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 ABSTRACT 

Article History: 
This paper introduces a hybrid conjugate gradient (CG) method for unconstrained 

optimization with a spectral strategy, inspired by key advancements in existing CG 

techniques. The proposed method guarantees a descent direction at every iteration, 

regardless of the line search scheme employed. Its global convergence is rigorously 

established under the Wolfe line search conditions. Numerical experiments on benchmark 

optimization problems demonstrate that the proposed method outperforms the FR and 

RMIL methods across multiple performance metrics. Furthermore, its effectiveness is 

showcased in a neural network framework for predicting chickenpox and COVID-19 

infection cases, highlighting its practical applicability in real-world scenarios. 
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1. INTRODUCTION 

Optimization, a science of choice [1] aims to identify the best way to solve a certain issue. The issue 

may be maximizing profit, minimizing expenses, or minimizing energy use. Numerous branches of science, 

engineering, and economics deal with these problems [2]. When a limitation is placed on the choice variable 

𝑥1, 𝑥2, 𝑥3,⋯ , 𝑥𝑛 the optimization problem can be confined; otherwise, it can be unconstrained [3].  Numerous 

techniques, particularly unconstrained optimization, have been employed to tackle optimization issues, 

including the conjugate gradient method (CG), the Newton method, the BFGS approach, and the steepest 

descent [4], [5], [6], [7] . Due to its ease of use, low memory requirements, and ability to find the Hessian 

matrix and invert it, the CG technique has been chosen over the other approaches [3]. 

The CG method uses an iteration formula to build sequences of iterations. This formula consists of 

finding the search direction. The search direction is a linear combination of the gradient, the previous search 

direction, and the conjugate parameter. Fletcher and Reeves (FR) [8], Dai and Yuan [9], Polak–Ribiere–

Polyak (PRP) [6], and [10], Liu and Storey (LS) [11], and Hestenes and Stiefel (HS) [7]. There are a few 

examples of standard CG approaches. To a certain degree, the traditional CG approach can also be 

supplemented with the work of Rivaie et al. [3] and Wei, Yao, and Liu method [12]. Since they perform 

similarly to the six conventional CG algorithms [13].  

Optimization plays a fundamental role in various scientific and engineering disciplines, particularly in 

machine learning, data analysis, and predictive modeling. Conjugate gradient (CG) methods are among the 

most effective iterative techniques for solving unconstrained optimization problems, owing to their 

simplicity, low memory requirements, and strong convergence properties. Over the decades, numerous CG 

variants have been developed to enhance convergence speed and robustness. However, the classical CG 

methods, such as the Fletcher-Reeves (FR) and Polak-Ribière-Polyak (PRP) methods, sometimes suffer from 

slow convergence and inefficiency when applied to large-scale optimization problems. One promising 

approach to improving CG methods is incorporating spectral strategies, which dynamically adjust step sizes 

to accelerate convergence. Spectral CG methods integrate the benefits of spectral gradient methods and 

classical CG approaches, yielding more efficient optimization techniques. In this research, we propose a new 

hybrid CG method that leverages a spectral strategy to ensure global convergence and robust performance 

across various optimization scenarios. 

The ongoing COVID-19 pandemic has underscored the importance of accurate and efficient predictive 

models in epidemiology. Traditional statistical models and machine learning approaches rely heavily on 

optimization techniques to train neural networks and fit complex predictive functions. Given the necessity 

for reliable forecasting tools, optimization methods that enhance predictive models’ efficiency are paramount. 

Our proposed hybrid CG method is particularly suited for training neural networks due to its descent property 

and improved convergence characteristics. 

This work aims to develop a hybrid CG method incorporating a spectral strategy to enhance the 

efficiency and robustness of unconstrained optimization. The proposed method is supported by a theoretical 

analysis that establishes its descent properties and guarantees global convergence under the Wolfe conditions. 

To validate its effectiveness, the method is benchmarked against classical CG algorithms, including the 

Fletcher–Reeves (FR) and RMIL variants, using a set of standard numerical test problems. Additionally, the 

practical utility of the proposed approach is demonstrated by applying it to improve predictive modeling in 

epidemiology, particularly for forecasting COVID-19 infection cases. 

Please refer to [2] and [14] for most of the research on the CG technique that focused on changing 

these parameters in terms of convergence, numerical performances, and applications. The FR method is 

globally convergent under exact line search, according to Zoutendijk [15], based on certain assumptions. 

However, it performs poorly in numerical computation because the search direction exhibits zigzagging 

behaviour and continues recycling without moving toward the solution point (refer to Rivaie et al.’s work 

[3]). Powell produced a counterwork that refuted the Zoutendijk work [16] and [17]. Because of its associated 

restart mechanism 𝑔𝑘+1
𝑇 (𝑔𝑘+1 + 𝑔𝑘), PRP and its version were demonstrated to be numerically sound but 

have global convergence issues. For general functions, Powell [19] has demonstrated that PRP is not globally 

convergent under certain inexact line searches, such as the Strong Wolfe line search. Hager has noted that the 

PRP parameter’s search direction is not descending for the generic function [18].  

On a short note, the convergence of the PRP approach and its variations has been examined by a few 

scholars, including Dai et al. [20], Andrei [13], and  Zhang and Hager [18]. Many researchers, including 
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Touati-Ahmed and Storey [21], Al-Baali [22], Gilbert and Nocedal [23], Rivaie et al. [3], Sulaiman et al. 

[24], and Kamilu et al. [14], have filled the void left by their contributions by suggesting new PRP-like 

algorithms using various inexact line searches, with promising results. To accomplish the performance of 

𝛽𝑘
𝐹𝑅, 𝛽𝑘

𝑃𝑅𝑃, and 𝛽𝑘
𝑅𝑀𝐼𝐿. In this research, we develop a new conjugate parameter; we employed a hybrid 

technique [25] to trap the good performance and convergence results [26], [27]. We intend to test the 

performance of this noble approach on some data sets in neural networks. 

The structure of this paper is organized as follows: Section 2 introduces the proposed method and its 

algorithmic framework, accompanied by a theoretical analysis of its global convergence under certain 

assumptions. Section 3 presents numerical experiments to assess the performance of the new approach in 

comparison with established methods and further illustrates its application to a COVID-19 prediction 

problem. Finally, Section 4 offers a summary of the findings, practical recommendations, and suggestions 

for future research directions. 

2. RESEARCH METHOD 

The CG method seeks the minimizer, which we refer to as the solution point 𝑥∗ is using the iteration 

formula in Equation (1) below, this formula builds a sequence of iterations {𝑥𝑘} which in many situations 

converges to the solution point [13]. 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (1) 

where the previous and current iteration points are denoted by 𝑡𝑘  and 𝑡𝑘+1 respectively. 𝛼𝑘 is the step length 

that is required to be moderate, not too wide or too small [4], and it must ensure there is an adequate reduction 

of the function value with minimum cost [8].  

When determining the step size, there are two noteworthy methods to employ. Specifically, the exact 

and inexact line search. The first method provides an exact step length value, but it is more expensive and 

time-consuming [4]. To get a cheap step length with minimal computing cost, researchers like Armijo, 

Goldstein, and Wolfe provide the first inexact line search, which they term the Armijo, Goldstein, and Wolfe 

line search [29], [30], [31]. The strong Wolfe line search is created by modifying the ordinary Wolfe line 

search in the manner described below. 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝜇𝛼𝑘𝛻𝑓(𝑥𝑘)
𝑇𝑑𝑘 (2) 

|𝛻𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘|  ≤ 𝜎|𝛻𝑓(𝑥𝑘)

𝑇𝑑𝑘| 

where 𝜇, is between 0 < 𝜇 <
1

2
, and 𝛻, 0 < 𝛻 <

1

2
. Different constant values will lead to differences in the 

exact line search. Zhong Wan et al. suggested a modification of the Armijo line search [32]. Other researchers 

like Shuai Huang et al. [19] have proposed a non-monotone line-search-like method, which is an 

improvement over the non-monotone line-search technique proposed by Zhang and Hager [18]. The 𝛼𝑘 is 

chosen as a trail 𝛼𝑘 = 𝛼𝑘𝜌
ℎ𝑘 ≤ 𝜇 where ℎ𝑘 is the largest integer, 

𝐶𝑘+1 =
𝜂𝑘𝑄𝑘𝐶𝑘 + 𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)

𝑄𝑘 + 1 + 𝜎𝑘𝑔𝑘
𝑇𝑑𝑘

≤ 𝐶𝑘 

For other approaches to finding step length, please see, for example, [28], [33], [34], and [35]. 𝑑𝑘 is a 

search direction. At the initial stage, the CG method employed the steepest descent direction 𝑑𝑘 = −𝑔𝑘 where 

𝑔𝑘 is the gradient at a point 𝑘. This is the best direction for the search for the minimum of the objective 

function 𝑓 [4]. While in the subsequent iteration point, it uses the linear combination of the gradient, the 

previous direction, and the conjugate parameter 𝑑𝑘+1 = 𝑔𝑘 + 𝛽𝑘𝑑𝑘. Some CG methods consider the three-

term linear combination approach, like in [20], [38], and [24] or the fourth-term approach like [39],[40]. 

Different CG method uses different conjugate parameters 𝛽𝑘. Andrei [4]  mentioned the standard CG 

as the one with either the ‖𝑔𝑘‖
2 or 𝑔𝑘+1

𝑇 (𝑔𝑘+1 − 𝑔𝑘) in the numerator and ‖𝑔𝑘‖
2 or 𝑑𝑘

𝑇(𝑔𝑘+1 − 𝑔𝑘) or 

− 𝑑𝑘
𝑇𝑔𝑘 in the denominator. This is due to their good numerical results, or they are globally convergent. 
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A hybrid CG approach was created to make use of the worldwide convergence of the FR method and 

its variant, as well as the strong performance of the PRP method and its variant [21], [41], [42]. Touti Ahmed 

et al. proposed the first hybrid CG.  

𝛽𝑘
𝑇𝐴 =

{
 
 

 
 𝑔𝑘

𝑇(𝑔𝑘 − 𝑔𝑘−1)

‖𝑔𝑘−1‖
2

, if 0 <
𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

‖𝑔𝑘−1‖
2

≤
‖𝑔𝑘‖

2

‖𝑔𝑘−1‖
2
,

‖𝑔𝑘‖
2

‖𝑔𝑘−1‖
2
, otherwise

 

The PRP method was incorporated to address the jamming behaviour of the FR method. Hu and Storey 

[43], further proposed a max-min parameter as follows 

𝛽𝑘
𝐻𝑈 = 𝑚𝑎𝑥( 0, (𝑚𝑖𝑛(

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

‖𝑔𝑘−1‖
2

,
‖𝑔𝑘‖

2

‖𝑔𝑘−1‖
2
))) 

The convex combination of PRP and DY methods was created by Andrei et al. [41] in order to preserve 

the good numerical results of the PRP approach while utilizing the good convergence property of the DY 

method. 

𝛽𝑘
𝐴 = (1 − 𝜃𝑘)

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

‖𝑔𝑘−1‖
2

+ 𝜃𝑘
‖𝑔𝑘‖

2

𝑑𝑘−1
𝑇 (𝑔𝑘 − 𝑔𝑘−1)

 

where 0 < 𝜃𝑘 ≤ 1 is scalar defined as follows: 

𝜃𝑘 =
(𝑦𝑘

𝑇𝑔𝑘)(𝑦𝑘
𝑇𝑠𝑘) − (𝑦𝑘

𝑇𝑔𝑘)(𝑔𝑘−1
𝑇 𝑔𝑘−1)

(𝑦𝑘
𝑇𝑔𝑘)(𝑦𝑘

𝑇𝑠𝑘) − (𝑔𝑘
𝑇𝑔𝑘)(𝑔𝑘−1

𝑇 𝑔𝑘−1)
 

Irrespective of any line search used, this parameter is designed to ensure the conjugacy rule is fulfilled 

[44]. Real-world issues have been resolved using the CG technique [24], [45], and [37].  

To include the benefits of CG methods, Jian et al. [44] created a hybrid CG method that incorporates 

the conjugate parameter in recent years. 

𝛽𝑘
𝑁 =

‖𝑔𝑘‖
2 −𝑚𝑎𝑥 {

‖𝑔𝑘‖
‖𝑔𝑘−1‖

𝑔𝑘
𝑇𝑔𝑘−1, 0}

𝑚𝑎𝑥{‖𝑔𝑘−1‖
2, 𝑑𝑘−1

𝑇 𝑦𝑘−1}
(3) 

The direction of search with Equation (3) is always descending, regardless of the line search. For 

general functions, global convergence is also achieved using a weak search for the Wolfe line. We suggest a 

hybrid approach based on the method’s exceptional properties, which guarantees that the search direction 

achieves adequate descent irrespective of the line search employed.  

To accomplish this, based on 𝛽𝑘
𝐹𝑅, 𝛽𝑘

𝑃𝑅𝑃, and𝛽𝑘
𝑅𝑀𝐼𝐿. To develop a new conjugate parameter, we 

employed a hybrid technique, which is specified as 

𝛽𝑘
𝐼𝐻𝐶𝐺 =

‖𝑔𝑘‖
2 −𝑚𝑎𝑥{0, 𝑔𝑘

𝑇𝑔𝑘−1}

𝑚𝑎𝑥{‖𝑔𝑘−1‖
2, ‖𝑑𝑘−1‖

2}
. (4) 

We defined the new composite search direction as follows: 

𝑑𝑘 = {
−𝑔𝑘 + 𝛽𝑘

𝐼𝐻𝐶𝐺𝑑𝑘−1, if |𝑔𝑘
𝑇𝑔𝑘−1| ≤ ‖𝑔𝑘−1‖

2,

−𝜆𝑘
∗𝑔𝑘 + 𝛽𝑘

𝐼𝐻𝐶𝐺𝑑𝑘−1, otherwise
(5) 

where the control parameter 𝜆𝑘
∗ > 1 serves as a spectral parameter. 

 

Algorithm 1. An Improved Hybrid Conjugate Gradient Algorithm (IHCG) 

Step 1. Initialization: 𝑥0 ∈ ℝ
𝑛 

Step 2. If ‖𝑔𝑘‖ ≤ 𝜖, end. If not, proceed to Step 3. 

Step 3. Calculate the step length (𝛼𝑘) by using the Wolfe line search. 
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Step 4. Create the subsequent iteration by (𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘); 

Step 5. Compute (𝑔𝑘 ∶=  𝑔(𝑥𝑘)) and (𝛽𝑘
𝐼𝐻𝐶𝐺) by Equation (4). 

Step 6. Let  𝑑𝑘 = {
−𝑔𝑘 + 𝛽𝑘

𝐼𝐻𝐶𝐺𝑑𝑘−1, if |𝑔𝑘
𝑇𝑔𝑘−1| ≤ ‖𝑔𝑘−1‖

2,

−𝜆𝑘
∗𝑔𝑘 + 𝛽𝑘

𝐼𝐻𝐶𝐺𝑑𝑘−1, otherwise.
 

Step 7. Set (𝑘 ∶=  𝑘 +  1), return to Step 2. 

Below, we demonstrate the algorithm framework’s global convergence under the Wolfe line search 

condition in Equation (2), which means that Equation (2) determines the step length. Furthermore, the 

following lemma asserts that all search directions in the Algorithm 1 framework are descent paths, 

irrespective of the line search approach used. It is important to make the following assumptions to accomplish 

this goal. 

Assumption1. The objective function 𝑓(𝑥) is bounded from below on the level set 𝛺 = {𝑥 ∈ ℝ𝑛 ∣ 𝑓(𝑥) ≤
𝑓(𝑥0)} , where 𝑥0 is the initial point. 

Assumption 2. In a neighbourhood  𝑁 of the level set 𝛺. The objective function 𝑓(𝑥) is continuously 

differentiable, and its gradient 𝑔(𝑥) = 𝛻𝑓(𝑥) satisfies the Lipschitz condition. That is, there exists a constant 

𝐿 >  0 such that 

‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖,  ∀𝑥, 𝑦 ∈ 𝑁. 

Lemma 1. Let Algorithm 1 generate 𝑑𝑘, if the objective function 𝑓(𝑥) is continuously differentiable. Then, 

for any 𝑘 ≥ 1,  𝑔𝑘
𝑇𝑑𝑘 < 0. 

Proof. 

For 𝑘 = 1, it is evident that 𝑔1
𝑇𝑑1 = −‖𝑔1‖

2 < 0. Assume that 𝑔𝑘−1
𝑇 𝑑𝑘−1 < 0 holds for 𝑘 = 1. To establish 

𝑔𝑘
𝑇𝑑𝑘 < 0 for 𝑘 > 1, we divide the proof into the following four cases. If  𝛽𝑘

𝐼𝐻𝐶𝐺 = 0, from Equation (4), it 

follows that 𝑔𝑘
𝑇𝑑𝑘 = −‖𝑔𝑘‖

2 < 0. Therefore, in the subsequent analysis, we always assume 𝛽𝑘
𝐼𝐻𝐶𝐺 ≠ 0. 

Case I. If 𝑔𝑘
𝑇𝑔𝑘−1 ≤ 0 and ‖𝑑𝑘−1‖

2 ≥ ‖𝑔𝑘−1‖
2, then from Equation (4) we obtain, 𝛽𝑘

𝐼𝐻𝐶𝐺 =
‖𝑔𝑘‖

2

‖𝑑𝑘−1‖
2 =

𝛽𝑘
𝑅𝑀𝐼𝐿, noting that ‖𝑔𝑘−1‖

2 > 0, from Algorithm 1, so ‖𝑑𝑘−1‖
2 > 0 holds. Therefore, we obtain 

  𝑔𝑘
𝑇𝑑𝑘 = 𝑔𝑘

𝑇(−𝑔𝑘 + 𝛽𝑘
𝐼𝐻𝐶𝐺𝑑𝑘−1) = −‖𝑔𝑘‖

2 +
‖𝑔𝑘‖

2

‖𝑑𝑘−1‖
2 𝑔𝑘

𝑇𝑑𝑘−1 ≤
‖𝑔𝑘‖

2𝑔𝑘
𝑇𝑑𝑘−1

‖𝑑𝑘−1‖
2 < 0. 

Case II. If 𝑔𝑘
𝑇𝑔𝑘−1 ≤ 0 and ‖𝑑𝑘−1‖

2 < ‖𝑔𝑘−1‖
2, then, from Equation (4), one has 𝛽𝑘

𝐼𝐻𝐶𝐺 =
‖𝑔𝑘‖

2

‖𝑔𝑘−1‖
2 = 𝛽𝑘

𝐹𝑅  

noting that, ‖𝑔𝑘−1‖
2 > 0. Therefore, we obtain 

𝑔𝑘
𝑇𝑑𝑘 = 𝑔𝑘

𝑇(−𝑔𝑘 + 𝛽𝑘
𝐼𝐻𝐶𝐺𝑑𝑘−1) < −‖𝑔𝑘‖

2 +
‖𝑔𝑘‖

2

‖𝑔𝑘−1‖
2
𝑔𝑘
𝑇𝑑𝑘−1 ≤

‖𝑔𝑘‖
2𝑔𝑘

𝑇𝑑𝑘−1
‖𝑔𝑘−1‖

2
< 0. 

Case III. If 𝑔𝑘
𝑇𝑔𝑘−1 ≥ 0 and ‖𝑑𝑘−1‖

2 ≥ ‖𝑔𝑘−1‖
2, then, from Equation (4), one has 𝛽𝑘

𝐼𝐻𝐶𝐺 =
‖𝑔𝑘‖

2−𝑔𝑘
𝑇𝑔𝑘−1

‖𝑑𝑘−1‖
2 = 𝛽𝑘

∗ =
‖𝑔𝑘‖

2−𝑔𝑘
𝑇𝑔𝑘−1

‖𝑑𝑘−1‖
2 , therefore, we obtain 

𝑔𝑘
𝑇𝑑𝑘 = 𝑔𝑘

𝑇(−𝑔𝑘 + 𝛽𝑘
𝐼𝐻𝐶𝐺𝑑𝑘−1) = −‖𝑔𝑘‖

2 +
‖𝑔𝑘‖

2 − 𝑔𝑘
𝑇𝑔𝑘−1

‖𝑑𝑘−1‖
2

𝑔𝑘
𝑇𝑑𝑘−1 ≤

‖𝑔𝑘‖
2𝑔𝑘

𝑇𝑑𝑘−1
‖𝑑𝑘−1‖

2
< 0 

Case IV. If 𝑔𝑘
𝑇𝑔𝑘−1 ≥ 0 and ‖𝑑𝑘−1‖

2 ≤ ‖𝑔𝑘−1‖
2, then 𝛽𝑘

𝐼𝐻𝐶𝐺 =
‖𝑔𝑘‖

2−𝑔𝑘
𝑇𝑔𝑘−1

‖𝑑𝑘−1‖
2 = 𝛽𝑘

𝑃𝑅𝑃 =
‖𝑔𝑘‖

2−𝑔𝑘
𝑇𝑔𝑘−1

‖𝑔𝑘−1‖
2 , 

therefore, we obtain 

  𝑔𝑘
𝑇𝑑𝑘 = 𝑔𝑘

𝑇(−𝑔𝑘 + 𝛽𝑘
𝐼𝐻𝐶𝐺𝑑𝑘−1) = −‖𝑔𝑘‖

2 +
‖𝑔𝑘‖

2−𝑔𝑘
𝑇𝑔𝑘−1

‖𝑔𝑘−1‖
2 𝑔𝑘

𝑇𝑑𝑘−1 ≤
‖𝑔𝑘‖

2𝑔𝑘
𝑇𝑑𝑘−1

‖𝑔𝑘−1‖
2 < 0.∎ 

The well-known Zoutendijk condition [15] are presented in the following lemma, and a thorough proof 

can be found in [46] and [15]. 
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Lemma 2. Assume that assumptions 1 and 2 are true. In the common iteration 𝑥𝑘+1  =  𝑥𝑘 + 𝑎𝑘𝑑𝑘, if the 

direction  𝑑𝑘 satisfies 𝑔𝑘
𝑇𝑑𝑘 < 0 and the step length 𝛼𝑘 meets the Wolfe line search condition in Equation 

(2), then 

∑
(𝑔𝑘

𝑇𝑑𝑘)
2

‖𝑑𝑘‖
2

∞

𝑘=1

< ∞ (6) 

Corollary 1. Assume that {𝑑𝑘} is generated by Algorithm 1. Based on Assumption 1, we have 

∑
‖𝑔𝑘‖

4

‖𝑑𝑘‖
2

∞

𝑘=0

< ∞ (7) 

Proof. From the Zoutendijk condition in Equation (6) and the descent property, we have 

∑
‖𝑔𝑘‖

4

‖𝑑𝑘‖
2

∞

𝑘=0

≤
1

𝜗
∑

(𝑔𝑘
𝑇𝑑𝑘)

2

‖𝑑𝑘‖
2

∞

𝑘=1

< ∞.∎ 

The following theorem shows the suggested method’s global convergence. 

Theorem 1. Suppose that Assumptions 1 and 2 hold. Let {𝑥𝑘} be generated by Algorithm 1. Then 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0. (8) 

Proof. From Equation (4) and Equation (5), we have 

‖𝑑𝑘‖ = ‖−𝜆𝑘
∗𝑔𝑘 + 𝛽𝑘

𝐼𝐻𝐶𝐺𝑑𝑘−1‖ 

≤ |𝜆𝑘
∗ |‖𝑔𝑘‖ + |𝛽𝑘

𝐼𝐻𝐶𝐺|‖𝑑𝑘−1‖ 

By simplifying the above, we obtain 

≤ (1 +
‖𝑔𝑘‖

‖𝑑𝑘−1‖
)‖𝑔𝑘‖ 

Hence, we have 

1

‖𝑑𝑘‖
≥
1

𝛾
‖𝑔𝑘‖ (9) 

By setting  𝛾 ≔ 1 +
𝐿𝑏

𝜑
 

Considering Equation (7) and Equation (9), we obtain 

∑‖𝑔𝑘‖
2 ≤ 𝛾2

∞

𝑘=0

∑
‖𝑔𝑘‖

4

‖𝑑𝑘‖
2

∞

𝑘=0

< ∞ 

This leads to Equation (8). Consequently, the proof is finished. ∎ 

3. RESULTS AND DISCUSSION 

The numerical performance of the novel approach in comparison to the traditional methods is 
presented in this section. Consideration has been given to a significant number of conventional test functions, 

ranging from minor to major issues. Every issue originates from [4]. Every problem is rerun five times with 

varying numbers of variables (from 1000 to 10,000). The robustness of the IHCG approach is established 

using the performance profile by Dolan and More [47]. Numerous researchers have employed this well-

known profile [3], [1], [28], and [36]. When there are more than 1000 iterations, failure is indicated. Table 

1, Table 2, and Table 3 show each method’s numerical performance according to the number of iterations, 

function evaluations, and CPU time. 
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(a)            (b) 

Figure 1. (a) Performance Overview Based on Function Evaluation and (b) Iteration Count 

 

 

 

   

 

 

 

 

 

 

 

 
(a)            (b) 

Figure 2. (a) Performance Overview Based on the CPU time.  (b) Performance Results of the First Application  

 

Table 1. Performance of the IHCG in Terms of the Number of Iterations when Compared with FR and RMIL 

Methods 

No. Description FR Method IHCG Method RMIL 

1 Minimum among them 15.000   42.0000 44.0000 

2 Percentage of better 0.1705   0.5000 0.4773 

3 Number of failures 29.0000  11.0000 23.0000 

4 Percentage of failure 0.6705   0.8750 0.7386 

Table 2. Performance of the IHCG in Terms of the Function Evaluation when Compared with FR and 

RMIL Methods 

No. Description FR Method  IHCG Method RMIL 

1 Minimum among them 13.0000  46.0000   23.0000  

2 Percentage of better 0.1477    0.5227    0.2614    

3 Number of failures 29.0000   14.0000   23.0000  

4 Percentage of failure 0.6705    0.8409   0.7386   

Table 3. Performance of the IHCG in Terms of the CPU time when Compared with FR and RMIL Methods 

No. Description FR Method IHCG Method RMIL 

1 Minimum among them 13.0000 53.0000  27.0000  

2 Percentage of better 0.1477 0.6023  0.3068    

3 Number of failures 29.0000 14.0000  24.0000  

4 Percentage of failure 0.6705 0.8409  0.7273  

 All the methods utilized the same line search procedure, with stopping conditions as constant 

parameters. To carry out a comparison, a MATLAB code was developed and run on a PC Intel Core i5 
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processor, 16 GB RAM, 64-bit Windows 8 operating system. The results indicate that the IHCG method 

demonstrates competitive performance compared to the FR and RMIL methods. Notably, the minimum value 

obtained by IHCG (42.0000) is significantly higher than that of the FR method (15.0000) but slightly lower 

than RMIL (44.0000). This suggests that IHCG is more effective in achieving better minimum values than 

the FR method, but slightly underperforms compared to the RMIL method. 

In terms of the percentage of better outcomes, IHCG achieves 50.00%, which is considerably higher 

than FR (17.05%) and slightly better than RMIL (47.73%). This indicates that IHCG frequently outperforms 

the other methods in terms of optimality. However, when considering the number of failures, IHCG records 

11 failures, which is significantly lower than FR (29 failures) and RMIL (23 failures). This highlights the 

robustness of IHCG, as it is less prone to failure in comparison to the other two methods. Despite this, the 

percentage of failure for IHCG is 87.50%, which is relatively high compared to RMIL (73.86%) and FR 

(67.05%). This suggests that while IHCG performs well in finding better solutions, it may still struggle in 

some cases, leading to a relatively higher failure rate. Overall, the IHCG method strikes a balance between 

achieving better solutions and minimizing failures, making it a promising alternative to the FR and RMIL 

methods. However, further analysis may be needed to reduce its failure rate while maintaining or improving 

its performance. 

 In this part, we look at forecasting the number of infections using data sets for COVID-19 and 

chickenpox, respectively, by applying the CG method to a feed-forward neural network. The neural network 

mimics the brain’s workings. The brain is a massive neuronal network. Neural networks are made up of 

connections between nodes that have weights and biases, just as the brain is made up of connections between 

neurons. The feed-forward neural network with backpropagation is the most significant neural network [48]. 

Numerous studies have demonstrated the significance of neural networks in prediction [2], [14], [45], and 

[48]. 

 In the search for the global minimum, the feed-forward neural network used the conjugate gradient 

method among other methods to update its weight function. The CG method is prepared due to its rapid 

convergence when compared with Steepest Descent methods [45]. Predicting the number of infections can 

be considered as a univariate time series forecasting problem. The input data of the problem is the past, and 

the expected output is the future values.  

For the first application, we consider the Monthly chickenpox instances dataset. This data set is used 

to train a neural network to predict monthly cases of chicken pox. Chickenpox data consists of a 1x498 cell 

array of scalar values representing 498 months of chickenpox cases in New York City. 

We design a network with the input layer, some hidden layers, and output layers. In the hidden layers, 

we have the weight matrix at 𝑘 − 1 layers and biases at layers. In the training, we used the backpropagation 

of error derivatives to update the weights for better results. The CG training process can be seen by 

minimizing the mean square error function state by 

𝑀𝑆𝐸 = 𝐸(𝑒𝑇𝑒) (10) 

It is crucial to note that the CG approach is essential to finding the ideal weight, which can then be 

applied to reduce the error function in Equation (10). Our challenge is a single time-series prediction, which 

is estimating a time series next value based on its historical values. Using an auto-regression time-series 

problem with an NAR Neural Network, we show the effectiveness of the model in forecasting the number of 

cases using our new conjugate gradient.  

The data was divided into three categories: 70% for training, 15% for validation, and 15% for testing. 

The performance function that is selected is the mean square error. The results are displayed in Figure 3 and 

Figure 4.  
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(a)                                                                                                      (b) 

Figure 3. (a) Regression Performance and (b) Validation Performance of the First Application 

In the second application, we use a feed-forward neural network on a COVID-19 data set in Nigeria to 

show how well the novel method performs on a single time-series prediction. The Nigerian Centre for Disease 

Control provides us with the information. For a specific amount of time, it comprises a daily number of 

infections. The time series data are divided into 80% training data and 20% test data. The designed NN model 

can be classified into three categories. The first is the initialization of the required parameters; in this category, 

the data is collected and transformed into a standard form by normalizing it using   

𝑣 =
0.8(𝑥 − 𝑎)

𝑏 − 𝑎
+ 0.1 

In the second category, we set all the parameters for our NN model as follows: Feed Forward Layers 

= 4, with the number of neurons as follows: first layer 20, the second layer 20, and the third layer 15. 100 

was set as the maximum number of epochs. For the training function, we used the proposed CG method. The 

outcome of the best test is presented in Table 4. 

Table 4. Performance of the IHCG on the COVID-19 Data Set 

Epoch Time Performance Gradient Validation Checks Step Size 

0/100 7.075 0.0414/0 0.40268/1e-10 0/6 1/1e-06 

25/100 7.58 0.0012409/0 0.0021256/1e-10 2/6 0.002081/1e-06 

29/100 7.609 0.0011843/0 0.0040409/1e-10 6/6 0.01332/1e-06 

 

 

                            (a)             (b) 

Figure 4: (a) MSE and (b) Regression Performance of the Second Application 
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                                  (a)           (b) 

Figure 5. (a) Rank Correlation and (b) Validation Performance of the Second Application 

4. CONCLUSION  

A hybrid CG approach to unconstrained optimization issues was introduced in this study. The 

suggested approach outperforms the FR and RMIL methods in terms of effectiveness and efficiency, 

according to comparative analysis. The convergence study verified that the approach reaches global 

convergence under an imprecise line search and satisfies the necessary descent criterion. Its usefulness goes 

beyond optimization as well, since it has been shown to be a dependable technique for time series prediction, 

including the prediction of COVID-19 and chickenpox cases. These results demonstrate the method's 

resilience and adaptability in real-world predictive modeling and mathematical optimization. We observed 

that as the number of parameters or decision variables increases, the search space expands exponentially, 

thereby intensifying the difficulty of finding optimal solutions. This phenomenon, often referred to as the 

curse of dimensionality, poses a significant challenge, especially for the proposed method. Future research 

could benefit from extending conjugate gradient (CG) techniques to broader application domains, including 

optimal control, parameter estimation, data assimilation, and imaging problems. 
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