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1. INTRODUCTION

A persymmetric matrix is a special class of matrices with a unique structure. This type of matrix was
first introduced by Arthur Cayley in 1858. A persymmetric matrix has the property that its elements are
symmetric with respect to its lower-left to upper-right diagonal [1]. The concept of persymmetric matrices is
almost similar to that of a centrosymmetric matrix [2| and a Leslie matrix [3].

Some research on persymmetric matrices has advanced over time. The application of persymmetric
matrices can be used in various fields, such as radar detection, graph, fractional analysis, mathematical
physics, and coding theory. In 2008, Pailloux et al. introduced the persymmetric adaptive matched filter for
radar detection by utilizing the properties of a persymmetric matrix [4]|. Subsequently, in 2012, Nouri and
Mahdi used persymmetric matrices to determine the adjacency matrix and Laplacian matrices in graphs [5].
Aleorov et al. (2015) explained that a class of persymmetric matrices generated by boundary value problems
of fractional differential equations has simple and real eigenvalues that play an essential role in fractional
analysis [6].

In 2015, Julio and Soto introduced a new concept called flip transpose, which is an operation on
matrices involving reversing the order of elements along their diagonal. They found a strong correlation
between flip transpose and persymmetric matrices |7]. Building on this conceptual development, Soto et al.
in 2015 discussed nonnegative persymmetric matrices with predetermined elementary divisors, exploring
their properties and construction methods [8].

Next, in 2017, Genest et al. explored isospectral deformations and orthogonal polynomials related to
these matrices, contributing to spectral theory and mathematical physics [9]. In 2020, Vaia discussed a
persymmetric Jacobi matrix with specific eigenvalues and their relevance to the dynamics of mass-spring
chains [10]. Later in 2020, Li and Wang discussed and verified the real eigenvalues of a persymmetric matrix
with validated error bounds [11].

In coding theory, Kim et al. explored the relationship between a persymmetric matrix and the
construction of binary reversible self-dual codes [12|. They discovered that the unique structure of
persymmetric matrices could be utilized to construct binary codes with self-dual property codes that are
identical to their dual but in a reversible form. A new binary reversible self-dual code is constructed from
smaller binary reversible self-dual code. Typically, the construction of reversible self-dual codes relies on ad
hoc algebraic structures or circulant matrices. However, these methods may fail to provide sufficient
flexibility when generalizing to different code lengths or maintaining both self-duality and reversibility
simultaneously. Persymmetric matrices offer a compelling alternative due to their natural antidiagonal
symmetry, which aligns well with the requirements of reversible and self-dual codes. Their well-defined
structure facilitates the enforcement of orthogonality in generator matrices. It enables matrix operations such
as flip, transpose, and column reversal to play a constructive role in code formation.

Reversible self-dual codes have essential applications in coding theory, especially in the context of
error-correcting codes and cryptography to improve encoding/decoding performance and reduce redundancy
[13], [14], [15], and [16]. Additionally, these codes have significant applications in DNA computing, where
the primary goal is to efficiently store and transfer genetic information while minimizing errors caused by
mutations or distortions. These codes play a crucial role in DNA-based data storage and error correction,
especially due to their inherent structure of self-duality and reversibility [17] and [18]. Moreover, reversible
self-dual codes contribute to secure communication systems by enhancing resistance against attacks such as
hardware Trojans, side-channel attacks, and data tampering, owing to their properties, which facilitate secure
and fault-tolerant circuit design [13] and [15].

This paper investigates the structural properties of persymmetric matrices and proposes a novel
construction of binary reversible self-dual codes based on these properties. Unlike previous works that rely
primarily on circulant or double circulant matrices, our method begins with a self-dual code in the standard
form. It generates a new binary reversible self-dual code by embedding a carefully selected persymmetric
matrix. This construction uses flip transpose and column reversal operations to ensure self-duality and
reversibility are preserved. The main contribution of this work is a systematic algebraic framework for
constructing new binary reversible self-dual codes using embedded persymmetric matrices. This offers a new
direction for code design in both theoretical and practical applications.
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2. RESEARCH METHODS

The methodology used in this research article involves conducting a comprehensive literature review
of various relevant articles and books. The method used in this study consists of the following five main
steps:

1. Definition setup: Establish fundamental matrix operations, including flip transpose and column
reversal, which are crucial for recognizing persymmetric properties.

2. Characterization of persymmetric matrices: Analyze and classify persymmetric matrices of small
sizes (2x2, 3x3), and systematically extend the construction to larger sizes.

3. Linking matrices to codes: Utilize the properties of persymmetric matrices to construct generator
matrices for binary self-dual codes, ensuring the orthogonality conditions.

4. Extension techniques: Develop new codes by introducing eigenvector-based perturbations,
maintaining the self-duality and reversibility through carefully designed matrix additions.

5. Verification: Validate the constructions by mathematically checking the self-duality and
reversibility properties and providing explicit examples.

To support these steps, we present the basic concepts and operations related to persymmetric matrices
and demonstrate how they can be used to construct binary reversible self-dual codes.

Definition 1. [12] Let A be a matrix of size m X n denoted by (ai,j )m n' The column reversed matrix of A

is A" = (am’n_j+1 )mxn'

We denote the column reversed matrix of the identity matrix of size n X n by R,,. Therefore, the column
reversed matrix of a square matrix A of size n X n can be expressed as follows:

A" = AR,.
Example 1. Consider the matrix A as follows:
_(1 2
a=( A 5).
Subsequently, we get
r_ (2 1
A= (5 4)'

where

r_ (2 1\ _ (1 2y/0 1y _
AT = (5 4) - (4 5)(1 0) = ARy
Definition 2. |7] Let A be a matrix of size m X n denoted by (ai_]- )m ' The flip transpose of matrix A is
F — . .
A" = (an—j+1,m—1+1 )n xm’
The flip transpose matrix of a square matrix A of size n X n can also be expressed as follows:
AF = R,ATR,,

where AT is the transpose of matrix A. Also, the flip transpose matrix of a column vector x” can be expressed
as follows:

x"F =R, x.

=3 o)

Example 2. Given the matrix A as follows:

Then,

AF = R,ATR, = (i i)
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Next, we discuss the main terminology in coding theory, taken from [19]. A binary linear code C of
length n is a subspace of FJ!. A dual code of C is defined by

Ct={x€e F} | x-c=0Vce C}.

The code C is said to be a self-dual if C = C+. A generator matrix of linear code C is a matrix whose
rows form a basis of C. A binary linear code C of length n and dimension k, with generator G, can be stated
as follows:

C = {wG |w € F}}.
The standard generator matrix of code C is defined by,
G = (Ik A)’

where G is a matrix of size k X n, I is the identity matrix of size k X k, and A is a matrix of size k X (n —
k). The following theorem describes the sufficient and necessary conditions of the generator matrix of a
binary self-dual code.

Theorem 1. [19] Let C be a binary linear code of length 2n with generator matrix
G = (I, A).

Then C is self-dual if and only if AAT = I,,.

In other words, Theorem 1 states that the matrix A is orthogonal.

Definition 3. [20] Let C be a binary linear code with length n digit. C is said to be a binary reversible code
iffor all ¢ = (cq, €3, ) Cn_1,Cn) € C, the codeword ¢ = (¢, Cp_1, -.,C2,¢1) E C.

3. RESULTS AND DISCUSSION

This section discusses further relations between persymmetric matrices and the construction of a binary
reversible self-dual code.

3.1 Properties of Persymmetric Matrix
We study the definition of a persymmetric matrix and the general form of such a matrix.
Definition 4. |7] Let A be a square matrix of size n X n . A is said to be a persymmetric matrix if A = AF.

Example 3. Given a square matrix A as follow:

9 2 5
A=(4 -3 2|
5 4 9
Then, A is a persymmetric matrix because
AF = R3ATR3

0 0 1N/9 4 5,0 0 1
2(0 1 0)(2 -3 4)(0 1 O)
1 0 0/\5 2 9/\1 0 O
9 2 5
=(4—32>
5 4 9

= A.

Next, we present the general forms of the 2x2 and 3x3 persymmetric matrices, which will be
constructed in the following lemma.

Lemma 1. Let A and B be square matrices of sizes 2 X 2 and 3 X 3, respectively. If A and B are in the form

4= o
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then the matrices A and B are persymmetric.

Proof. Consider that,

= ) oG o)

0 NE

Thus, by Definition 4, the matrix A is persymmetric. Similarly, it can be shown that B is also
persymmetric. m

Example 4. Given the matrices A and B as follows,

4= (5 1)

2 3 3
B = (4 5 3).
3 4 2

Here, the matrices A and B are persymmetric according to Lemma 1.

Subsequently, the form of persymmetric matrices of sizes 2 X 2 and 3 X 3 can be extended to larger
sizes in the following lemma.

Lemma 2. Let A, B and C be square matrices of size n X n. If B and C are persymmetric, then
_ (A C
E=( a)
is persymmetric matrix of size 2n X 2n.

Proof. We obtain the flip transpose of matrix E,

EF = Ryn (g XF)T Ryn

_ (On R\ (AT BT \(On Ry
N (Rn On) (CT (AT)F) (Rn 0n>
_(Rn(AF)TRn RnCTRn>
~\ R,BTR, R,ATR,

_ (A C )
B AF
=E.
Since E = EF, by Definition 4, E is persymmetric. m
Corollary 1. Let A be a square matrix of size n X n. If X and y are eigenvectors of A and AF, respectively,

0
then (3) and (y) are eigenvectors of (gl AOF) where O is the zero matrix of size n X n.

Proof. Assume that x and y are eigenvectors of A4 and AF, respectively. Then,
AX = 41X,

where 4, is an eigenvalue of A. Also,
ATy = Ay,

where A, is an eigenvalue of AF.

Now, consider the following computation:
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(6 =G »E)
(29

(")
=11 ().

Thus, x = (3) is an eigenvector of (g AOF)

Similarly, for eigenvector (g) , we have

G PE)=G P06

0\ . . A O
Therefore, (y) is an eigenvector of ( 0 ) [ ]

AF
Example 5. Consider the square matrix A given by
_ (1 2
a=(, 3)
By Lemma 2, we can construct a persymmetric matrix of size 4 X 4 as follows:
1 2 0 0
_ (A 0\ _ 0 3 00
E_(O AF)_ 0 0 3 2Ff
0 0 0 1

Here, the zero matrix is persymmetrix. Now, consider the eigenvectors of the matrix A are x4 = ((1))

and x, = (D each corresponding to the eigenvalues A; = 1 and 4, = 3, respectively. Meanwhile, the
eigenvectors of the matrix A" are y; = (_11) and y, = (é) each corresponding to the eigenvalues A; =
1
1 and 4, = 3, respectively. By Corollary 1, the eigenvectors of the matrix E are ():)1) = g , ():)2) =
0
1 0 0
1 0 ) | 0 ( 0 ) 10 : X ( 0 ) . _
o) (Y1 =\ 1 | and v.) = 1] The eigenvectors ( 0) and vy correspond to the eigenvalue A5 =
0 1 0
1. Subsequently, the eigenvectors ();)2) and (;,) ) correspond to the eigenvalue g = 3. These results can be
2

verified as follows:

ey

VN

o X

N——

|
SO O
OO WwWnN
O W oo
=N O O
OO O =

I
OO O

I

—_

VN

o X

N——

|

PN

vl

VN

o X

N———
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0 0
0 0 0 0 0
E(y,) = =3 ]=3() =2(y.)
\f) 1 3 A e \y,
0 0 0 1 0 0

For the other eigenvectors of E can be verified in the same way.

S O -

2
3
0

w o o

0
0
2

We now construct a persymmetric matrix of odd order, with the result given in the following lemma.

Lemma 3. Let A be a square matrix of size n X n, B and C be the persymmetric matrices of size n X n.
Suppose X,y € C" and ais a constant. Then, the following matrix D is persymmetric matrix of size
Cn+1)x(2n+1).

A X C
D=|yT a xF
B (yF)T AF

Proof. We first note that for (x*)T € C", it can be expressed as
xHT = Rx.
From this, we obtain the relation
xf =xTR, & xfR, = x.

Now, we compute the flip transpose of D.

A x c\
DF = R21’L+1 yT a XF R2n+1
B (yF)T AF
0 0 Ry /AT 'y BT 0 0 R,
= <0 1 0> xI'  «a yF (0 1 0)
R, 0 0/\cT AT 4T/ \R, 0 O
0 0 R,/ BR, y AR,
= <O 1 0) yFR, a x'R,
R, O O (ANTR, xPT CTR,

Ry(A")R, Ry(x")"T  Rn,CTRy

= yFR, a x'R,
R.(B)"R, Rny R,ATRy
A X c

=|yT a xF
B (yF)T AF

= D.
Since Df = D, by Definition 4, D is persymmetric matrix of size (2n + 1) X 2n+1). m
Example 6. Given the square matrices 4, B, and C, along with vectors X,y € R?, and a scalar « as follows:
_(1 2 _(2 1 _(3 4
A= (3 4)'13 N (1 32) ¢= (1 3)'
X= (0)' y= (4)' @=3.

Here, the matrices B and C are persymmetric. By Applying [.emma 3, we obtain the following persymmetric
matrix D.

1 2 1 3 4
A x C 3 4 0 1 3
p=(y" a Xxf|=|3 4 3 01
B (yhHT Aaf 2 1 4 4 2
1 2 3 3 1
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3.2 The Application of the Persymmetric Matrix in Coding Theory

This section discusses constructing binary reversible self-dual codes associated with a persymmetric
matrix. First, we present the construction results from previous research. Then, we introduce a new theorem.

Lemma 4. [12] Let A be a square matrix of size n X n and A" be the column reversed matrix of A. Then,
the following two statements imply a third:

1. A s an orthogonal matrix.
2. (AN =1,
3. Ais a persymmetric matrix.

According to Theorem 1, the submatrix in the standard form of the generator matrix of a binary self-
dual code is orthogonal. Therefore, this lemma establishes a connection between persymmetric and
orthogonal matrices.

Example 7. Consider the matrix A = ((1) _01

ar=(3 ) )=t

). Note that,

and
(47)2 = (‘01 (1’) — I,

Since AAT = I, and (A")? = I,, it follows from Lemma 4 that the matrix A4 is a persymmetric matrix.
This can be explicitly verified as follows:

1 =rare= (7 )0y o) o)=( ) =4

By applying LLemma 4, we establish the properties of a binary reversible self-dual code, as stated in
the following lemma.

Lemma 5. [12] Let C be a binary self-dual code of length 2n with generator matrix G = (I, A). The code
C is reversible if and only if it satisfies one of the following conditions.

1. (AN? =1,.
2. Ais a persymmetric matrix.

Because C is a self-dual code, then A is an orthogonal matrix. By Lemma 4, both conditions are
satisfied if at least one of them holds. This property is crucial because it provides a practical criterion to
ensure the reversibility of self-dual codes, facilitating the construction of such codes with predictable
structural behavior. This motivates the construction of binary reversible self-dual codes.

Theorem 2. [12] Let (I, A) be the generator matrix of a binary reversible self-dual code of length 2n.
Suppose the column vector X = (x;) is an eigenvector of A" with odd weight and E = xx¥. Then, the matrix

C = (In 0 x A+E )
0 1 0 xF
generates a binary reversible self-dual code of length 2n + 2.

Example 8. Given a reversible self-dual code of length 4 digits that has the following generator matrix,

G=( 000

01 1 0
This matrix can be written in the form G = (I, A). Hence,
1 0
T —
A= ( 0 1)'

If the eigenvectors of A” with odd weight are computed, the result is

()
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So, we get
E=xxI'= ( (1) 8)

By applying Theorem 2, we can construct a binary reversible self-dual code of length 6, denoted as
C’, with the following generator matrix.

100 0 0 1

I, 0 A+E
G'=(021;‘ J’F)=<010100>
X 0010 10

Then, elements of C' are

¢, = 000000  ¢5 = 100001
c; = 001010  cg = 101011
c3 = 010100 ¢, = 110101
cy = 011110 cg =111111.
Furthermore, every element ¢” of C' are in C’ since,

cf=c¢; ¢ =cs5

C;=¢3 C5=¢;

ct=c, ch=c¢g

s

c, =C4 C§=Cg.

In 2020, Kim et al. was constructed a binary reversible self-dual code of length 2n from a self-dual
code of length n in its general form as follows:

Proposition 1. [12] If G is a generator matrix of a self-dual code of length n, then
r_ (G 0
¢ = (0 GT)
generates a reversible self-dual code of length 2n.

Based on Proposition 1, the generator matrix of G’ in general form, then not every matrix G’ can be
associated with a persymmetric matrix. However, G’ can be associated with a persymmetric matrix if G’ in
the standard form. Therefore, we construct the generator matrix of the reversible self-dual code in the standard
form as follows:

Theorem 3. If (I, A) is the generator matrix of a binary self-dual code of length 2n, then
I, 0 A O
a=( /)
O I, 0 A
generates a binary reversible self-dual code of length 4n.

Proof. Let
_ (A O
D= (5 )
Since (I, A) is the generator matrix of a binary self-dual code then AAT = I,,. By Definition 4, we obtain
AF(AP)T = R,ATR,R,AR,,

= R,ATAR,

= RplhRy

=I,.

Thus, we compute
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o= (5 2 )

(6 (o uy)

(6 waary)

= I
and DF = D. Based on Lemma 5, G generates a binary reversible self-dual code of length 4n. m

Example 9. Given a self-dual code C of length 4 with generator matrix as follows:
(1 0 0 1
b= (o 11 0)'

According to Theorem 3, we can construct a binary reversible self-dual code of length 8, denoted as C’, with
the following generator matrix.

100 00 1 0 0
G_(IZOAO)_()lOOlOOO
“\o I, o AF)7\lo 0 1 0 0 0 0 1

000 10010

Thus, the elements of the code C’ are as follows:

¢; = 00000000 ¢ = 01001000 ¢y = 10000100 ¢;3 = 11001100
¢, =00010010 ¢4 = 01011010 ¢;0 = 10010110 ¢;, = 11011110
c; = 00100001 ¢, = 01101001 ¢;; = 10100101 ¢, = 11101101
c, = 00110011 g =01111011 ¢;, = 10110111 ¢4 = 11111111,

Additionally, the reverse of each codeword is always contained in C’, as shown below.

T — T — /S r o —
€ =¢ Cg=C C =C3 C3=0¢C4
T — T — V- A—
C; =Cs C =C¢ € =0C; Cy4=Cg
/- r r o A—
C3 = Cg C7 =€ €11 =€C11 €15 =2Cy2

T — T — Y A— A—
€y =Cy3 Cg = C14 €12 = €15 €15 = Cq6-

4. CONCLUSION

A persymmetric matrix is a square matrix equal to its flip transpose. Some large sizes of persymmetric
matrices can be constructed from smaller ones. Based on these properties, we have constructed a new binary
reversible self-dual code of length 4n, by using generator matrices in the standard form. This construction
from a self-dual code of length 2n. However, this construction does not guarantee that all resulting codes are
optimal or feasible for practical communication systems. Limitations such as decoding complexity, minimum
distance, or code performance under real-world noise conditions need further analysis. In addition, the
method has been applied only to binary fields and specific matrix configurations. As future research
suggestions, this framework can be extended to other classes of structured matrices, such as centrosymmetric
or Toeplitz matrices, or adapted to other finite fields. Moreover, performance evaluation of the constructed
codes in practical applications, such as secure communication or DNA data storage, is a promising area to
explore. Incorporating error-detection and correction codes into the construction process may also enhance
the applicability of the resulting codes.
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