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1. INTRODUCTION

The cutting stock problem (CSP) is one of the problems that we often find in many manufacturing
industries, such as textile, garment, metal equipment, paper, shipbuilding, and sheet metal. Cutting stock
problem (CSP) is a well-known optimization problem where large materials need to be cut into smaller pieces
to meet specific demands while minimizing waste.

The cutting stock problem (CSP) has several variants, including one-dimensional CSP [1], [2], which
involves cutting rolls, rods, or beams; two-dimensional CSP [3], [4], which deals with cutting sheets of
material like wood, fabric, or glass; and three-dimensional CSP [5] , which focuses on cutting blocks used in
industries such as packaging and furniture making.

Several techniques have been proposed to solve the cutting stock problem. Exact methods include
integer linear programming (ILP), branch-and-price, and dynamic programming, which were introduced by
Gilmore and Gomory in 1961 and 1963 [6], [7]. These methods guarantee optimal solutions but can be
computationally expensive for large problems. In contrast, heuristic methods such as genetic algorithms (GA)
[8], [9], simulated annealing (SA) [10], [11], and particle swarm optimization (PSO) [12], [13] provide faster,
though not necessarily optimal solutions, making them suitable for large-scale and complex cutting stock
problems.

This study addresses the one-dimensional cutting stock problem in the context of cutting large
aluminum rolls into smaller ones. The primary objective is to determine an optimal cutting pattern that
satisfies demand requirements while minimizing trim loss. A comprehensive analysis is conducted on solving
the CSP using a heuristic approach based on the Particle Swarm Optimization (PSO) algorithm. The paper
presents the formulation of the CSP model specific to aluminum roll cutting and demonstrates how it is solved
using PSO. Additionally, the trim loss results obtained from the PSO method are compared with those
generated by an exact optimization method.

2. RESEARCH METHODS

This section describes how the particle swarm optimization method is applied to solve the one-
dimensional cutting stock problem. Following the explanation of the particle swarm optimization method,
the data used in the cutting stock problem model will also be presented.

2.1 Particle Swarm Optimization Method

Particle swarm optimization (PSO) was first introduced by Kennedy and Eberhart in 1995 [14]. PSO
uses a simple mechanism that mimics the behavior of flocking birds and fish to guide particles to find the
global optimal solution [15]. PSO has been applied to various problems, such as training artificial neural
networks, combinatorial optimization problems, and multi-objective optimization problems, and also
provides better results in many fields. This is because of the hybridization of evolutionary metaheuristics,
multi-objective concepts, and swarm theory [16]. The implementation of the PSO algorithm makes PSO a
popular optimizer and has been successfully applied in various fields, including the optimization of many
vehicles and the total travel distance in goods delivery problems [17], 0-1 knapsack problems [18], lecture
scheduling [19], etc.

Theoretical studies and algorithm performance improvements are important and interesting to do.
Some improvements that have been made include convergence analysis and optimization stability [20], [21],
[22], and [23]. While research on improving PSO performance, including parameter studies, combinations
with additional operations, and topological structures has been widely carried out [24], [25].

The PSO algorithm is based on the social behavior of a flock of birds or a school of fish. This social
behavior consists of the actions of each individual in a population and the influence of other individuals in
the population. An example of social behavior in a flock of birds is if a bird finds the right or shortest path to
a food source, other birds in the population will follow the path even though their location is far away. In
PSO, the bird population is called a swarm, and individual birds are called particles. Each particle moves at
a speed adapted to the search area and always stores the best position ever reached. The position of the i-th
particle in a flock is denoted by x; while the best position of a particle’s journey is called Pbest;. Each particle
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will know the best position globally found by one of the members of the flock. The best position of all
particles in the flock is called Gbest.

In PSO, a swarm of particles is represented as a set of problems, and each particle is associated with
two vectors, namely, a velocity vector, where V; = [v}, vZ, ..., vP] and a position vector X; = [x}, x7, ..., xP],
where D is the dimension of the solution space. The algorithm is guided by personal experience (Pbest),
overall experience (Gbest) and the current particle movement to determine the next position in the search
space. Furthermore, the particle movement is accelerated by two factors ¢; and ¢, [26]. The mathematical
model that describes the mechanism of updating the particle’s status of velocity and position is as follows:

VIt = w V! + cyry (Pbestf — X{) + ¢, 12 (Gbest® — X}) (D
X't+1 — Xt + V't+1
l L L

Where:
Vi1 velocity of the individual i at iteration ¢ + 1
X+t position of the individual i at iteration ¢ + 1
w : inertial weight parameter
(2)

Wiax — Wmin) ¢

W = Wmnax — ( t
max

1, ¢, . acceleration constant (learning rate)
11,7, :random parameter 0 to 1

Pbest!: local best of individual i at iteration ¢
Gbest': global best of all individuals.

This model will be simulated in a space with a certain dimension, with a number of iterations, so that
in each iteration, the particle position will increasingly lead to the intended target (minimization or
maximization of the function). This is done until the maximum iteration is reached, or another stopping
criterion can also be used, namely, the value of the objective function or goal has converged to the optimum
value. The following steps outline the use of the PSO algorithm.

1. Generate parameter values Wy,in, Winax, €1 @nd cs.

2. Initialize the position of each particle population Xf and the particle velocity V;*.
3. Setiterationt = 1.
4

Calculate the fitness value of each particle F;(t) based on the formula and model that have been
determined according to the optimization problem. Then find the best fitness value F,(t).

Choose Pbestf = X} and Gbestt = X{.
Calculate the inertial weight value w using Equation (2).

Update the velocity value V£** and particle position X} using Equation (1).

© N o U

Evaluate the fitness value F;(t+ 1) = f(X/*') for each particle and find the best fitness value
Fp(t+1).

9. Update the velocity value V*1, if F;(t + 1) < F;(t) then Pbest!** = X[*1, otherwise Phest! ™ = Xx}.

10. Update the value of Gbestt, if F;(t + 1) < F,(t) then Gbest'*! = Pbest}i! and b = b, otherwise
Gbest'*! = Gbestt.

11. If iteration t < t,,4, thent =t + 1. Then, if it has reached the final condition (reaching the optimum
iteration value or the loop has reached a value that converges to the minimum function value), then the
loop stops and the optimum value is obtained, but if not, then repeat from step 6.

The following is an example of a problem solved using the particle swarm optimization algorithm steps.
minf(x) = (4—x)% —-10<x<10.

The following are the steps for the particle swarm optimization algorithm to solve the problem above:



2794

Silalahi, et al. PARTICLE SWARM OPTIMIZATION FOR CUTTING ALUMINUM STOCK AND...

Initialize the population size N = 4, determine the initial population randomly, for example, we get
X?=7,X)=2,X3=-1, X =-5.

Evaluate the value of the objective function for each particle Xi0 fori =1,2,34

fi(0)=£(7) =9, £2(0)=f(2) =4, f3(0) = f(=1) =25, f4(0) = f(=5) = 8L

Initialize the initial velocity for each particle, for example, V) = V2 =v? =2 = 0.

Set iterationt = 1 witht = 1,2, 3, 4.

Find Pbest; and Gbest?!, fori = 1,2,3,4,

Pbest! = 7, Pbest} = 2, Pbest: = —1, Pbest; = —5, Gbest! = 2.

Calculate the velocity of each particle with parameter values wy, o, = 0.9, Wi = 0.4, ¢ = ¢, = 1.
Suppose the random values obtained are r; = 0.3, r, = 0.6 and t,,,4, = 4.

0.9-0.4
4

By using Equation (2),w = 0.9 — ( )1 = 0.775.

V} =w V2 + cyry(Pbest} — X?) + ¢, r2(Gbest — X?)

Vi =(0.775)(0) + (1)(0.3)(7 = 7) + (1)(0.6)(2—7) = -3

V3 = (0.775)(0) + (1)(0.3)(2 — 2) + (1)(0.6)(2—2) =0

V3 =(0.775)(0) + (1)(0.3)(-1+ 1) + (1)(0.6)(2+ 1) = 1.8

Vi = (0.775)(0) + (1)(0.3)(=5+ 5) + (1)(0.6)(2 + 5) = 4.2.

Meanwhile, the value of X} is X} = X0 + V2, so

Xl=7-3=4, X}=240=2, X3=—-1+18=0.8, X} =-5+4.2=-08.

Evaluate the value of the objective function for each particle X} fori = 1,2,3,4

M) =f@) =0, (1) =f(2) =4, (1) =/f(08) =10.24, f,(1) = f(-0.8) = 23.04.
Meanwhile, in the previous iteration, the objective function values obtained were as follows:
f1(0)=£(7) =9, f2(0)=f(2) =4, f3(0) = f(=1) =25, f4(0) = f(=5) = 8L

The value of f in the previous iteration is not better so that Pbest for each particle is equal to the
value of X}'. Gbest? = 4.

Advance to the next iteration t = 2.

Repeat step 4 to find Pbesti2 and Gbest?, fori = 1,2,3,4,

Pbest? = 4, Pbest? = 2, Pbest? = 0.8, Pbest? = —0.8, Ghest? = 4.

Calculate the velocity of each particle with parameter values wy, 4 = 0.9, Wi = 0.4, ¢, = ¢, = 1.
Suppose the random values obtained are r; = 0.2, r, = 0.4 and t,, 4 = 4.

0.9-0.4

By using Equation (2), thenw = 0.9 — ( )2 = 0.65.

VZ =w V! + cyry(Pbest? — X}') + ¢, 1, (Gbest? — X}')

V2 = (0.65)(—3) + (1)(0.2)(4 — 4) + (1)(0.4)(4 — 4) = —1.95

VZ = (0.65)(0) + (1)(0.2)(2 —2) + (1)(0.4)(4—2) = 0.8

VZ = (0.65)(1.8) + (1)(0.2)(0.8 — 0.8) + (1)(0.4)(4 — 0.8) = 2.45

V2 = (0.65)(4.2) + (1)(0.2)(—0.8 + 0.8) + (1)(0.4)(4 + 0.8) = 4.65.

Meanwhile, the value of X? is X? = X! + V7, so

X2 =4-195=205X2=2+08=28, X =08+ 245 =3.25 X; = —0.8 + 4.65 = 3.85.
Evaluate the value of the objective function for each particle X7 fori = 1,2,3,4

£1(2) = £(2.05) = 3.8025, f,(2) = f(2.8) = 1.44, f;(2) = f(3.25) = 0.5625,

f1(2) = £(3.85) = 0.0225

In the previous iteration, the objective function values obtained were as follows

) =f#) =0, (1) =f(2) =4 f3(1)=7(08) =10.24, f,(1) = f(-0.8) = 23.04.
When compared with the value of f in the previous iteration, there is one that is better, namely
f1(1) = f(4) = 0, so that the value of the objective function becomes
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fi(2)=f4) =0, f2(2) = f(2.8) = 1.44, f3(2) = f(3.25) = 0.5625,
fa(2) = £(3.85) = 0.0225.
Continue to the next iteration t = 3.
10. Finding Pbest} and Gbest3, for i = 1,2,3,4,
Pbest? = 4, Pbests = 2.8, Pbest3 = 3.25, Pbest; = 3.85, Gbest® = 4.
11. Calculate the velocity of each particle with parameter values wy, 4 = 0.9, Wyuin = 0.4, ¢ = ¢, = 1.
Suppose the random values obtained are r; = 0.5, r, = 0.2 and t,,4, = 4.

By using Equation (2),w = 0.9 — (@) 3 =0.525
V? =w V2 + cyry (Pbest? — X7) + ¢, rp(Gbest® — X7)
V3 = (0.525)(—1.95) + (1)(0.5)(4 — 2.05) + (1)(0.2)(4 — 2.05) = 0.34125
V3 = (0.525)(0.8) + (1)(0.5)(2.8 — 2.8) + (1)(0.2)(4 — 2.8) = 0.66
V3 = (0.525)(2.45) + (1)(0.5)(3.25 — 3.25) + (1)(0.2)(4 — 3.25) = 1.43625
V32 = (0.525)(4.65) + (1)(0.5)(3.85 — 3.85) + (1)(0.2)(4 — 3.85) = 2.47125
Next for X? = X7 + V3,
X3 =2.05+ 0.34125 = 2.39125, X; = 2.8+ 0.66 = 3.46, X5 = 3.25 + 1.43625 = 4.68625,
X3 =3.85+ 2.47125 = 6.32125.
12. Evaluate the value of the objective function for each particle Xl-3 fori =1,2,34,
f1(3) = f(2.39125) = 2.588077, f,(3) = f(3.46) = 0.2916
f3(3) = f(4.68625) = 0.470939, f,(3) = f(6.32125) = 5.388202.
In the previous iteration, the objective function value obtained were as follows
f1(2)=f(4) =0, £,(2) = f(2.8) = 1.44, f3(2) = 0.5625, f,(2) = f(3.85) = 0.0225.
A better value has been obtained for f; (2) and f,(2) so that the objective function value becomes
fi3)=f4) =0, ,(3) = f(3.46) = 0.2916, f53(3) = f(4.68625) = 0.470939,
f2(3) = f(3.85) = 0.0225.
Continue to the next iteration t = 4.
13. Finding Pbest} and Gbest*, for i = 1,2,3,4
Pbest} = 4, Pbest; = 3.46, Pbest; = 4.68625, Pbest; = 3.85, Gbest* = 4.

Therefore the solution to the problem above isx = 4 and f(x) = 0.
Some stopping conditions that can be used in PSO are [23]:

1. Stop when the number of iterations reaches the maximum number of iterations.
2. Stop when an acceptable solution is found.
3. Stop when there is no progress after several iterations.

After five independent runs using mathematical software, with parameter values N = 4,¢; = ¢, =1,
Winax = 0.9, Wy = 0.4 and t,,4, = 4, then only the best result will be taken. The results obtained are the
objective function values f(x) = 0 and Gbest = 4, with an execution time of 0.730687 seconds. Figure 1
shows the PSO convergence graph of the problem.
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Figure 1. PSO Convergence Graph of the Example Problem

2.2 Data

Data on the standard width of available aluminum and the width of aluminum required in this work
were obtained from Suliman and Octarina [27], [28].

A company that produces aluminum paper, called Aluminum Rolling Mill Company (ARMCO),
receives an order from a customer. The problem faced by ARMCO is getting the right cutting pattern to
produce minimal cutting waste. The standard width of the available aluminum paper rolls is 130 cm and 100
cm, with a certain standard length. The types of widths ordered consist of 50 cm, 40 cm, 30 cm, and 20 cm.

Table 1. Aluminum Roll Size Width and Quantity Requested

Roll Size Width (cm) Number of Requests
50 64
40 58
30 70
20 48

3. RESULTS AND DISCUSSION

3.1 Combination Cutting Patterns
The cutting is planned by arranging several patterns by considering the following criteria:
1. The total width of the cutting result must be the same or shorter than 130 cm or 100 cm,
2. The width of the remaining cutting is less than 20 cm, and
3. There is no duplication of patterns.
The resulting pattern combinations are presented in Table 2.
Table 2. Combination of 100 cm and 130 cm Aluminum Roll Cutting Patterns

StandardWidth  Pattern Aluminum Roll Width (cm) (1)
(L) (j) 50 40 30 20

Trim Loss (cm)

0
10
0
10
0
10
0
0
10
0
10
0

0
0
0
0
0
100 cm 0
0
0
1
1
1
2

[l el
BhEBowo~vourwn-
OFRPOONREPLPPFPOOOO
OCOFRPOONRFROWNRFR O
CORPNPFPORWONWOU
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StandardWidth  Pattern Aluminum Roll Width (cm) (1) .
(L) () 50 0 30 20 Trim Loss (cm)
13 0 0 0 6 10
14 0 0 1 5 0
15 0 0 2 3 10
16 0 0 3 2 0
17 0 0 4 0 10
18 0 1 0 4 10
19 0 1 1 3 0
20 0 1 2 1 10
21 0 1 3 0 0
22 0 2 0 2 10
130 cm 23 0 2 1 1 0
24 0 3 0 0 10
25 1 0 0 4 0
26 1 0 1 2 10
27 1 0 2 1 0
28 1 1 0 2 0
29 1 1 1 0 10
30 1 2 0 0 0
31 2 0 0 1 10
32 2 0 1 0 0
Number of 64 58 70 48
Requests

3.2 Mathematical Model
The cutting problem can be formulated into a mathematical model as follows:

32
minZz = ZXJ-
j=1

Constraint

ijksz By, X; =0
j=1
Sets and Indexes
I {1, 2}, set of standard width variations available with index i
J :{1,2,3,..., 32}, set of aluminum roll cutting pattern with index j
K :{1,2, 3, 4}, set of variations in the width of the aluminum roll required with index k

Parameter

L; :width of aluminum roll i-th variant

I, :the required width of the k-th variant of the aluminum roll

Pj : the number of small rolls with width k-th on the j-th cutting pattern
By, : the number of requests for small rolls with width k-th

Decision variables
X; : the number of aluminum rolls cut in the j-th cutting pattern

Therefore, we have:

Objective Function
32
minZ = z Xj
j=1
Constraint

2797
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Xs+ Xo+ X7+ 2Xg + X110 + Xag + X1 + Xz0 + Xoq1 + 2Xp + 2Xo3 + 3X04 + Xog + Xpo + 2X30 = 58
Xy + 2X5 43X, + Xg + 2X; + X104 X1 + 2X15 + 3X16 + 4X17 + X104 2X00 + 3X51 + Xoz + Xo6
+ 2Xy7 + Xpo + X3y = 70
5X; 43X, + 2X3 + 3Xs + Xo + Xg + 2Xo + X10 + 6X13 + 5X14 + 3X15 + 2X16 + 4X15 + 3X10 + Xao
+ 2Xo5 4 Xpz + 4Xo5 + 2X06 + Xo7 + 2Xpg + X1 > 48
X;20;j=12,.,32

3.3 Solving Cutting Stock Problem Using Particle Swarm Optimization and Exact Method

Based on the problem example above, we solve the cutting problem with the mathematical model in
Section 3.2 and the cutting combination data contained in Table 2 using the heuristic PSO method and the
exact method using the help of mathematical software and Lingo 11.0.

The PSO method begins with parameter initialization first; the parameters used consist of ¢, ¢,
N (population size), t, Wy, ax, aNd Wiy i, With wy, o, = 0.9 and wy,;,, = 0.4, so the parameter variations used
in this case are:

1. Different parameters c; and fixed parameters c,, N, t.
2. Different parameters c, and fixed parameters c;, N, t.
3. Different parameters N and fixed parameters c;, ¢, t.
4. Different parameters t and fixed parameters ¢y, ¢,, N.

For each parameter variation, the algorithm will be run independently ten times, then from all the
results, only the best result will be taken. The results are displayed in Table 3 to Table 6. PSO Convergence
Graph for the best result for each case is presented in Figure 2 to Figure 5.

Table 3. Comparison of Cutting Results with Different Parameters ¢4

s c, N t Total Cuts (S;ngs)
1 2 100 500 76 10.423897
2 2 100 500 74 10.279768

2.05 2 100 500 68 8.000135

300

250

200

150 \

- L

50

Fitness Value
—

0 50 100 150 200 250 300 350 400 450 500
Iteration

Figure 2. PSO Convergence Graph With Parameter Values ¢; = 2.05, ¢; =2, N =100,and t = 500

Table 4. Comparison of Cutting Results with Different Parameters ¢,

s c, N t Total Cuts (se-lt-:lor?fjs)
2 1 100 500 72 12.745466
2 2 100 500 74 10.279768

2 2.05 100 500 68 7 493547
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Figure 3. PSO Convergence Graph With Parameter Values ¢; = 2, ¢, = 2.05, N =100,and t = 500

Table 5. Comparison of Cutting Results with Different Parameters N

s c, N t Total Cuts (s;:IoTw?js)
2 2 30 500 76 5.067679
2 2 50 500 71 5.258329
2 2 100 500 74 10.279768

350

300

250
% 200
?,
§ 150
L‘:L‘

100 H

50 s =
0 50 100 150 200 250 300 350

Iteration

Figure 4. PSO Convergence Graph With Parameter Values ¢, =2, ¢; =2, N =50,and t = 500

Table 6. Comparison of Cutting Results with Different Parameters ¢

cq cy N t Total Cuts ( S;i;lg 5)
2.05 2.05 100 100 75 3.873903
2.05 2.05 100 500 71 10.381683
2.05 2.05 100 1000 67 8.971090




2800 Silalahi, et al. PARTICLE SWARM OPTIMIZATION FOR CUTTING ALUMINUM STOCK AND...

350

300

250

200

Fitness Value

150

100

50
0 100 200 300 400 500 600 700

Iteration
Figure 5. PSO Convergence Graph With Parameter Values ¢, = 2.05, ¢; = 2.05, N =100,and t = 1000

After conducting several experiments with each different parameter value, the minimum total cutting
of aluminum rolls was 67 rolls with an execution time of 8.971090 seconds. Table 7 shows the number of
aluminum rolls that will be used to meet customer demand. A total of 32 patterns can be made from aluminum
rolls with a length of 100 cm and 130 cm (as in Table 2). Of the 32 patterns, four patterns were obtained that
were used to obtain minimum cutting residue/trim loss, namely, patterns X;, X,3, X,7, and X5,.

Table 7. The Results of the Cutting Pattern Using PSO

Standard Aluminum Roll Width Trim Loss (cm) Nu_mber of
Width  Pattern (cm) Aluminum Rolls
50 40 30 20 Used
100 cm 1 0 0 0 5 0 3
23 0 2 1 1 0 29
130 cm 27 1 0o 2 1 0 6
32 2 0 1 0 0 29
Total 64 58 70 50 0 67

Based on the results obtained above, the total number of aluminum rolls used is obtained from the
number of selected patterns. Table 7 shows that the total number of aluminum rolls used is 67 rolls with a
combination of patterns used, namely 3 rolls for pattern 1, 29 rolls for pattern 23, 6 rolls for pattern 27, and
29 rolls for pattern 32. Then, from each roll width will produce 64 pieces for a width of 50 cm, 58 pieces for
a width of 40 cm, 70 pieces for a width of 30 cm and 50 pieces, for a width of 20 cm. These results, when
compared with the number of orders, will produce an excess number of pieces, namely two pieces for a width
of 20 cm. The excess cutting results can be used for the next order. Then the remaining cutting produces 0
cm, meaning there is no material left or wasted. Furthermore, the output results above will be compared with
the exact method using LINGO 11.0 software.

Table 8. The Results of the Cutting Pattern Using Exact Method

Standard Aluminum Roll Width Trim Loss Nu_mber of
Width  Fattern (cm) (cm) Aluminum Rolls
50 40 30 20 Used
16 0 0 3 2 0 18
25 1 0 0 4 0 3
130 cm 30 1 ) 0 0 o o
32 2 0 1 0 0 16
Total 64 58 70 48 0 66

Based on the results obtained in Table 8, the number of aluminum rolls used is 66 rolls with a
combination of patterns used, namely X;4 = 18,X,5 = 3,X3, = 29, and X3, = 16. Then from each roll
width will produce 64 pieces for a width of 50 cm, 58 pieces for a width of 40 cm, 70 pieces for a width of
30 cm and 48 pieces for a width of 20 cm. These results are sufficient to meet customer orders and do not
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produce trim loss. So, from the two methods, it can be concluded that both have met the order constraints and
do not produce trim loss. The difference lies in the selected patterns, and in the PSO method, there are excess
cuts, namely, two cuts for a width of 20 cm.

4. CONCLUSION

This paper shows that the problem of one-dimensional cutting of aluminum rolls can be solved using
the PSO method. The problem of one-dimensional cutting of aluminum rolls was initially modeled in a
mathematical model in the form of linear optimization. The implementation of the model in cutting aluminum
rolls produced an optimum solution, namely 67 aluminum rolls to be used, with a combination of selected
patterns, namely three rolls for pattern one, 29 rolls for pattern 23, six rolls for pattern 27, and 29 rolls for
pattern 32. Then the remaining cutting results in 0 cm, meaning there is no material left or wasted. By using
the exact method, the number of aluminum rolls used is 66 rolls with a combination of patterns used, namely
18 rolls for pattern 16, 3 rolls for pattern 25, 29 rolls for pattern 30, and 16 rolls for pattern 32. The two
methods have met the order constraints and do not produce trim loss. The difference lies in the selected
patterns, and in the PSO method, there are excess cuts, namely, two cuts for a width of 20 cm.
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