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Article Info ABSTRACT 

Article History: 
The Indonesia Composite Index (ICI) is a key indicator of stock market performance in 

Indonesia, often experiencing high volatility due to various domestic and global economic 

factors. In recent years, ICI has shown a significant upward trend, influenced by both 

local and international factors. In 2024, from June to October, the ICI saw a notable 

increase, reaching its highest value since 2020 at Rp 7,670. Despite fluctuations in stock 

prices, the rise in ICI reflects a positive outlook for the Indonesian stock market, 

attracting both domestic and foreign investors. This study aims to predict ICI movements 

using ARIMA-GARCH and Fourier Series approaches. The ARIMA model is employed to 

analyze time series data, while the ARCH-GARCH model addresses heteroskedasticity in 

residual variance. For comparison, the Fourier Series Estimator is applied to capture 

seasonal patterns in the data. Although ICI volatility is driven by a range of external 

macroeconomic and geopolitical factors, this study focuses on univariate modeling to 

evaluate the predictive capability of the index’s own historical movements, without 

involving exogenous variables. The data used comes from Investing.com. Weekly ICI data 

from March 2020 to June 2024 is used, split into training and testing sets. The analysis 

results indicate that the ARIMA-GARCH method provides higher accuracy, with a Mean 

Absolute Percentage Error (MAPE) of 5% (out-sample), compared to the Fourier Series 

method, which has a MAPE of 8.57%. This suggests that ARIMA-GARCH is more 

effective in predicting ICI trends, reflecting its ability to account for volatility and market 

changes more accurately. 
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1. INTRODUCTION 

The Indonesia Composite Index (ICI) is a key indicator that reflects the overall stock market 

performance listed on the Indonesia Stock Exchange (IDX). First introduced in 1983, ICI initially included 

13 stocks and now lists 778 stocks [1]. As a major parameter to measure the Indonesian stock market's 

condition, ICI reflects market sentiment and investment activities in Indonesia, both from domestic and 

foreign investors [2]. In recent years, ICI has shown a significant upward trend, influenced by various 

domestic and global economic factors. Although ARCH and GARCH models have been widely applied in 

modeling and forecasting financial market volatility due to their ability to capture time-varying variance, 

most studies focus solely on these parametric approaches. Comparisons with alternative nonparametric or 

semi-parametric methods remain relatively rare, especially in the context of the Indonesian market. One such 

alternative is the Fourier Series method, which is capable of modeling periodic patterns and capturing 

complex structures in time series data without assuming a specific distribution form. 

According to CNBC, in 2023, the ICI experienced very high fluctuations but ended with a significant 

upward trend [3]. In March 2020, ICI dropped sharply to Rp 4194.94, its lowest level since 2020. However, 

it started to rise again from May 2020 through December 2024, reaching its highest value in September 2024 

at Rp 7812.13. Despite fluctuations, the overall rise in ICI provides a positive outlook on Indonesia's stock 

market [4]. This not only attracts domestic investors but also foreign investors, which benefits companies in 

Indonesia. 

The uncertainty in the capital market, particularly in the fluctuations of the Indonesia Composite Index 

(ICI), has become a major concern for investors, regulators, and economists due to its significant impact on 

economic stability and financial decision-making. As a result, accurately predicting ICI has become both a 

challenge and a necessity, especially for investors looking to minimize risk and maximize potential returns. 

Traditional approaches to predicting ICI often rely on linear models that cannot fully capture the non-

linear dynamics of market fluctuations. The high volatility of stock indices leads to heteroscedasticity in the 

data [5]. To overcome this limitation, Autoregressive Conditional Heteroskedasticity (ARCH) and 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models are used [6]. These models 

excel in capturing dynamic volatility patterns, enabling more accurate predictions that are relevant to unstable 

market conditions. In addition to the ARCH and GARCH models, a predictive approach using Nonparametric 

Regression with the Fourier Series method is also employed. Nonparametric regression is flexible in 

determining its curve estimation patterns [7]. 

Previous research shows good prediction results for ICI volatility using the GARCH method with a 

model goodness test (MAPE) of 17.26% for the 2012-2022 period [5]. This is in line with other studies which 

show that the GARCH model is able to forecast the ICI for the 2016-2021 period [8]. However, these studies 

did not compare other methods, which could lead to more accurate results. It is important to distinguish 

between the GARCH method and the GARCH model. The GARCH method refers to the broader statistical 

technique used to capture volatility that changes over time in time series data. Meanwhile, the GARCH model 

denotes a specific form of that technique, such as GARCH(1,1), applied in empirical analysis. In short, the 

method represents the overall approach, while the model reflects its specific mathematical application. 

This research distinguishes itself by conducting a comparative analysis between a parametric method 

(ARCH/GARCH) and a nonparametric method (Fourier Series). In contrast to previous studies that typically 

focused on a single model, this study assesses the predictive performance of both approaches to determine 

which yields more accurate forecasts of ICI volatility. Additionally, it utilizes the most recent weekly data 

from March 10, 2024, to June 23, 2024 capturing post-pandemic market behavior and reflecting the current 

economic environment. The incorporation of the Fourier Series method into volatility modeling also 

represents a novel contribution, as this technique has been seldom applied in previous research within the 

context of the Indonesian stock market. 

This study aims to predict the Indonesia Composite Index (ICI) more accurately using the 

ARCH/GARCH and Fourier Series methods. By utilizing historical weekly ICI data from March 15, 2020, 

to June 23, 2024, this research seeks to identify and forecast volatility patterns to support more reliable market 

predictions. The results of this study are expected to provide a positive outlook for investors to invest in 

Indonesian companies, while the government should implement policies that ensure the continued rise of 

stocks in Indonesia. 
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2. RESEARCH METHODS  

2.1 Source and Data of Research Variables 

This study employs a quantitative approach with a focus on time series analysis. The data utilized 

consists of Indonesia Composite Index (ICI) stock prices, sourced from the Indonesia Investing.com website 

[4]. This data set consists of weekly data covering the period from March 15, 2020, to June 23, 2024, 

comprising 222 data observations. The research is structured into two segments: training data and testing 

data. The training dataset, covering the period from March 15, 2020, to March 3, 2024, is used to develop the 

model with a total of 207 training data (93%). Meanwhile, the testing dataset, spanning from March 10, 2024 

to June 23, 2024, was used to evaluate the accuracy of the model with a total of 15 testing data (7%).  

2.2 Data Analysis Steps 

The steps of data analysis used in this research are as follows: 

1. Determine research variables 

The selection of variables is based on the characteristics of time series data, where past values of 

a variable can influence its future values. This approach is commonly used in models such as 

ARIMA, as it effectively captures historical patterns and market trends. The period from March 

2020 to June 2024 was deliberately chosen because it encompasses the crisis period caused by the 

COVID-19 pandemic as well as the post-pandemic economic recovery phase, providing a relevant 

context for analyzing the dynamics of the Indonesian stock market. Prior to analysis, the data 

underwent preprocessing, which included removing duplicates, verifying consistent time 

intervals, and handling missing values through imputation methods such as forward filling to 

maintain the continuity of the time series. Additionally, data transformation, such as calculating 

logarithmic returns, was also considered to stabilize variance and meet the statistical assumptions 

of the model. 

2. Checking data stationary using Augmented Dickey Fuller (ADF) and Box-Cox Transformation 

Non-stationarity in the mean indicates that the average value of the data changes over time, which 

is usually characterized by an upward or downward trend. To address this, a commonly used 

method is differencing, which calculates the difference between the current and previous values 

of the data, in order to remove the trend. On the other hand, non-stationarity in variance means 

that the degree of dispersion or volatility of the data also changes over time. This is often found 

in financial data such as stock indices or exchange rates, which tend to show large fluctuations in 

certain periods. To stabilize the variance, Box-Cox transformation can be used, which is a data 

transformation technique that aims to homogenize the variance by selecting the optimal lambda 

(λ) parameter value. After transforming and differencing, a retest of stationarity such as using the 

Augmented Dickey-Fuller (ADF) test is required to ensure that the data has met the stationary 

assumptions. 

3. Selection of the best ARIMA model 

Identify the ARIMA parameter values, namely p (autoregressive), d (differencing), and q (moving 

average). The value of d is determined by the amount of differencing required to achieve 

stationarity. Meanwhile, the p and q values can be estimated from the PACF and ACF graph 

patterns. Once a candidate model is determined based on a combination of p and q values, it is 

then estimated and compared using selection criteria such as AIC (Akaike Information Criterion), 

where the best model is the one with the lowest AIC value. Once a model has been selected, it is 

important to diagnose the residuals, the remaining model error. A good residual should be white 

noise, which means it has no pattern, is random, and has a constant variance. In addition, the 

residual data should be normally distributed. 

4. Detecting heteroscedasticity 

Heteroskedasticity was detected using the ARCH-LM test. A significant p-value (< 0.05) indicates 

ARCH effects in the residuals, justifying the use of ARCH/GARCH modeling. 

5. Estimating the ARIMA- ARCH-GARCH model on Training Data 

The ARCH/GARCH method is a continuation of the ARIMA method, provided that the selected 

ARIMA model has heteroscedasticity assumptions. The Autoregressive Conditional 

Heteroskedasticity (ARCH) model is an autoregressive model that occurs when the variance is 

not constant [9]. Fluctuations in the data cause the variance of the residuals to be inconstant and 

heteroscedasticity. ARCH is used to be alternatively modeled by allowing the conditional variance 
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of the squared residuals to depend on the previous squared residual values. The ARCH model can 

be defined in the following Eq. (1) [10].  

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2  (1) 

With: 

𝜎𝑡
2 : is the conditional variance of the time series at time 𝑡 

𝛼0 : is a constant term and must be positive 

𝛼1  : is the coefficient of the lagged squared residual 

𝜀𝑡−1
2  : is the squared error (shock) from the previous time period 𝑡 −  1 

In general, the ARCH (p) model can be represented by the following Eq. (2). 

𝜎𝑡
2 = 𝜎0 + 𝜎1𝜀𝑡−1

2 + 𝜎2𝜀𝑡−2
2 + ⋯ + 𝜎𝑝𝜀𝑡−𝑝

2  (2) 

With: 

𝜎𝑡
2 : is the conditional variance of the time series at time 𝑡 

𝛼0 : is a constant term and must be positive 

𝛼1  : is the coefficient of the lagged squared residual 

𝜀𝑡−𝑝
2  : is the squared error (shock) from the previous time period 𝑡 −  𝑝 

Meanwhile, GARCH (Generalized Autoregressive Conditional Heteroscedasticity) is a 

development of the ARCH model designed to handle heteroscedasticity problems in time series 

data. While ARCH only uses past squared residuals to estimate the current variance, GARCH 

enhances it by incorporating both the squared residuals and the variance estimated in the previous 

period. This approach allows GARCH to capture volatility clustering patterns and long-term 

dependencies more effectively, thus making it more flexible and accurate, especially in analyzing 

financial data that often experiences volatility fluctuations in the form of clusters. Therefore, while 

ARCH is simpler and remains useful in certain cases, GARCH offers broader and more realistic 

modeling capabilities in describing complex variance behavior in time series. In general, the 

GARCH (p, q) model, where p indicates the ARCH element and q indicates the GARCH element, 

can be stated in the following Eq. (3) [10]. 

𝜎𝑡
2 = 𝜔 + ∑ 𝑎𝑗𝜀𝑡−𝑗

2

𝑞

𝑗=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 (3) 

Where: 

𝜎𝑡
2 : The conditional variance of the time series at time 𝑡. 

ω : A constant term (intercept), must be positive: 𝜔 > 0 

𝜀𝑡−𝑗
2  : The squared error (shock) from 𝑗 time steps ago. 

𝑎𝑗 : The ARCH coefficient for the lag 𝑗; measures impact of past shocks. 

𝜎𝑡−𝑗
2  : The conditional variance from 𝑗 time steps ago. 

𝛽𝑗 : The GARCH coefficient for the lag 𝑗; measures persistence of past volatility. 

𝑝  : The order of the ARCH term, number of past squared errors used. 

𝑞  : The order of the GARCH term, number of past variances used. 

6. Forecasting ICI using ARIMA- ARCH-GARCH on Testing Data 

The same modeling procedure was applied to both training and testing data. In the training phase, 

the ARIMA ARCH-GARCH model was fitted by estimating optimal parameters and testing for 

heteroskedasticity. The testing phase used the trained model to generate forecasts, which were 

then evaluated against actual values using metrics such as MAPE and R-squared to assess 

prediction accuracy and volatility capture. 

7. Calculating the MAPE value of the ARCH-GARCH model 

Mean Absolute Percentage Error (MAPE) represents the average of the absolute percentage errors, 

indicating the extent of prediction error in relation to the actual value. A lower MAPE value 

signifies greater accuracy in the forecasting results. Eq. (4) below is the formula used to calculate 

MAPE [11]. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐴𝑖 − 𝐹𝑖

𝐴𝑖
| × 100%

𝑛

𝑟=1
 (4) 



BAREKENG: J. Math. & App., vol. 20(1), pp. 0271- 0286, Mar, 2026.     275 

With, 𝐴𝑖 is the 𝑖-th actual data, 𝐹𝑖 is the prediction results for the 𝑖-th actual data, and 𝑛 is the 

number of data.  

The resulting MAPE value has an interpretation in Table 1 as follows [12]. 

Table 1. Interpretation of MAPE Value 

MAPE (%) Interpretation 

<10% High accuracy prediction 

10% - 20% Good prediction 

21% - 50% Prediction is within reason 

>50% Inaccurate prediction 

 

8. Testing using Fourier Series estimation  

The Fourier series is a trigonometric polynomial that offers significant flexibility, as it is 

composed of curves generated by Sine and Cosine functions. In regression analysis, the Fourier 

series estimator is employed to approximate a function or curve from data with an unknown 

pattern, particularly for data exhibiting seasonal trends [13]. Data is considered seasonal if the 

data curve forms certain patterns in each time period. If the observation data is known (𝑡𝑟, 𝑦𝑟) the 

general regression model is as follows in Eq. (5) [14]. 

𝑦𝑟 = 𝑚(𝑡𝑟) + 𝜀𝑟,             𝑟 = 1,2,3, … , 𝑛 (5) 

The regression function 𝑚(𝑡𝑟) is of unknown form and will be estimated with Fourier series. It is 

assumed that 𝑚(𝑡𝑟) ∈ 𝐿2[𝑎, 𝑏] is contained in Hilbert space as a linear combination of basic 

elements of 𝐿2[𝑎, 𝑏] which can be expressed in Eq. (6) as follows. 

𝑚(𝑡𝑟) = ∑ 𝛽𝑗𝑥𝑗(𝑡𝑟) + 𝜀𝑟,         𝑟 = 1,2,3, … , 𝑛 
∞

𝑗=1
 (6) 

Hence, the model becomes. 

𝑦𝑟 = ∑ 𝛽𝑗𝑥𝑗(𝑡𝑟) + 𝜀𝑟,         𝑟 = 1,2,3, … , 𝑛 
∞

𝑗=1
 (7) 

Assume that 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛 are equally spaced over the interval [𝑎, 𝑏]. 
In the estimation of unknown Fourier coefficients, it can be estimated by determining the optimal 

𝜆 value which can express the number of Fourier coefficients 𝛽𝑗 that determine the smoothness 

of the regression curve. A higher λ leads to a smoother curve but may cause overfitting if too 

large. The optimal λ can be selected using criteria such as cross-validation or minimizing the 

Generalized Cross-Validation (GCV) score. The Fourier series estimator can be written as Eq. (8) 

follows [15]. 

𝑚̂(𝑡𝑟) = 𝛽0 + ∑ [𝑎𝑗 cos (
2𝜋𝑗(𝑟 − 1)

𝑛
) +𝑏𝑗 sin (

2𝜋𝑗(𝑟 − 1)

𝑛
)]

𝜆

𝑗=1
 (8) 

 

9. Determining the optimal lambda based on the minimum GCV (Generalized Cross Validation) and 

R-Squared values 

Cross validation (CV) and generalized cross validation methods can be used to select the optimal 

bandwidth value [16]. The equations for the CV and GCV methods are given in the following 

Eqs. (9) and (10) [16], [17]. 

𝐶𝑉(ℎ) =
1

𝑛
∑ [𝑦𝑖 − 𝑔ℎ−𝑖(𝑥𝑖)]2

𝑛

𝑖=1
 (9) 

𝐺𝐶𝑉(ℎ) =
∑ [𝑦𝑖 − 𝑔ℎ−𝑖(𝑥𝑖)]2𝑛

𝑖=1

 {𝑛−1𝑡𝑟[𝑰 − 𝑨(ℎ)]}2
 

(10) 

Given 𝑦𝑖 is the value of the response variable at the 𝑖-th observation, 𝑔(𝑥𝑖)  is the estimated value 

of the regression function at point 𝑥𝑖 , 𝑔ℎ−𝑖(𝑥𝑖) is the estimated value of the regression function at 

point 𝑥𝑖 with the 𝑖-th observation removed, 𝑰 is the identity matrix of size 𝑛 × 𝑛, and 𝑨(ℎ) is the 

matrix of size 𝑛 × 𝑛 for each ℎ. The regression function at point 𝑥𝑖 is the estimated value of the 

regression function. 
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R-Squared or commonly called the coefficient of determination explains how well the model's 

ability to explain variations in the dependent variable [18]. The range of the coefficient of 

determination is between 0 and 1. The formula for the coefficient of determination is written as  
Eq. (11) below [19]. 

𝑅2 =
(𝒚̂ − 𝒚̅)′(𝒚̂ − 𝒚̅)

(𝒚 − 𝒚̅)′(𝒚 − 𝒚̅)
 (11) 

Where 𝒚̅ is a vector containing the mean of the response data. A good model is measured by the 

largest 𝑅2 value. 

10. Determine Fourier Series modeling 

11. Calculating the MAPE value of Fourier series modeling 

12. Forecasting ICI using the Fourier series model 

The Fourier series model forecasts ICI by breaking down historical data into sine and cosine 

components to capture underlying cyclical patterns. These patterns are then projected forward to 

estimate future index values based on the repetition of past trends. 

3. RESULTS AND DISCUSSION 

3.1 Overview of the Democracy Index in Indonesia 

In this study, presents descriptive statistics, including the mean, minimum, and maximum values, along 

with a line plot of the ICI (Indonesia Composite Index) over time. Descriptive statistics are used to summarize 

the data, while the line plot helps identify the data pattern for prediction. The description of each research 

variable follows. 

Table 2. Descriptive Statistics  

Variable N Mean St. Dev Min Date (Min) Max Date (Max) 

ICI (Indonesia Composite Index 223 6441.7 768,89 4194.94 15/03/2020 7228.91 3/3/2024 

Based on Table 2, the Indonesia Composite Index (ICI) had an average value of 6441.7 from 223 

observations, with a standard deviation of 768.89, indicating significant fluctuations. The lowest value was 

4194.94 on March 15, 2020, and the highest was 7228.91 on March 3, 2024, suggesting a period of market 

recovery or growth. Overall, the index exhibits high volatility. 

 

Figure 1. Time Series Plot 

Based on Fig. 1, The data exhibits recurring fluctuations over a certain period and shows an upward 

trend, making the Fourier method suitable for predicting stock prices. Additionally, stock prices tend to 

demonstrate volatility that changes over time, which makes the ARCH-GARCH method also appropriate for 

predicting stock prices. 
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3.2 ARCH- GARCH Forecasting 

3.2.1 Data Stationarity 

Data stationarity is a mandatory condition in classical time series modeling, such as ARIMA. Data is 

considered stationary if it remains stable over time with constant mean and covariance. The statistical tests 

used to test the stationarity of time series data are the Augmented Dickey-Fuller (ADF) test and the Box-Cox 

transformation. Stationarity occurs if the ADF test shows a p-value less than the determined significance level 

(𝛼 =  0.05). The Box-Cox transformation is one of the methods used to address non-stationarity in variance 

when the transformation parameter is not equal to 1 (𝜆 ≠  1). 

 

Figure 2. Box-Cox Plot for Original Data 

Based on Fig.e 2, the Box-Cox transformation yields an estimated lambda (𝜆) of 1.74, which is within 

the 95% confidence interval (1.08 to 2.97) and rounded value or lambda (𝜆) is 2.0  so that the data still needs 

to be transformed into a box-cox in the form of  𝑍𝑡2. After the transformation, the results of Box-Cox have a 

rounded value or lambda (𝜆) of 1 so that further testing can be carried out.   

Table 3. ADF Test Results 

Variable P-value Results 

ICI 0.4964 Non-stationary data 

d(ICI) 0.0100 Stationary data 
d(d(ICI)) 0.0100 Stationary data 

Based on Table 3, the results of the Augmented Dickey-Fuller (ADF) test show that the original ICI 

data is non-stationary, as indicated by a p-value of 0.4964 (> 0.05). After the first differencing, the p-value 

becomes 0.0100 (< 0.05), suggesting that the data is already stationary. 

However, further examination of the ACF and PACF plots after first differencing Fig. 3 (a) did not 

show a clear pattern (lags were not significantly distinct). Therefore, a second differencing was performed to 

better capture the structure of the time series and improve model identification. After second differencing, 

the ADF test still confirms stationarity (𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  0.0100), and the ACF and PACF plots now display 

significant lags Fig. 3 (b), which can be used to select appropriate ARIMA model parameters. 
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3.2.2 ACF and PACF plots 

 

(a) (b) 

Figure 3. ACF and PACF Plots (a) Differencing-1 , (b) Differencing-2  

Based on Fig. 3 (a) (first differencing), both ACF and PACF show very few significant spikes and no 

clear cutoff or tailing pattern. In Fig. 3 (b) (second differencing), the ACF plot shows a significant spike at 

lag 1 and tails off afterward, while the PACF shows multiple significant spikes before decaying. These 

patterns suggest the potential for ARIMA(𝑝, 2, 𝑞) modeling, with further candidate models explored in the 

next section. 

3.2.3 Selection of the Best ARIMA Models 

In evaluating ARIMA model candidates, several diagnostic criteria are considered to ensure model 

validity and accuracy. First, the statistical significance of the parameters (AR and MA terms) is assessed 

using p-values, where values below 0.05 indicate that the parameters significantly contribute to explaining 

the variance in the data. Second, the Akaike Information Criterion (AIC) is used to compare model 

performance. A lower AIC value indicates a better model in terms of balancing fit and complexity, making it 

a key metric for model selection. Additionally, white noise testing is performed on the residuals to ensure 

that the model has adequately captured the structure of the data. Residuals that behave like white noise (i.e., 

have no autocorrelation) indicate a well-fitted model. Finally, residual normality is examined to check 

whether the model errors are normally distributed, which is a desirable property for statistical inference. 

Table 4. Model Diagnostic Test 

Based on Table 4 shows the diagnostic test results for several ARIMA models with second-order 

differencing. Although none of the models passed all three diagnostic tests, ARIMA(5,2,0) and 

ARIMA(0,2,1) passed two out of three. A closer look at the ACF and PACF plots supports the selection of 

ARIMA(0,2,1), as the ACF cuts off sharply after lag 1, and the PACF tails off, which is consistent with the 

characteristics of an MA(1) model. Therefore, ARIMA(0,2,1) is recommended as the final model due to both 

statistical support and alignment with theoretical identification patterns.   

Model Significance White Noise Residual Normality AIC Values 

ARIMA (1, 2, 0) Yes No Yes 3396.95 

ARIMA (2, 2, 0) Yes No No 3351.12 

ARIMA (3, 2, 0) Yes No Yes 3335.76 

ARIMA (4, 2, 0) Yes No No 3316.35 

ARIMA (5, 2, 0) Yes Yes No 3311.92 

ARIMA (1, 2, 1) No Yes No 3281.05 

ARIMA (2, 2, 1) No Yes No 3278.53 

ARIMA (3, 2, 1) No Yes No 3280.45 

ARIMA (4, 2, 1) No Yes No 3282.28 

ARIMA (5, 2, 1) No Yes No 3282.56 

ARIMA (0, 2, 1) Yes Yes No 3281.09 
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These findings demonstrate how stationarity tests and the behavior of ACF and PACF plots directly 

influence the model selection process. The need for second differencing, despite statistical stationarity after 

first differencing, is justified by the improved clarity in lag structure, which is essential for selecting 

appropriate AR and MA terms. Further examination of residual normality for this model will be done using 

its residual histogram.  

 

Figure 4. Histogram ARIMA (0,2,1) 

 As seen in Fig. 4, the residual histogram for the ARIMA(0,2,1) model indicates non-normality, with 

values densely clustered near zero due to high prediction accuracy. Nonetheless, the model is still 

interpretable, and residual variance heteroscedasticity testing can proceed. 

3.2.4 ARIMA Model Estimation 

Table 5 below presents the results of the estimation of the parameters of the ARIMA model (0,2,1), 

including the coefficient, error standards, p-values, as well as evaluation metrics such as Akaike Information 

Criterion (AIC) and Mean Squared Error (MSE). 

Table 5. ARIMA Model Estimation (0, 2, 1) 

 Based on Table 5, since the p-value is less than 0.05, the ARIMA model estimate (0, 2, 1) will be used 

for the ARIMA GARCH estimation. The mathematical equation of the estimated ARIMA model (0, 2, 1) t 
model estimation in  Eq. (12) is as follows. 

(1 − 𝐵)𝑑𝑍𝑡∗ =  𝜃𝑞 (𝐵)𝜀𝑡  
(1 − 𝐵)𝑑𝑍𝑡∗  =  (1 −  𝜃1𝐵)𝜀𝑡  
(1 − 𝐵)2𝑍𝑡∗  =  (1 −  𝜃1𝐵)𝜀𝑡 

 (1 −  2𝐵 +  𝐵2 )𝑍𝑡∗  =  (1 −  𝜃1𝐵)𝜀𝑡 

𝑍𝑡∗  −  2𝑍𝑡−1
∗  + 𝑍𝑡−2

∗  =  𝜀𝑡  −  𝜃1𝜀𝑡−1 

 𝑍𝑡∗  =  2𝑍𝑡−1
∗  − 𝑍𝑡−2

∗  + 𝜀𝑡  −  𝜃1𝜀𝑡−1 

 𝑍𝑡∗  =  2𝑍𝑡−1
∗  − 𝑍𝑡−2

∗  + 𝜀𝑡  − (−0.99087)𝜀𝑡−1 

𝑍𝑡
∗ = 2𝑍𝑡−1

∗ − 𝑍𝑡−2
∗ +𝜀𝑡 +0.99087𝜀𝑡−1 (12) 

3.2.5 Detection of Heteroscedasticity of Residual Variance 

In the ARIMA model, it is assumed that the residuals have a normal distribution with a mean of 𝜇 = 0 

and homogeneous variance 𝜎². However, in economic data such as exchange rates, inflation, and stock prices, 

high volatility is often observed, which violates the assumption of homogeneous residual variance. To detect 

this, a heteroscedasticity test is performed on the squared residuals generated by the ARIMA model. In this 

case, the squared error 𝜖² from the ARIMA (0,2,1) model is used as an estimator of the residual variance 𝜎². 

Below are the ACF and PACF plots for the squared residuals. 

Parameter Coefficient Error Standards P-Value AIC MSE 

MA (1) -0.99087 -0.01924 0.000 3281.09 254.3628 
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 (a) (b) 

Figure 5. Residual Quadratic Model ARIMA (0,2,1) (a) Plot ACF, (b) Plot PACF  

Based on Fig. 5, lags in both the ACF and PACF plots, indicating autocorrelation and suggesting 

heteroscedasticity in the residual variance. In addition to the ACF and PACF plots, heteroscedasticity can be 

tested using the ARCH-LM (Lagrange Multiplier) test, with the null hypothesis of no conditional 

heteroskedasticity in the ARIMA model residuals. 

Table 6. ARCH-LM Test Results 

Order Significsis LM-Test 

1 0.01205348 

2 0.03445677 

3 0.06469904 

4 0.1147188 

5 0.1885327 

The test results in Table 6 show that for five lags, the initial two lags of significance value (p-value) 

are less than (5%) so the decision is to fail to reject the null hypothesis. Thus, it can be concluded that there 

is an autocorrelation between the residual squares of the ARIMA model (0,2,1). To overcome this, advanced 

modeling is needed to deal with heteroscedasticity that occurs using ARCH/GARCH. 

3.2.6 Estimation of the ARCH/GARCH Model 

In the previous point, it was known that the estimation results of the ARIMA model (0,2,1) experienced 

heteroscedasticity symptoms in its residuals, so it was necessary to model variance with ARCH. The 

ARCH/GARCH modeling was based on the square residual ACF and PACF plots with the provision that the 

ARCH(p) model was determined by the p-second lag that came out in the ACF plot, the variances were 

ARCH (1) or GARCH (1.0) and ARCH (2) or GARCH (2.0). 

Table 7. GARCH Model Estimation 

Model Parameter Coefficient Estimation Significance AIC 

GARCH (1,0) 
𝜔 11463.98576 0 

12.30645 
𝛼 0.23613 0.026004 

GARCH (2,0) 

𝜔 1.1279E+04 0 

12.31652 𝛼1 2.0591E-01 0.044909 

𝛼1 2.8284E-02 0.049992 

Based on Table 7, The selection of the GARCH(1,0) model was based on two primary considerations, 

the Akaike Information Criterion (AIC) and the statistical significance of the estimated parameters. As shown 

in the results, the GARCH(1,0) model yields an AIC value of 12.30645, which is slightly lower than that of 

the GARCH(2,0) model (12.31652). A lower AIC indicates a better balance between model fit and 

parsimony, favoring simpler models with strong explanatory power. Furthermore, both parameters in the 

GARCH(1,0) model are statistically significant at the 5% level. The constant term 𝜔 has a p-value of 0, and 

the lagged error term coefficient α has a p-value of 0.026004, confirming the relevance of past shocks in 

explaining current volatility. Although the GARCH(2,0) model also produces significant coefficients, the 

additional parameter  𝛼1 only marginally contributes to the model while increasing complexity. Given this, 

the GARCH(1,0) model is selected as the final volatility model due to its lower AIC and more efficient 

structure.Thus, the variance equation of the ARIMA residuals is as follows in Eqs. (13) and (14). 
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𝜎𝑡
2 =11463.98576+0.23613𝜀𝑡−1

2  (13) 

𝜀𝑡 = 𝑦𝑡𝜎𝑡 (14) 

  

3.2.7 ARIMA-GARCH Model Estimation 

The combination of Eqs. (13) and (14) represents the merged equation of the ARIMA mean model and 

the ARCH variance model, forming ARIMA(0,2,1)-ARCH(1), which can be mathematically expressed as 

follows in Eq. (17).  

𝑍𝑡
∗ = 2𝑍𝑡−1

∗ − 𝑍𝑡−2
∗ + 𝑦𝑡√11463.98576+0.23613𝜀𝑡−1

2

+ 0,99087𝑦𝑡√11463.98576+0.23613𝜀𝑡−2
2  

(15) 

𝑍𝑡
∗2 = (2𝑍𝑡−1

∗ − 𝑍𝑡−2
∗ + 𝑦𝑡√11463.98576+0.23613𝜀𝑡−1

2

+ 0,99087𝑦𝑡√11463.98576+0.23613𝜀𝑡−2
2 )

2

 

 

(16) 

𝜎𝑡
2 = (2𝑍𝑡−1

∗ − 𝑍𝑡−2
∗ + 𝑦𝑡√11463.98576+0.23613𝜀𝑡−1

2

+ 0,99087𝑦𝑡√11463.98576+0.23613𝜀𝑡−2
2 )

2

 

(17) 

3.2.8 Evaluation of ARIMA (0,2,1) - ARCH(1) Model Performance 

The accuracy of the ARIMA (0,2,1) - ARCH(1) model can be assessed by comparing the estimated 

values with the actual data. Fig. 6 illustrates the comparison between the actual values and the predicted 

results, showing how well the model captures the observed trend and volatility. 

  

Figure 6. Plot Comparison of Actual Value and Estimated Results 

As in Fig. 6, the results of ICI modeling provide a pattern that is quite volatile and has an upward trend 

according to actual data, The results of the calculation of the goodness of the ARIMA model (0,2,1) for in 

sample  data are given in Table 8 as follows. 

Table 8. Results of the Goodness of the ARIMA Model (0, 2, 1) - ARCH(1) on Data In-Sample and Out-Sample 

 In-Sample Out-Sample 

MAPE 0.3% 5% 

R-Square 97% 85.6% 
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3.2.9 ICI Forecasting with ARIMA-GARCH 

Forecasting aims to predict an event for several future periods. Table 9 presents the forecasting results 

for the ICI over the next 15 periods, from March 10, 2020, to June 23, 2024, as an out-sample prediction 

using the ARIMA(0,2,1)-ARCH(1) model. 

Table 9. Summary of ICI Predictions 

Date Current Predictions Upper Limit of Prediction Lower Limit of Prediction 

10/3/2024 7328.05 7245.488 8575.215 6503.762 

17/03/2024 7350.15 7200.460 8491.247 6323.672 

24/03/2024 7288.81 7378.234 8541.428 6299.041 

31/03/2024 7286.88 7345.009 8586.180 6279.838 

14/04/2024 7087.32 7185.784 8627.517 6264.051 

21/04/2024 7036.08 7145.559 8666.466 6250.651 

28/04/2024 7134.72 7067.333 8703.635 6239.032 

5/5/2024 7088.79 7189.108 8739.418 6228.798 

12/5/2024 7317.24 7245.883 8774.087 6219.679 

19/05/2024 7221.04 7324.658 8807.839 6211.477 

26/05/2024 6970.74 6945.433 8840.822 6204.043 

2/6/2024 6897.95 6876.207 8873.151 6197.264 

9/6/2024 6734.83 6894.982 8904.916 6191.048 

16/06/2024 6879.98 6856.757 8936.191 6185.323 

23/06/2024 7063.58 7145.532 8967.036 6180.028 

Based on Table 9, predicted values closely follow actual ICI values during the testing period, with 

most actual values remaining within the 95% confidence interval. This indicates the model performs well in 

capturing market trends. 

3.3 Fourier Forecasting 

3.3.1 Lambda Determination  

Fourier series data estimation requires Fourier coefficients that represent the underlying cyclical 

patterns in the time series. The number of Fourier terms used in the estimation is controlled by a parameter 

called lambda (𝜆), also known as the smoothing parameter. A higher value of 𝜆 allows the model to capture 

more variation and detail, but it can also lead to overfitting if too many coefficients are used. Conversely, a 

𝜆 that is too low may oversimplify the model. Therefore, determining the optimal value of 𝜆 is essential, and 

this is done using the Generalized Cross Validation (GCV) method. 

Table 10. GCV Value for Each Lambda 

 

 

 

 

 

Based on Table 10, the GCV values are evaluated across various λ values. The GCV score indicates 

the model’s prediction error, and a lower value suggests a better balance between smoothness and accuracy. 

In this case, the lowest GCV value (39010.12) is obtained when λ = 34, meaning that using 34 sine and cosine 

terms yields the best-fitting model for the ICI data. Therefore, the final model will use λ = 34 Fourier 

coefficients in its estimation.  

To better visualize the behavior of GCV values across different λ values, a plot of GCV versus λ is 

presented in Fig. 7. This helps illustrate how the smoothing parameter affects model performance. 

 

Lambda GCV 

10 59956.11 

19 46225.93 

25 44548.98 

28 40801,95 
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Figure 7. GCV and Lambda Plot 

The graph in Fig. 7 shows that the GCV values generally decrease as 𝜆 increases, reaching a minimum 

at 𝜆 =  34. After that point, GCV begins to increase again or flatten, indicating that larger λ values no longer 

improve model accuracy and may cause overfitting. This confirms that 𝜆 =  34 is the optimal choice for 

balancing model complexity and predictive accuracy. 

3.3.2 Determining Fourier Modeling 

Next, determine the value of 𝑎𝑖 as the cosine function component and 𝑎𝑖. 𝑏𝑗 as the sine Fourier function 

component presented in the following Table 11 and obtain the estimation model in Eq. (18). 

Table 11. Fourier Parameter Value 

Lambda Value 𝒂𝒊 Value 𝒃𝒋  Lambda Value 𝒂𝒊 Value 𝒃𝒋 

1 -463.524 -641.7841  18 22.4228 -32.602 

2 -10.89533 -302.4193  19 -16.92024 -84.93953 

3 -81.29823 -396.3109  20 -15.5431 -24.95324 

4 51.20761 -287.7816  21 -15.3916 -33.02719 

5 25.27814 -115.0535  22 -36.55945 -31.69785 

6 -45.00541 -105.1539  23 -15.1187 -36.95112 

7 -88.00813 -157.9726  24 -39.77752 -32.56711 

8 -1.518772 -144.5985  25 1.063712 -38.71983 

9 -19.99195 -192.3657  26 -32.91205 -31.18255 

10 5.581796 -72.86746  27 -13.13657 -34.16038 

11 -25.13977 -86.53688  28 -33.26339 -57.04202 

12 0.4737994 -36.63409  29 -5.003212 -7.928584 

13 -19.45094 -22.95041  30 -19.41951 -31.87481 

14 -45.28438 -62.66026  31 -37.58458 -16.36071 

15 11.39632 -64.61948  32 -19.87968 -46.58064 

16 -10.10649 -67.25473  33 -16.32611 -31.15632 

17 -6.821116 -38.72626  34 -23.85774 -25.06652 

 

𝑚̂(𝑡𝑟) = 6393.361 − 641.7841 𝑐𝑜𝑠(2𝜋𝑡𝑟) − 463.524 𝑠𝑖𝑛(2𝜋𝑡𝑟) − 302.4193 𝑐𝑜𝑠(4𝜋𝑡𝑟)
− 10.89533 𝑠𝑖𝑛(4𝜋𝑡𝑟) − ⋯ − 23.85774 𝑐𝑜𝑠(68𝜋𝑡𝑟) − 25.06652 𝑠𝑖𝑛(68𝜋𝑡𝑟) 

(18) 

To evaluate the performance of the Fourier model in predicting ICI share prices, a comparison between 

the estimated and actual values is presented. Fig. 8 illustrates the relationship between the predicted results 

and the actual data, showing the model’s accuracy in capturing market trends. 
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Figure 8. Plot of Estimated and Actual Results 

Based on Fig. 8, the estimation results are quite close to the actual value of the ICI  share price with 

the calculation of the goodness test of the out sample and in sample data models as follows. 

Table 12. Results of the Virtue of the Fourier Model on In-Sample and Out-Sample Data 

 In-Sample Out-Sample 

MAPE 1.24% 8.57% 

R-Square 97% 85% 

Based on Table 12, in the in-sample data, the forecasting results obtained a MAPE value of 1.24% 

with an r square value of 97%. Meanwhile, the outsample data obtained a MAPE value of 8.75% with an R-

square value of 85%. From the MAPE value obtained, it can be said that ICI modeling with the Fourier series 

has high accurate prediction. 

3.3.3 ICI Forecasting with Fourier Series 

Forecasting aims to find out the prediction of an event over the next several periods. In Table 13, the 

data from  the ICI forecast for the next 15 periods is presented, namely March 10, 2020 to June 23, 2024 or 

predictions in an out sample with the Fourier model. 

Table 13. Summary of ICI Stock Price Prediction 

Date Current Predictions Upper Limit of Prediction Lower Limit of Prediction 

10/3/2024 7328.05 7076.34 7500.82 6340.89 

17/03/2024 7350.15 6869.02 7450.15 6133.57 

24/03/2024 7288.81 6792.93 7289.81 6057.49 

31/03/2024 7286.88 6812.84 7200.88 6077.39 

14/04/2024 7087.32 6856.05 7200.32 6120.60 

21/04/2024 7036.08 6870.29 7267.08 6134.84 

28/04/2024 7134.72 6850.78 7634.72 6115.33 

5/5/2024 7088.79 6823.97 7456.79 6088.53 

12/5/2024 7317.24 6813.07 7000.24 6077.62 

19/05/2024 7221.04 6819.44 7003.04 6084.00 

26/05/2024 6970.74 6709.45 6831.18 6095.74 

2/6/2024 6897.95 67390.0 6840.96 6105.52 

9/6/2024 6734.83 6756.96 6849.96 6114.51 

16/06/2024 6879.98 6769.48 6854.48 6119.03 

23/06/2024 7063.58 6997.87 7005.53 6091.45 

The results  of the ICI forecast provide a pattern that is quite volatile. as well as actual data. Although 

there are prediction results that exceed the stock price in the original data. it is still considered reasonable 

because it is still between the upper and lower limits of the prediction.  

The results of this study are in line with previous research according to [8], the study shows that the 

ARCH-GARCH model is able to predict ICI volatility well with a MAPE of 17.26%. However, unlike 

previous studies that only used ARCH-GARCH, this study combined ARCH-GARCH with Fourier to 

capture cycle patterns that may not have been detected by the ARCH-GARCH model alone. The results 

obtained show that this approach can improve the accuracy of predictions, which can be seen from the lower 
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MAPE values compared to previous studies. Thus, this study contributes to developing a more 

comprehensive ICI volatility prediction method.  

4. CONCLUSION 

This study found ARIMA-GARCH closely matches ICI  data, with ARIMA(0,2,1) as the best model. 

Despite heteroskedasticity, further testing with ARCH achieved excellent accuracy (MAPE 0.3%, R-squared 

97% and 85.6%). Fourier series estimation also performed well (MAPE 1.24% in-sample, 8.57% out-sample), 

but ARIMA-GARCH proved superior due to its lower MAPE. The modeling from this study can be used to 

predict the next period without having to include the actual data as the modeling is pre-trained. 

This study is limited to the use of weekly ICI data up to June 2024, and future research could use actual 

data and add macroeconomic variables. Future research could explore the integration of macroeconomic 

indicators, test longer forecasting horizons, and compare with other relevant models to improve the goodness 

of model. 

Based on these findings, investors are encouraged to take advantage of the upward trend in the ICI by 

increasing exposure to Indonesian equities, particularly in sectors showing strong, consistent growth and low 

volatility. Investors should also consider diversifying their portfolios to mitigate risk and optimize returns. 

Policymakers are recommended to maintain economic stability, strengthen investment-friendly regulations, 

and invest in key infrastructure to support sustained market growth and attract both domestic and international 

capital. 
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