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 ABSTRACT 

Article History: 
A persymmetric matrix is a square matrix that is symmetric concerning its antidiagonal. This 

article discusses some characteristics of a persymmetric matrix and its application in coding 

theory. A persymmetric matrix is used to form a generator matrix of binary reversible self-dual 

codes. A binary reversible self-dual code is a self-dual code whose reverse element is contained 
in the code. The methodology involves the implementation of flip transpose and column reversal 

to ensure the generator matrix satisfies both self-duality and reversibility. We begin with small-

sized persymmetric matrices (e.g., 2×2 and 3×3) to extend the construction of the larger 

matrices. Combining a self-dual code and a reversible self-dual code of shorter length, and 
embedding persymmetric blocks, we construct new binary reversible self-dual codes of longer 

length. The novelty of this research lies in developing a new construction method for binary 

reversible self-dual codes derived directly from self-dual codes in the standard form, which has 

not been explicitly addressed in previous studies. 
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1. INTRODUCTION 

A persymmetric matrix is a special class of matrices with a unique structure. This type of matrix was 

first introduced by Arthur Cayley in 1858. A persymmetric matrix has the property that its elements are 

symmetric with respect to its lower-left to upper-right diagonal [1]. The concept of persymmetric matrices is 

almost similar to that of a centrosymmetric matrix [2] and a Leslie matrix [3]. 

Some research on persymmetric matrices has advanced over time. The application of persymmetric 

matrices can be used in various fields, such as radar detection, graph, fractional analysis, mathematical 

physics, and coding theory. In 2008, Pailloux et al. introduced the persymmetric adaptive matched filter for 

radar detection by utilizing the properties of a persymmetric matrix [4]. Subsequently, in 2012, Nouri and 

Mahdi used persymmetric matrices to determine the adjacency matrix and Laplacian matrices in graphs [5]. 

Aleorov et al. (2015) explained that a class of persymmetric matrices generated by boundary value problems 

of fractional differential equations has simple and real eigenvalues that play an essential role in fractional 

analysis [6].  

In 2015, Julio and Soto introduced a new concept called flip transpose, which is an operation on 

matrices involving reversing the order of elements along their diagonal. They found a strong correlation 

between flip transpose and persymmetric matrices [7]. Building on this conceptual development, Soto et al. 

in 2015 discussed nonnegative persymmetric matrices with predetermined elementary divisors, exploring 

their properties and construction methods [8].  

Next, in 2017, Genest et al. explored isospectral deformations and orthogonal polynomials related to 

these matrices, contributing to spectral theory and mathematical physics [9]. In 2020, Vaia discussed a 

persymmetric Jacobi matrix with specific eigenvalues and their relevance to the dynamics of mass-spring 

chains [10]. Later in 2020, Li and Wang discussed and verified the real eigenvalues of a persymmetric matrix 

with validated error bounds [11]. 

In coding theory, Kim et al. explored the relationship between a persymmetric matrix and the 

construction of binary reversible self-dual codes [12]. They discovered that the unique structure of 

persymmetric matrices could be utilized to construct binary codes with self-dual property codes that are 

identical to their dual but in a reversible form. A new binary reversible self-dual code is constructed from 

smaller binary reversible self-dual code. Typically, the construction of reversible self-dual codes relies on ad 

hoc algebraic structures or circulant matrices. However, these methods may fail to provide sufficient 

flexibility when generalizing to different code lengths or maintaining both self-duality and reversibility 

simultaneously. Persymmetric matrices offer a compelling alternative due to their natural antidiagonal 

symmetry, which aligns well with the requirements of reversible and self-dual codes. Their well-defined 

structure facilitates the enforcement of orthogonality in generator matrices. It enables matrix operations such 

as flip, transpose, and column reversal to play a constructive role in code formation. 

Reversible self-dual codes have essential applications in coding theory, especially in the context of 

error-correcting codes and cryptography to improve encoding/decoding performance and reduce redundancy 

[13], [14], [15], and [16].  Additionally, these codes have significant applications in DNA computing, where 

the primary goal is to efficiently store and transfer genetic information while minimizing errors caused by 

mutations or distortions. These codes play a crucial role in DNA-based data storage and error correction, 

especially due to their inherent structure of self-duality and reversibility [17] and [18]. Moreover, reversible 

self-dual codes contribute to secure communication systems by enhancing resistance against attacks such as 

hardware Trojans, side-channel attacks, and data tampering, owing to their properties, which facilitate secure 

and fault-tolerant circuit design [13] and [15]. 

This paper investigates the structural properties of persymmetric matrices and proposes a novel 

construction of binary reversible self-dual codes based on these properties. Unlike previous works that rely 

primarily on circulant or double circulant matrices, our method begins with a self-dual code in the standard 

form. It generates a new binary reversible self-dual code by embedding a carefully selected persymmetric 

matrix. This construction uses flip transpose and column reversal operations to ensure self-duality and 

reversibility are preserved. The main contribution of this work is a systematic algebraic framework for 

constructing new binary reversible self-dual codes using embedded persymmetric matrices. This offers a new 

direction for code design in both theoretical and practical applications. 
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2. RESEARCH METHODS 

The methodology used in this research article involves conducting a comprehensive literature review 

of various relevant articles and books. The method used in this study consists of the following five main 

steps: 

1. Definition setup: Establish fundamental matrix operations, including flip transpose and column 

reversal, which are crucial for recognizing persymmetric properties. 

2. Characterization of persymmetric matrices: Analyze and classify persymmetric matrices of small 

sizes (2×2, 3×3), and systematically extend the construction to larger sizes. 

3. Linking matrices to codes: Utilize the properties of persymmetric matrices to construct generator 

matrices for binary self-dual codes, ensuring the orthogonality conditions. 

4. Extension techniques: Develop new codes by introducing eigenvector-based perturbations, 

maintaining the self-duality and reversibility through carefully designed matrix additions. 

5. Verification: Validate the constructions by mathematically checking the self-duality and 

reversibility properties and providing explicit examples. 

To support these steps, we present the basic concepts and operations related to persymmetric matrices 

and demonstrate how they can be used to construct binary reversible self-dual codes.  

Definition 1. [12] Let 𝐴 be a matrix of size 𝑚 × 𝑛 denoted by (𝑎𝑖,𝑗  )𝑚 ×𝑛.  The column reversed matrix of 𝐴  

is 𝐴𝑟 = (𝑎𝑚,𝑛−𝑗+1 )𝑚×𝑛.    

We denote the column reversed matrix of the identity matrix of size 𝑛 × 𝑛 by 𝑅𝑛. Therefore, the column 

reversed matrix of a square matrix 𝐴 of size 𝑛 × 𝑛 can be expressed as follows: 

𝐴𝑟 =  𝐴𝑅𝑛. 

Example 1. Consider the matrix 𝐴 as follows: 

𝐴 = (
1 2
4 5

). 

Subsequently, we get  

𝐴𝑟 = (
2 1
5 4

), 

where  

𝐴𝑟 = (
2 1
5 4

) =  (
1 2
4 5

) (
0 1
1 0

) = 𝐴𝑅2.  

Definition 2. [7] Let 𝐴 be a matrix of size 𝑚 × 𝑛 denoted by (𝑎𝑖,𝑗 )𝑚 ×𝑛.  The flip transpose of matrix 𝐴 is  

𝐴𝐹 = (𝑎𝑛−𝑗+1,𝑚−𝑖+1 )𝑛 ×𝑚. 

The flip transpose matrix of a square matrix 𝐴 of size 𝑛 × 𝑛 can also be expressed as follows: 

𝐴𝐹 = 𝑅𝑛𝐴
𝑇𝑅𝑛, 

where 𝐴𝑇 is the transpose of matrix 𝐴.  Also, the flip transpose matrix of a column vector 𝐱𝑇 can be expressed 

as follows: 

(𝐱𝑇)𝐹 = 𝑅𝑛 𝐱. 

Example 2. Given the matrix 𝐴 as follows: 

𝐴 = (
1 2
4 5

). 

Then,  

𝐴𝐹 = 𝑅2𝐴
𝑇𝑅2 = (

5 2
4 1

). 
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Next, we discuss  the main terminology in coding theory, taken from [19]. A binary linear code 𝐶 of 

length 𝑛 is a subspace of 𝐹2
𝑛. A dual code of 𝐶 is defined by  

𝐶⊥ = { 𝐱 ∈  𝐹2
𝑛  |  𝐱 ∙ 𝐜 = 0 ∀𝐜 ∈  𝐶 }. 

The code 𝐶 is said to be a self-dual if 𝐶 = 𝐶⊥.  A generator matrix of linear code 𝐶 is a matrix whose 

rows form a basis of 𝐶. A binary linear code 𝐶 of length 𝑛 and dimension 𝑘, with generator 𝐺, can be stated 

as follows: 

𝐶 = {𝐰𝐺 |𝐰 ∈ 𝐹2
𝑘}. 

The standard generator matrix of code 𝐶 is defined by, 

𝐺 = (𝐼𝑘  𝐴), 

where 𝐺 is a matrix of size 𝑘 × 𝑛,  𝐼𝑘 is the identity matrix of size 𝑘 × 𝑘, and 𝐴 is a matrix of size 𝑘 × (𝑛 −
𝑘). The following theorem describes the sufficient and necessary conditions of the generator matrix of a 

binary self-dual code. 

Theorem 1. [19] Let 𝐶 be a binary linear code of length 2𝑛 with generator matrix  

𝐺 = (𝐼𝑛  𝐴). 

Then 𝐶 is self-dual if and only if 𝐴𝐴𝑇 = 𝐼𝑛. 

In other words, Theorem 1 states that the matrix 𝐴 is orthogonal. 

Definition 3. [20] Let 𝐶 be a binary linear code with length 𝑛 digit. 𝐶 is said to be a binary reversible code 

if for all 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑛−1, 𝑐𝑛) ∈ 𝐶,  the codeword  𝒄𝑟 = (𝑐𝑛, 𝑐𝑛−1, … , 𝑐2, 𝑐1) ∈ 𝐶. 

3. RESULTS AND DISCUSSION 

This section discusses further relations between persymmetric matrices and the construction of a binary 

reversible self-dual code.  

3.1 Properties of Persymmetric Matrix 

We study the definition of a persymmetric matrix and the general form of such a matrix.  

Definition 4. [7] Let 𝐴 be a square matrix of size 𝑛 × 𝑛 . 𝐴 is said to be a persymmetric matrix if  𝐴 = 𝐴𝐹. 

Example 3. Given a square matrix 𝐴 as follow: 

𝐴 = (
9 2 5
4 −3 2
5 4 9

). 

Then, 𝐴 is a persymmetric matrix because  

𝐴𝐹 = 𝑅3𝐴
𝑇𝑅3 

= (
0 0 1
0 1 0
1 0 0

)(
9 4 5
2 −3 4
5 2 9

)(
0 0 1
0 1 0
1 0 0

) 

= (
9 2 5
4 −3 2
5 4 9

) 

= 𝐴. 

Next, we present the general forms of the 2×2 and 3×3 persymmetric matrices, which will be 

constructed in the following lemma. 

Lemma 1.  Let 𝐴 and 𝐵 be square matrices of sizes 2 × 2 and 3 × 3, respectively. If 𝐴 and 𝐵 are in the form  

 

𝐴 = (
𝑎 𝑐
𝑏 𝑎

),  
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 𝐵 = (
𝑎 𝑏 𝑐
𝑑 𝑒 𝑏
𝑐 𝑑 𝑎

), 

then the matrices 𝐴 and 𝐵 are persymmetric. 

Proof. Consider that, 

𝐴𝐹 = 𝑅2𝐴
𝑇𝑅2 

= (
0 1
1 0

) (
𝑎 𝑏
𝑐 𝑎

) (
0 1
1 0

) 

= (
0 1
1 0

) (
𝑏 𝑎
𝑎 𝑐

) 

= (
𝑎 𝑐
𝑏 𝑎

) 

= 𝐴. 

Thus, by Definition 4, the matrix 𝐴 is persymmetric. Similarly, it can be shown that 𝐵 is also 

persymmetric. ∎ 

Example 4.  Given the matrices 𝐴 and 𝐵 as follows, 

𝐴 =  (
1 2
3 1

), 

 𝐵 =  (
2 3 3
4 5 3
3 4 2

). 

Here, the matrices 𝐴 and 𝐵 are persymmetric according to Lemma 1. 

Subsequently, the form of persymmetric matrices of sizes 2 × 2 and 3 × 3 can be extended to larger 

sizes in the following lemma. 

Lemma 2.  Let  𝐴,𝐵 and 𝐶 be square matrices of size 𝑛 × 𝑛.  If 𝐵 and 𝐶 are persymmetric, then  

𝐸 = (
𝐴 𝐶
𝐵 𝐴𝐹

) 

is persymmetric matrix of size 2𝑛 × 2𝑛.   

Proof. We obtain the flip transpose of matrix 𝐸,  

𝐸𝐹 = 𝑅2𝑛 (
𝐴 𝐶
𝐵 𝐴𝐹

)
𝑇

𝑅2𝑛 

                                   =  (
𝑂𝑛 𝑅𝑛
𝑅𝑛 𝑂𝑛

) (
𝐴𝑇 𝐵𝑇

𝐶𝑇 (𝐴𝑇)𝐹
) (
𝑂𝑛 𝑅𝑛
𝑅𝑛 𝑂𝑛

) 

                                = (
𝑅𝑛(𝐴

𝐹)𝑇𝑅𝑛 𝑅𝑛𝐶
𝑇𝑅𝑛

𝑅𝑛𝐵
𝑇𝑅𝑛 𝑅𝑛𝐴

𝑇𝑅𝑛
) 

                               = (
𝐴 𝐶
𝐵 𝐴𝐹

) 

                               = 𝐸. 

Since 𝐸 = 𝐸𝐹 , by Definition 4, 𝐸 is persymmetric. ∎ 

Corollary 1. Let 𝐴 be a square matrix of size  𝑛 × n.  If x and  𝐲 are eigenvectors of 𝐴 and 𝐴𝐹, respectively, 

then (
𝐱
𝟎
) and  (

𝟎
𝐲
) are eigenvectors of  (

𝐴 𝑂
𝑂 𝐴𝐹

), where 𝑂 is the zero matrix of size 𝑛 × 𝑛. 

Proof. Assume that 𝐱 and 𝐲 are eigenvectors of 𝐴 and 𝐴𝐹, respectively. Then, 

𝐴𝐱 = 𝜆1𝐱,  

where 𝜆1 is an eigenvalue of 𝐴.  Also,   

𝐴𝐹𝐲 = 𝜆2𝐲, 

where 𝜆2 is an eigenvalue of 𝐴𝐹. 

Now, consider the following computation: 
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(
𝐴 𝑂
𝑂 𝐴𝐹

) (
𝐱
𝟎
) = (

𝐴 𝑂
𝑂 𝐴𝐹

) (
𝐱
𝟎
)

= (
𝐴𝐱
𝟎
)

=  (
𝜆1𝐱
𝟎
)

= 𝜆1 (
𝐱
𝟎
) .

 

Thus, 𝐱 = (
𝐱
𝟎
)  is an eigenvector of  (

𝐴 𝑂
𝑂 𝐴𝐹

). 

Similarly, for eigenvector  (
𝟎
𝐲
) , we have 

(
𝐴 𝑂
𝑂 𝐴𝐹

) (
𝟎
𝐲
) = (

𝐴 𝑂
𝑂 𝐴𝐹

) (
𝟎
𝐲
)

= (
𝟎
𝐴𝐹𝐲

)

= (
𝟎
𝜆2𝐲

)

= 𝜆2 (
𝟎
𝐲
) .

 

Therefore, (
𝟎
𝐲
) is an eigenvector of (

𝐴 𝑂
𝑂 𝐴𝐹

). ∎ 

Example 5.  Consider the square matrix 𝐴 given by 

𝐴 = (
1 2
0 3

). 

By Lemma 2, we can construct a persymmetric matrix of size 4 × 4 as follows: 

𝐸 = (
𝐴 𝑂
𝑂 𝐴𝐹

) =   (  

1 2 0 0
0 3 0 0
0 0 3 2
0 0 0 1

). 

Here, the zero matrix is persymmetrix. Now, consider the eigenvectors of the matrix 𝐴 are 𝐱1 =  (
1
0
) 

and 𝐱2 = (
1
1
) each corresponding to the eigenvalues  𝜆1 = 1 and 𝜆2 = 3, respectively. Meanwhile, the 

eigenvectors of the matrix 𝐴𝐹 are 𝐲1 = (
−1
1
) and  𝐲2 = (

1
0
)  each corresponding to the eigenvalues  𝜆3 =

1 and 𝜆4 = 3, respectively. By Corollary 1, the eigenvectors of the matrix 𝐸 are (
𝐱1
𝟎
) = (

1
0
0
0

) ,  (
𝐱2
𝟎
) =

(

1
1
0
0

), (
𝟎
𝐲1
) = (

0
0
−1
1

), and (
𝟎
𝐲2
) = (

0
0
1
0

). The eigenvectors (
𝐱1
𝟎
) and (

𝟎
𝐲1
) correspond to the eigenvalue 𝜆5 =

1. Subsequently, the eigenvectors  (
𝐱2
𝟎
) and (

𝟎
𝐲2
) correspond to the eigenvalue 𝜆6 = 3. These results can be 

verified as follows: 

𝐸 (
𝐱1
𝟎
) = (  

1 2 0 0
0 3 0 0
0 0 3 2
0 0 0 1

)(

1
0
0
0

)  = (

1
0
0
0

) = 1 (
𝐱1
𝟎
) = 𝜆5 (

𝐱1
𝟎
).  
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𝐸 (
𝟎
𝐲2
) = (  

1 2 0 0
0 3 0 0
0 0 3 2
0 0 0 1

)(

0
0
1
0

)  = (

0
0
3
0

) = 3 (
𝟎
𝐲2
) = 𝜆6 (

𝟎
𝐲2
).  

For the other eigenvectors of 𝐸 can be verified in the same way. 

We now construct a persymmetric matrix of odd order, with the result given in the following lemma. 

Lemma 3.  Let 𝐴 be a square matrix of size 𝑛 × 𝑛, 𝐵 and 𝐶 be the persymmetric matrices of size 𝑛 × 𝑛. 
Suppose 𝐱, 𝐲 ∈ ℂ𝑛 and 𝛼 is a constant. Then, the following matrix 𝐷 is persymmetric matrix of size                                    

(2𝑛 + 1) × (2𝑛 + 1). 

𝐷 = (

𝐴 𝐱 𝐶
𝐲𝑇 𝛼 𝐱𝐹

𝐵 (𝐲𝐹)𝑇 𝐴𝐹
) . 

Proof.  We first note that for (𝐱𝐹)𝑇  ∈ ℂ𝑛,  it can be expressed as  

(𝐱𝐹)𝑇 = 𝑅𝑛𝐱. 

From this, we obtain the relation 

𝐱𝐹 = 𝐱𝑇𝑅𝑛 ⟺ 𝐱𝐹𝑅𝑛 = 𝐱
𝑇. 

Now, we compute the flip transpose of 𝐷.  

𝐷𝐹 = 𝑅2𝑛+1(

𝐴 𝐱 𝐶
𝐲𝑇 𝛼 𝐱𝐹

𝐵 (𝐲𝐹)𝑇 𝐴𝐹
)

𝑇

𝑅2𝑛+1

       =   (
𝑂 𝑂 𝑅𝑛
𝑂 1 𝑂
𝑅𝑛 𝑂 𝑂

)(

𝐴𝑇 𝐲 𝐵𝑇

𝐱𝑇 𝛼 𝐲𝐹

𝐶𝑇 (𝐱𝐹)𝑇 (𝐴𝐹)𝑇
)(

𝑂 𝑂 𝑅𝑛
𝑂 1 𝑂
𝑅𝑛 𝑂 𝑂

)

       =   (
𝑂 𝑂 𝑅𝑛
𝑂 1 𝑂
𝑅𝑛 𝑂 𝑂

)(

𝐵𝑇𝑅𝑛 𝐲 𝐴𝑇𝑅𝑛
𝐲𝐹𝑅𝑛 𝛼 𝐱𝑇𝑅𝑛
(𝐴𝐹)𝑇𝑅𝑛 (𝐱𝐹)𝑇 𝐶𝑇𝑅𝑛 

)

       =  (

𝑅𝑛(𝐴
𝐹)𝑇𝑅𝑛 𝑅𝑛(𝐱

𝐹)𝑇 𝑅𝑛𝐶
𝑇𝑅𝑛

𝐲𝐹𝑅𝑛 𝛼 𝐱𝑇𝑅𝑛
𝑅𝑛(𝐵)

𝑇𝑅𝑛 𝑅𝑛𝐲 𝑅𝑛𝐴
𝑇𝑅𝑛 

)

       =  (

𝐴 𝐱 𝐶
𝐲𝑇 𝛼 𝐱𝐹

𝐵 (𝐲𝐹)𝑇 𝐴𝐹
)

       =  𝐷.

 

Since 𝐷𝐹 = 𝐷, by Definition 4, 𝐷 is persymmetric matrix of size (2𝑛 + 1) × (2𝑛 + 1). ∎ 

Example 6. Given the square matrices 𝐴, 𝐵, and 𝐶, along with vectors 𝐱, 𝐲 ∈ ℝ2, and a scalar 𝛼 as follows: 

𝐴 = (
1 2
3 4

),  𝐵 = (
2 1
1 2

),  𝐶 = (
3 4
1 3

), 

𝐱 =  (
1
0
),  𝐲 =  (

3
4
),  𝛼 = 3. 

Here, the matrices 𝐵 and 𝐶 are persymmetric. By Applying Lemma 3, we obtain the following persymmetric 

matrix 𝐷. 

𝐷 = (

𝐴 𝐱 𝐶
𝐲𝑇 𝛼 𝐱𝐹

𝐵 (𝐲𝐹)𝑇 𝐴𝐹
) =

(

 
 
 

1 2 1 3 4
3 4 0 1 3
3 4 3 0 1
2 1 4 4 2
1 2 3 3 1)

 
 
. 
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3.2 The Application of the Persymmetric Matrix in Coding Theory 

This section discusses constructing binary reversible self-dual codes associated with a persymmetric 

matrix. First, we present the construction results from previous research. Then, we introduce a new theorem. 

Lemma 4. [12] Let 𝐴 be a square matrix of size 𝑛 × 𝑛 and 𝐴𝑟 𝑏𝑒 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝐴. Then, 

the following two statements imply a third: 

1. 𝐴 is an orthogonal matrix. 

2. (𝐴𝑟)2 = 𝐼𝑛. 

3. 𝐴 is a persymmetric matrix. 

According to Theorem 1, the submatrix in the standard form of the generator matrix of a binary self-

dual code is orthogonal. Therefore, this lemma establishes a connection between persymmetric and 

orthogonal matrices. 

Example 7. Consider the matrix 𝐴 =  (
0 −1
1 0

).  Note that, 

𝐴𝐴𝑇 = (
0 −1
1 0

) (
0 1
−1 0

) = 𝐼2 

and  

(𝐴𝑟)2 = (
−1 0
0 1

) = 𝐼2. 

Since 𝐴𝐴𝑇 = 𝐼2 and (𝐴𝑟)2 = 𝐼2, it follows from Lemma 4 that the matrix 𝐴 is a persymmetric matrix. 

This can be explicitly verified as follows: 

𝐴𝐹 = 𝑅2𝐴
𝑇𝑅2 = (

0 1
1 0

) (
0 1
−1 0

) (
0 1
1 0

) = (
0 −1
1 0

) = 𝐴.  

By applying Lemma 4, we establish the properties of a binary reversible self-dual code, as stated in 

the following lemma. 

Lemma 5.  [12] Let 𝐶 be a binary self-dual code of length 2𝑛 with generator matrix 𝐺 = ( 𝐼𝑛 𝐴). The code 

𝐶 is reversible if and only if it satisfies one of the following conditions. 

1. (𝐴𝑟)2 = 𝐼𝑛. 

2. 𝐴 is a persymmetric matrix. 

Because 𝐶 is a self-dual code, then 𝐴 is an orthogonal matrix. By Lemma 4, both conditions are 

satisfied if at least one of them holds. This property is crucial because it provides a practical criterion to 

ensure the reversibility of self-dual codes, facilitating the construction of such codes with predictable 

structural behavior. This motivates the construction of binary reversible self-dual codes. 

Theorem 2.  [12] Let (𝐼𝑛 𝐴) be the generator matrix of a binary reversible self-dual code of length 2𝑛. 

Suppose the column vector 𝐱 = (𝑥𝑖) is an eigenvector of 𝐴𝑟 with odd weight and 𝐸 = 𝐱𝐱𝐹 . Then, the matrix  

𝐺 = ( 
𝐼𝑛 𝑂 𝐱 𝐴 + 𝐸

𝑂 1 0 𝐱𝐹
) 

generates a binary reversible self-dual code of length 2𝑛 + 2. 

Example 8. Given a reversible self-dual code of length 4 digits that has the following generator matrix, 

𝐺 = (
1 0 0 1
0 1 1 0

).  

This matrix can be written in the form 𝐺 = (𝐼2 𝐴). Hence, 

𝐴𝑟 = (  
1 0
0 1

). 

If the eigenvectors of 𝐴𝑟 with odd weight are computed, the result is  

𝐱 = (
0
1
). 
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So, we get 

𝐸 = 𝐱𝐱𝐹 = (  
0 0
1 0

). 

By applying Theorem 2, we can construct a binary reversible self-dual code of length 6, denoted as 

𝐶’,  with the following generator matrix. 

𝐺′ = ( 
𝐼2 𝑂 𝐱 𝐴 + 𝐸

𝑂 1 0 𝐱𝐹
) = (

1 0 0 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0

) 

Then, elements of 𝐶′ are 

𝐜𝟏 = 000000         𝐜𝟓 = 100001
𝐜𝟐 = 001010         𝐜𝟔 = 101011
𝐜𝟑 = 010100         𝐜𝟕 = 110101 
𝐜𝟒 = 011110         𝐜𝟖 = 111111.

  

Furthermore, every element 𝐜𝑟 of  𝐶′ are in 𝐶′ since, 

 

𝐜1
𝑟 = 𝐜1    𝐜5

𝑟 = 𝐜5
 𝐜2
𝑟 = 𝐜3    𝐜6

𝑟 = 𝐜7
 𝐜3
𝑟 = 𝐜2    𝐜7

𝑟 = 𝐜6 

𝐜4
𝑟 = 𝐜4     𝐜8

𝑟 = 𝐜8.

 

In 2020, Kim et al. was constructed a binary reversible self-dual code of length 2𝑛 from a self-dual 

code of length 𝑛 in its general form as follows: 

Proposition 1. [12] If 𝐺 is a generator matrix of a self-dual code of length 𝑛, then  

𝐺′ = (
𝐺 𝑂
𝑂 𝐺𝑟

) 

generates a reversible self-dual code of length 2𝑛.  

Based on Proposition 1, the generator matrix of 𝐺′ in general form, then not every matrix 𝐺′ can be 

associated with a persymmetric matrix. However, 𝐺′ can be associated with a persymmetric matrix if  𝐺′ in 

the standard form. Therefore, we construct the generator matrix of the reversible self-dual code in the standard 

form as follows: 

Theorem 3. If (𝐼𝑛  𝐴) is the generator matrix of a binary self-dual code of length 2𝑛, then  

𝐺 = ( 
𝐼𝑛 𝑂 𝐴 𝑂

𝑂 𝐼𝑛 𝑂 𝐴𝐹
) 

generates a binary reversible self-dual code of length 4𝑛. 

Proof. Let 

𝐷 =  (
𝐴 𝑂
𝑂 𝐴𝐹

). 

Since (𝐼𝑛  𝐴) is the generator matrix of a binary self-dual code then 𝐴𝐴𝑇 = 𝐼𝑛.  By Definition 4, we obtain  

 

𝐴𝐹(𝐴𝐹)𝑇 = 𝑅𝑛𝐴
𝑇𝑅𝑛𝑅𝑛𝐴𝑅𝑛

                         = 𝑅𝑛𝐴
𝑇𝐴𝑅𝑛

                         = 𝑅𝑛𝐼𝑛𝑅𝑛
                         = 𝐼𝑛.

 

Thus, we compute 
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𝐷𝐷𝑇 = (
𝐴 𝑂
𝑂 𝐴𝐹

) (
𝐴 𝑂
𝑂 𝐴𝐹

)
𝑇

= (
𝐴 𝑂
𝑂 𝐴𝐹

) (
𝐴𝑇 𝑂
𝑂 (𝐴𝐹)𝑇

)

   = (
𝐴𝐴𝑇 𝑂
𝑂 𝐴𝐹(𝐴𝐹)𝑇

)

 = (
𝐼𝑛 𝑂
𝑂 𝐼𝑛

)

 =  𝐼2𝑛

  

and 𝐷𝐹 = 𝐷. Based on Lemma 5, 𝐺 generates a binary reversible self-dual code of length 4𝑛. ∎ 

Example 9. Given a self-dual code 𝐶 of length 4 with generator matrix as follows: 

𝐷 = (
1 0 0 1
0 1 1 0

). 

According to Theorem 3, we can construct a binary reversible self-dual code of length 8, denoted as 𝐶’,  with 

the following generator matrix. 

𝐺 = ( 
𝐼2 𝑂 𝐴 𝑂

𝑂 𝐼2 𝑂 𝐴𝐹
) = (

1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0

). 

Thus, the elements of the code 𝐶′ are as follows: 

𝐜1 = 00000000        𝐜5 = 01001000   𝐜𝟗  = 10000100       𝐜13 = 11001100
𝐜2 = 00010010        𝐜6 = 01011010   𝐜10 = 10010110      𝐜14 = 11011110
𝐜3 = 00100001        𝐜7 = 01101001   𝐜11 = 10100101      𝐜15 = 11101101
𝐜4 = 00110011        𝐜8 = 01111011   𝐜12 = 10110111      𝐜𝟏6 = 11111111.

 

Additionally, the reverse of each codeword is always contained in 𝐶′, as shown below. 

𝐜1
𝑟 = 𝐜1        𝐜5

𝑟 = 𝐜2    𝐜9
𝑟  = 𝐜3      𝐜13

𝑟 = 𝐜4
𝐜2
𝑟 = 𝐜5        𝐜6

𝑟 = 𝐜6   𝐜10
𝑟 = 𝐜7      𝐜14

𝑟 = 𝐜8
𝐜3
𝑟 = 𝐜9        𝐜7

𝑟 = 𝐜10  𝐜11
𝑟 = 𝐜11    𝐜15

𝑟 = 𝐜12
𝐜4
𝑟 = 𝐜13       𝐜8

𝑟 = 𝐜14  𝐜12
𝑟 = 𝐜15  𝐜16

𝑟 = 𝐜16.

 

4. CONCLUSION 

A persymmetric matrix is a square matrix equal to its flip transpose. Some large sizes of persymmetric 

matrices can be constructed from smaller ones.  Based on these properties, we have constructed a new binary 

reversible self-dual code of length 4𝑛, by using generator matrices in the standard form. This construction 

from a self-dual code of length 2𝑛.  However, this construction does not guarantee that all resulting codes are 

optimal or feasible for practical communication systems. Limitations such as decoding complexity, minimum 

distance, or code performance under real-world noise conditions need further analysis. In addition, the 

method has been applied only to binary fields and specific matrix configurations. As future research 

suggestions, this framework can be extended to other classes of structured matrices, such as centrosymmetric 

or Toeplitz matrices, or adapted to other finite fields. Moreover, performance evaluation of the constructed 

codes in practical applications, such as secure communication or DNA data storage, is a promising area to 

explore. Incorporating error-detection and correction codes into the construction process may also enhance 

the applicability of the resulting codes. 
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