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ABSTRACT

Soil particle prediction is crucial in various fields, including agriculture, environmental
management, and geotechnical applications. The spatial variation of soil texture
significantly affects land fertility, erosion risk, and construction feasibility. However,
conventional statistical methods and machine learning techniques often fail to capture
the complex spatial heterogeneity in soil distribution. This study proposes the
Geographically Weighted K Nearest Neighbors Ordinary Logistic Regression
(GWKNNOLR) method to improve the accuracy of soil particle classification by
integrating geographically weighted regression with an adaptive spatial weighting
mechanism using the K Nearest Neighbors (KNN) algorithm. The objective of this
research is to develop and evaluate a spatially adaptive classification model that more
accurately predicts soil particle categories, namely sand, silt, and clay, by incorporating
local spatial dependencies using GWKNNOLR in the Kalikonto watershed (DAS
Kalikonto) in Batu. This study utilizes field measurement data combined with digital
terrain modeling to analyze the relationship between local morphological variables and
soil texture classification (sand, silt, and clay). The study area includes 50 observation
points and 8 test variables. The model's performance is compared to the Ordinary Logistic
Regression (OLR) method. The results indicate that GWKNNOLR achieves a
classification accuracy of 88 percent, outperforming OLR, which only reaches 80 percent.
Integrating KNN as a spatial weighting mechanism enhances adaptability to variations
in sample distribution, leading to more accurate predictions. These findings emphasize
the importance of considering spatial dependencies in soil texture modeling. The
proposed method can support sustainable land resource management, erosion risk
mitigation, and precision agriculture by providing more reliable soil classification.
Future research may explore further optimization of spatial weighting mechanisms and
the application of this method in different geographical regions.
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1. INTRODUCTION

Predicting soil particles is crucial in various disciplines, including agriculture, environmental science,
and geotechnical engineering [1]. Information regarding soil particle distribution plays a significant role in
determining land fertility levels, identifying erosion risks, and assessing soil suitability for construction
purposes. Various analytical methods have been employed to model soil characteristics, ranging from
conventional statistical approaches to machine learning techniques [2]. However, these methods often
struggle to effectively capture complex spatial variations due to the heterogeneity of soil characteristics across
different locations |3].

Logistic regression is a widely used method for analyzing the relationship between dependent and
independent variables in soil particle prediction [4|. However, this method assumes that the relationship
between variables remains spatially constant, which is a major limitation when applied to data with significant
geographical distribution patterns [5]. To address this limitation, the Geographically Weighted Ordinary
Logistic Regression (GWOLR) method has been developed to account for geographical variations in logistic
regression analysis [6].

Although GWOLR offers improvements in spatial analysis, its effectiveness highly depends on the
weighting mechanism used to determine spatial influence. Conventional approaches in GWOLR often utilize
kernel functions based on Euclidean distance, which do not always provide the best representation of spatial
relationships among analyzed samples. Therefore, using the K-Nearest Neighbors (KNN) algorithm as a
weighting mechanism in GWOLR presents a promising approach to improving model accuracy |7].

The KNN algorithm allows for selecting geographical neighbors based on more adaptive spatial
proximity compared to conventional kernel-based approaches [8]. By incorporating KNN as the weighting
method in GWOLR, the model becomes more responsive to changes in geographical distribution patterns,
yielding more accurate estimations of soil characteristics across various locations. Consequently, the
Geographically Weighted K-Nearest Neighbors Ordinary Logistic Regression (GW-KNN-OLR) approach is
proposed to enhance soil particle prediction performance by dynamically considering spatial influences.

The state-of-the-art in this research is the GWOLR method, which has been widely applied in various
fields, including spatial analysis, ecology, and geotechnical studies. Numerous studies have shown that
GWOLR enhances prediction accuracy by capturing finer spatial variations. However, the method still faces
limitations in its weighting mechanism. Typically, GWOLR utilizes kernel functions based on Euclidean
distance to assign spatial weights, which may not be sufficiently flexible to model complex spatial
relationships, especially in areas with uneven sample distributions or significant topographic variability [9].

Moreover, in previous studies, parameter selection in kernel functions has often been conducted
manually or through cross-validation-based optimization methods, which require high computational costs.
The K-Nearest Neighbors (KNN)-based approach is gaining attention as a more adaptive alternative for
determining spatial weights, as it can adjust the number of neighbors based on sample density in a given area
[10]. This method enables a more flexible approach to capturing dynamic spatial patterns than fixed-distance
kernel-based functions [11].

The novelty of this research lies in the proposed Geographically Weighted K-Nearest Neighbors
Ordinary Logistic Regression (GW-KNN-OLR) approach, which serves as a new method for predicting soil
particle size [6]. The primary novelty of this research lies in implementing the KNN algorithm as the
weighting mechanism in the GWOLR model. This approach differs from conventional methods as it does not
rely on fixed-distance kernel functions. Instead, it adaptively selects geographical neighbors based on the
most relevant samples in a given area [12]. This allows the model to respond more to complex spatial
variations, especially in areas with uneven sample density.

Additionally, this study focuses on improving prediction accuracy and enhancing the interpretability
of results through a more flexible spatial weighting approach. By combining geographically weighted logistic
regression and KNN-based neighbor selection, this approach is expected to improve soil particle distribution
modeling by incorporating more accurate spatial factors.

In the context of this research, GW-KNN-OLR is expected to overcome the limitations of conventional
methods in capturing the complexity of spatial soil particle distribution. This approach enhances prediction
accuracy and better interprets geographical influences on soil particle distribution [13]. Therefore, this study
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aims to evaluate the effectiveness of the GW-KNN-OLR method in soil particle prediction compared to
conventional approaches and to assess its potential applications in various related fields.

This research's findings are expected to significantly contribute to developing more adaptive spatial
analysis methods, particularly in soil characteristic modeling. Furthermore, this approach can support more
effective land resource management, particularly in sustainable agriculture, soil conservation, and erosion
risk mitigation. Thus, this study has the potential to provide broad benefits for spatial data-driven decision-
making across various sectors.

2. RESEARCH METHODS

2.1 Research Data

This study utilizes two main types of data: primary data and secondary data. Primary data is obtained
through direct field measurements of soil texture, while secondary data is derived from digital terrain
modeling analysis [14]. Combining these two data types enables the examination of the relationship between
local morphological parameters and soil texture characteristics [15].

This study uses field data for model development (training data) and model validation (testing data).
Specifically, 50 observation points are used as training data and 8 test variables. The data is derived from soil
texture analysis conducted in the Kalikonto Watershed (DAS Kalikonto), with the location map presented in
Figure 1 below.

Legend
*  Sampling Point
River
[ Lake
Elevation (masl)

Value
High - 2678

Low 614

Figure 1. Research Location Map

The variables used in this study consist of eight Local Morphologic Variables (LMV), which reflect
curvature variations in a given topography [16]. The LMV concept is based on previous studies, where these
variables represent different morphological characteristics that may influence the distribution and physical
properties of soil [17].

The variables in this study are categorized into two main groups: response variables and predictor
variables. The response variable in this study is soil texture, classified into three categories: sand, silt, and
clay, measured on an ordinal scale. Meanwhile, the eight other variables are predictor variables, measured on
a ratio scale. The complete list of variables used in this study is presented in Table 1 below:
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Table 1. Research Variables

Variable Measurement Scale Description
Soil Particle Size 1 (Sand), 2(Silt), 3 (clay) Ordinal Response
Horizontal Curvature Kh ratio Predictor
Vertical Curvature Kv ratio Predictor
Slope S ratio Predictor
Ring Curvature Kr ratio Predictor
Elevation Elev ratio Predictor
Northness Aspects An ratio Predictor
Eastness Aspects Ae ratio Predictor
Accumulation Curvature Ka ratio Predictor

2.2 Independence Testing

The Chi-Square test of independence is used to examine whether there is a statistically significant
association between two categorical variables. The null hypothesis (Hy) states that the two variables are
independent. The test statistic is calculated using the following formula [18]:

0 — E)?
=y 220 @®

where O represents the observed frequencies and E the expected frequencies, computed as:

. (row total)x(column total)
- grand total

(2)

The test is conducted at a 5% significance level with degrees of freedom ( — 1)(c — 1). The result is
evaluated by comparing the calculated value with the critical value or using the p-value for decision-making.

2.3 Ordinary Logistic Regression

Ordinal logistic regression is an extension of binary logistic regression, where ordinal logistic
regression is a statistical method used to analyze data in which the response variable is measured on an ordinal
scale consisting of three or more categories. Meanwhile, the predictor variables can be covariates (if measured
on an interval or ratio scale) or factors (if measured on a nominal or ordinal scale) [19].

The logit model is commonly used for ordinal logistic regression, specifically the cumulative logit
model [20]. In this logit model, the ordinal nature of the response variable (Y) is expressed through
cumulative probabilities. The cumulative logit model is obtained by comparing the cumulative probability of
the response variable being less than or equal to a given category G, given p predictor variables represented
as vector x, P(Y = g|x), with the probability of the response variable being greater than category g, P(Y >

glx) [21].

Ordinal logistic regression is a statistical method used to analyze a dependent variable with an ordinal
data scale that consists of three or more categories [22]. The independent (predictor) variables included in the
model can be categorical or continuous and must consist of at least two variables [23].

The ordinal logistic regression model, which follows the cumulative logit form, expresses the ordinal
nature of Y through cumulative probabilities [24]. Logistic regression is formulated by defining P(Y = 1|x)
as m(x), which is denoted as follows [25].

exp(ay +sz B
1— exp(ag +X; B)

mg(X;) = (3)

The logistic regression model is part of the Generalized Linear Models (GLM) framework. The model

commonly used for ordinal logistic regression is the cumulative logit model (Cumulative Logit Models) [26].

Let the response variable Y have G ordinal categories, and let i represent the observation index while x denotes
xi11"

. . . . Xi2 o .
the vector of predictor variables for the i-th observation, X; = l with i =1,2,3,..,n. Thus, the ordinal

| xip
logistic regression model can be expressed as follows [27]:



BAREKENG: J. Math. & App., vol. 19(4), pp. 2815- 2830, December, 2025. 2819

PY; < glxp)
1-P; < g|x

Logit[P(t; < glx)] = In 5| =+ x5 )
l
Let mg(x;) = [P(Y; = g|x;)] represent the probability that the response variable for the i-th

observation falls into category g given X;. Then, the ordinal logistic regression model can be formulated as
follows:

PYi<glx) =@ =1x)+PY; =2|x)+...+P(Y; = glxy))
=1y (Xg) + o (Xy) + ..+ Ty(X;)

2.4 Geographically Weighted Ordinary Logistic Regression

The Geographically Weighted Ordinal Logistic Regression (GWOLR) model is a combination of the
Geographically Weighted Regression (GWR) model and the ordinal logistic regression model. GWOLR is
used to model the relationship between an ordinal-scaled response variable and predictor variables, where
each regression coefficient depends on the location where the data is observed [20].

GWOLR can also be regarded as a localized form of ordinal logistic regression, where the location
effect is explicitly considered. The GWOLR technique incorporates geographical location into the model
through a weighting function. Weights are assigned to each observation |28]. Let the response variable consist
of G ordinal categories. Then, the GWOLR model for the i-th location can be expressed as follows:

P(Y; < glx;)
1-PY;<glx

logit[P(Y; < |x)] = ln[ )] = ag(u;,vy) + X] B(u;,vy) (5)
where g represents the category (1,2,...,G — 1), With ag4(u;, v;) as the intercept parameter and the
regression coefficient vector for the i — th location, while (u;, v;) denotes the coordinate point (longitude,

latitude) of the i-th location. The cumulative probability of the g-th response category can be expressed as
[6]:

exp (ag (u;, v;) + X B(u;, Vi))
1+ exp (ag(ui, v) + X7 By, vi))

If my(x;) = P(Y; < glx;) represents the probability that the response variable at the i-th location falls into
category g given X;, then [29] [30]:

oy 2 P (agQuov)) + XTBu,v))  exp(agr (uyvy) + XTB(uy,v) -
Ta\X;) = —
T 1 exp (e v) + XTBCuv)) 1+ exp (ag_ (i, v0) + X B(uy,vy) )

exp (ch (u;, v;) + X] B(uy, vi))
with : =0
1+ exp (°<g (ui, v;) + XiTﬁ(ui'vi))

PY; < glx) =

,9=12,..,6 -1 (6)

exp (@g-1(ui, v) + X[ B(us,v0))
1+exp (°<g—1 (us,v;) + X7 B(w;, Vi))

If the response variable in this study is assumed to be divided into three distinct categories (G = 3),
then the Geographically Weighted Ordinary Logistic Regression (GWOLR) model can be constructed to
account for spatial variations in the relationship between the dependent and independent variables. This
model allows each location to have its own set of regression coefficients, reflecting local influences on the
classification process. By incorporating geographically weighted parameters, the model enhances predictive
accuracy by adapting to spatial heterogeneity in the data. The formulation of the GWOLR model for the i-th
location is expressed as follows [30].

P(Y; < 1lx;

logit[P(Y; < 1lx)] = In [1 _(P(;Slf&,)] = ay (u;, vp) + X; B(uy, vp) (8)
P(Y; < 2|x;

logit[P(Y; < 2|x))] =1In [1 —(P(;Slzli-)] = ay(u;, v;) +XiTﬁ(ui,17i) 9
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Thus, the probability for each response category at the i-th location is given by:

exp (s (up v) + XT Blug,v))

ni(x;) = P(Y; = 1lx;) = P(Y; < 1lx;) = (10)
1+exp (al(uirvi) + X7 B(w, Vi))
(%) = P(Y; = 2|x;) = P(Y; < 2|x;) — P(Y; < 1|xy)
exp (az (upv) + X7 Bwy, Ui)) exp (al(ui' v) +X; Bu, Vi))
_ — (11)
1+ exp (az(ui, v) + X7 B, vi)) 1+ exp (al(ui, v;) + X7 B(ui,vi))
exp (sz (u,v) + X] B(u;, vi))
m3(x;) = P(Y; = 3|x;)) = P(Y; < 3|x;) —P(Y; < 2|x;) = 1 — (12)
1+ exp (ocz(ui, v) + X! B(u,, vi))

2.5 K-Nearest Neighbors Weighting

Weighting in the K-Nearest Neighbors (KNN) algorithm functions to assign different influences to
each neighbor based on its distance from the test point [31]. In the nearest neighbor-based approach, weights
are assigned according to spatial proximity, where closer data points to the test point receive higher weights.
KNN works by identifying a set number of nearest neighbors to predict the value or label of a given test point
[32]. However, not all neighbors have the same influence. Therefore, distance-based weighting is necessary
to: (1) improve prediction accuracy, especially when data is not evenly distributed; (2) give greater influence
to closer neighbors, ensuring results better reflect local patterns; and (3) reduce the effect of distant points,
which may be less relevant for classification or regression.

Distance-based weighting in KNN is typically implemented using a mathematical function that assigns
weights based on the proximity between the test point and its neighbors [33]. This method gives higher

weights to closer neighbors, using the formula: w; = ﬁ, where d;; represents the distance between the test
tj

point and its i-th neighbor. This weighting ensures that smaller distances correspond to greater influence in
prediction.

Distance weighting in KNN allows the model to assign greater importance to closer neighbors,
enhancing accuracy in classification or regression tasks [34]. The weighting method should be adapted to the
dataset characteristics and analytical objectives to achieve optimal results.

2.6 Classification Accuracy

Classification accuracy is a crucial measure in evaluating the performance of a classification model.
This accuracy is calculated by comparing the model's predicted results with the actual observed data. One
commonly used classification evaluation method is the confusion matrix, which represents the distribution
between the model's predictions and the actual values of the classified categories [35].

The confusion matrix provides information on the number of correctly classified observations and
those the model misclassified. The confusion matrix is presented in Table 2 below:

Table 2. Confusion Matrix

Observation Prediction
V1 Y2 V3
Y1 N1 CV) Ni3
V2 Na1 Ny, Na3
V3 N3 N3y N33

Thus, the classification accuracy percentage is calculated as follows:

e Niq + Ny + N33
Classification Accuracy = x 100%
Niq + Np1 T N3q + Ny + Npp+N3y + Nq3 + N3tz
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3. RESULTS AND DISCUSSION

3.1 Independence Testing

The first step in logistic regression is to conduct an independence test. This test is performed to
determine whether there is a significant relationship between the predictor variables and the response
variable. The hypothesis testing for the independence test is conducted using the Chi-square test, with the
results presented in Table 3 below:

Table 3. Independence Test

Variable Pearson Chi Square P-value Decision Description
Kh 56.980 0.0041 Reject Hy Dependent
Kv 45.876 0.0062 Reject Hyy Dependent

S 51.286 0.0051 Reject H, Dependent
Kr 42.872 0.0067 Reject H, Dependent
Elev 28.093 0.0362 Reject Hy Dependent
An 41.876 0.0071 Reject H, Dependent
Ae 31.076 0.0276 Reject Hyy Dependent
Ka 26.987 0.0392 Reject Hy Dependent

Based on the results presented in Table 3, we obtain the Pearson Chi-Square value and P-value for the
eight tested variables. All variables show a P-value < 0.05 (o = 5%), indicating that the null hypothesis (Hg)
is rejected. Consequently, it can be concluded that there is a significant relationship between the predictor
variables and the response variable, suggesting that these variables are dependent on the response variable.

Furthermore, the high Pearson Chi-Square values indicate that the dependency between the predictor
variables and the response variable has a significant impact. These results suggest that the tested variables
explain the variation in the response variable. Therefore, these variables can be used in further analytical
models, such as logistic regression or other predictive methods, to understand causal relationships better and
improve model accuracy in data modeling.

3.2 Ordinal Logistic Regression

Ordinal Logistic Regression Analysis was conducted to examine the factors influencing Particle-Size
Fraction, which is categorized into three groups: Sand, Silt, and Clay. This method was selected because the
dependent variable has more than two ordinal-scale categories, allowing for a more accurate modeling of the
relationship between the independent variables and Particle-Size Fraction categories.

In the Ordinal Logistic Regression model, the Estimate values (regression coefficients) indicate the
influence of each predictor variable on the probability of a sample belonging to a specific Particle-Size
Fraction category (Sand, Silt, or Clay). A positive coefficient in the model suggests that an increase in the
predictor variable raises the probability of a sample transitioning to a higher ordinal category (e.g., Sand to
Silt or Silt to Clay). Conversely, a negative coefficient indicates that an increase in the predictor variable
reduces the likelihood of the sample shifting to a higher category.

In addition, the model includes intercepts for category [Y = 1] (Sand) and [V = 2] (Clay), which
represent the threshold points between categories in ordinal logistic regression. These intercepts indicate the
cut-off points where the probability of category transition occurs. Significant predictor variables in the model
contribute to shifting the probability distribution of Particle-Size Fraction, whereas non-significant variables
have a weak or negligible effect on determining the final category.

The following Table 4 presents the estimated regression parameters for the Ordinal Logistic
Regression model, based on the regression coefficient values for each variable.

Table 4. Ordinal Logistic Regression Results

95% Confidence Interval

Variable Estimate Std. Error Wald Sig. Lower Bound Upper Bound
[Y=1] -3.923 1.219 10.362 0.001 -6.312 -1.535
[Y=2] -2.942 1.133 6.741 0.009 -5.163 -0.721

Kh 0.133 0.511 0.068 0.794 -0.868 1.135
Kv 0.709 0.415 2.919 0.048 -0.104 1.522

S 34.636 31.312 1.224 0.269 -26.733 96.006
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95% Confidence Interval

Variable Estimate Std. Error Wald Sig. Lower Bound Upper Bound
Kr -1.222 0.955 1.638 0.201 -3.093 0.649
Elev -1.524 2.365 0.415 0.520 -6.160 3.113
An 7.339 5.004 2.151 0.042 -2.469 17.146
Ae 68.010 60.973 1.244 0.265 -51.495 187.516
Ka -0.935 1.815 0.266 0.606 -4.494 2.623

Based on Table 4, the logit function model is constructed. This model estimates the probability of a
sample belonging to a specific category based on the values of the predictor variables included in the logit
equation. The displayed equation represents two cumulative logit models, which estimate the probability of
a sample falling into a category lower than or equal to Y = 1 (Sand) and Y = 2 (Silt). Each predictor variable
has a regression coefficient, indicating the direction and magnitude of its influence on the Particle-Size
Fraction categories. The logit function is formulated as follows:

Logit [p(Y < 1|x)] =-3.923 + 0.133 Kh + 0.709 Kv + 34.636 S — 1.222 Kr — 1.524 Elev + 7.339 An +
68.010 Ae -0.935 Ka

Logit [p(Y < 2|x)] =-2.942 + 0.133 Kh + 0.709 Kv + 34.636 S — 1.222 Kr — 1.524 Elev + 7.339 An +
68.010 Ae -0.935 Ka

The ordinal logistic regression results indicate that each predictor variable plays a distinct role in
determining the probability of a soil sample falling into a specific Particle-Size Fraction category (Sand, Silt,
or Clay). A positive coefficient suggests that as the value of the predictor variable increases, the likelihood
of the soil containing coarser particles or predominantly belonging to the Sand category increases.
Conversely, a negative coefficient indicates that as the predictor variable decreases, the probability of the
sample falling into finer particle categories, such as Clay, increases.

For example, the Kr (Ring Curvature) variable has a negative coefficient (-1.222), indicating that as
Kr (Ring Curvature) decreases at a given location, the probability of the soil containing a finer Particle-Size
Fraction, such as Clay, increases. This means that a one-unit decrease in Kr (Ring Curvature) increases the
likelihood of the soil being classified as Clay. This finding suggests a negative relationship between Kr (Ring
Curvature) and soil particle coarseness, where lower values lead to a finer soil fraction.

On the other hand, the An (Northness Aspects) variable has a positive coefficient (7.339), meaning that
as the An (Northness Aspects) value increases at a given location, the probability of the soil containing coarser
particles, such as Sand, also increases. In other words, an increase in An (Northness Aspects) corresponds to
a higher likelihood of the soil belonging to the Sand category rather than Silt or Clay. This suggests that An
(Northness Aspects) is a contributing factor to the dominance of coarse soil particles, where higher values
correspond to a larger or coarser soil fraction.

Additionally, the Kv (Vertical Curvature) variable (0.709) also has a significant positive influence on
Particle-Size Fraction, although to a lesser extent than An (Northness Aspects). This implies that an increase
in Kv (Vertical Curvature) tends to increase the probability of a soil sample being classified as Sand, though
its effect is not as strong as that of An (Northness Aspects). Conversely, the Ka (Accumulation Curvature)
variable (-0.935) shows a negative relationship with Particle-Size Fraction, indicating that as Ka
(Accumulation Curvature) decreases, the probability of the soil being classified as Clay increases.

3.3 Classification Accuracy of Ordinal Logistic Regression

Ordinal logistic regression is a statistical method used to model the relationship between predictor
variables and an ordinal response variable. In this study, the ordinal logistic regression model was applied to
classify the particle-size fraction in the DAS Kalikonto area, Batu City, in 2024. The model evaluation was
conducted by measuring classification accuracy to assess its performance in categorizing data accurately.

Classification accuracy was calculated by comparing the number of correct predictions to the total
sample, as presented in Table 5.
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Table 5. Accuracy of Logistic Regression Model Classification
Number of Predictions per

Category Category Accuracy Percentage
| 2 3
1 32 3 1 88.88%
0 5 3 62.50%
3 2 1 3 50%

Based on Table 5, the analysis results indicate that the ordinal logistic regression model exhibits
varying accuracy across different categories. Category 1 has the highest accuracy rate at 88.88%, followed
by Category 2 with 62.50%, and Category 3 with 50%. The overall classification accuracy is calculated as
follows:

Number of correct predictions 32+5+3
N 50

Based on the calculations, the overall classification accuracy reaches 80%, indicating that the model
employed demonstrates a relatively high level of accuracy in predicting the particle-size fraction categories.
This result suggests that the applied ordinal logistic regression model is reasonably effective in classifying
the data, with an accuracy rate exceeding the commonly used 50% threshold for classification models.
However, variations in accuracy across categories indicate that the model performs better in classifying
certain particle-size fractions.

Classification Accuracy = ( )x 100% = ( ) x 100 % = 80%

Therefore, although the ordinal logistic regression model demonstrates satisfactory performance,
further analysis is still required. This includes incorporating spatial influences and exploring potential
techniques to enhance accuracy, such as adjusting predictor variables or applying spatial weighting to
improve the balance of data distribution across categories.

3.4 Geographically Weighted K-Nearest Neighbors Ordinary Logistic Regression

Geographically Weighted K-Nearest Neighbors Ordinary Logistic Regression (GW-KNN OLR) is an
analytical method that combines logistic regression with spatial weighting using K-Nearest Neighbors
(KNN). This model incorporates geographical factors in determining the relationship between dependent and
independent variables, making it more effective in capturing local variations than conventional logistic
regression. By utilizing KNN, the model adjusts estimations based on the influence of the nearest neighbors,
enhancing its ability to account for spatial heterogeneity in the data.

3.4.1 Formation of K-Nearest Neighbors Weighting

K-Nearest Neighbors (KNN) weighting in the context of geographical modeling aims to capture spatial
relationships between data points based on their proximity. In this model, each point is connected to its two
nearest neighbors (K = 2), represented by red lines in the visualization. The value of K = 2 was determined
through trial evaluations of several K values and was selected because it provided the best balance between
model complexity and prediction accuracy, given the distribution of the analyzed data. This approach enables
location-based analysis by incorporating spatial influence into logistic regression estimation. By considering
the interconnection between points in geographic space, the model can capture local patterns that non-spatial
approaches might overlook.
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Figure 2. KNN weighting results
source:R-Studio application

The visualization above shows the spatial weighting relationships between points based on the K-
Nearest Neighbors (K=2) weighting algorithm. Black dots represent data locations within a coordinate system
(Longitude, Latitude), while red lines connect each point to its two nearest neighbors. The resulting network
pattern depicts how spatial relationships are estimated within the Geographically Weighted KNN Ordinary
Logistic Regression (GW-KNN OLR) model. The closer the connections between points, the greater the
spatial influence in logistic regression weighting. By incorporating this approach, the model can more
accurately capture local variations, making it particularly useful in fields such as epidemiological analysis,
regional economics, and geographic risk mapping. Each of the 50 points is connected to its two nearest
neighbors, as represented by the red lines. This reflects the weighting structure embedded within a 50%50
matrix, where each row and column correspond to a specific location point. In this matrix, non-zero elements
indicate geographical proximity relationships based on the KNN algorithm, highlighting the spatial
dependencies considered in the regression model.

3.4.2 GWKNNOLR Results

The geographically weighted k-nearest neighbors ordinary logistic regression (GW-KNN OLR) model
integrates k-nearest neighbors (KNN) with ordinary logistic regression (OLR), where KNN serves as a
weighting mechanism to account for the influence of geographic location on the probability estimation of
particle-size fraction classification. This approach allows the model to capture spatial variations and provide
more accurate estimations of soil categories based on specific locations.

The resulting logit equation expresses the likelihood that a given location belongs to each particle-size
fraction category: sand, silt, and clay. Probability values are computed based on a combination of predictor
variables, including Kh, Kv, S, Kr, Elev, An, Ae, and Ka, with each coefficient indicating the magnitude and
direction of influence on the predicted category.

1. The equation P;(x;) represents the probability that a given location is classified into the sand
category.

2. The equation P,(x;) indicates the likelihood that the location falls into the silt category, which is
calculated by considering the cumulative probability between sand and silt.

3. The equation P;(x;) represents the probability of the location being classified as clay, which
complements the probabilities of the other categories, formulated as (1 — P; — P,)..

In this model, coefficients with positive values indicate that an increase in the corresponding variable
enhances the probability of classification into a higher ordinal category, from sand to silt or from silt to clay.
Conversely, negative coefficients suggest that an increase in the variable decreases the likelihood of
classification into a higher category.
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The parameter estimation in the GW-KNN OLR model results in a unique local model for each
location. Thus, each of the 50 locations has a distinct model tailored to its specific geographical
characteristics. The generated model enables probability predictions for each particle-size fraction category.
For instance, the model derived for the first location, positioned at coordinates (u;, v;), can be represented as
follows:

P (xy) = exp(5,6551 + 3,765 Kh + 1,875 Kv — 6,875S — 6.8642 Kr — 2,543 Elev + 0,9876 An — 4,987 Ae — 0,7623 Ka )
1) = 1+ exp(5,6551 + 3,765 Kh + 1,875 Kv — 6,875S — 6.8642 Kr — 2,543 Elev + 0,9876 An — 4,987 Ae — 0,7623 Ka)

exp(—0,897 + 3,765 Kh + 1,875 Kv—6,8755 — 6.8642 Kr — 2,543 Elev + 0,9876 An — 4,987 Ae — 0,7623 Ka )
1+ exp(—0,897 + 3,765 Kh + 1,875 Kv — 6,875 S — 6.8642 Kr — 2,543 Elev + 0,9876 An — 4,987 Ae — 0,7623 Ka )
exp(5,6551 + 3,765 Kh + 1,875 Kv—6,875S — 6.8642 Kr — 2,543 Elev + 0,9876 An — 4,987 Ae —0,7623 Ka )

1+ exp(5,6551 + 3,765 Kh + 1,875 Kv — 6,875S — 6.8642 Kr — 2,543 Elev + 0,9876 An — 4,987 Ae — 0,7623 Ka)

exp(—0,897 + 3,765 Kh + 1,875 Kv — 6,875 S — 6.8642 Kr — 2,543 Elev + 0,9876 An — 4,987 Ae — 0,7623 Ka )
1+ exp(—0,897 + 3,765 Kh + 1,875 Kv — 6,875 S — 6.8642 Kr — 2,543 Elev + 0,9876 An — 4,987 Ae — 0,7623 Ka )

Py(xy) =

P3(x))=1-

The probability of a given location being classified into a specific particle-size fraction category is
influenced by the values of independent variables within the model. For instance, the parameter estimate
has a positive value, indicating that as the value of the variable Kh (horizontal curvature) increases at a
particular location, the likelihood of the soil in that location containing a higher proportion of sand also
increases. This suggests that an increase in Kh contributes to a higher presence of coarser soil particles.

Conversely, the parameter estimate of s, which has a negative value, implies that as the value of the
variable Kr (ring curvature) decreases, the probability of the soil containing a higher proportion of silt and
clay increases. In other words, a reduction in Kr indicates a tendency for the soil to have finer particle
fractions, shifting towards the silt and clay categories.

Additionally, the variable Elev (elevation), with a negative coefficient, also plays a role in determining
soil fractions. Lower elevation is associated with a higher probability of increased silt and clay content,
whereas higher elevation tends to increase the likelihood of sand dominance. The same applies to the Ka
(accumulation curvature) variable, where a negative coefficient suggests that lower soil aeration increases
the likelihood of finer soil particle content.

Thus, the GW-KNN OLR model demonstrates how environmental and topographical characteristics
influence the distribution of particle-size fractions at a given location. This model can be used as a predictive
tool to understand how spatial factors affect soil particle composition locally.

Based on the GW-KNN OLR model results, each location has a predicted probability of belonging to
each particle-size fraction category (sand, silt, and clay). These probabilities are calculated based on the
influence of predictor variables at each location while accounting for spatial factors through K-nearest
neighbors (KNN) weighting. The following presents the predicted probability results:

Table 6. Results of Predicted Opportunities

Location 1 (X;) T (X;) 3 (X;)
1 0,7699 0,1294 0,1008
2 0,8536 0,086 0,0604
3 0,8127 0,1078 0,0795
4 0,9444 0,034 0,0216
5 0,3872 0,2404 0,3724
6 0,6062 0,1979 0,1958
7 0,6174 0,1941 0,1885
8 0,9985 0,001 0,0006
9 0,8868 0,0675 0,0457
10 0,2229 0,2105 0,5666
25 0,8588 0,0831 0,0581
30 0,5251 0,2217 0,2532

35 0,9414 0,0358 0,0228
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Location Ty (X;) 75 (X;) 3(X;)
40 0,8323 0,0975 0,0702
45 0,8257 0,1009 0,0733
50 0,9929 0,0044 0,0027

The predicted probability results for particle-size fraction categories (sand, silt, and clay) obtained from
the GW-KNN OLR model are subsequently visualized in the form of maps. These maps are designed to
provide a spatial representation of the probability distribution for each category at the analyzed locations.
These maps facilitate a more intuitive and interpretable understanding of soil distribution patterns using
interpolation methods or symbolization based on the computed probabilities. The following map visualization
presents the predicted probability results derived from the GW-KNN OLR model, as illustrated in Figure 3:
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Figure 3. Probability Prediction Map for 3 categories
source: ArcGIS 10.8 application

Figure 3 presents the predicted probability maps for the three particle-size fraction categories: sand,
silt, and clay, based on the estimation results of the GW-KNN OLR model. Each map illustrates the spatial
distribution of the probability for each category across the study area, with color variations representing the
likelihood of dominance for each soil fraction.

1. The first map (left) represents the probability of the sand category. Green areas indicate regions with
a higher probability of sand dominance, while red and yellow areas correspond to locations with
lower probabilities for this category.

2. The second map (center) depicts the probability of the silt category. The distribution of this category
is scattered across different locations, with some areas displaying moderate to high probabilities
(indicated by green), while others exhibit lower probabilities (marked by red and yellow).

3. The third map (right) shows the probability of the clay category. Green areas represent regions with
a higher probability of clay dominance, whereas yellow and red areas indicate lower probabilities for
this category.

Based on these visualizations, it can be concluded that the distribution patterns of particle-size fractions
vary significantly across locations. Certain areas tend to be dominated by sand, as indicated by the extensive
green regions in the first map. In contrast, others exhibit a higher probability of clay dominance, as seen in
the green areas of the third map. These patterns suggest that different spatial and environmental factors
influence soil characteristics in the study area.
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3.5 Accuracy of GWKNNOLR Classification

Classification accuracy is a key parameter in evaluating the performance of the geographically
weighted k-nearest neighbors ordinary logistic regression (GW-KNN OLR) model in classifying particle-size
fractions (sand, silt, and clay). This model aims to predict soil particle categories based on environmental
variables while incorporating spatial factors through KNN weighting.

The predicted classification results were compared with actual observational data to assess the model's
performance. Classification accuracy was calculated as the proportion of correctly predicted classifications
relative to the total tested data. This evaluation is presented as a confusion matrix, which illustrates the
distribution of the model's predictions against the actual soil category values.

A higher classification accuracy percentage indicates better model performance in accurately
identifying particle-size fraction categories. Thus, this analysis not only aids in understanding the model’s
reliability but also provides insights into the extent to which the GW-KNN OLR model can be effectively
applied. The probability estimates for each soil particle-size fraction category are presented in Table 7, along
with the classification accuracy as follows:

Table 7. Accuracy of GWKNNOLR Classification
Number of Predictions

Observation per Category Accuracy Percentage
1 2 3
1 34 1 1 94.44%
2 1 6 1 75 %
3 0 1 4 80%

The overall classification accuracy of the predictions is obtained from:

Number of correct predictions
N

classification accuracy = ( x 100 % = 88%

) x100% = (*22)

These results indicate that the GW-KNN OLR model achieves an accuracy of 88%, demonstrating its
ability to classify most samples correctly. This level of accuracy suggests that the applied method effectively
captures the distribution patterns of particle-size fractions.

3.6 Best Model Selection

The selection of the best classification model is a crucial step in evaluating the predictive performance
of various statistical approaches. This study compares the accuracy of Ordinary Logistic Regression (OLR)
and Geographically Weighted K-Nearest Neighbors Ordinary Logistic Regression (GW-KNN OLR) in
classifying Particle-Size Fraction. The accuracy of each model is assessed based on its ability to correctly
classify soil categories while considering spatial influences.

The classification accuracy results for both models are presented in Table 8 below.

Table 8. Model Comparison

Model Accuracy
OLR 80 %
GWKNNOLR 88 %

Based on Table 8, the results indicate that the Ordinary Logistic Regression model achieves an
accuracy of 80%, whereas the GW-KNN OLR model demonstrates a higher accuracy of 88%. This increase
in accuracy suggests that incorporating spatial weighting and local geographical influences in GW-KNN OLR
enhances the model’s ability to capture variations in soil characteristics.

These findings highlight the advantage of spatial-based models in classification tasks, particularly in
geographic and environmental studies, where location-based variations significantly impact prediction
accuracy. The GW-KNN OLR model has proven more reliable, demonstrating better classification
performance than standard logistic regression. This study supports the application of spatial analysis
techniques in predictive modeling, leading to more accurate and contextually relevant results.
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3.7 Research Implications and Applications

The findings of this study have significant implications across various fields, particularly in soil
management and agriculture. Land-use strategies can be optimized to enhance agricultural productivity while
mitigating soil degradation risks by understanding the relationship between environmental variables and
particle-size fractions. Areas dominated by clay and silt are more suitable for water conservation, soil
moisture management, and crops with high water requirements. In contrast, regions with a higher proportion
of sand are better suited for deep-rooted plants and well-drained agricultural lands. This understanding
facilitates more precise and sustainable agricultural planning, supporting agroecological practices and long-
term food security.

Beyond agriculture, this study is crucial in land-use planning and environmental policy. More accurate
soil texture distribution data enable the identification of erosion-prone areas, sedimentation zones, and soil
degradation risks, which are essential for designing effective soil and water conservation systems. Regions
with high clay content require careful consideration in drainage system design and infrastructure development
to mitigate risks associated with waterlogging and soil instability. By leveraging more precise spatial data,
land-use policies can be adapted to enhance ecosystem resilience and promote sustainable natural resource
management.

From a methodological perspective, this study demonstrates that the GW-KNN OLR approach
outperforms conventional logistic regression in capturing spatial heterogeneity in soil texture distribution.
The model improves classification accuracy to 88%, compared to standard regression models that do not
adequately account for spatial factors. By applying this method, geotechnics, hydrology, and ecological
mapping research can achieve a more accurate understanding of soil distribution and its impact on
surrounding ecosystems. Furthermore, this model can be further developed to support more complex spatial
analyses in soil mapping and environmental landscape assessments.

Overall, this research contributes significantly to the spatial understanding of soil distribution, which
serves as a foundation for decision-making in soil resource management, environmental risk mitigation, and
climate adaptation strategies. With a more accurate predictive model, land-use and soil conservation policies
can be better directed, supporting more sustainable and data-driven land management practices. Additionally,
the findings of this study can be utilized in disaster-resilient infrastructure planning, further strengthening
environmental resilience in the long term.

4. CONCLUSION

Based on the analysis results, the GW-KNN-OLR method demonstrates an 88% classification
accuracy, higher than the 80% accuracy achieved by the Ordinary Logistic Regression (OLR) method. This
indicates that the spatial weighting approach using KNN can capture variations in soil distribution more
accurately than the conventional kernel-based approach.

The key advantage of this method lies in its ability to adjust spatial weighting based on the geographic
distribution of samples, resulting in more precise estimations of soil texture categories (sand, silt, and clay).
By incorporating location-based influences in the analysis, this method provides a better understanding of
soil distribution patterns and the factors affecting them.

The findings of this study have significant implications across various fields, including land resource
management, erosion risk mitigation, and precision agriculture applications. The GW-KNN-OLR model can
aid in making more accurate spatial data-driven decisions, particularly in soil conservation planning and
ecosystem management.

As a further step, this research can be expanded by exploring more efficient optimization mechanisms
for spatial weighting and applying this method to regions with more diverse soil characteristics. Thus, the
proposed method has the potential to become a more effective approach for spatial analysis based on
geographic data.
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