  𝐺𝑏𝑒𝑠𝑡2 = 4. 

8. Calculate the velocity of each particle with parameter values 𝑤𝑚𝑎𝑥 = 0.9, 𝑤𝑚𝑖𝑛 = 0.4, 𝑐1 = 𝑐2 = 1. 

Suppose the random values obtained are 𝑟1 = 0.2,  𝑟2 = 0.4 and 𝑡𝑚𝑎𝑥 = 4. 

By using Equation (2), then 𝑤 = 0.9 − (
0.9−0.4

4
) 2 = 0.65. 

 

𝑉𝑖
2 = 𝑤 𝑉𝑖

1 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
2 − 𝑋𝑖

1) + 𝑐2 𝑟2(𝐺𝑏𝑒𝑠𝑡2 − 𝑋𝑖
1) 

𝑉1
2 = (0.65)(−3) + (1)(0.2)(4 − 4) + (1)(0.4)(4 − 4) = −1.95 

𝑉2
2 = (0.65)(0) + (1)(0.2)(2 − 2) + (1)(0.4)(4 − 2) = 0.8 

𝑉3
2 = (0.65)(1.8) + (1)(0.2)(0.8 − 0.8) + (1)(0.4)(4 − 0.8) = 2.45 

𝑉4
2 = (0.65)(4.2) + (1)(0.2)(−0.8 + 0.8) + (1)(0.4)(4 + 0.8) = 4.65. 

Meanwhile, the value of 𝑋𝑖
2 is 𝑋𝑖

2 =  𝑋𝑖
1 + 𝑉𝑖

2, so 

𝑋1
2 = 4 − 1.95 = 2.05, 𝑋2

2 = 2 + 0.8 = 2.8,  𝑋3
2 = 0.8 + 2.45 = 3.25,  𝑋4

2 = −0.8 + 4.65 = 3.85. 

9. Evaluate the value of the objective function for each particle 𝑋𝑖
2 for 𝑖 = 1,2,3,4 

𝑓1(2) = 𝑓(2.05) = 3.8025,  𝑓2(2) = 𝑓(2.8) = 1.44,  𝑓3(2) = 𝑓(3.25) = 0.5625, 

𝑓4(2) = 𝑓(3.85) = 0.0225 

In the previous iteration, the objective function values obtained were as follows 

𝑓1(1) = 𝑓(4) = 0,  𝑓2(1) = 𝑓(2) = 4,  𝑓3(1) = 𝑓(0.8) = 10.24,  𝑓4(1) = 𝑓(−0.8) = 23.04. 

When compared with the value of 𝑓 in the previous iteration, there is one that is better, namely 

𝑓1(1) = 𝑓(4) = 0, so that the value of the objective function becomes 
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𝑓1(2) = 𝑓(4) = 0, 𝑓2(2) = 𝑓(2.8) = 1.44,  𝑓3(2) = 𝑓(3.25) = 0.5625,   

𝑓4(2) = 𝑓(3.85) = 0.0225. 

Continue to the next iteration 𝑡 = 3. 

10. Finding 𝑃𝑏𝑒𝑠𝑡𝑖
3 and 𝐺𝑏𝑒𝑠𝑡3, for 𝑖 = 1,2,3,4,   

𝑃𝑏𝑒𝑠𝑡1
3 = 4,  𝑃𝑏𝑒𝑠𝑡2

3 = 2.8,  𝑃𝑏𝑒𝑠𝑡3
3 = 3.25,  𝑃𝑏𝑒𝑠𝑡4

3 = 3.85, 𝐺𝑏𝑒𝑠𝑡3 = 4. 

11. Calculate the velocity of each particle with parameter values 𝑤𝑚𝑎𝑥 = 0.9, 𝑤𝑚𝑖𝑛 = 0.4, 𝑐1 = 𝑐2 = 1. 

Suppose the random values obtained are 𝑟1 = 0.5,  𝑟2 = 0.2 and 𝑡𝑚𝑎𝑥 = 4. 

By using Equation (2), 𝑤 = 0.9 − (
0.9−0.4

4
) 3 = 0.525 

 

𝑉𝑖
3 = 𝑤 𝑉𝑖

2 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
3 − 𝑋𝑖

2) + 𝑐2 𝑟2(𝐺𝑏𝑒𝑠𝑡3 − 𝑋𝑖
2) 

𝑉1
3 = (0.525)(−1.95) + (1)(0.5)(4 − 2.05) + (1)(0.2)(4 − 2.05)  = 0.34125 

𝑉2
3 = (0.525)(0.8) + (1)(0.5)(2.8 − 2.8) + (1)(0.2)(4 − 2.8) = 0.66 

𝑉3
3 = (0.525)(2.45) + (1)(0.5)(3.25 − 3.25) + (1)(0.2)(4 − 3.25) = 1.43625 

𝑉4
3 = (0.525)(4.65) + (1)(0.5)(3.85 − 3.85) + (1)(0.2)(4 − 3.85) = 2.47125 

Next for  𝑋𝑖
3 =  𝑋𝑖

2 +  𝑉𝑖
3, 

𝑋1
3 = 2.05 + 0.34125 = 2.39125,  𝑋2

3 = 2.8 + 0.66 = 3.46,  𝑋3
3 = 3.25 + 1.43625 = 4.68625, 

𝑋4
3 = 3.85 + 2.47125 = 6.32125. 

12. Evaluate the value of the objective function for each particle 𝑋𝑖
3 for 𝑖 = 1,2,3,4, 

𝑓1(3) = 𝑓(2.39125) = 2.588077,  𝑓2(3) = 𝑓(3.46) = 0.2916 

𝑓3(3) = 𝑓(4.68625) = 0.470939,  𝑓4(3) = 𝑓(6.32125) = 5.388202. 

In the previous iteration, the objective function value obtained were as follows  

𝑓1(2) = 𝑓(4) = 0, 𝑓2(2) = 𝑓(2.8) = 1.44,  𝑓3(2) = 0.5625,  𝑓4(2) = 𝑓(3.85) = 0.0225. 

A better value has been obtained for 𝑓1(2) and 𝑓4(2) so that the objective function value becomes 

𝑓1(3) = 𝑓(4) = 0,  𝑓2(3) = 𝑓(3.46) = 0.2916, 𝑓3(3) = 𝑓(4.68625) = 0.470939, 

𝑓4(3) = 𝑓(3.85) = 0.0225. 

Continue to the next iteration 𝑡 = 4. 

13. Finding 𝑃𝑏𝑒𝑠𝑡𝑖
4 and 𝐺𝑏𝑒𝑠𝑡4, for 𝑖 = 1,2,3,4  

𝑃𝑏𝑒𝑠𝑡1
4 = 4,  𝑃𝑏𝑒𝑠𝑡2

4 = 3.46,  𝑃𝑏𝑒𝑠𝑡3
4 = 4.68625, 𝑃𝑏𝑒𝑠𝑡4

4 = 3.85,  𝐺𝑏𝑒𝑠𝑡4 = 4. 

Therefore the solution to the problem above is 𝑥 = 4  and 𝑓(𝑥) = 0. 

Some stopping conditions that can be used in PSO are [23]: 

1. Stop when the number of iterations reaches the maximum number of iterations. 

2. Stop when an acceptable solution is found. 

3. Stop when there is no progress after several iterations. 

After five independent runs using mathematical software, with parameter values  𝑁 = 4, 𝑐1 = 𝑐2 = 1, 

𝑤𝑚𝑎𝑥 = 0.9, 𝑤𝑚𝑖𝑛 = 0.4 and 𝑡𝑚𝑎𝑥 = 4, then only the best result will be taken. The results obtained are the 

objective function values  𝑓(𝑥) = 0  and 𝐺𝑏𝑒𝑠𝑡 = 4, with an execution time of 0.730687 seconds. Figure 1 

shows the PSO convergence graph of the problem. 



2796 Silalahi, et al.     PARTICLE SWARM OPTIMIZATION FOR CUTTING ALUMINUM STOCK AND…  

 

 
Figure 1. PSO Convergence Graph of the Example Problem 

2.2 Data 

Data on the standard width of available aluminum and the width of aluminum required in this work 

were obtained from Suliman and Octarina [27], [28].   

A company that produces aluminum paper, called Aluminum Rolling Mill Company (ARMCO), 

receives an order from a customer. The problem faced by ARMCO is getting the right cutting pattern to 

produce minimal cutting waste. The standard width of the available aluminum paper rolls is 130 cm and 100 

cm, with a certain standard length. The types of widths ordered consist of 50 cm, 40 cm, 30 cm, and 20 cm. 

Table 1. Aluminum Roll Size Width and Quantity Requested  

Roll Size Width (cm) Number of Requests 

50 64 

40 58 

30 70 

20 48 

3. RESULTS AND DISCUSSION 

3.1 Combination Cutting Patterns 

The cutting is planned by arranging several patterns by considering the following criteria: 

1. The total width of the cutting result must be the same or shorter than 130 cm or 100 cm, 

2. The width of the remaining cutting is less than 20 cm, and 

3. There is no duplication of patterns. 

The resulting pattern combinations are presented in Table 2. 

Table 2. Combination of 100 cm and 130 cm Aluminum Roll Cutting Patterns  
StandardWidth 

(𝑳𝒊) 

Pattern  

( 𝒋 )  

Aluminum Roll Width (cm) (𝒍𝒌 ) Trim Loss (cm) 
50 40 30 20 

 1 0 0 0 5 0 

 2 0 0 1 3 10 
 3 0 0 2 2 0 
 4 0 0 3 0 10 
 5 0 1 0 3 0 

100 cm 6 0 1 1 1 10 
 7 0 1 2 0 0 
 8 0 2 0 1 0 
 9 1 0 0 2 10 
 10 1 0 1 1 0 
 11 1 1 0 0 10 
 12 2 0 0 0 0 
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StandardWidth 

(𝑳𝒊) 

Pattern  

( 𝒋 )  

Aluminum Roll Width (cm) (𝒍𝒌 ) Trim Loss (cm) 
50 40 30 20 

130 cm 

13 0 0 0 6 10 

14 0 0 1 5 0 

15 0 0 2 3 10 

16 0 0 3 2 0 

17 0 0 4 0 10 

18 0 1 0 4 10 

19 0 1 1 3 0 

20 0 1 2 1 10 

21 0 1 3 0 0 

22 0 2 0 2 10 

23 0 2 1 1 0 

24 0 3 0 0 10 

25 1 0 0 4 0 

26 1 0 1 2 10 

27 1 0 2 1 0 

28 1 1 0 2 0 

29 1 1 1 0 10 

30 1 2 0 0 0 

31 2 0 0 1 10 

32 2 0 1 0 0 

Number of 

Requests  
64 58 70 48  

 

3.2 Mathematical Model 

The cutting problem can be formulated into a mathematical model as follows: 

𝑚𝑖𝑛 𝑍 = ∑ 𝑋𝑗

32

𝑗=1

      

Constraint 

∑ 𝑃𝑗𝑘  𝑋𝑗

32

𝑗=1

≥  𝐵𝑘 ,                   𝑋𝑗 ≥ 0      

Sets and Indexes 

𝐼    : {1, 2}, set of standard width variations available with index 𝑖 
𝐽    : {1, 2, 3, . . ., 32}, set of aluminum roll cutting pattern with index 𝑗 

𝐾   : {1, 2, 3, 4}, set of variations in the width of the aluminum roll required with index 𝑘 

Parameter  

𝐿𝑖  : width of aluminum roll 𝑖-th variant  

𝑙𝑘   : the required width of the 𝑘-th variant of the aluminum roll 

𝑃𝑗𝑘 : the number of small rolls with width 𝑘-th on the 𝑗-th cutting pattern 

𝐵𝑘  : the number of requests for small rolls with width 𝑘-th  

Decision variables 

𝑋𝑗   : the number of aluminum rolls cut in the 𝑗-th cutting pattern 

 

Therefore, we have: 

 

Objective Function 

𝑚𝑖𝑛 𝑍 = ∑ 𝑋𝑗

32

𝑗=1

     

Constraint 

𝑋9 + 𝑋10 + 𝑋11 + 2𝑋12 + 𝑋25 + 𝑋26 + 𝑋27 +  𝑋28 + 𝑋29 + 𝑋30 +  2𝑋31 + 2𝑋32 ≥ 64 
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𝑋5 + 𝑋6 + 𝑋7 + 2𝑋8 + 𝑋11 + 𝑋18 + 𝑋19 + 𝑋20 + 𝑋21 + 2𝑋22 + 2𝑋23 + 3𝑋24 + 𝑋28 + 𝑋29 + 2𝑋30 ≥ 58 

𝑋2 + 2𝑋3 + 3𝑋4 + 𝑋6 + 2𝑋7 + 𝑋10 + 𝑋14 + 2𝑋15 + 3𝑋16 + 4𝑋17 + 𝑋19 + 2𝑋20 + 3𝑋21 + 𝑋23 + 𝑋26

+ 2𝑋27 + 𝑋29 + 𝑋32 ≥ 70  
5𝑋1 + 3𝑋2 + 2𝑋3 + 3𝑋5 +  𝑋6 + 𝑋8 + 2𝑋9 +  𝑋10 + 6𝑋13 + 5𝑋14 + 3𝑋15 + 2𝑋16 + 4𝑋18 + 3𝑋19 + 𝑋20

+ 2𝑋22 + 𝑋23 + 4𝑋25 + 2𝑋26 + 𝑋27 + 2𝑋28 + 𝑋31 ≥ 48 

𝑋𝑗 ≥ 0; 𝑗 = 1, 2, … , 32. 

3.3 Solving Cutting Stock Problem Using Particle Swarm Optimization and Exact Method 

Based on the problem example above, we solve the cutting problem with the mathematical model in 

Section 3.2 and the cutting combination data contained in Table 2 using the heuristic PSO method and the 

exact method using the help of mathematical software and Lingo 11.0. 

The PSO method begins with parameter initialization first; the parameters used consist of 𝑐1, 𝑐2, 

𝑁 (population size), 𝑡, 𝑤𝑚𝑎𝑥, and 𝑤𝑚𝑖𝑛, with 𝑤𝑚𝑎𝑥 =  0.9 and 𝑤𝑚𝑖𝑛 = 0.4, so the parameter variations used 

in this case are: 

1. Different parameters 𝑐1 and fixed parameters 𝑐2, 𝑁, 𝑡. 

2. Different parameters 𝑐2 and fixed parameters 𝑐1, 𝑁, 𝑡. 

3. Different parameters 𝑁 and fixed parameters 𝑐1, 𝑐2, 𝑡. 

4. Different parameters 𝑡 and fixed parameters 𝑐1, 𝑐2, 𝑁. 

For each parameter variation, the algorithm will be run independently ten times, then from all the 

results, only the best result will be taken. The results are displayed in Table 3 to Table 6. PSO Convergence 

Graph for the best result for each case is presented in Figure 2 to Figure 5. 

Table 3. Comparison of Cutting Results with Different Parameters 𝒄𝟏 

𝒄𝟏 𝒄𝟐 𝑵 𝒕 Total Cuts 
Time 

(seconds) 

1 2 100 500 76 10.423897 

2 2 100 500 74 10.279768 

2.05 2 100 500 68 8.000135 

 

Figure 2. PSO Convergence Graph With Parameter Values 𝒄𝟏 = 𝟐. 𝟎𝟓,  𝒄𝟐 = 𝟐,  𝑵 = 𝟏𝟎𝟎, and 𝒕 = 𝟓𝟎𝟎 

Table 4. Comparison of Cutting Results with Different Parameters 𝒄𝟐 

𝒄𝟏 𝒄𝟐 𝑵 𝒕 Total Cuts 
Time 

(seconds) 

2 1 100 500 72 12.745466 

2 2 100 500 74 10.279768 

2 2.05 100 500 68 7.493547 
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Figure 3. PSO Convergence Graph With Parameter Values 𝒄𝟏 = 𝟐,  𝒄𝟐 = 𝟐. 𝟎𝟓,  𝑵 = 𝟏𝟎𝟎, and 𝒕 = 𝟓𝟎𝟎 

Table 5. Comparison of Cutting Results with Different Parameters 𝑵 

𝒄𝟏 𝒄𝟐 𝑵 𝒕 Total Cuts 
Time 

(seconds) 

2 2 30 500 76 5.067679 

2 2 50 500 71 5.258329 

2 2 100 500 74 10.279768 

 

 
Figure 4. PSO Convergence Graph With Parameter Values 𝒄𝟏 = 𝟐,  𝒄𝟐 = 𝟐,  𝑵 = 𝟓𝟎, and 𝒕 = 𝟓𝟎𝟎 

Table 6. Comparison of Cutting Results with Different Parameters 𝒕 

𝒄𝟏 𝒄𝟐 𝑵 𝒕 Total Cuts 
Time 

(seconds) 

2.05 2.05 100 100 75 3.873903 

2.05 2.05 100 500 71 10.381683 

2.05 2.05 100 1000 67 8.971090 
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Figure 5. PSO Convergence Graph With Parameter Values 𝒄𝟏 = 𝟐. 𝟎𝟓,  𝒄𝟐 = 𝟐. 𝟎𝟓,  𝑵 = 𝟏𝟎𝟎, and 𝒕 = 𝟏𝟎𝟎𝟎 

After conducting several experiments with each different parameter value, the minimum total cutting 

of aluminum rolls was 67 rolls with an execution time of 8.971090 seconds. Table 7 shows the number of 

aluminum rolls that will be used to meet customer demand. A total of 32 patterns can be made from aluminum 

rolls with a length of 100 cm and 130 cm (as in Table 2). Of the 32 patterns, four patterns were obtained that 

were used to obtain minimum cutting residue/trim loss, namely, patterns 𝑋1, 𝑋23, 𝑋27, and 𝑋32. 

Table 7. The Results of the Cutting Pattern Using PSO 
 

 

 

 

Based on the results obtained above, the total number of aluminum rolls used is obtained from the 

number of selected patterns. Table 7 shows that the total number of aluminum rolls used is 67 rolls with a 

combination of patterns used, namely 3 rolls for pattern 1, 29 rolls for pattern 23, 6 rolls for pattern 27, and 

29 rolls for pattern 32. Then, from each roll width will produce 64 pieces for a width of 50 cm, 58 pieces for 

a width of 40 cm, 70 pieces for a width of 30 cm and 50 pieces, for a width of 20 cm. These results, when 

compared with the number of orders, will produce an excess number of pieces, namely two pieces for a width 

of 20 cm. The excess cutting results can be used for the next order. Then the remaining cutting produces 0 

cm, meaning there is no material left or wasted. Furthermore, the output results above will be compared with 

the exact method using LINGO 11.0 software. 

Table 8. The Results of the Cutting Pattern Using Exact Method 

 

 

 

 

 

 

 Based on the results obtained in Table 8, the number of aluminum rolls used is 66 rolls with a 

combination of patterns used, namely 𝑋16 = 18, 𝑋25 = 3, 𝑋30 = 29, and 𝑋32 = 16. Then from each roll 

width will produce 64 pieces for a width of 50 cm, 58 pieces for a width of 40 cm, 70 pieces for a width of 

30 cm and 48 pieces for a width of 20 cm. These results are sufficient to meet customer orders and do not 

Standard 

Width 
Pattern 

Aluminum Roll Width 

(cm) 
Trim Loss (cm) Number of 

Aluminum Rolls 

Used 50 40 30 20  

100 cm 1 0 0 0 5 0 3 

130 cm 

23 0 2 1 1 0 29 

27 1 0 2 1 0 6 

32 2 0 1 0 0 29 

Total   64 58 70 50 0 67 

Standard 

Width 
Pattern 

Aluminum Roll Width 

(cm) 

Trim Loss 

(cm) 
Number of 

Aluminum Rolls 

Used 50 40 30 20  

130 cm 

16 0 0 3 2 0 18 

25 1 0 0 4 0 3 

30 1 2 0 0 0 29 

32 2 0 1 0 0 16 

Total  64 58 70 48 0 66 
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produce trim loss. So, from the two methods, it can be concluded that both have met the order constraints and 

do not produce trim loss. The difference lies in the selected patterns, and in the PSO method, there are excess 

cuts, namely, two cuts for a width of 20 cm. 

4. CONCLUSION 

This paper shows that the problem of one-dimensional cutting of aluminum rolls can be solved using 

the PSO method. The problem of one-dimensional cutting of aluminum rolls was initially modeled in a 

mathematical model in the form of linear optimization. The implementation of the model in cutting aluminum 

rolls produced an optimum solution, namely 67 aluminum rolls to be used, with a combination of selected 

patterns, namely three rolls for pattern one, 29 rolls for pattern 23, six rolls for pattern 27, and 29 rolls for 

pattern 32. Then the remaining cutting results in 0 cm, meaning there is no material left or wasted. By using 

the exact method, the number of aluminum rolls used is 66 rolls with a combination of patterns used, namely 

18 rolls for pattern 16, 3 rolls for pattern 25, 29 rolls for pattern 30, and 16 rolls for pattern 32. The two 

methods have met the order constraints and do not produce trim loss. The difference lies in the selected 

patterns, and in the PSO method, there are excess cuts, namely, two cuts for a width of 20 cm. 
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