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Article Info ABSTRACT

Diabetes mellitus is a chronic disease with a rising global prevalence, including in
Indonesia. Early detection and accurate modeling are crucial for effective prevention and

Article History:

Received: 3" March 2025 management. Binary Logistic Regression (BLR) is commonly used for binary outcome
Revised: 28M April 2025 modeling; however, in practice, the relationship between binary outcomes and continuous
Accepted: 25" July 2025 predictors is often nonlinear, making BLR less suitable. To address these limitations,

Available online: 24™ November 2025  alternative methods such as Binary Probit Regression (BPR) and Flexible
Semiparametric Nonlinear Binary Logistic Regression (FSNBLR) have been developed.
This study aims to compare the performance of BLR, BPR, and FSNBLR models in

Keywords: classifying diabetes mellitus cases at Hajj General Hospital Surabaya. All three models
Categorical data; were estimated using the Maximum Likelihood Estimation (MLE) method. Since the
Bernoulli distribution; resulting estimators do not have closed-form solutions, numerical iteration using the
Binary Probit Regression (BPR; Newton-Raphson method was applied. Model performance was assessed using Area
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Logistic Regression (FSNBLR). 81.86%, while BLR (66.30%) and BPR (66.30%). That is indicated FSNBLR superior

discriminative ability. In addition, the FSNBLR model recorded higher accuracy,
sensitivity, and specificity compared to the other two models. The FSNBLR model
demonstrated better predictive performance in identifying diabetes mellitus cases,
especially in scenarios involving nonlinear relationships between predictors and the
outcome variable. These findings suggest that flexible semiparametric approaches offer
greater effectiveness in medical classification tasks, particularly for chronic conditions
like diabetes mellitus.
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1. INTRODUCTION

Binary Logistic Regression (BLR) is a statistical method used to model the relationship between a
binary dependent variable and one or more independent variables. The model assumes a linear relationship
between the logit (log-odds) of the probability of the event and the predictors, but is often insufficient to
handle data that have probit links because the underlying distribution and link function differ, leading to
potential bias and poor fit when the logit link is incorrectly imposed. To overcome these limitations, Binary
Probit Regression (BPR) offers an approach that accounts. However, in some cases, the relationship between
the dependent and independent variables may be more complex and require a nonparametric approach. One
of the evolving methods using logit function is Nonparametric Binary Logistic Regression (NBLR) [1].

NBLR can be used to determine the relationship between the response and predictor variables when
the function of the regression curve is unknown. The NBLR curve is assumed to be smooth in the sense that
it is contained in a certain function space. The data were expected to find their own form of estimation,
without being influenced by the subjective factors of the researcher. Thus, the NBLR approach is highly
flexible and it can be implemented based on observed data using smoothing techniques. There are many
smoothing techniques, including the Spline estimator [2], Fourier Series estimator [3], Wavelet estimator [4],
Kernel estimator [5], Local Polynomial estimator [6], and Multivariate Adaptive Regression Splines (MARS)
estimator [7], [8].

Spline estimators are used for data with changing patterns that depend on knot points [2] and are
especially suitable when the underlying relationship is smooth but may have varying curvature across
different regions. A local polynomial estimator that has been used to reduce the bias properties and asymptotic
variance of the local polynomial estimator in nonparametric regression with more than one response variable
[9], making it appropriate when modeling local trends in complex, multidimensional data. Wavelet estimator
that has been used to to model observations of signals contaminated with Gaussian additive noise, particularly
when the data contain localized features or abrupt changes that need to be captured at multiple scales [10].
Kernel estimators are preferred when smoothing noisy data where a simple, nonparametric local averaging is
sufficient [5]. The Fourier Series estimator is used for patterned data that tend to repeat [3]. Among these
estimators, the Fourier Series method was used to. This method is very specialized and well used in data cases
in which the response and predictor variables exhibit a repeating pattern following a certain trend [11]. The
Fourier Series estimator best optimizes the accuracy and computational cost of additive nonparametric
regression models [12]. Not only predictors with one predictor variable (univariable) but also with many
predictor variables (multivariable) [3], [10], [13], [14].

Fourier Series was first introduced by [3], and then [10] studied the Fourier series estimator in
nonparametric regression. Furthermore, [15] applied the Fourier Series in semiparametric regression. [16]
developed a birresponse semiparametric regression using Fourier Series, until it became a Fourier Series
nonparametric regression mixture estimator by [17], [18], [19], and a Fourier Series semiparametric mixture
estimator by [20]. However, previous studies that developed using this method only used quantitative data,
suchas [21], [22], [23], [24]. However, in reality, there is often a relationship between response and predictor,
where the response is categorical data.

Some researchers have developed nonparametric regression estimators for categorical data, such as
using Local Likelihood Logit Estimation [25], using the Decision Tree approach [26], and using the B-Spline
function [27] and recently, researchers have developed estimators for nonparametric regression using
categorical data, such as Fourier Series Nonparametric Logistic Regression (FSNBLR) [28]. In addition,
Fourier Series has been explored as a smoothing technique in nonparametric regression due to its ability to
represent complex, periodic, or oscillating relationships using a combination of sine and cosine functions.
Although originally developed for continuous signals, the Fourier basis can be adapted to model nonlinear
patterns in categorical response data by transforming predictor variables and capturing latent cyclic or wave-
like structures in the data. This approach is particularly useful when the relationship between predictors and
the categorical response is non-linear and non-monotonic, which is often the case in medical and behavioral
data.

Previous studies have only compared conventional methods such as Binary Logistic Regression (BLR)
and Binary Probit Regression (BPR), without including more recent methods like FSNBLR that have been
developed to address nonlinear patterns in categorical data. Conventional methods like BLR and BPR assume
a linear relationship between predictors and the transformed response variable, which makes them less
capable of capturing complex or repeating patterns that often occur in real-world data, such as in medical
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conditions like diabetes mellitus. However, no previous study has compared BLR, BPR, and FSNBLR
estimators. Therefore, this study aims to compare BLR, BPR, and FSNBLR methods in the case of diabetes
mellitus at Hajj General Hospital Surabaya.

However, no previous study has compared BLR, BPR and FSNBLR estimator. Therefore, this study
aims to compare BLR, BPR, and FSNBLR methods in the case of the diabetes mellitus in hajj general hospital
Surabaya, to identify which method performs best in handling categorical response data exhibiting
nonparametric patterns.

2. RESEARCH METHODS

In obtaining a BPR, BLR, and FSNBLR estimators for categorical data, several steps are required:
building a BPR, BLR and FSNBLR model, then creating a Log Likelihood function and deriving it for each
model parameter. Finally, numerical iterations were performed using the Newton—Raphson iteration.

2.1 Probability Distribution

Given xy, x5, ..., x, are as many as p predictor variables. Furthermore, the variable Y is a random
Bernoulli distribution variable [1] with a probability distribution of

Y ~ B(1,m(x)), m(x) = n(xy, xp, ..., xp)
where the success probability
P(Y = D) =m(x)
and the unsuccessful probability
P(Y; = 0) =1—m(x)

1(x;) is defined in the probability distribution function P(Y; = y;), where i is the number of observations
(i=1,2,...,n) as follows.

N\
P(Y; = y;) = m(x)”i(1 —ﬂ(xi))l_yi = (%) (1-m(x)) €]

2.2 BLR Estimator

2.2.1 Logit Function (Link Function)

Eq. (1) can be expressed as a natural logarithmic function

(x;)
InP(Y; = y;)= y; In <1——nle)> + ln(l —n(xl-)). 2)
When made in exponential form, Eq. (2) forms an exponential family distribution function as follows.
exp(InP(Y; = y;)) =exp|y; In M + 1n(1 — n(x-)) 3)
l L L 1 _ T[(xi) l ’

where Eq. (3) the exponential family distribution function is defined as follows.
y; 0 —b(6)
a(®)

Therefore, its probability distribution function belongs to the exponential family of distribution functions.

nin (2 580)
1

fi,0) = eXp( +c(6, @)- (4)

P(Y; = y;) =exp +In(1 - n(x)) |, (5)

where
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_ (x;) —
6 =In (m) a(@) =1
b(6) =In(1 —n(x;)) c(6,0) = 0.
The variable 6 in Eq. (5) is a logit function, the logit function for the regression obtained is
m(x;)
6 =1In <T(x,)) . (6)

The logit function (link function) simplifies a long regression model and facilitates parameter
estimation. To achieve this goal, logit transformation is performed.

2.2.2 Logit Transformation Model

The logit transformation model is defined as follows.

(%)
In <#(xl)> = (%15 s Xpi), %)
where f(xy;, ., Xxp;) in Eq. (7) as follows.
(x;) 2
In (m) = jZl(ﬁo + ﬁjxji); i=12,..n (8)

By using Eq. (8), BLR model is obtained as follows.
exp 25-):1(/30 + ﬁjxji) _
1+ exp 2?21(,80 + ﬁ]xﬂ) '

n(x;) = i=12,..,n, 9

where B, and g; , j = 1,2, ..., p are the model parameters of the logit function.

2.2.3 Likelihood Function I(B8)
The form of the likelihood function I(8)

where

=Wy B1 ﬁp);

is obtained using the Maximum Likelihood Estimation (MLE) method.
n
n -TiL.y;
1®) = | [Pt = 0 = w1 = )" (10)
i=1

Parameter estimation in logistic regression can be performed using the MLE method by maximizing the first
derivative of the log likelihood function.

2.2.4 Log-Likelihood Function L(f)
The likelihood Eq. (10) can be easily maximized as follows In I(8).

LB = 1l = D Gl + Y. (@ =yl - )]
= zi=1 {)’i (f(xu. . xpi)) —ln[l +exp(f(xqi s xpl-))]}, (11)

2.2.5 Newton-Raphson Iteration

BED = pO — (H(B®) ' g(B)®, (12)

where B® is the B of the t-th iteration, t = 1,2,..., is convergent.

BO=(8,® O .. p©)
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g(B) is the gradient vector of

aL(B) IL(B)  AL(B)\
gB) = ( : , (13)
01 0B B,
and H(p) is the Hessian matrix of 8 in Eq. (12), with the following equation.
[92L(B)  9*L(B) 0*L(B) |
B> 9B19B; 0B10B,
’L(B) 9*L(B) 0’L(B)
H(B) = |0B.0B: o’ 3B20B, |- 14
9°L(B) *L(B) *L(B)
[0By0B1 0BydB> aB,” |
2.2.6 Estimator 8
From the Newton-Raphson iteration equation, 8 will be obtained when
| — g0 < &, £ = 0.000001. (15)
Thus, the estimator £ is given by
b= B - Bp)
Based on the result of the estimator 2, BLR model Eq. (16) can be written:
A(x;) = eXp(ﬁo + Prxy; + Poxy + o + Bpxpi) (16)

1+ exp(Bo + Prxyi + Poxai + -+ + Bpxpi)

where, Bo, By, By, .., B, are the estimator model of the logit function and p is the number of predictor
variables.

2.3 BPR Estimator

2.3.1 Probit Function

Eq. (1) can be expressed as a probit function (®)

©0) = ==exp [ 5oz 0~ 7). a7
2.3.2 Probit Transformation Model
The probit transformation model is defined as follows.
o (x) =xTy,i = 1,2,..,m; (18)
z =0 (n(x;)) = x]y; (19)
n(x) = o(x]v); (20)
z=0 Y n(x)) = Bo + Prxs + -+ Bpxp. (21)
2.3.3 Likelihood Function I(y)
The form of the likelihood function I(y)
where
y=@0 Y1 = ), (22)

is obtained using the Maximum Likelihood Estimation (MLE) method.



260 Otoketal. ~ COMPARISON OF BINARY PROBIT REGRESSION AND FOURIER SERIES NONPARAMETRIC ...

1) = | [Poi = 11071 = POi = 101, 23)
i=1
1 =] [@Gdy) 1 - o@m)]™" (24)
i=1

2.3.4 Log-Likelihood Function L(y)
The likelihood function Eq. (24) can be easily maximized as follows In I(y).

n

L) = Inl() = ) [y (@) + (1 = y)ln(1 - )]. (25)

i=1

2.3.5 Newton-Raphson Iteration

-1
y e = y®O — (HY®) gnN®, (26)
where y® is the y of the t-th iteration, t = 1,2, ..., is convergent.
y(t) — (Vl(t) yz(t) yp(t))_

g(y) is the gradient vector of y

aL(y) OLy) LW\
gy) = < : . (27)
01 0B By
and H(y) is the Hessian matrix of y in Eq. (28), with the following equation.
[02L(y) 9’L(y)  9O*L()]
ay1%2  0y19y: 0y10vp
0’L(y) 9’L(y) 9°L(y)
H(Y) = ayZayl ayZZ ayZayp . (28)
*L(y) 9%L(y) a*L(y)
[dYp0Y1 0YpaY: Yy |
2.3.6 Estimator y
From the Newton-Raphson iteration equation, ¥ will be obtained when
[y —y®] < ¢, e = 0.000001. (29)
Thus, the estimator 7 is given by
=0 72 o)
Based on the result of the estimator 7, BPR model Eq. (30) can be written:
P(y; = 1) = ®(Po + Py + PaXp + =+ Ppxp),i = 1,2,..,1;
P()’z = 0) =1- CD(?O + )71.9(1 + ?sz + -+ ?pxp),l' = 1, 2, e, 1 (30)

where, 7o, 71,72, ..., ¥, are the estimator model of the probit function and p is the number of predictor
variables.

2.4 FSNBLR Estimator

2.4.1 Logit Transformation Model

The logit transformation model is defined as follows.
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m(x;)
In|——— | = f(xq;, ..., Xp;), 31
<1 _ n(xi)> f( 1 pl) ( )

where f is a regression equation or regression function (regression curve) that follows an additive model.
Since

f(x1i, -, Xp;) in Eq. (31) can be approximated by a multivariable Fourier Series function as follows.
p
(x;) 1 S _
In —1 — T[(x-) = Z bjxji + Ean + Z Qgj cos kle- s i=1,2,..n. (32)
' j=1 k=1

By using Eq. (32), FSNBLR model is obtained as follows.

1
exp 2?:1 (b]-xji + 5 Aoj + Zlﬁ:l agj COS kxji)

1
1+ exp 25;1 (bjle- +5a0 + Y -1 agjcos kxji)

w(x;) = ci=12,..,n; (33)

where, bj,agj and a;,j = 1,2,..,p, k = 1,2,..., K are the model parameters of the Fourier Series function.

2.4.2 Likelihood Function I(B)
The form of the likelihood function I(f)
where
B=@by aps @y . agr i i by A A . akp),

is obtained using the Maximum Likelihood Estimation (MLE) method.
n
n Xy,
1@ = [Pt = y0 =m0 (1 - ) (34)
i=1

Parameter estimation in logistic regression can be performed using the MLE method by maximizing
the first derivative of the log likelihood function. The likelihood function Eg. (34) can be easily maximized
as follows In I(B).

2.4.3 Log-Likelihood Function L(f)
KB = B = Q. ymrG1+ ) A=yl —n(x)]
= > e(FCne ) =1L+ exp(f O s 1]} (35)

i=1
The estimator 3 is obtained by partially deriving function Eq. (35) relative to bj, ayj, ax; and then equating
to0

aL(B)
— = =1,2,.
ab] O ) 14 :p:
aL(B)
= =12
da; 0;j 2y, s
dL(B)

The estimator b will be obtained using Eq. (36).

z;{(yi — m(x))x;;} = 0. (36)

The estimator @, will be obtained using Eq. (37).

> - me)=o (37)
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The estimator a,, will be obtained using Eq. (38).

K
z {Z cos kxj; (yl- — n(xl-)) = 0. (38)
i=1

k=1

2.4.4 Newton-Raphson Iteration

The derivative of L(B) Eq. (35) against b;, ay, a;j that has been made in the implicit equation, gives
results that are not closed form, so it is necessary to continue with the numerical iteration method using the
Newton—Raphson method.

BED = BO — (HBO) 9B, (39)
where B is the B of the t-th iteration, t = 1,2,..., is convergent.
pO = (bl(t) a1 ® a;,® .. ag® bp(t) aop(t) alp(t) aKp(t))_

g(B) is the gradient vector of
<6L(If) aL(B) AL(B)  AL(B)  AL(B) AL(B) AL(B) aL(p)>T 40

0b1 ’ 0a01 ’ 0a11 ’ ’ aaKl ’ ’ abp ’ aaop ’ aalp ’ ’ aaKp

gpB) =

and H(p) is the Hessian matrix of 8 in Eg. (40), with the following equation.

[ 0°L(B)  9*L(B) d’L(B)
ab,®?  9byday, dbiday,
*L(B)  I*L(B) 9*L(B)
HB) =| 3ay;0b; dag,? dagdag, |- (41)
9*L(B) 9*L(B) d*L(B)
[day,0b; dak,day, dag,”

The elements of vector g(B) Eq. (40) are obtained from the first derivative of function L(B) with
respect to bj, ayj, axj, While elements of matrix H(B) Eq. (41) are obtained from the second derivative of

function L(B) with respect to b, agy,, Ajy-
Second derivative of L(B) function with respect to b,,

9°L(B) n
Toan =~ D, i m)(1 - mx). (42)
uvvj 1=
In the same manner as Eq. (42), the second derivative of the parameter combination is obtained as follows.
K
0°L(B) n
34,0, = — z z T[(xi)(l - n(xi))xji COS kxul- . (43)
kuYtj i=1 =1
Second derivative of L(f) function with respect to a,,,
d%L(B) 1
m = 1. 17r(xl-) (1 — n(xl-)). (44)
u j i=

In the same manner as Eq. (44), the second derivative of the parameter combination is obtained as follows.

LB _ 1IN N
= _Z Z m(x;) (1 — m(x;)) cos kxy; - (45)

(')aku(')aoj 2 i=1 =1

Second derivative of L(8) function with respect to a;,,
K

2 n =
LB N N sty Y coskrm) (1 nx). (46

aakuaakj i=1k=1 =1
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In the same manner as Eq. (46), the second derivative of the parameter combination is obtained as follows.
K
0*L(B) I

m = — Ezi=1 ,Zl n(xl-)(l — n(xi)) cos kx;j; . 47)
where, b, ag; and ayj, j,u=1,2,..,p,j # u, k = 1,2, ..., K are the model parameters of the Fourier Series
function.
2.4.5 Estimator 8
From the Newton-Raphson iteration equation, B will be obtained when

|pED — p®| < &, £ = 0.000001 (48)

Thus, the estimator £ is given by

~
A

ﬁ = (Bl aol all aKl bp aop alp aKp)'
Based on the result of the estimator 2, FSNBLR model Eq. (49) can be written:

~ 1. o o ~ 1. o o
5(x) exp (blxli + 7401 + @11 €OSXq; + o+ + Agq cOS Kxq; + -+ bpxpi + 5 dop + dqp COS Xp; + -+ + Agp COS pri)
T\X;) =

(49)
~ 1. ~ ~ ~ 1. ~ ~ ’
1+ exp (blxli +7a01 + @11 €COSXq; + -+ Agq COSKxq; + - + bpxpi + 5 dop + d1p COS Xp; + -+ + dgp COS pri)

where, b, @y, and @, are the estimator model of the Fourier Series function for predictor variable x;, while
b,, @y, and @, are for predictor variable x,, K is the number of oscillation parameters and p is the number
of predictor variables.
2.5 Hypothesis Test for Parameter Model

Hypothesis test for parameter model consists of simultaneous and partial tests. Hypothesis test for
simultaneous uses the Likelihood Ratio Test (LRT) and hypothesis test for partial uses the Wald test.
2.5.1 Simultaneous

The simultaneous test is conducted to determine the significance of parameter 6 as a whole or simultaneously,
where 6 is parameters for the model.

Hypothesis:
Hy: 0 =0, =603 =-=0; =-=6,=0,
Hy : There is atleast one 8; # 0.

Statistics test for simultaneous test Eq. (50):

G* = -2 Z:;l [yi In (ngzi)> +(1—-y)In (11__—1T§Zl)>] (50)
Decision:
Reject H, when G2 > )(?W) or p — value < a.
2.5.2 Partial
Hypothesis:
Ho: 6; =0,j=12,..,k;
Hy: 6; #0.
Statistics test for partial test Eq. (51):

we—_ (51)
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Decision:
Reject Hy when W > x¢, ;) or p — value < a.

3. RESULTS AND DISCUSSION

In applying the BLR, BPR, and FSNBLR methods, we use application data the status of diabetes
mellitus. The data used is secondary data sourced from Internal Medicine Clinic of Hajj General Hospital
Surabaya which was carried out during August 2018. The data consists of 1 response variable (y) and 3
predictor variables (x). The variables are detailed in Table 1.

Table 1. Variable Description

Variable Notation Description Unit Scale
Response y Status of _ _ 0= Doesn_’t have Diab_etes Mellitus Nominal
Type 2 Diabetes Mellitus 1 = Has Diabetes Mellitus
X1 Age Year Ratio
Predictor Xy Body Mass Index kg/m? Ratio
X3 Abdominal Circumference cm Ratio

Based on Table 1, these variables were selected based on medical relevance and availability in patient
records at Hajj General Hospital Surabaya. They are used to model the probability of having Type 2 Diabetes
Mellitus using BLR, BPR, and FSNBLR methods. 60 patients consist of 39 patients diagnosed with diabetes
mellitus and 21 non-patients without diabetes mellitus which as shown in Fig. 1.

Doesn't
Diabetes
35.00%

Diabetes
65.00%

Figure 1. Status of Type 2 Diabetes Mellitus

3.1 Descriptive Analytics
Descriptive analysis is used to determine the characteristics of the data for each variable as follows Table 2.

Table 2. Descriptive Statistics of Research Variables

Category Variable Mean StDev Minimum Maximum
s . Age 47.0952 16.4405 17 71
Doesn tl\f;‘l’i‘:ulz'abems IMT 223681  4.47414 16.02 31.25
Abdominal Mass 84.9524 13.1851 64 119
Age 62.9487 8.72066 51 83
Has Diabetes Mellitus IMT 25.5018 3.54516 18.49 33.78
Abdominal Mass 93.6410 8.39952 82 115

Table 2 provides information about the characteristics of the variables, which is the status of diabetes
mellitus. In addition, it is obtained that each variable does not have missing values and there is no
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multicollinearity between predictor variables. The conceptual predictor variable used in this study is as
follows in Fig. 2.

(@ Age :
Identity of a Person (b) Body Mass Index Stat”:ﬂ%f”%ibetes
(c) Abdominal Circumference

Figure 2. Conceptual Diagram of Variables

Based on Fig. 2, diabetes mellitus is a problem that covers many aspects. One of them is identity of a
person. Based on Central Bureau of Statistics, identity of a person consists of age, body mass index, and
abdominal circumference.

We created a scatterplot for each predictor variable that was built into several groups versus the
presentation of the number of has diabetes mellitus (y = 1) in each group to identify the relationship. The
presentation represents the proportion of patients diagnosed with diabetes mellitus relative to the total number
of patients in each group. The scatterplot is presented in Fig. 3 as follows.
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Figure 3. Scatterplots of Several Data Groups Versus the Number of Has Diabetes Mellitus in the Group
(a) Age, (b) Body Mass Index, (c) Abdominal Circumference

Based on Fig. 3, The probability of a has diabetes mellitus (y = 1) for variable x,, x,, and x5 have a
repeating pattern and follows a upward trend line. Thus, the logit function that assumes a linear pattern does
not describe the pattern formed in this case.

For modeling status of diabetes mellitus, we use BLR, BPR, and FSNBLR methods. Parameter
estimation and significant parameter in the model result can be seen as follows.
3.2 BLR Model
The BLR model follows Eq. (9) as follows.

epo?zl(ﬁo‘Fﬁfxﬁ) =12,...,n

m(x;) = 1+exp2f:1(ﬁo+ﬁjxii); S
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where, Bo and B; , j = 1,2, ..., p are the model parameters of the logit function.

3.2.1 Parameter Estimation in BLR Model Results

Based on BLR model in Eq. (16), the results of parameter estimation in the BLR model for data on
diabetes mellitus are as follows.

exp(—11.781 + 0.118x,; + 0.132x,; + 0.026x3;)
1+ exp(—11.781 + 0.118x,; + 0.132x,; + 0.026x3;)

fi(x;) =

3.2.2 Significant Parameter in BLR Model Results

Based on parameter estimation BLR model, the results of significant parameter in the BLR model for
data on diabetes mellitus can be seen in Table 3.

Table 3. Significant Parameter in BLR Model
Estimate Std. Error zvalue Pr(>|z))
Intercept -11.781 440281 -2.676 0.00745

X1 0.118 0.04147 2.847  0.00441
Xy 0.132 0.11749 1.124  0.26102
X3 0.026 0.05101 0.52  0.60282

Table 3 results show that only the age variable is significant in the model. Therefore, age affects a
person's diabetes mellitus status.

3.3 BPR Model
The BPR model is as follows Eq. (18).

o(y) =

1 1 ( )2
exp|—=—=(y —
\2mo? P 20* Y-
3.3.1 Parameter Estimation in BPR Model Results

Based on BPR model in Eq. (30), parameter estimation results on the BPR model for data on diabetes
mellitus are as follows.

P(y; = 1) = ®(6.997 + 0.071x, + 0.078x, + 0.015x)
P(y; =0) =1 — ®(6.997 + 0.071x; + 0.078x, + 0.015x5)

3.3.2 Significant Parameter in BPR Model Results

Based on parameter estimation BPR model, the results of significant parameter in the BPR model for
data on diabetes mellitus can be seen in Table 4.

Table 4. Significant Parameter in BPR Model
Estimate  Std. Error  zvalue Pr(>|z|)

Intercept 6.997 242416  -2.886 0.0039
X1 0.071 0.02263 3.13  0.00175
Xy 0.078 0.06947 1.133  0.25738
X3 0.015 0.02947 0.516  0.60551

Table 4 results show that only variables age are significant in the model. So age affects a person's
diabetes mellitus status.

3.4 FSNBLR Model

3.4.1 Selecting Optimal Oscillation Parameters

The oscillation parameters in the FSNBLR model were selected based on the smallest AIC value. The
number of oscillation parameters used in this study was limited to produce a model that is not too complicated
and provides appropriate significance results. With the help of the R algorithm, the AIC results for each
combination of oscillation parameters in the model are given in Table 5.



BAREKENG: J. Math. & App., vol. 20(1), pp. 0255- 0270, Mar, 2026. 267

Table 5. Minimum AIC Results for Each Number of Oscillation Parameter

Number of Oscillation Parameter Oscillation Parameter Combination AIC (K)
X1 Xy X3

K=1 1 1 1 61.543

K=2 1 2 1 57.837

K=3 1 2 1 57.837

Based on Table 5, the model with a combination of oscillation parameters x; = 1,x, = 2,x3 = 1S
the FSNBLR model with optimal oscillation parameters because it has the smallest AIC value. This
combination was identified by evaluating multiple parameter settings and selecting the one that yielded the
lowest AIC value at each level of oscillation complexity, ensuring the most optimal balance between model
fit and complexity.

3.4.2 Parameter Estimation in FSNBLR Model Results

Based on the FSNBLR model in Eqg. (33), the results of parameter estimation in the FSNBLR model
Eq. (49) for data on diabetes mellitus are as follows.

exp(—15.56 + 0.16x,; + 0.81 cos x; + 0.22x,; — 0.65 cos x,; + 1.40 cos 2x,; + 0.01x5; — 1.40 cos x3;)

) = I exp(—15.56 + 0.16xy, + 0.81cosxy; + 022, — 0.65 cos 4y + 140 cos 2xy; + 0.01x3; — 140 cos x3,)

More details can be seen in Table 6.

Table 6. Parameter Estimation in FSNBLR
Parameters Estimations

Bo -15.564
b, 0.165
aq1 0.813
b, 0.229
Q1,2 -0.659
azo 1.408
b 0.016
a4y -1.401

3.4.3 Significant Parameter in FSNBLR Model Results

Based on parameter estimation FSNBLR model, the results of significant parameter in the FSNBLR
model for data on diabetes mellitus can be seen in Table 7.

Table 7. Significant Parameter in FSNBLR Model
Estimate  Std. Error  zvalue Pr(>|z])

Intercept -15.565 59572  -2.613 0.00898
X1 0.16555 0.05548 2.984 0.00285
X3 0.81312 0.70369 1.156  0.24788
X3 0.2293 0.15428 1.486 0.13721
X4 -0.6596 0.66471  -0.992 0.32105
X5 1.40888 0.65126 2.163 0.03052
X 0.01656 0.05883 0.281 0.77836
X7 -1.40055 0.66829  -2.096 0.03611

Table 7 results show that variables age, body mass index, and abdominal circumference are significant
in the model. Thus, age affects a person’s diabetes mellitus status.

3.5 Comparison of BLR, GWBLR, FSNBLR

3.5.1 Getting the Best Model Based on Deviance Value

The regression model chosen is the model that has the smallest deviance value. Using the deviance
statistical test, the following results are obtained in Table 8.
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Table 8. Comparison of Deviance Values

Methods Deviance Values
BLR 53.007
BPR 52.728
FSNBLR 41.837

Based on Table 8, the deviance value for the FSNBLR (41.837) was smaller than that for the BLR
(53.007) and BPR (52.728). Therefore, the FSNBLR model is the best model for data on the status of diabetes
mellitus because has the smallest deviance value.

Getting the Best Classification Based on AUC & Press's Q Value

The selected FSNBLR model demonstrated the highest AUC or the smallest Press's Q. Using the

classification test, the following results are obtained in Table 9.

Table 9. Comparison of AUC and Press's Q

Methods Accuracy  Sensitivity  Specificity AUC  Press’s Q  Chi Square
BLR 73.33% 42.85% 89.74% 66.30% 13.067 51.829
BPR 73.33% 42.85% 89.74% 66.30% 13.067 51.623

FSNBLR 85% 71.42% 92.31% 81.86% 29.400 49.879

Based on Table 9, case 1 shows that the AUC value of FSNBLR (81.86%) is higher than BLR (66.30%)
and BPR (66.30%). In addition, a larger Press's Q value for FSNBLR (29.400) indicates that the FSNBLR
model can classify well and has a greater chance of rejecting HO or Press's Q > Chi Square. These results are
obtained using diabetes mellitus data from patients at Hajj General Hospital Surabaya. The comparison
through the plot is shown in Fig. 4.
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Figure 4. Comparison of Predicted Values in BLR, BPR, and FSNBLR

Based on Fig. 4, the plots show that the predicted value of the three methods fluctuate and do not
necessarily indicate which method is better. However, for certain cases such as the one used in this article
FSNBLR tends to perform better than BLR and BPR. The FSNBLR is superior as it provides odds estimates
that are close to the actual values in almost all selected observation.

4. CONCLUSION

Based on the discussion that has been described, these findings align with the theoretical advantage of
the FSNBLR model, which incorporates oscillatory components (e.g., cosine functions) to capture nonlinear
and repeating patterns in the data. This makes FSNBLR especially effective for modeling categorical
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response variables influenced by predictors with non-monotonic or cyclical relationships—common in
complex medical data such as diabetes mellitus risk factors.

Based on the data that has been used in this research, the FSNBLR is the best model for status diabetes
mellitus is as follows. The FSNBLR model for categorical data is as follows:

exp(—15.56 + 0.16x; + 0.81 cos xq; + 0.22x,; — 0.65 cos x,; + 1.40 cos 2x,; + 0.01x5; — 1.40 cos x3;)
1+ exp(—15.56 4+ 0.16x4; + 0.81 cos xy; + 0.22x,; — 0.65 cos x; + 1.40 cos 2x,; + 0.01x3; — 1.40 cos x3;)

The deviance value for the FSNBLR model (41.837) is also lower than that of the BLR (53.007) and
BPR (52.728), which further confirms that the FSNBLR model fits the data more effectively. The estimation
of the FSNBLR model has a higher AUC value of 81.86%, so it can be concluded that the FSNBLR provides
a better estimate than BLR and BPR. The accuracy, sensitivity, and specificity value of the FSNBLR model
has a higher value than BLR and BPR. This indicates that the performance of the FSNBLR model is better.

fi(x) =
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