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ABSTRACT

This paper introduces a hybrid conjugate gradient (CG) method for unconstrained
optimization with a spectral strategy, inspired by key advancements in existing CG
techniques. The proposed method guarantees a descent direction at every iteration,
regardless of the line search scheme employed. Its global convergence is rigorously
established under the Wolfe line search conditions. Numerical experiments on benchmark
optimization problems demonstrate that the proposed method outperforms the FR and
RMIL methods across multiple performance metrics. Furthermore, its effectiveness is
showcased in a neural network framework for predicting chickenpox and COVID-19
infection cases, highlighting its practical applicability in real-world scenarios.
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1. INTRODUCTION

Optimization, a science of choice [1] aims to identify the best way to solve a certain issue. The issue
may be maximizing profit, minimizing expenses, or minimizing energy use. Numerous branches of science,
engineering, and economics deal with these problems [2]. When a limitation is placed on the choice variable
X1,X5, X3, , X, the optimization problem can be confined; otherwise, it can be unconstrained [3]. Numerous
techniques, particularly unconstrained optimization, have been employed to tackle optimization issues,
including the conjugate gradient method (CG), the Newton method, the BFGS approach, and the steepest
descent [4], [5], [6], [7] . Due to its ease of use, low memory requirements, and ability to find the Hessian
matrix and invert it, the CG technique has been chosen over the other approaches [3].

The CG method uses an iteration formula to build sequences of iterations. This formula consists of
finding the search direction. The search direction is a linear combination of the gradient, the previous search
direction, and the conjugate parameter. Fletcher and Reeves (FR) [8], Dai and Yuan [9], Polak-Ribiere—
Polyak (PRP) [6], and [10], Liu and Storey (LS) [11], and Hestenes and Stiefel (HS) [7]. There are a few
examples of standard CG approaches. To a certain degree, the traditional CG approach can also be
supplemented with the work of Rivaie et al. [3] and Wei, Yao, and Liu method [12]. Since they perform
similarly to the six conventional CG algorithms [13].

Optimization plays a fundamental role in various scientific and engineering disciplines, particularly in
machine learning, data analysis, and predictive modeling. Conjugate gradient (CG) methods are among the
most effective iterative techniques for solving unconstrained optimization problems, owing to their
simplicity, low memory requirements, and strong convergence properties. Over the decades, numerous CG
variants have been developed to enhance convergence speed and robustness. However, the classical CG
methods, such as the Fletcher-Reeves (FR) and Polak-Ribiere-Polyak (PRP) methods, sometimes suffer from
slow convergence and inefficiency when applied to large-scale optimization problems. One promising
approach to improving CG methods is incorporating spectral strategies, which dynamically adjust step sizes
to accelerate convergence. Spectral CG methods integrate the benefits of spectral gradient methods and
classical CG approaches, yielding more efficient optimization techniques. In this research, we propose a new
hybrid CG method that leverages a spectral strategy to ensure global convergence and robust performance
across various optimization scenarios.

The ongoing COVID-19 pandemic has underscored the importance of accurate and efficient predictive
models in epidemiology. Traditional statistical models and machine learning approaches rely heavily on
optimization techniques to train neural networks and fit complex predictive functions. Given the necessity
for reliable forecasting tools, optimization methods that enhance predictive models’ efficiency are paramount.
Our proposed hybrid CG method is particularly suited for training neural networks due to its descent property
and improved convergence characteristics.

This work aims to develop a hybrid CG method incorporating a spectral strategy to enhance the
efficiency and robustness of unconstrained optimization. The proposed method is supported by a theoretical
analysis that establishes its descent properties and guarantees global convergence under the Wolfe conditions.
To validate its effectiveness, the method is benchmarked against classical CG algorithms, including the
Fletcher—Reeves (FR) and RMIL variants, using a set of standard numerical test problems. Additionally, the
practical utility of the proposed approach is demonstrated by applying it to improve predictive modeling in
epidemiology, particularly for forecasting COVID-19 infection cases.

Please refer to [2] and [14] for most of the research on the CG technique that focused on changing
these parameters in terms of convergence, numerical performances, and applications. The FR method is
globally convergent under exact line search, according to Zoutendijk [15], based on certain assumptions.
However, it performs poorly in numerical computation because the search direction exhibits zigzagging
behaviour and continues recycling without moving toward the solution point (refer to Rivaie et al.’s work
[3]). Powell produced a counterwork that refuted the Zoutendijk work [16] and [17]. Because of its associated
restart mechanism g7, (gr+1 + gx), PRP and its version were demonstrated to be numerically sound but
have global convergence issues. For general functions, Powell [19] has demonstrated that PRP is not globally
convergent under certain inexact line searches, such as the Strong Wolfe line search. Hager has noted that the
PRP parameter’s search direction is not descending for the generic function [18].

On a short note, the convergence of the PRP approach and its variations has been examined by a few
scholars, including Dai et al. [20], Andrei [13], and Zhang and Hager [18]. Many researchers, including
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Touati-Ahmed and Storey [21], Al-Baali [22], Gilbert and Nocedal [23], Rivaie et al. [3], Sulaiman et al.
[24], and Kamilu et al. [14], have filled the void left by their contributions by suggesting new PRP-like
algorithms using various inexact line searches, with promising results. To accomplish the performance of

FRBPRP and BRMIL In this research, we develop a new conjugate parameter; we employed a hybrid
technique [25] to trap the good performance and convergence results [26], [27]. We intend to test the

performance of this noble approach on some data sets in neural networks.

The structure of this paper is organized as follows: Section 2 introduces the proposed method and its
algorithmic framework, accompanied by a theoretical analysis of its global convergence under certain
assumptions. Section 3 presents numerical experiments to assess the performance of the new approach in
comparison with established methods and further illustrates its application to a COVID-19 prediction
problem. Finally, Section 4 offers a summary of the findings, practical recommendations, and suggestions
for future research directions.

2. RESEARCH METHOD

The CG method seeks the minimizer, which we refer to as the solution point x* is using the iteration
formula in Equation (1) below, this formula builds a sequence of iterations {x;} which in many situations
converges to the solution point [13].

Xi41 = Xp + qpdy (1)

where the previous and current iteration points are denoted by t; and t,,., respectively. a,, is the step length
that is required to be moderate, not too wide or too small [4], and it must ensure there is an adequate reduction
of the function value with minimum cost [8].

When determining the step size, there are two noteworthy methods to employ. Specifically, the exact
and inexact line search. The first method provides an exact step length value, but it is more expensive and
time-consuming [4]. To get a cheap step length with minimal computing cost, researchers like Armijo,
Goldstein, and Wolfe provide the first inexact line search, which they term the Armijo, Goldstein, and Wolfe
line search [29], [30], [31]. The strong Wolfe line search is created by modifying the ordinary Wolfe line
search in the manner described below.

f O + apdy) < f(xg) + pa V()" dy (2)
IVf (xx + ardi)Tdie| < o|Vf(xp) di]

where u, is between 0 < u < % andV,0< V< % Different constant values will lead to differences in the

exact line search. Zhong Wan et al. suggested a modification of the Armijo line search [32]. Other researchers
like Shuai Huang et al. [19] have proposed a non-monotone line-search-like method, which is an
improvement over the non-monotone line-search technique proposed by Zhang and Hager [18]. The ay is
chosen as a trail a, = ap™ < u where hy is the largest integer,

~ MeQrCy + f (xp + agedy) <

C = <
fe+l Qk +1+ O'kgifdk k

For other approaches to finding step length, please see, for example, [28], [33], [34], and [35]. dj isa
search direction. At the initial stage, the CG method employed the steepest descent direction d,, = —g; Where
I 1S the gradient at a point k. This is the best direction for the search for the minimum of the objective
function f [4]. While in the subsequent iteration point, it uses the linear combination of the gradient, the
previous direction, and the conjugate parameter d,1 = gix + Brdi. Some CG methods consider the three-
term linear combination approach, like in [20], [38], and [24] or the fourth-term approach like [39],[40].

Different CG method uses different conjugate parameters S,.. Andrei [4] mentioned the standard CG
as the one with either the ||gill? or gr.1(gk+1 — i) in the numerator and || gy || or dF(gk+1 — gi) OF
— d? g, in the denominator. This is due to their good numerical results, or they are globally convergent.
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A hybrid CG approach was created to make use of the worldwide convergence of the FR method and
its variant, as well as the strong performance of the PRP method and its variant [21], [41], [42]. Touti Ahmed
et al. proposed the first hybrid CG.

T _ T _ 2
(gk(gk 912—1)’ if0<gk(gk gl;—l)s Il gkl o
prA = lgre-1ll lgre-1ll lgre-1ll
2
19l > otherwise
| gr-1ll

The PRP method was incorporated to address the jamming behaviour of the FR method. Hu and Storey
[43], further proposed a max-min parameter as follows

T 2
.9k (Gk — Jk-1) Nl gkll

AU — max (0, (min ,

* (0, (min( | gre-1lI? Ilgk-1llz)))

The convex combination of PRP and DY methods was created by Andrei et al. [41] in order to preserve
the good numerical results of the PRP approach while utilizing the good convergence property of the DY
method.

9t (G — Gk-1) iy g II?
lGr—1I dr

k-1(9x — Gr-1)
where 0 < 8, < 1 is scalar defined as follows:

Bie = (1-6x)

_ k9 GksK) = Yk i) (Gk-191e-1)
T ORg0 ks — (979 (Gh-19k-1)

Irrespective of any line search used, this parameter is designed to ensure the conjugacy rule is fulfilled
[44]. Real-world issues have been resolved using the CG technique [24], [45], and [37].

To include the benefits of CG methods, Jian et al. [44] created a hybrid CG method that incorporates
the conjugate parameter in recent years.

lgell T }
-4, 0
gi_, 11 9k 9x-1

max{||gx-111% dl-l}’k—ﬁ

The direction of search with Equation (3) is always descending, regardless of the line search. For
general functions, global convergence is also achieved using a weak search for the Wolfe line. We suggest a
hybrid approach based on the method’s exceptional properties, which guarantees that the search direction
achieves adequate descent irrespective of the line search employed.

Igill? = max ]

B = (3)

To accomplish this, based on BfR, BERP andBfM!E. To develop a new conjugate parameter, we

employed a hybrid technique, which is specified as

[HCG _ llgkll? — max{0, g gr-1}

: (4
& max{llge-1 1, ldi-111?}
We defined the new composite search direction as follows:
d. =1 9k + B Cdioy, i gk -1l < Ngr-1lI% (5)
T\ -ALgk + BHCS otherwise

where the control parameter A3, > 1 serves as a spectral parameter.

Algorithm 1. An Improved Hybrid Conjugate Gradient Algorithm (IHCG)
Step 1. Initialization: x, € R"

Step 2. If || gk |l < €, end. If not, proceed to Step 3.

Step 3. Calculate the step length («;,) by using the Wolfe line search.
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Step 4. Create the subsequent iteration by (xx,q1 = x + ardy);
Step 5. Compute (g := g(x)) and (B€%) by Equation (4).

—gi + B dg—y,  if1gEgk-1] < N Gr-1ll%

Step 6. Let d;, =
P “ {— i + B dy_y, otherwise.

Step 7. Set (k := k + 1), return to Step 2.

Below, we demonstrate the algorithm framework’s global convergence under the Wolfe line search
condition in Equation (2), which means that Equation (2) determines the step length. Furthermore, the
following lemma asserts that all search directions in the Algorithm 1 framework are descent paths,
irrespective of the line search approach used. It is important to make the following assumptions to accomplish
this goal.

Assumptionl. The objective function f(x) is bounded from below on the level set 2 = {x e R" | f(x) <
f(xo)}, where x, is the initial point.

Assumption 2. In a neighbourhood N of the level set 2. The objective function f(x) is continuously
differentiable, and its gradient g(x) = Vf (x) satisfies the Lipschitz condition. That is, there exists a constant
L > 0 such that

lg(x) =gl < Lllx =yl Vvx,y €N.

LLemma 1. Let Algorithm 1 generate dy, if the objective function f(x) is continuously differentiable. Then,
forany k > 1, grd, < 0.

Proof.

For k = 1, itis evident that gTd; = —||g,||?> < 0. Assume that g7_,d,_; < 0 holds for k = 1. To establish
gFd, < 0for k > 1, we divide the proof into the following four cases. If gLH¢¢ = 0, from Equation (4), it

follows that g7 d;, = —||gkl|?> < 0. Therefore, in the subsequent analysis, we always assume Si7¢¢ # 0.
2
Case I. If gLgr_1 <0 and ||dx_111?> = ||gk-1I%, then from Equation (4) we obtain, giH¢¢ = % =
k-1
BEMIL ‘noting that || gx—1]|? > 0, from Algorithm 1, so ||d,_1]|? > 0 holds. Therefore, we obtain
llgkll® llgill®gie dic—
gkd = gk (~gi + B Cdi 1) = ~llgell® + -2 gy g < AL <0,
lldk-1ll [ldg—1ll
2
Case Il If gL gr_1 < 0and ||dg_1]|? < |lgk—1ll? then, from Equation (4), one has gLA¢¢ = % = pFR
noting that, ||gx—1||> > 0. Therefore, we obtain
g II? 9k lI” gie dic-1
Irdi = gk (=g + B Cdi-1) < —llgill? + ——5 gk dk-1 < — 15— < 0.
lgx-1l lgx-1ll
Case . If glgir_1 =0 and||dx_1]1> = llgk-1ll?, then, from Equation (4), one has Bii¢G =
Ikl =9k gk-1 _ pi _ Igkl*=9k g1 -
———kE2 = By = = —==—= therefore, we obtain
1112 P N1 112
Igkll* — ke Gr—1 llgkc|I? G A1
Gkdx = gie(—gx + B Cdi—1) = —llgill* + PR Gidy—1 < d_z < 0
lldi—1ll lldx—1ll
Igkll> -9k e Igkll>~gk g
Case IV. If gigx—1 = 0and [|di_1]1* < ||gi-1[I*, then B¢ = W =B = W:
therefore, we obtain
I9kl* =~k e Ig5ll® gic dic—
gdi = g (=gic + B Cdi-1) = =llgll® + 2T gldy g < A < 0.

gk-11I? lgk-11I?

The well-known Zoutendijk condition [15] are presented in the following lemma, and a thorough proof
can be found in [46] and [15].
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LLemma 2. Assume that assumptions 1 and 2 are true. In the common iteration x;,; = x, + ady, if the
direction d,, satisfies gfd, < 0 and the step length a;, meets the Wolfe line search condition in Ecuation
(2), then

- (g dy)?
i < ©
k=1 Tk

Corollary 1. Assume that {d, } is generated by Algorithm 1. Based on Assumption 1, we have

[ee]
gl
d 2
£ 11

Proof. From the Zoutendijk condition in Equation (6) and the descent property, we have

lgell* _ 15 (gFdi)”

2 = 2
ZiT1dil? = 9 £ Tl

The following theorem shows the suggested method’s global convergence.

< ® (7)

Theorem 1. Suppose that Assumptions 1 and 2 hold. Let {x, } be generated by Algorithm 1. Then
fim infligill = 0. ®
Proof. From Equation (4) and Equation (5), we have
ldicll = || =2k g + B C dyes |
< Al gell + [BEC [l g4 |
By simplifying the above, we obtain

ll gl )
<(1+ gl
( A

Hence, we have
Lo gl ©)
el = 7 "9

By setting y =1+ %

Considering Equation (7) and Equation (9), we obtain

C - gl
legkll2 <y? ) 29K 5> < o
L VAN TH

This leads to Equation (8). Consequently, the proof is finished. m

3. RESULTS AND DISCUSSION

The numerical performance of the novel approach in comparison to the traditional methods is
presented in this section. Consideration has been given to a significant number of conventional test functions,
ranging from minor to major issues. Every issue originates from [4]. Every problem is rerun five times with
varying numbers of variables (from 1000 to 10,000). The robustness of the IHCG approach is established
using the performance profile by Dolan and More [47]. Numerous researchers have employed this well-
known profile [3], [1], [28], and [36]. When there are more than 1000 iterations, failure is indicated. Table
1, Table 2, and Table 3 show each method’s numerical performance according to the number of iterations,
function evaluations, and CPU time.
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Figure 1. (a) Performance Overview Based on Function Evaluation and (b) Iteration Count
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Figure 2. (a) Performance Overview Based on the CPU time. (b) Performance Results of the First Application

Table 1. Performance of the IHCG in Terms of the Number of Iterations when Compared with FR and RMIL

Methods
No. Description FR Method IHCG Method RMIL
1 Minimum among them 15.000 42.0000 44.0000
2 Percentage of better 0.1705 0.5000 0.4773
3 Number of failures 29.0000 11.0000 23.0000
4 Percentage of failure 0.6705 0.8750 0.7386

Table 2. Performance of the IHCG in Terms of the Function Evaluation when Compared with FR and
RMIL Methods

No. Description FR Method IHCG Method RMIL
1 Minimum among them 13.0000 46.0000 23.0000
2 Percentage of better 0.1477 0.5227 0.2614
3 Number of failures 29.0000 14.0000 23.0000
4 Percentage of failure 0.6705 0.8409 0.7386

Table 3. Performance of the IHCG in Terms of the CPU time when Compared with FR and RMIL Methods

No. Description FR Method IHCG Method RMIL
1 Minimum among them 13.0000 53.0000 27.0000
2 Percentage of better 0.1477 0.6023 0.3068
3 Number of failures 29.0000 14.0000 24.0000
4 Percentage of failure 0.6705 0.8409 0.7273

All the methods utilized the same line search procedure, with stopping conditions as constant
parameters. To carry out a comparison, a MATLAB code was developed and run on a PC Intel Core i5
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processor, 16 GB RAM, 64-bit Windows 8 operating system. The results indicate that the IHCG method
demonstrates competitive performance compared to the FR and RMIL methods. Notably, the minimum value
obtained by IHCG (42.0000) is significantly higher than that of the FR method (15.0000) but slightly lower
than RMIL (44.0000). This suggests that IHCG is more effective in achieving better minimum values than
the FR method, but slightly underperforms compared to the RMIL method.

In terms of the percentage of better outcomes, IHCG achieves 50.00%, which is considerably higher
than FR (17.05%) and slightly better than RMIL (47.73%). This indicates that IHCG frequently outperforms
the other methods in terms of optimality. However, when considering the number of failures, IHCG records
11 failures, which is significantly lower than FR (29 failures) and RMIL (23 failures). This highlights the
robustness of IHCG, as it is less prone to failure in comparison to the other two methods. Despite this, the
percentage of failure for IHCG is 87.50%, which is relatively high compared to RMIL (73.86%) and FR
(67.05%). This suggests that while IHCG performs well in finding better solutions, it may still struggle in
some cases, leading to a relatively higher failure rate. Overall, the IHCG method strikes a balance between
achieving better solutions and minimizing failures, making it a promising alternative to the FR and RMIL
methods. However, further analysis may be needed to reduce its failure rate while maintaining or improving
its performance.

In this part, we look at forecasting the number of infections using data sets for COVID-19 and
chickenpox, respectively, by applying the CG method to a feed-forward neural network. The neural network
mimics the brain’s workings. The brain is a massive neuronal network. Neural networks are made up of
connections between nodes that have weights and biases, just as the brain is made up of connections between
neurons. The feed-forward neural network with backpropagation is the most significant neural network [48].
Numerous studies have demonstrated the significance of neural networks in prediction [2], [14], [45], and
[48].

In the search for the global minimum, the feed-forward neural network used the conjugate gradient
method among other methods to update its weight function. The CG method is prepared due to its rapid
convergence when compared with Steepest Descent methods [45]. Predicting the number of infections can
be considered as a univariate time series forecasting problem. The input data of the problem is the past, and
the expected output is the future values.

For the first application, we consider the Monthly chickenpox instances dataset. This data set is used
to train a neural network to predict monthly cases of chicken pox. Chickenpox data consists of a 1x498 cell
array of scalar values representing 498 months of chickenpox cases in New York City.

We design a network with the input layer, some hidden layers, and output layers. In the hidden layers,
we have the weight matrix at k — 1 layers and biases at layers. In the training, we used the backpropagation
of error derivatives to update the weights for better results. The CG training process can be seen by
minimizing the mean square error function state by

MSE = E(eTe) (10)

It is crucial to note that the CG approach is essential to finding the ideal weight, which can then be
applied to reduce the error function in Equation (10). Our challenge is a single time-series prediction, which
is estimating a time series next value based on its historical values. Using an auto-regression time-series
problem with an NAR Neural Network, we show the effectiveness of the model in forecasting the number of
cases using our new conjugate gradient.

The data was divided into three categories: 70% for training, 15% for validation, and 15% for testing.
The performance function that is selected is the mean square error. The results are displayed in Figure 3 and
Figure 4.
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Figure 3. (a) Regression Performance and (b) Validation Performance of the First Application

In the second application, we use a feed-forward neural network on a COVID-19 data set in Nigeria to
show how well the novel method performs on a single time-series prediction. The Nigerian Centre for Disease
Control provides us with the information. For a specific amount of time, it comprises a daily number of
infections. The time series data are divided into 80% training data and 20% test data. The designed NN model
can be classified into three categories. The first is the initialization of the required parameters; in this category,
the data is collected and transformed into a standard form by normalizing it using

0.8(x —a)
T ETE
In the second category, we set all the parameters for our NN model as follows: Feed Forward Layers
= 4, with the number of neurons as follows: first layer 20, the second layer 20, and the third layer 15. 100

was set as the maximum number of epochs. For the training function, we used the proposed CG method. The
outcome of the best test is presented in Table 4.

Table 4. Performance of the IHCG on the COVID-19 Data Set

0.1

Epoch Time Performance Gradient Validation Checks Step Size
0/100 7.075 0.0414/0 0.40268/1e-10 0/6 1/1e-06
25/100 7.58 0.0012409/0 0.0021256/1e-10 2/6 0.002081/1e-06
29/100 7.609 0.0011843/0 0.0040409/1e-10 6/6 0.01332/1e-06

Training: R=0.96125 Validation: R=0.95559
v 0

2500 MSE = 110425.528, RMSE = 332.3034 NRMSE = 0.36273
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3
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Figure 4: (@) MSE and (b) Regression Performance of the Second Application
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Figure 5. (a) Rank Correlation and (b) Validation Performance of the Second Application

4. CONCLUSION

A hybrid CG approach to unconstrained optimization issues was introduced in this study. The
suggested approach outperforms the FR and RMIL methods in terms of effectiveness and efficiency,
according to comparative analysis. The convergence study verified that the approach reaches global
convergence under an imprecise line search and satisfies the necessary descent criterion. Its usefulness goes
beyond optimization as well, since it has been shown to be a dependable technique for time series prediction,
including the prediction of COVID-19 and chickenpox cases. These results demonstrate the method's
resilience and adaptability in real-world predictive modeling and mathematical optimization. We observed
that as the number of parameters or decision variables increases, the search space expands exponentially,
thereby intensifying the difficulty of finding optimal solutions. This phenomenon, often referred to as the
curse of dimensionality, poses a significant challenge, especially for the proposed method. Future research
could benefit from extending conjugate gradient (CG) techniques to broader application domains, including
optimal control, parameter estimation, data assimilation, and imaging problems.
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