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Article Info ABSTRACT 

Article History: 
Diabetes mellitus is a chronic disease with a rising global prevalence, including in 

Indonesia. Early detection and accurate modeling are crucial for effective prevention and 

management. Binary Logistic Regression (BLR) is commonly used for binary outcome 

modeling; however, in practice, the relationship between binary outcomes and continuous 

predictors is often nonlinear, making BLR less suitable. To address these limitations, 

alternative methods such as Binary Probit Regression (BPR) and Flexible 

Semiparametric Nonlinear Binary Logistic Regression (FSNBLR) have been developed. 

This study aims to compare the performance of BLR, BPR, and FSNBLR models in 

classifying diabetes mellitus cases at Hajj General Hospital Surabaya. All three models 

were estimated using the Maximum Likelihood Estimation (MLE) method. Since the 

resulting estimators do not have closed-form solutions, numerical iteration using the 

Newton-Raphson method was applied. Model performance was assessed using Area 

Under the Curve (AUC), accuracy, sensitivity, and specificity. The FSNBLR model 

outperformed both the BLR and BPR models. It achieved the highest AUC value of 

81.86%, while BLR (66.30%) and BPR (66.30%). That is indicated FSNBLR superior 

discriminative ability. In addition, the FSNBLR model recorded higher accuracy, 

sensitivity, and specificity compared to the other two models. The FSNBLR model 

demonstrated better predictive performance in identifying diabetes mellitus cases, 

especially in scenarios involving nonlinear relationships between predictors and the 

outcome variable. These findings suggest that flexible semiparametric approaches offer 

greater effectiveness in medical classification tasks, particularly for chronic conditions 

like diabetes mellitus. 
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1. INTRODUCTION 

Binary Logistic Regression (BLR) is a statistical method used to model the relationship between a 

binary dependent variable and one or more independent variables. The model assumes a linear relationship 

between the logit (log-odds) of the probability of the event and the predictors, but is often insufficient to 

handle data that have probit links because the underlying distribution and link function differ, leading to 

potential bias and poor fit when the logit link is incorrectly imposed. To overcome these limitations, Binary 

Probit Regression (BPR) offers an approach that accounts. However, in some cases, the relationship between 

the dependent and independent variables may be more complex and require a nonparametric approach. One 

of the evolving methods using logit function is Nonparametric Binary Logistic Regression (NBLR) [1].  

NBLR can be used to determine the relationship between the response and predictor variables when 

the function of the regression curve is unknown. The NBLR curve is assumed to be smooth in the sense that 

it is contained in a certain function space. The data were expected to find their own form of estimation, 

without being influenced by the subjective factors of the researcher. Thus, the NBLR approach is highly 

flexible and it can be implemented based on observed data using smoothing techniques. There are many 

smoothing techniques, including the Spline estimator [2], Fourier Series estimator [3], Wavelet estimator [4], 

Kernel estimator [5], Local Polynomial estimator [6], and Multivariate Adaptive Regression Splines (MARS) 

estimator [7], [8]. 

Spline estimators are used for data with changing patterns that depend on knot points [2] and are 

especially suitable when the underlying relationship is smooth but may have varying curvature across 

different regions. A local polynomial estimator that has been used to reduce the bias properties and asymptotic 

variance of the local polynomial estimator in nonparametric regression with more than one response variable 

[9], making it appropriate when modeling local trends in complex, multidimensional data. Wavelet estimator 

that has been used to to model observations of signals contaminated with Gaussian additive noise, particularly 

when the data contain localized features or abrupt changes that need to be captured at multiple scales [10]. 

Kernel estimators are preferred when smoothing noisy data where a simple, nonparametric local averaging is 

sufficient [5]. The Fourier Series estimator is used for patterned data that tend to repeat [3]. Among these 

estimators, the Fourier Series method was used to. This method is very specialized and well used in data cases 

in which the response and predictor variables exhibit a repeating pattern following a certain trend [11]. The 

Fourier Series estimator best optimizes the accuracy and computational cost of additive nonparametric 

regression models [12]. Not only predictors with one predictor variable (univariable) but also with many 

predictor variables (multivariable) [3], [10], [13], [14]. 

Fourier Series was first introduced by [3], and then [10]  studied the Fourier series estimator in 

nonparametric regression. Furthermore, [15] applied the Fourier Series in semiparametric regression. [16] 

developed a birresponse semiparametric regression using Fourier Series, until it became a Fourier Series 

nonparametric regression mixture estimator by [17], [18], [19], and a Fourier Series semiparametric mixture 

estimator by [20]. However, previous studies that developed using this method only used quantitative data, 

such as [21], [22], [23], [24]. However, in reality, there is often a relationship between response and predictor, 

where the response is categorical data. 

Some researchers have developed nonparametric regression estimators for categorical data, such as 

using Local Likelihood Logit Estimation [25], using the Decision Tree approach [26], and using the B-Spline 

function [27] and recently, researchers have developed estimators for nonparametric regression using 

categorical data, such as Fourier Series Nonparametric Logistic Regression (FSNBLR) [28]. In addition, 

Fourier Series has been explored as a smoothing technique in nonparametric regression due to its ability to 

represent complex, periodic, or oscillating relationships using a combination of sine and cosine functions. 

Although originally developed for continuous signals, the Fourier basis can be adapted to model nonlinear 

patterns in categorical response data by transforming predictor variables and capturing latent cyclic or wave-

like structures in the data. This approach is particularly useful when the relationship between predictors and 

the categorical response is non-linear and non-monotonic, which is often the case in medical and behavioral 

data. 

Previous studies have only compared conventional methods such as Binary Logistic Regression (BLR) 

and Binary Probit Regression (BPR), without including more recent methods like FSNBLR that have been 

developed to address nonlinear patterns in categorical data. Conventional methods like BLR and BPR assume 

a linear relationship between predictors and the transformed response variable, which makes them less 

capable of capturing complex or repeating patterns that often occur in real-world data, such as in medical 
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conditions like diabetes mellitus. However, no previous study has compared BLR, BPR, and FSNBLR 

estimators. Therefore, this study aims to compare BLR, BPR, and FSNBLR methods in the case of diabetes 

mellitus at Hajj General Hospital Surabaya. 

However, no previous study has compared BLR, BPR and FSNBLR estimator. Therefore, this study 

aims to compare BLR, BPR, and FSNBLR methods in the case of the diabetes mellitus in hajj general hospital 

Surabaya, to identify which method performs best in handling categorical response data exhibiting 

nonparametric patterns.  

2. RESEARCH METHODS 

In obtaining a BPR, BLR, and FSNBLR estimators for categorical data, several steps are required: 

building a BPR, BLR and FSNBLR model, then creating a Log Likelihood function and deriving it for each 

model parameter. Finally, numerical iterations were performed using the Newton–Raphson iteration. 

2.1 Probability Distribution 

Given 𝑥1,  𝑥2,  …  ,  𝑥𝑝  are as many as 𝑝 predictor variables. Furthermore, the variable 𝑌 is a random 

Bernoulli distribution variable [1] with a probability distribution of 

𝑌 ~ 𝐵(1, π(𝑥)), π(𝑥) = π(𝑥1,  𝑥2,  …  ,  𝑥𝑝) 

where the success probability 

𝑃(𝑌𝑖 =  1) = π(𝑥𝑖) 

and the unsuccessful probability  

𝑃(𝑌𝑖 =  0) = 1 − π(𝑥𝑖) 

π(𝑥𝑖) is defined in the probability distribution function 𝑃(𝑌𝑖  =  𝑦𝑖), where 𝑖 is the number of observations 

(𝑖 = 1,2, . . . , 𝑛) as follows. 

𝑃(𝑌𝑖  =  𝑦𝑖) = π(𝑥𝑖)
𝑦𝑖(1 − π(𝑥𝑖))

1−𝑦𝑖
= (

π(𝑥𝑖)

1 − π(𝑥𝑖)
)

𝑦𝑖

(1 − π(𝑥𝑖)) (1) 

2.2 BLR Estimator 

2.2.1 Logit Function (Link Function) 

Eq. (1) can be expressed as a natural logarithmic function 

ln 𝑃(𝑌𝑖  =  𝑦𝑖) =  𝑦𝑖  ln (
𝜋(𝑥𝑖)

1 − 𝜋(𝑥𝑖)
)

 

+ ln(1 − 𝜋(𝑥𝑖)) . (2) 

When made in exponential form, Eq. (2) forms an exponential family distribution function as follows. 

exp(ln𝑃(𝑌𝑖  =  𝑦𝑖))  = exp(𝑦𝑖  ln (
π(𝑥𝑖)

1 − π(𝑥𝑖)
)

 

+ ln(1 − π(𝑥𝑖))) , (3) 

where Eq. (3) the exponential family distribution function is defined as follows. 

𝑓(𝑦𝑖 , 𝜃) = exp(
𝑦𝑖  𝜃 − 𝑏(𝜃) 

𝑎(∅)
+ 𝑐(𝜃, ∅)) . (4) 

Therefore, its probability distribution function belongs to the exponential family of distribution functions. 

𝑃(𝑌𝑖  =  𝑦𝑖) = exp(
𝑦𝑖  ln (

𝜋(𝑥𝑖)
1 − 𝜋(𝑥𝑖)

)
 

1
+ ln(1 − 𝜋(𝑥𝑖))) , (5) 

where 
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𝜃       = ln (
𝜋(𝒙𝒊)

1−𝜋(𝒙𝒊)
)    𝑎(∅)     = 1 

𝑏(𝜃) = ln(1 − 𝜋(𝒙𝒊))    𝑐(𝜃, ∅) = 0. 

The variable 𝜃 in Eq. (5) is a logit function, the logit function for the regression obtained is 

𝜃 = ln (
𝜋(𝒙𝒊)

1 − 𝜋(𝒙𝒊)
) . (6) 

The logit function (link function) simplifies a long regression model and facilitates parameter 

estimation. To achieve this goal, logit transformation is performed. 

2.2.2 Logit Transformation Model 

The logit transformation model is defined as follows. 

ln (
𝜋(𝒙𝒊)

1 − 𝜋(𝒙𝒊)
) = 𝑓(𝑥1𝑖,  …  ,  𝑥𝑝𝑖), (7) 

where 𝑓(𝑥1𝑖,  …  ,  𝑥𝑝𝑖) in Eq. (7) as follows. 

ln (
π(𝒙𝒊)

1 − π(𝒙𝒊)
) = ∑(𝛽0 + 𝛽𝑗𝑥𝑗𝑖)

𝑝

𝑗=1

;  𝑖 = 1,2, …𝑛. (8) 

By using Eq. (8), BLR model is obtained as follows. 

𝜋(𝒙𝒊) =  
exp∑ (𝛽0 + 𝛽𝑗𝑥𝑗𝑖)

𝑝
𝑗=1

1 + exp∑ (𝛽0 + 𝛽𝑗𝑥𝑗𝑖)
𝑝
𝑗=1

 ;  𝑖 = 1,2, … , 𝑛, (9) 

where 𝛽0 and 𝛽𝑗 , 𝑗 = 1,2,… , 𝑝 are the model parameters of the logit function. 

2.2.3 Likelihood Function 𝒍(𝜷) 

The form of the likelihood function 𝑙(𝛽) 

where 

𝛽 = (𝛽0 𝛽1 ⋯ 𝛽𝑝), 

is obtained using the Maximum Likelihood Estimation (MLE) method. 

𝑙(𝛽) = ∏𝑃(𝑌𝑖 =  𝑦𝑖)

𝑛

𝑖=1

= 𝜋(𝑥𝑖)
∑ 𝑦𝑛

𝑖=1 𝑖(1 − 𝜋(𝑥𝑖))
𝑛−∑ 𝑦𝑛

𝑖=1 𝑖 . (10) 

Parameter estimation in logistic regression can be performed using the MLE method by maximizing the first 

derivative of the log likelihood function. 

2.2.4 Log-Likelihood Function 𝑳(𝜷) 

The likelihood Eq. (10) can be easily maximized as follows ln 𝑙(𝛽). 

𝐿(𝛽) = ln[𝑙(𝛽)] = ∑ 𝑦𝑖 ln[𝜋(𝑥𝑖)]
𝑛

𝑖=1
+ ∑ (1 − 𝑦𝑖) ln[1 − 𝜋(𝑥𝑖)]

𝑛

𝑖=1
 

= ∑ {𝑦𝑖 (𝑓(𝑥1𝑖,  …  ,  𝑥𝑝𝑖))− ln[1 + exp( 𝑓(𝑥1𝑖,  …  ,  𝑥𝑝𝑖))]}
𝑛

𝑖=1
. (11) 

2.2.5 Newton-Raphson Iteration 

𝛽(𝑡+1) =  𝛽(𝑡) −  (𝐻(𝛽)(𝑡))
−1

𝑔(𝛽)(𝑡), (12) 

where 𝛽(𝑡) is the 𝛽 of the 𝑡-th iteration, 𝑡 = 1,2, . . ., is convergent. 

𝛽(𝑡) = (𝛽1
(𝑡) 𝛽2

(𝑡)
⋯ 𝛽𝑝

(𝑡)). 
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𝒈(𝜷) is the gradient vector of 𝛽 

𝒈(𝜷) =  (
𝝏𝑳(𝜷)

𝝏𝜷𝟏
,
𝝏𝑳(𝜷)

𝝏𝜷𝟐
, ⋯ ,

𝝏𝑳(𝜷)

𝝏𝜷𝒑
)

𝑻

, (13) 

and 𝑯(𝜷) is the Hessian matrix of 𝛽 in Eq. (12), with the following equation. 

𝑯(𝜷) =

[
 
 
 
 
 
 
 
 
𝝏𝟐𝑳(𝜷)

𝝏𝜷𝟏
𝟐

𝝏𝟐𝑳(𝜷)

𝝏𝜷𝟏𝝏𝜷𝟐

𝝏𝟐𝑳(𝜷)

𝝏𝜷𝟐𝝏𝜷𝟏

𝝏𝟐𝑳(𝜷)

𝝏𝜷𝟐
𝟐

⋯
𝝏𝟐𝑳(𝜷)

𝝏𝜷𝟏𝝏𝜷𝒑

⋯
𝝏𝟐𝑳(𝜷)

𝝏𝜷𝟐𝝏𝜷𝒑

⋮ ⋮
𝝏𝟐𝑳(𝜷)

𝝏𝜷𝒑𝝏𝜷𝟏

𝝏𝟐𝑳(𝜷)

𝝏𝜷𝒑𝝏𝜷𝟐

⋱ ⋮

⋯
𝝏𝟐𝑳(𝜷)

𝝏𝜷𝒑
𝟐

]
 
 
 
 
 
 
 
 

. (14) 

2.2.6 Estimator 𝜷̂ 

From the Newton-Raphson iteration equation, 𝛽̂ will be obtained when 

|𝛽(𝑡+1) − 𝛽(𝑡)| < 𝜀,  𝜀 = 0.000001. (15) 

Thus, the estimator 𝛽̂ is given by 

𝛽̂ = (𝛽̂1 𝛽̂2 ⋯ 𝛽̂𝑝). 

Based on the result of the estimator 𝛽̂, BLR model Eq. (16) can be written: 

𝜋̂(𝒙𝒊) =  
exp(𝛽̂0 + 𝛽̂1𝑥1𝑖 + 𝛽̂2𝑥2𝑖 + ⋯+ 𝛽̂𝑝𝑥𝑝𝑖)

1 + exp(𝛽̂0 + 𝛽̂1𝑥1𝑖 + 𝛽̂2𝑥2𝑖 + ⋯+ 𝛽̂𝑝𝑥𝑝𝑖)
, (16) 

where, 𝛽̂0, 𝛽̂1, 𝛽̂2, … , 𝛽̂𝑝  are the estimator model of the logit function and 𝑝 is the number of predictor 

variables. 

2.3 BPR Estimator 

2.3.1 Probit Function 

Eq. (1) can be expressed as a probit function (Φ) 

Φ(𝑦) =
1

√2𝜋𝜎2
exp [−

1

2𝜎2
(𝑦 − 𝜇)2] . (17) 

2.3.2 Probit Transformation Model 

The probit transformation model is defined as follows. 

Φ−1(𝑥𝑖) = 𝑥𝑖
𝑇𝛾, 𝑖 =  1, 2, … , 𝑛; (18) 

𝑧 = Φ−1(π(𝑥𝑖)) = 𝑥𝑖
𝑇𝛾; (19) 

π(𝑥𝑖) = Φ(𝑥𝑖
𝑇𝛾); (20) 

𝑧 = Φ−1(π(𝑥𝑖)) = 𝛽0 + 𝛽1𝑥1 + ⋯+ 𝛽𝑝𝑥𝑝. (21) 

2.3.3 Likelihood Function 𝒍(𝜸) 

The form of the likelihood function 𝑙(𝛾) 

where 

𝛾 = (𝛾0 𝛾1 ⋯ 𝛾𝑝), (22) 

is obtained using the Maximum Likelihood Estimation (MLE) method. 
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𝑙(𝛾) = ∏P

𝑛

𝑖=1

(𝑦𝑖 = 1|𝑥𝑖)
𝑦𝑖[1 − 𝑃(𝑦𝑖 = 1|𝑥𝑖)]

1−𝑦𝑖 , (23) 

𝑙(𝛾) = ∏Φ

𝑛

𝑖=1

(𝑥𝑖
𝑇𝛾)

𝑦𝑖
[1 − Φ(𝑥𝑖

𝑇𝛾)]
1−𝑦𝑖

. (24) 

2.3.4 Log-Likelihood Function 𝑳(𝜸) 

The likelihood function Eq. (24) can be easily maximized as follows ln 𝑙(𝛾). 

𝐿(𝛾) = ln 𝑙(𝛾) = ∑[𝑦𝑖  ln(Φ) + (1 − 𝑦𝑖)ln(1 − Φ)]

𝑛

𝑖=1

. (25) 

2.3.5 Newton-Raphson Iteration 

𝛾(𝑡+1) =  𝛾(𝑡) −  (𝐻(𝛾)(𝑡))
−1

𝑔(𝛾)(𝑡), (26) 

where 𝛾(𝑡) is the 𝛾 of the 𝑡-th iteration, 𝑡 = 1,2, . . ., is convergent. 

𝛾(𝑡) = (𝛾1
(𝑡) 𝛾2

(𝑡) ⋯ 𝛾𝑝
(𝑡)). 

𝒈(𝜸) is the gradient vector of 𝛾 

𝒈(𝜸) =  (
𝝏𝑳(𝜸)

𝝏𝜷𝟏
,
𝝏𝑳(𝜸)

𝝏𝜷𝟐
, ⋯ ,

𝝏𝑳(𝜸)

𝝏𝜷𝒑
)

𝑻

, (27) 

and 𝑯(𝜸) is the Hessian matrix of 𝛾 in Eq. (28), with the following equation. 

𝑯(𝜸) =

[
 
 
 
 
 
 
 
 𝝏

𝟐𝑳(𝜸)

𝝏𝜸𝟏
𝟐

𝝏𝟐𝑳(𝜸)

𝝏𝜸𝟏𝝏𝜸𝟐

𝝏𝟐𝑳(𝜸)

𝝏𝜸𝟐𝝏𝜸𝟏

𝝏𝟐𝑳(𝜸)

𝝏𝜸𝟐
𝟐

⋯
𝝏𝟐𝑳(𝜸)

𝝏𝜸𝟏𝝏𝜸𝒑

⋯
𝝏𝟐𝑳(𝜸)

𝝏𝜸𝟐𝝏𝜸𝒑

⋮ ⋮
𝝏𝟐𝑳(𝜸)

𝝏𝜸𝒑𝝏𝜸𝟏

𝝏𝟐𝑳(𝜸)

𝝏𝜸𝒑𝝏𝜸𝟐

⋱ ⋮

⋯
𝝏𝟐𝑳(𝜸)

𝝏𝜸𝒑
𝟐 ]

 
 
 
 
 
 
 
 

. (28) 

2.3.6 Estimator 𝜸̂ 

From the Newton-Raphson iteration equation, 𝛾 will be obtained when 

|𝛾(𝑡+1) − 𝛾(𝑡)| < 𝜀,  𝜀 = 0.000001. (29) 

Thus, the estimator 𝛾 is given by 

𝛾 = (𝛾1 𝛾2 ⋯ 𝛾𝑝). 

Based on the result of the estimator 𝛾, BPR model Eq. (30) can be written: 

𝑃(𝑦𝑖 = 1) = Φ(𝛾0 + 𝛾1𝑥1 + 𝛾2𝑥2 + ⋯+ 𝛾𝑝𝑥𝑝), 𝑖 = 1, 2,… , 𝑛; 

𝑃(𝑦𝑖 = 0) = 1 − Φ(𝛾0 + 𝛾1𝑥1 + 𝛾2𝑥2 + ⋯+ 𝛾𝑝𝑥𝑝), 𝑖 = 1, 2, … , 𝑛; (30) 

where, 𝛾0, 𝛾1, 𝛾2, … , 𝛾𝑝  are the estimator model of the probit function and 𝑝 is the number of predictor 

variables. 

2.4 FSNBLR Estimator 

2.4.1 Logit Transformation Model 

The logit transformation model is defined as follows. 
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ln (
𝜋(𝒙𝒊)

1 − 𝜋(𝒙𝒊)
) = 𝑓(𝑥1𝑖,  …  ,  𝑥𝑝𝑖), (31) 

where 𝑓 is a regression equation or regression function (regression curve) that follows an additive model. 

Since 

𝑓(𝑥1𝑖,  …  ,  𝑥𝑝𝑖) in Eq. (31) can be approximated by a multivariable Fourier Series function as follows. 

ln (
π(𝒙𝒊)

1 − π(𝒙𝒊)
) = ∑(𝑏𝑗𝑥𝑗𝑖 +

1

2
𝑎0𝑗 + ∑ 𝑎𝑘𝑗 cos 𝑘𝑥𝑗𝑖

𝐾

𝑘=1

)

𝑝

𝑗=1

;  𝑖 = 1,2,…𝑛. (32) 

By using Eq. (32), FSNBLR model is obtained as follows. 

𝜋(𝑥𝑖) =  
exp∑ (𝑏𝑗𝑥𝑗𝑖 +

1
2

𝑎0𝑗 + ∑ 𝑎𝑘𝑗 cos 𝑘𝑥𝑗𝑖
𝐾
𝑘=1 )

𝑝
𝑗=1

1 + exp∑ (𝑏𝑗𝑥𝑗𝑖 +
1
2

𝑎0𝑗 + ∑ 𝑎𝑘𝑗 cos𝑘𝑥𝑗𝑖
𝐾
𝑘=1 )

𝑝
𝑗=1

;  𝑖 = 1,2, … , 𝑛; (33) 

where, 𝑏𝑗, 𝑎0𝑗 and 𝑎𝑘𝑗 , 𝑗 = 1,2, … , 𝑝 , 𝑘 = 1,2, … , 𝐾 are the model parameters of the Fourier Series function. 

2.4.2 Likelihood Function 𝒍(𝜷) 

The form of the likelihood function 𝑙(𝛽) 

where 

𝛽 = (𝑏1 𝑎01 𝑎11 … 𝑎𝐾1 ⋮ ⋯ ⋮ 𝑏𝑝 𝑎0𝑝 𝑎1𝑝 … 𝑎𝐾𝑝), 

is obtained using the Maximum Likelihood Estimation (MLE) method. 

𝑙(𝛽) = ∏𝑃(𝑌𝑖 =  𝑦𝑖)

𝑛

𝑖=1

= 𝜋(𝑥𝑖)
∑ 𝑦𝑛

𝑖=1 𝑖(1 − 𝜋(𝑥𝑖))
𝑛−∑ 𝑦𝑛

𝑖=1 𝑖 . (34) 

Parameter estimation in logistic regression can be performed using the MLE method by maximizing 

the first derivative of the log likelihood function. The likelihood function Eq. (34) can be easily maximized 

as follows ln 𝑙(𝛽). 

2.4.3 Log-Likelihood Function 𝑳(𝜷)  

𝐿(𝛽) = ln[𝑙(𝛽)] = ∑ 𝑦𝑖 ln[𝜋(𝑥𝑖)
 ]

𝑛

𝑖=1
+ ∑ (1 − 𝑦𝑖) ln[1 − 𝜋(𝑥𝑖)

 ]
𝑛

𝑖=1
 

  =  ∑ {𝑦𝑖 (𝑓(𝑥1𝑖,  …  ,  𝑥𝑝𝑖))− ln[1 + exp( 𝑓(𝑥1𝑖,  …  ,  𝑥𝑝𝑖))]}
𝑛

𝑖=1
. (35) 

The estimator 𝛽̂ is obtained by partially deriving function Eq. (35) relative to 𝑏𝑗, 𝑎0𝑗, 𝑎𝑘𝑗 and then equating 

to 0 

𝜕𝐿(𝛽)

𝜕𝑏𝑗
= 0 ;  𝑗 = 1,2,… , 𝑝; 

𝜕𝐿(𝛽)

𝜕𝑎0𝑗
= 0 ;  𝑗 = 1,2,… , 𝑝; 

𝜕𝐿(𝛽)

𝜕𝑎𝑘𝑗
= 0 ;  𝑘 = 1,2, … , 𝐾 ;  𝑗 = 1,2,… , 𝑝. 

The estimator 𝑏̂ will be obtained using Eq. (36). 

∑ {(𝑦𝑖 −  𝜋(𝑥𝑖))𝑥𝑗𝑖}
𝑛

𝑖=1
= 0. (36) 

The estimator 𝑎̂0 will be obtained using Eq. (37). 

∑ {
1

2
(𝑦𝑖 −  𝜋(𝑥𝑖))}

𝑛

𝑖=1
= 0. (37) 
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The estimator 𝑎̂𝑘 will be obtained using Eq. (38). 

∑ {∑ cos𝑘𝑥𝑗𝑖

𝐾

𝑘=1

(𝑦𝑖 −  𝜋(𝑥𝑖))}
𝑛

𝑖=1
= 0. (38) 

2.4.4 Newton-Raphson Iteration 

The derivative of 𝐿(𝛽) Eq. (35) against 𝑏𝑗, 𝑎0𝑗, 𝑎𝑘𝑗 that has been made in the implicit equation, gives 

results that are not closed form, so it is necessary to continue with the numerical iteration method using the 

Newton–Raphson method. 

𝛽(𝑡+1) =  𝛽(𝑡) −  (𝐻(𝛽)(𝑡))
−1

𝑔(𝛽)(𝑡), (39) 

where 𝛽(𝑡) is the 𝛽 of the 𝑡-th iteration, 𝑡 = 1,2, . . ., is convergent. 

𝛽(𝑡) = (𝑏1
(𝑡) 𝑎01

(𝑡) 𝑎11
(𝑡) … 𝑎𝐾1

(𝑡) ⋮ ⋯ ⋮ 𝑏𝑝
(𝑡) 𝑎0𝑝

(𝑡) 𝑎1𝑝
(𝑡) … 𝑎𝐾𝑝

(𝑡)). 

𝒈(𝜷) is the gradient vector of 𝛽 

𝒈(𝜷) =  (
𝝏𝑳(𝜷)

𝝏𝒃𝟏
,
𝝏𝑳(𝜷)

𝝏𝒂𝟎𝟏
,
𝝏𝑳(𝜷)

𝝏𝒂𝟏𝟏
, ⋯ ,

𝝏𝑳(𝜷)

𝝏𝒂𝑲𝟏
, ⋯ ,

𝝏𝑳(𝜷)

𝝏𝒃𝒑
,
𝝏𝑳(𝜷)

𝝏𝒂𝟎𝒑
,
𝝏𝑳(𝜷)

𝝏𝒂𝟏𝒑
, ⋯ ,

𝝏𝑳(𝜷)

𝝏𝒂𝑲𝒑
)

𝑻

, (40) 

and 𝑯(𝜷) is the Hessian matrix of 𝛽 in Eq. (40), with the following equation. 

𝑯(𝜷) =

[
 
 
 
 
 
 
 
 

𝝏𝟐𝑳(𝜷)

𝝏𝒃𝟏
𝟐

𝝏𝟐𝑳(𝜷)

𝝏𝒃𝟏𝝏𝒂𝟎𝟏

𝝏𝟐𝑳(𝜷)

𝝏𝒂𝟎𝟏𝝏𝒃𝟏

𝝏𝟐𝑳(𝜷)

𝝏𝒂𝟎𝟏
𝟐

⋯
𝝏𝟐𝑳(𝜷)

𝝏𝒃𝟏𝝏𝒂𝑲𝒑

⋯
𝝏𝟐𝑳(𝜷)

𝝏𝒂𝟎𝟏𝝏𝒂𝑲𝒑

⋮ ⋮
𝝏𝟐𝑳(𝜷)

𝝏𝒂𝑲𝒑𝝏𝒃𝟏

𝝏𝟐𝑳(𝜷)

𝝏𝒂𝑲𝒑𝝏𝒂𝟎𝟏

⋱ ⋮

⋯
𝝏𝟐𝑳(𝜷)

𝝏𝒂𝑲𝒑
𝟐 ]

 
 
 
 
 
 
 
 

. (41) 

The elements of vector 𝒈(𝜷) Eq. (40) are obtained from the first derivative of function 𝐿(𝛽) with 

respect to 𝑏𝑗, 𝑎0𝑗, 𝑎𝑘𝑗, while elements of matrix 𝑯(𝜷) Eq. (41) are obtained from the second derivative of 

function 𝐿(𝛽) with respect to 𝑏𝑢, 𝑎0𝑢, 𝑎𝑘𝑢. 

Second derivative of 𝐿(𝛽) function with respect to 𝑏𝑢  

𝜕2𝐿(𝛽)

𝜕𝑏𝑢𝜕𝑏𝑗
= −∑ 𝑥𝑗𝑖𝑥𝑢𝑖

𝑛

𝑖=1
𝜋(𝑥𝑖)(1 − 𝜋(𝑥𝑖)). (42) 

In the same manner as Eq. (42), the second derivative of the parameter combination is obtained as follows. 

𝜕2𝐿(𝛽)

𝜕𝑎𝑘𝑢𝜕𝑏𝑗
= −∑ ∑ 𝜋(𝑥𝑖)(1 − 𝜋(𝑥𝑖))𝑥𝑗𝑖 cos 𝑘𝑥𝑢𝑖

𝐾

𝑘=1

𝑛

𝑖=1
. (43) 

Second derivative of 𝐿(𝛽) function with respect to 𝑎0𝑢 

𝜕2𝐿(𝛽)

𝜕𝑎0𝑢𝜕𝑎0𝑗
= −

1

4
∑ 𝜋(𝑥𝑖) (1 − 𝜋(𝑥𝑖))

𝑛

𝑖=1
. (44) 

In the same manner as Eq. (44), the second derivative of the parameter combination is obtained as follows. 

𝜕2𝐿(𝛽)

𝜕𝑎𝑘𝑢𝜕𝑎0𝑗
= −

1

2
∑ ∑ 𝜋(𝑥𝑖)(1 − 𝜋(𝑥𝑖)) cos 𝑘𝑥𝑢𝑖

𝐾

𝑘=1

𝑛

𝑖=1
. (45) 

Second derivative of 𝐿(𝛽) function with respect to 𝑎𝑘𝑢  

𝜕2𝐿(𝛽)

𝜕𝑎𝑘𝑢𝜕𝑎𝑘𝑗
= −∑ ∑ cos𝑘𝑥𝑗𝑖

𝐾

𝑘=1

∑ cos𝑘𝑥𝑢𝑖

𝐾

𝑘=1

𝜋(𝒙𝒊)(1 − 𝜋(𝒙𝒊))
𝑛

𝑖=1
. (46) 
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In the same manner as Eq. (46), the second derivative of the parameter combination is obtained as follows. 

𝜕2𝐿(𝜷)

𝜕𝑎0𝑢𝜕𝑎𝑘𝑗
= −

1

2
∑ ∑ 𝜋(𝒙𝒊)(1 − 𝜋(𝒙𝒊)) cos 𝑘𝑥𝑗𝑖

𝐾

𝑘=1

𝑛

𝑖=1
. (47) 

where, 𝑏𝑗, 𝑎0𝑗 and 𝑎𝑘𝑗 , 𝑗, 𝑢 = 1,2, … , 𝑝 , 𝑗 ≠ 𝑢, 𝑘 = 1,2, … , 𝐾 are the model parameters of the Fourier Series 

function. 

2.4.5 Estimator 𝜷̂ 

From the Newton-Raphson iteration equation, 𝛽̂ will be obtained when 

|𝛽(𝑡+1) − 𝛽(𝑡)| < 𝜀,  𝜀 = 0.000001 (48) 

Thus, the estimator 𝛽̂ is given by 

𝛽̂ = (𝑏̂1 𝑎̂01
𝑎̂11 … 𝑎̂𝐾1 ⋮ ⋯ ⋮ 𝑏̂𝑝 𝑎̂0𝑝

𝑎̂1𝑝 … 𝑎̂𝐾𝑝). 

Based on the result of the estimator 𝛽̂, FSNBLR model Eq. (49) can be written: 

𝜋̂(𝑥𝑖) =  
exp (𝑏̂1𝑥1𝑖 +

1
2

𝑎̂01 + 𝑎̂11 cos 𝑥1𝑖 + ⋯+ 𝑎̂𝐾1 cos𝐾𝑥1𝑖 + ⋯+ 𝑏̂𝑝𝑥𝑝𝑖 +
1
2

𝑎̂0𝑝 + 𝑎̂1𝑝 cos 𝑥𝑝𝑖 + ⋯+ 𝑎̂𝐾𝑝 cos𝐾𝑥𝑝𝑖)

1 + exp (𝑏̂1𝑥1𝑖 +
1
2

𝑎̂01 + 𝑎̂11 cos 𝑥1𝑖 + ⋯+ 𝑎̂𝐾1 cos𝐾𝑥1𝑖 + ⋯+ 𝑏̂𝑝𝑥𝑝𝑖 +
1
2

𝑎̂0𝑝 + 𝑎̂1𝑝 cos 𝑥𝑝𝑖 + ⋯+ 𝑎̂𝐾𝑝 cos𝐾𝑥𝑝𝑖)
, (49) 

where, 𝑏̂1, 𝑎̂01 and 𝑎̂𝑘1  are the estimator model of the Fourier Series function for predictor variable 𝑥1, while 

𝑏̂𝑝, 𝑎̂0𝑝 and 𝑎̂𝑘𝑝  are for predictor variable 𝑥𝑝, 𝐾 is the number of oscillation parameters and 𝑝 is the number 

of predictor variables. 

2.5 Hypothesis Test for Parameter Model 

Hypothesis test for parameter model consists of simultaneous and partial tests. Hypothesis test for 

simultaneous uses the Likelihood Ratio Test (LRT) and hypothesis test for partial uses the Wald test. 

2.5.1 Simultaneous 

The simultaneous test is conducted to determine the significance of parameter 𝜃 as a whole or simultaneously, 

where 𝜃 is parameters for the model. 

Hypothesis: 

𝐻0 ∶  𝜃1 = 𝜃2 = 𝜃3 = ⋯ = 𝜃𝑗 = ⋯ = 𝜃𝑘 =  0, 

𝐻1 ∶  There is at least one 𝜃𝑗 ≠ 0. 

Statistics test for simultaneous test Eq. (50): 

𝐺2 = −2∑ [𝑦𝑖 ln (
π̂(𝑥𝑖)

𝑦𝑖
) + (1 − 𝑦𝑖) ln (

1 − π̂(𝑥𝑖)

1 − 𝑦𝑖
)]

𝑛

𝑖=1
. (50) 

Decision: 

Reject 𝐻0 when 𝐺2 > 𝜒(𝑣,𝑎)
2  or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝑎. 

2.5.2 Partial 

Hypothesis: 

𝐻0 ∶  𝜃𝑗 = 0 , 𝑗 = 1,2, … , 𝑘; 

𝐻1 ∶   𝜃𝑗 ≠ 0. 

Statistics test for partial test Eq. (51): 

𝑊 =
𝜃𝑗

𝑆𝐸̂(𝜃𝑗)
. (51) 
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Decision: 

Reject 𝐻0 when 𝑊 > 𝜒(𝑣,𝑎)
2  or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝑎. 

3. RESULTS AND DISCUSSION 

In applying the BLR, BPR, and FSNBLR methods, we use application data the status of diabetes 

mellitus. The data used is secondary data sourced from Internal Medicine Clinic of Hajj General Hospital 

Surabaya which was carried out during August 2018. The data consists of 1 response variable (𝑦) and 3 

predictor variables (𝑥). The variables are detailed in Table 1. 

Table 1. Variable Description 

Variable Notation Description  Unit Scale 

Response 𝑦 
Status of 

Type 2 Diabetes Mellitus 

 0 = Doesn’t have Diabetes Mellitus 

1 = Has Diabetes Mellitus 
Nominal 

Predictor 

𝑥1 Age  Year Ratio 

𝑥2 Body Mass Index  kg/m2 Ratio 

𝑥3 Abdominal Circumference  cm Ratio 

Based on Table 1, these variables were selected based on medical relevance and availability in patient 

records at Hajj General Hospital Surabaya. They are used to model the probability of having Type 2 Diabetes 

Mellitus using BLR, BPR, and FSNBLR methods. 60 patients consist of 39 patients diagnosed with diabetes 

mellitus and 21 non-patients without diabetes mellitus which as shown in Fig. 1. 

 
Figure 1. Status of Type 2 Diabetes Mellitus 

 

3.1 Descriptive Analytics 

Descriptive analysis is used to determine the characteristics of the data for each variable as follows Table 2. 

Table 2. Descriptive Statistics of Research Variables 

Category Variable Mean StDev Minimum Maximum 

Doesn’t have Diabetes 

Mellitus 

Age 47.0952 16.4405 17 71 

IMT 22.3681 4.47414 16.02 31.25 

Abdominal Mass 84.9524 13.1851 64 119 

 Age 62.9487 8.72066 51 83 

Has Diabetes Mellitus IMT 25.5018 3.54516 18.49 33.78 

 Abdominal Mass 93.6410 8.39952 82 115 

Table 2 provides information about the characteristics of the variables, which is the status of diabetes 

mellitus. In addition, it is obtained that each variable does not have missing values and there is no 

Diabetes

65.00%

Doesn't 

Diabetes

35.00%
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multicollinearity between predictor variables. The conceptual predictor variable used in this study is as 

follows in Fig. 2. 

 

 

Figure 2. Conceptual Diagram of Variables 

Based on Fig. 2, diabetes mellitus is a problem that covers many aspects. One of them is identity of a 

person. Based on Central Bureau of Statistics, identity of a person consists of age, body mass index, and 

abdominal circumference. 

We created a scatterplot for each predictor variable that was built into several groups versus the 

presentation of the number of has diabetes mellitus (𝑦 = 1)  in each group to identify the relationship. The 

presentation represents the proportion of patients diagnosed with diabetes mellitus relative to the total number 

of patients in each group. The scatterplot is presented in Fig. 3 as follows. 

  

 
Figure 3. Scatterplots of Several Data Groups Versus the Number of Has Diabetes Mellitus in the Group 

(a) Age, (b) Body Mass Index, (c) Abdominal Circumference  

Based on Fig. 3, The probability of a has diabetes mellitus (𝑦 =  1) for variable 𝑥1, 𝑥2, and 𝑥3 have a 

repeating pattern and follows a upward trend line. Thus, the logit function that assumes a linear pattern does 

not describe the pattern formed in this case. 

For modeling status of diabetes mellitus, we use BLR, BPR, and FSNBLR methods. Parameter 

estimation and significant parameter in the model result can be seen as follows. 

3.2 BLR Model 

The BLR model follows Eq. (9) as follows. 

𝜋(𝑥𝑖) =  
exp∑ (𝛽0+𝛽𝑗𝑥𝑗𝑖)

𝑝
𝑗=1

1+exp∑ (𝛽0+𝛽𝑗𝑥𝑗𝑖)
𝑝
𝑗=1

 ;  𝑖 = 1,2, . . . , 𝑛  
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where, 𝛽0 and 𝛽𝑗 , 𝑗 = 1,2,… , 𝑝 are the model parameters of the logit function. 

3.2.1 Parameter Estimation in BLR Model Results 

Based on BLR model in Eq. (16), the results of parameter estimation in the BLR model for data on 

diabetes mellitus are as follows. 

𝜋̂(𝒙𝒊) =  
exp(−11.781 + 0.118𝑥1𝑖 + 0.132𝑥2𝑖 + 0.026𝑥3𝑖)

1 + exp(−11.781 + 0.118𝑥1𝑖 + 0.132𝑥2𝑖 + 0.026𝑥3𝑖)
 

3.2.2 Significant Parameter in BLR Model Results 

Based on parameter estimation BLR model, the results of significant parameter in the BLR model for 

data on diabetes mellitus can be seen in Table 3. 

Table 3. Significant Parameter in BLR Model 
 Estimate Std. Error z value Pr(>|z|) 

Intercept -11.781 4.40281 -2.676 0.00745 

𝑥1 0.118 0.04147 2.847 0.00441 

𝑥2 0.132 0.11749 1.124 0.26102 

𝑥3 0.026 0.05101 0.52 0.60282 

Table 3 results show that only the age variable is significant in the model. Therefore, age affects a 

person's diabetes mellitus status. 

3.3 BPR Model 

The BPR model is as follows Eq. (18). 

Φ(𝑦) =
1

√2𝜋𝜎2
exp [−

1

2𝜎2
(𝑦 − 𝜇)2]  

3.3.1 Parameter Estimation in BPR Model Results 

Based on BPR model in Eq. (30), parameter estimation results on the BPR model for data on diabetes 

mellitus are as follows. 

𝑃(𝑦𝑖 = 1) = Φ(6.997 + 0.071𝑥1 + 0.078𝑥2 + 0.015𝑥3)  

𝑃(𝑦𝑖 = 0) = 1 − Φ(6.997 + 0.071𝑥1 + 0.078𝑥2 + 0.015𝑥3)  

3.3.2 Significant Parameter in BPR Model Results 

Based on parameter estimation BPR model, the results of significant parameter in the BPR model for 

data on diabetes mellitus can be seen in Table 4. 

Table 4. Significant Parameter in BPR Model 
 Estimate Std. Error z value Pr(>|z|) 

Intercept 6.997 2.42416 -2.886 0.0039 

𝑥1 0.071 0.02263 3.13 0.00175 

𝑥2 0.078 0.06947 1.133 0.25738 

𝑥3 0.015 0.02947 0.516 0.60551 

Table 4 results show that only variables age are significant in the model. So age affects a person's 

diabetes mellitus status. 

3.4 FSNBLR Model 

3.4.1 Selecting Optimal Oscillation Parameters  

The oscillation parameters in the FSNBLR model were selected based on the smallest AIC value. The 

number of oscillation parameters used in this study was limited to produce a model that is not too complicated 

and provides appropriate significance results. With the help of the R algorithm, the AIC results for each 

combination of oscillation parameters in the model are given in Table 5. 
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Table 5. Minimum AIC Results for Each Number of Oscillation Parameter 

Number of Oscillation Parameter 
Oscillation Parameter Combination AIC (K) 

𝑥1 𝑥2 𝑥3  

𝐾 = 1 1 1 1 61.543 

𝐾 = 2 1 2 1 57.837 

𝐾 = 3 1 2 1 57.837 

Based on Table 5, the model with a combination of oscillation parameters 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 1 is 

the FSNBLR model with optimal oscillation parameters because it has the smallest AIC value. This 

combination was identified by evaluating multiple parameter settings and selecting the one that yielded the 

lowest AIC value at each level of oscillation complexity, ensuring the most optimal balance between model 

fit and complexity. 

3.4.2 Parameter Estimation in FSNBLR Model Results 

Based on the FSNBLR model in  Eq. (33), the results of parameter estimation in the FSNBLR model 

Eq. (49) for data on diabetes mellitus are as follows. 

𝜋̂(𝑥𝑖) =  
exp(−15.56 + 0.16𝑥1𝑖 + 0.81 cos 𝑥1𝑖 + 0.22𝑥2𝑖 − 0.65 cos 𝑥2𝑖 + 1.40 cos 2𝑥2𝑖 + 0.01𝑥3𝑖 − 1.40 cos 𝑥3𝑖)

1 + exp(−15.56 + 0.16𝑥1𝑖 + 0.81 cos 𝑥1𝑖 + 0.22𝑥2𝑖 − 0.65 cos 𝑥2𝑖 + 1.40 cos 2𝑥2𝑖 + 0.01𝑥3𝑖 − 1.40 cos 𝑥3𝑖)
 

More details can be seen in Table 6. 

Table 6. Parameter Estimation in FSNBLR 

Parameters Estimations 

𝛽0 -15.564 

𝑏1 0.165 

𝑎1,1 0.813 

𝑏2 0.229 

𝑎1,2 -0.659 

𝑎2,2 1.408 

𝑏3 0.016 

𝑎1,3 -1.401 

3.4.3 Significant Parameter in FSNBLR Model Results 

Based on parameter estimation FSNBLR model, the results of significant parameter in the FSNBLR 

model for data on diabetes mellitus can be seen in Table 7. 

Table 7. Significant Parameter in FSNBLR Model 
 Estimate Std. Error z value Pr(>|z|) 

Intercept -15.565 5.9572 -2.613 0.00898 

𝑥1 0.16555 0.05548 2.984 0.00285 

𝑥2 0.81312 0.70369 1.156 0.24788 

𝑥3 0.2293 0.15428 1.486 0.13721 

𝑥4 -0.6596 0.66471 -0.992 0.32105 

𝑥5 1.40888 0.65126 2.163 0.03052 

𝑥6 0.01656 0.05883 0.281 0.77836 

𝑥7 -1.40055 0.66829 -2.096 0.03611 

Table 7 results show that variables age, body mass index, and abdominal circumference are significant 

in the model. Thus, age affects a person's diabetes mellitus status. 

3.5 Comparison of BLR, GWBLR, FSNBLR  

3.5.1 Getting the Best Model Based on Deviance Value 

The regression model chosen is the model that has the smallest deviance value. Using the deviance 

statistical test, the following results are obtained in Table 8. 
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Table 8. Comparison of Deviance Values 

Methods Deviance Values 

BLR 53.007 

BPR 52.728 

FSNBLR 41.837 

Based on Table 8, the deviance value for the FSNBLR (41.837) was smaller than that for the BLR 

(53.007) and BPR (52.728). Therefore, the FSNBLR model is the best model for data on the status of diabetes 

mellitus because has the smallest deviance value. 

Getting the Best Classification Based on AUC & Press's Q Value  

The selected FSNBLR model demonstrated the highest AUC or the smallest Press's Q. Using the 

classification test, the following results are obtained in Table 9. 

Table 9. Comparison of AUC and Press's Q 

Methods Accuracy Sensitivity Specificity AUC Press’s Q Chi Square 

BLR 73.33% 42.85% 89.74% 66.30% 13.067 51.829 

BPR 73.33% 42.85% 89.74% 66.30% 13.067 51.623 

FSNBLR 85% 71.42% 92.31% 81.86% 29.400 49.879 

Based on Table 9, case 1 shows that the AUC value of FSNBLR (81.86%) is higher than BLR (66.30%) 

and BPR (66.30%). In addition, a larger Press's Q value for FSNBLR (29.400) indicates that the FSNBLR 

model can classify well and has a greater chance of rejecting H0 or Press's Q > Chi Square. These results are 

obtained using diabetes mellitus data from patients at Hajj General Hospital Surabaya. The comparison 

through the plot is shown in Fig. 4. 

 
Figure 4. Comparison of Predicted Values in BLR, BPR, and FSNBLR 

Based on Fig. 4, the plots show that the predicted value of the three methods fluctuate and do not 

necessarily indicate which method is better. However, for certain cases such as the one used in this article 

FSNBLR tends to perform better than BLR and BPR. The FSNBLR is superior as it provides odds estimates 

that are close to the actual values in almost all selected observation. 

4. CONCLUSION 

Based on the discussion that has been described, these findings align with the theoretical advantage of 

the FSNBLR model, which incorporates oscillatory components (e.g., cosine functions) to capture nonlinear 

and repeating patterns in the data. This makes FSNBLR especially effective for modeling categorical 
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response variables influenced by predictors with non-monotonic or cyclical relationships—common in 

complex medical data such as diabetes mellitus risk factors. 

Based on the data that has been used in this research, the FSNBLR is the best model for status diabetes 

mellitus is as follows. The FSNBLR model for categorical data is as follows: 

𝜋̂(𝑥𝑖) =  
exp(−15.56 + 0.16𝑥1𝑖 + 0.81 cos 𝑥1𝑖 + 0.22𝑥2𝑖 − 0.65 cos 𝑥2𝑖 + 1.40 cos 2𝑥2𝑖 + 0.01𝑥3𝑖 − 1.40 cos 𝑥3𝑖)

1 + exp(−15.56 + 0.16𝑥1𝑖 + 0.81 cos 𝑥1𝑖 + 0.22𝑥2𝑖 − 0.65 cos 𝑥2𝑖 + 1.40 cos 2𝑥2𝑖 + 0.01𝑥3𝑖 − 1.40 cos 𝑥3𝑖)
 

The deviance value for the FSNBLR model (41.837) is also lower than that of the BLR (53.007) and 

BPR (52.728), which further confirms that the FSNBLR model fits the data more effectively. The estimation 

of the FSNBLR model has a higher AUC value of 81.86%, so it can be concluded that the FSNBLR provides 

a better estimate than BLR and BPR. The accuracy, sensitivity, and specificity value of the FSNBLR model 

has a higher value than BLR and BPR. This indicates that the performance of the FSNBLR model is better. 
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