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The Indonesia Composite Index (ICI) is a key indicator of stock market performance in
Indonesia, often experiencing high volatility due to various domestic and global economic
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1. INTRODUCTION

The Indonesia Composite Index (ICI) is a key indicator that reflects the overall stock market
performance listed on the Indonesia Stock Exchange (IDX). First introduced in 1983, ICI initially included
13 stocks and now lists 778 stocks [1]. As a major parameter to measure the Indonesian stock market's
condition, ICI reflects market sentiment and investment activities in Indonesia, both from domestic and
foreign investors [2]. In recent years, ICl has shown a significant upward trend, influenced by various
domestic and global economic factors. Although ARCH and GARCH models have been widely applied in
modeling and forecasting financial market volatility due to their ability to capture time-varying variance,
most studies focus solely on these parametric approaches. Comparisons with alternative nonparametric or
semi-parametric methods remain relatively rare, especially in the context of the Indonesian market. One such
alternative is the Fourier Series method, which is capable of modeling periodic patterns and capturing
complex structures in time series data without assuming a specific distribution form.

According to CNBC, in 2023, the ICI experienced very high fluctuations but ended with a significant
upward trend [3]. In March 2020, ICI dropped sharply to Rp 4194.94, its lowest level since 2020. However,
it started to rise again from May 2020 through December 2024, reaching its highest value in September 2024
at Rp 7812.13. Despite fluctuations, the overall rise in ICI provides a positive outlook on Indonesia's stock
market [4]. This not only attracts domestic investors but also foreign investors, which benefits companies in
Indonesia.

The uncertainty in the capital market, particularly in the fluctuations of the Indonesia Composite Index
(ICI), has become a major concern for investors, regulators, and economists due to its significant impact on
economic stability and financial decision-making. As a result, accurately predicting ICI has become both a
challenge and a necessity, especially for investors looking to minimize risk and maximize potential returns.

Traditional approaches to predicting ICI often rely on linear models that cannot fully capture the non-
linear dynamics of market fluctuations. The high volatility of stock indices leads to heteroscedasticity in the
data [5]. To overcome this limitation, Autoregressive Conditional Heteroskedasticity (ARCH) and
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models are used [6]. These models
excel in capturing dynamic volatility patterns, enabling more accurate predictions that are relevant to unstable
market conditions. In addition to the ARCH and GARCH models, a predictive approach using Nonparametric
Regression with the Fourier Series method is also employed. Nonparametric regression is flexible in
determining its curve estimation patterns [7].

Previous research shows good prediction results for ICI volatility using the GARCH method with a
model goodness test (MAPE) of 17.26% for the 2012-2022 period [5]. This is in line with other studies which
show that the GARCH model is able to forecast the ICI for the 2016-2021 period [8]. However, these studies
did not compare other methods, which could lead to more accurate results. It is important to distinguish
between the GARCH method and the GARCH model. The GARCH method refers to the broader statistical
technique used to capture volatility that changes over time in time series data. Meanwhile, the GARCH model
denotes a specific form of that technique, such as GARCH(1,1), applied in empirical analysis. In short, the
method represents the overall approach, while the model reflects its specific mathematical application.

This research distinguishes itself by conducting a comparative analysis between a parametric method
(ARCH/GARCH) and a nonparametric method (Fourier Series). In contrast to previous studies that typically
focused on a single model, this study assesses the predictive performance of both approaches to determine
which yields more accurate forecasts of ICI volatility. Additionally, it utilizes the most recent weekly data
from March 10, 2024, to June 23, 2024 capturing post-pandemic market behavior and reflecting the current
economic environment. The incorporation of the Fourier Series method into volatility modeling also
represents a novel contribution, as this technique has been seldom applied in previous research within the
context of the Indonesian stock market.

This study aims to predict the Indonesia Composite Index (ICI) more accurately using the
ARCH/GARCH and Fourier Series methods. By utilizing historical weekly ICI data from March 15, 2020,
to June 23, 2024, this research seeks to identify and forecast volatility patterns to support more reliable market
predictions. The results of this study are expected to provide a positive outlook for investors to invest in
Indonesian companies, while the government should implement policies that ensure the continued rise of
stocks in Indonesia.
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2. RESEARCH METHODS

2.1 Source and Data of Research Variables

This study employs a quantitative approach with a focus on time series analysis. The data utilized
consists of Indonesia Composite Index (ICI) stock prices, sourced from the Indonesia Investing.com website
[4]. This data set consists of weekly data covering the period from March 15, 2020, to June 23, 2024,
comprising 222 data observations. The research is structured into two segments: training data and testing
data. The training dataset, covering the period from March 15, 2020, to March 3, 2024, is used to develop the
model with a total of 207 training data (93%). Meanwhile, the testing dataset, spanning from March 10, 2024
to June 23, 2024, was used to evaluate the accuracy of the model with a total of 15 testing data (7%).

2.2 Data Analysis Steps

The steps of data analysis used in this research are as follows:

1.

Determine research variables

The selection of variables is based on the characteristics of time series data, where past values of
a variable can influence its future values. This approach is commonly used in models such as
ARIMA, as it effectively captures historical patterns and market trends. The period from March
2020 to June 2024 was deliberately chosen because it encompasses the crisis period caused by the
COVID-19 pandemic as well as the post-pandemic economic recovery phase, providing a relevant
context for analyzing the dynamics of the Indonesian stock market. Prior to analysis, the data
underwent preprocessing, which included removing duplicates, verifying consistent time
intervals, and handling missing values through imputation methods such as forward filling to
maintain the continuity of the time series. Additionally, data transformation, such as calculating
logarithmic returns, was also considered to stabilize variance and meet the statistical assumptions
of the model.

Checking data stationary using Augmented Dickey Fuller (ADF) and Box-Cox Transformation
Non-stationarity in the mean indicates that the average value of the data changes over time, which
is usually characterized by an upward or downward trend. To address this, a commonly used
method is differencing, which calculates the difference between the current and previous values
of the data, in order to remove the trend. On the other hand, non-stationarity in variance means
that the degree of dispersion or volatility of the data also changes over time. This is often found
in financial data such as stock indices or exchange rates, which tend to show large fluctuations in
certain periods. To stabilize the variance, Box-Cox transformation can be used, which is a data
transformation technique that aims to homogenize the variance by selecting the optimal lambda
(M) parameter value. After transforming and differencing, a retest of stationarity such as using the
Augmented Dickey-Fuller (ADF) test is required to ensure that the data has met the stationary
assumptions.

Selection of the best ARIMA model

Identify the ARIMA parameter values, namely p (autoregressive), d (differencing), and q (moving
average). The value of d is determined by the amount of differencing required to achieve
stationarity. Meanwhile, the p and q values can be estimated from the PACF and ACF graph
patterns. Once a candidate model is determined based on a combination of p and q values, it is
then estimated and compared using selection criteria such as AIC (Akaike Information Criterion),
where the best model is the one with the lowest AIC value. Once a model has been selected, it is
important to diagnose the residuals, the remaining model error. A good residual should be white
noise, which means it has no pattern, is random, and has a constant variance. In addition, the
residual data should be normally distributed.

Detecting heteroscedasticity

Heteroskedasticity was detected using the ARCH-LM test. A significant p-value (< 0.05) indicates
ARCH effects in the residuals, justifying the use of ARCH/GARCH modeling.

Estimating the ARIMA- ARCH-GARCH model on Training Data

The ARCH/GARCH method is a continuation of the ARIMA method, provided that the selected
ARIMA model has heteroscedasticity assumptions. The Autoregressive Conditional
Heteroskedasticity (ARCH) model is an autoregressive model that occurs when the variance is
not constant [9]. Fluctuations in the data cause the variance of the residuals to be inconstant and
heteroscedasticity. ARCH is used to be alternatively modeled by allowing the conditional variance
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of the squared residuals to depend on the previous squared residual values. The ARCH model can
be defined in the following Eq. (1) [10].

of = ag + ar&f4 1)

With:
o} . is the conditional variance of the time series at time ¢
@ : is a constant term and must be positive
a . is the coefficient of the lagged squared residual
g2,  :isthe squared error (shock) from the previous time period t — 1
In general, the ARCH (p) model can be represented by the following Eq. (2).

0f = 0p + 01601 + 0265 + -+ opel, (2)
With:
o} . is the conditional variance of the time series at time ¢
@ : is a constant term and must be positive
a . is the coefficient of the lagged squared residual
ef,  :isthe squared error (shock) from the previous time period t — p

Meanwhile, GARCH (Generalized Autoregressive Conditional Heteroscedasticity) is a
development of the ARCH model designed to handle heteroscedasticity problems in time series
data. While ARCH only uses past squared residuals to estimate the current variance, GARCH
enhances it by incorporating both the squared residuals and the variance estimated in the previous
period. This approach allows GARCH to capture volatility clustering patterns and long-term
dependencies more effectively, thus making it more flexible and accurate, especially in analyzing
financial data that often experiences volatility fluctuations in the form of clusters. Therefore, while
ARCH is simpler and remains useful in certain cases, GARCH offers broader and more realistic
modeling capabilities in describing complex variance behavior in time series. In general, the
GARCH (p, g) model, where p indicates the ARCH element and q indicates the GARCH element,
can be stated in the following Eq. (3) [10].

q 14
ot =w +Zajetz_j +Z,b’j0t2_j 3
j=1 j=1
Where:
a? : The conditional variance of the time series at time t.
) : A constant term (intercept), must be positive: w > 0
g2 j  : The squared error (shock) from j time steps ago.
a; : The ARCH coefficient for the lag j; measures impact of past shocks.
ol j : The conditional variance from j time steps ago.
B; : The GARCH coefficient for the lag j; measures persistence of past volatility.
D : The order of the ARCH term, number of past squared errors used.
q : The order of the GARCH term, number of past variances used.

Forecasting ICI using ARIMA- ARCH-GARCH on Testing Data

The same modeling procedure was applied to both training and testing data. In the training phase,
the ARIMA ARCH-GARCH model was fitted by estimating optimal parameters and testing for
heteroskedasticity. The testing phase used the trained model to generate forecasts, which were
then evaluated against actual values using metrics such as MAPE and R-squared to assess
prediction accuracy and volatility capture.

Calculating the MAPE value of the ARCH-GARCH model

Mean Absolute Percentage Error (MAPE) represents the average of the absolute percentage errors,
indicating the extent of prediction error in relation to the actual value. A lower MAPE value
signifies greater accuracy in the forecasting results. Eq. (4) below is the formula used to calculate

MAPE [11].
1~ (A —-F
MAPE = —Z —_—
n r=1

4;

| x 100% 4)
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With, A4; is the i-th actual data, F; is the prediction results for the i-th actual data, and n is the
number of data.
The resulting MAPE value has an interpretation in Table 1 as follows [12].

Table 1. Interpretation of MAPE Value

MAPE (%) Interpretation
<10% High accuracy prediction

10% - 20% Good prediction

21% - 50% Prediction is within reason
>50% Inaccurate prediction

8. Testing using Fourier Series estimation
The Fourier series is a trigonometric polynomial that offers significant flexibility, as it is
composed of curves generated by Sine and Cosine functions. In regression analysis, the Fourier
series estimator is employed to approximate a function or curve from data with an unknown
pattern, particularly for data exhibiting seasonal trends [13]. Data is considered seasonal if the
data curve forms certain patterns in each time period. If the observation data is known (t,, y;-) the
general regression model is as follows in Eq. (5) [14].

yr =m(ty) t+ &, r=123..,n (5)

The regression function m(tr) is of unknown form and will be estimated with Fourier series. It is
assumed that m(tr) € L2[a, b] is contained in Hilbert space as a linear combination of basic
elements of L2[a, b] which can be expressed in Eq. (6) as follows.

me) =Y Bt te,  r=123,..1 ©6)
j=1
Hence, the model becomes.
=) Bt)te,  T=123..n ™)
]:

Assume that t,, t, ts, ..., t,, are equally spaced over the interval [a, b].

In the estimation of unknown Fourier coefficients, it can be estimated by determining the optimal
A value which can express the number of Fourier coefficients ) that determine the smoothness
of the regression curve. A higher A leads to a smoother curve but may cause overfitting if too
large. The optimal A can be selected using criteria such as cross-validation or minimizing the
Generalized Cross-Validation (GCV) score. The Fourier series estimator can be written as Eq. (8)

follows [15].
m(t,) = Bo + ZA [aj cos <w> +b; sin (@)] (8)
j=1

9. Determining the optimal lambda based on the minimum GCV (Generalized Cross Validation) and
R-Squared values
Cross validation (CV) and generalized cross validation methods can be used to select the optimal
bandwidth value [16]. The equations for the CV and GCV methods are given in the following
Egs. (9) and (10) [16], [17].

1 n
CV(h) = Ezizl[yi — Gn-i(x)]? €))

Sralyi = Gn-i(x)]? (10)
{n=1tr[I — A(h)]}?

Given y; is the value of the response variable at the i-th observation, g(x;) is the estimated value
of the regression function at point x;, §;—; (x;) is the estimated value of the regression function at
point x; with the i-th observation removed, I is the identity matrix of size n x n, and A(%) is the
matrix of size n x n for each h. The regression function at point x; is the estimated value of the
regression function.

GCV(h) =




276 Mardianto, et al. PREDICTION OF THE INDONESIA COMPOSITE INDEX (ICI) USING THE ARCH GARCH...

R-Squared or commonly called the coefficient of determination explains how well the model's
ability to explain variations in the dependent variable [18]. The range of the coefficient of
determination is between 0 and 1. The formula for the coefficient of determination is written as
Eq. (11) below [19].
,_0-»0-»
O-»-»
Where y is a vector containing the mean of the response data. A good model is measured by the
largest R? value.
10. Determine Fourier Series modeling
11. Calculating the MAPE value of Fourier series modeling
12. Forecasting ICI using the Fourier series model
The Fourier series model forecasts ICI by breaking down historical data into sine and cosine

components to capture underlying cyclical patterns. These patterns are then projected forward to
estimate future index values based on the repetition of past trends.

(11

3. RESULTS AND DISCUSSION

3.1 Overview of the Democracy Index in Indonesia

In this study, presents descriptive statistics, including the mean, minimum, and maximum values, along
with a line plot of the ICI (Indonesia Composite Index) over time. Descriptive statistics are used to summarize
the data, while the line plot helps identify the data pattern for prediction. The description of each research
variable follows.

Table 2. Descriptive Statistics
Variable N Mean  St. Dev Min Date (Min) Max Date (Max)
ICI (Indonesia Composite Index 223  6441.7 768,89  4194.94  15/03/2020  7228.91 3/3/2024

Based on Table 2, the Indonesia Composite Index (ICI) had an average value of 6441.7 from 223
observations, with a standard deviation of 768.89, indicating significant fluctuations. The lowest value was
4194.94 on March 15, 2020, and the highest was 7228.91 on March 3, 2024, suggesting a period of market
recovery or growth. Overall, the index exhibits high volatility.
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Figure 1. Time Series Plot

Based on Fig. 1, The data exhibits recurring fluctuations over a certain period and shows an upward
trend, making the Fourier method suitable for predicting stock prices. Additionally, stock prices tend to
demonstrate volatility that changes over time, which makes the ARCH-GARCH method also appropriate for
predicting stock prices.
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3.2 ARCH- GARCH Forecasting

3.2.1 Data Stationarity

Data stationarity is a mandatory condition in classical time series modeling, such as ARIMA. Data is
considered stationary if it remains stable over time with constant mean and covariance. The statistical tests
used to test the stationarity of time series data are the Augmented Dickey-Fuller (ADF) test and the Box-Cox
transformation. Stationarity occurs if the ADF test shows a p-value less than the determined significance level
(¢ = 0.05). The Box-Cox transformation is one of the methods used to address non-stationarity in variance
when the transformation parameter is not equal to 1 (1 # 1).

Lower CL Upper CL
120 A
(using 95.0% confidence)
Estimate 196
110 Lower CL 108
Upper CL 297
Rounded Value 2.0
100
3
[a]
+—
v
90
80
70 Limit
-5.0 -2.5 0.0 2.5 5.0
A

Figure 2. Box-Cox Plot for Original Data

Based on Fig.e 2, the Box-Cox transformation yields an estimated lambda (1) of 1.74, which is within
the 95% confidence interval (1.08 to 2.97) and rounded value or lambda (1) is 2.0 so that the data still needs
to be transformed into a box-cox in the form of Zt?2. After the transformation, the results of Box-Cox have a
rounded value or lambda (1) of 1 so that further testing can be carried out.

Table 3. ADF Test Results

Variable P-value Results
ICI 0.4964 Non-stationary data
d(ICl) 0.0100 Stationary data
d(d(ICI)) 0.0100 Stationary data

Based on Table 3, the results of the Augmented Dickey-Fuller (ADF) test show that the original ICI
data is non-stationary, as indicated by a p-value of 0.4964 (> 0.05). After the first differencing, the p-value
becomes 0.0100 (< 0.05), suggesting that the data is already stationary.

However, further examination of the ACF and PACEF plots after first differencing Fig. 3 (a) did not
show a clear pattern (lags were not significantly distinct). Therefore, a second differencing was performed to
better capture the structure of the time series and improve model identification. After second differencing,
the ADF test still confirms stationarity (p — value = 0.0100), and the ACF and PACF plots now display
significant lags Fig. 3 (b), which can be used to select appropriate ARIMA model parameters.
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3.2.2 ACF and PACF plots
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Figure 3. ACF and PACF Plots (a) Differencing-1, (b) Differencing-2

Based on Fig. 3 (a) (first differencing), both ACF and PACF show very few significant spikes and no
clear cutoff or tailing pattern. In Fig. 3 (b) (second differencing), the ACF plot shows a significant spike at
lag 1 and tails off afterward, while the PACF shows multiple significant spikes before decaying. These
patterns suggest the potential for ARIMA(p, 2, g) modeling, with further candidate models explored in the
next section.

3.2.3 Selection of the Best ARIMA Models

In evaluating ARIMA model candidates, several diagnostic criteria are considered to ensure model
validity and accuracy. First, the statistical significance of the parameters (AR and MA terms) is assessed
using p-values, where values below 0.05 indicate that the parameters significantly contribute to explaining
the variance in the data. Second, the Akaike Information Criterion (AIC) is used to compare model
performance. A lower AIC value indicates a better model in terms of balancing fit and complexity, making it
a key metric for model selection. Additionally, white noise testing is performed on the residuals to ensure
that the model has adequately captured the structure of the data. Residuals that behave like white noise (i.e.,
have no autocorrelation) indicate a well-fitted model. Finally, residual normality is examined to check
whether the model errors are normally distributed, which is a desirable property for statistical inference.

Table 4. Model Diagnostic Test

Model Significance White Noise  Residual Normality AIC Values
ARIMA (1, 2, 0) Yes No Yes 3396.95
ARIMA (2, 2, 0) Yes No No 3351.12
ARIMA (3, 2, 0) Yes No Yes 3335.76
ARIMA (4, 2, 0) Yes No No 3316.35
ARIMA (5, 2, 0) Yes Yes No 3311.92
ARIMA (1, 2,1) No Yes No 3281.05
ARIMA (2,2,1) No Yes No 3278.53
ARIMA (3,2,1) No Yes No 3280.45
ARIMA (4,2, 1) No Yes No 3282.28
ARIMA (5, 2, 1) No Yes No 3282.56
ARIMA (0,2, 1) Yes Yes No 3281.09

Based on Table 4 shows the diagnostic test results for several ARIMA models with second-order
differencing. Although none of the models passed all three diagnostic tests, ARIMA(5,2,0) and
ARIMA(0,2,1) passed two out of three. A closer look at the ACF and PACF plots supports the selection of
ARIMA(0,2,1), as the ACF cuts off sharply after lag 1, and the PACF tails off, which is consistent with the
characteristics of an MA(1) model. Therefore, ARIMA(0,2,1) is recommended as the final model due to both
statistical support and alignment with theoretical identification patterns.
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These findings demonstrate how stationarity tests and the behavior of ACF and PACF plots directly
influence the model selection process. The need for second differencing, despite statistical stationarity after
first differencing, is justified by the improved clarity in lag structure, which is essential for selecting
appropriate AR and MA terms. Further examination of residual normality for this model will be done using
its residual histogram.

40 -

10-

-
Al
500  -250 0 250
residuals

Figure 4. Histogram ARIMA (0,2,1)

As seen in Fig. 4, the residual histogram for the ARIMA(0,2,1) model indicates non-normality, with
values densely clustered near zero due to high prediction accuracy. Nonetheless, the model is still
interpretable, and residual variance heteroscedasticity testing can proceed.

3.2.4 ARIMA Model Estimation

Table 5 below presents the results of the estimation of the parameters of the ARIMA model (0,2,1),
including the coefficient, error standards, p-values, as well as evaluation metrics such as Akaike Information
Criterion (AIC) and Mean Squared Error (MSE).

Table 5. ARIMA Model Estimation (0, 2, 1)
Parameter Coefficient Error Standards P-Value AIC MSE
MA (1) -0.99087 -0.01924 0.000 3281.09 254.3628

Based on Table 5, since the p-value is less than 0.05, the ARIMA model estimate (0, 2, 1) will be used
for the ARIMA GARCH estimation. The mathematical equation of the estimated ARIMA model (0, 2, 1) t
model estimation in Eq. (12) is as follows.

(1 — B)4Zt* = 0q (B)e,

(1 —=B)4zZt* = (1 — 6,B)s;

(1 —=B)?Zt* = (1 — 6,B)¢,
(1- 2B + B?)Zt* = (1 — 6;B)¢,
Zt' — 2Z; 4 +Z{ 5, = & — 0161

Zt* = 22;_1 - Z;_z + ‘St - ngt—l
Zt* = 22;_1 - ZZ'(—Z + St - (_099087)£t—1
ZF =277, — Zt_,+e, +0.99087¢,_, (12)

3.2.5 Detection of Heteroscedasticity of Residual Variance

In the ARIMA model, it is assumed that the residuals have a normal distribution with a mean of u=0
and homogeneous variance g2. However, in economic data such as exchange rates, inflation, and stock prices,
high volatility is often observed, which violates the assumption of homogeneous residual variance. To detect
this, a heteroscedasticity test is performed on the squared residuals generated by the ARIMA model. In this
case, the squared error €2 from the ARIMA (0,2,1) model is used as an estimator of the residual variance o2
Below are the ACF and PACEF plots for the squared residuals.
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(a) (b)
Figure 5. Residual Quadratic Model ARIMA (0,2,1) (a) Plot ACF, (b) Plot PACF
Based on Fig. 5, lags in both the ACF and PACF plots, indicating autocorrelation and suggesting
heteroscedasticity in the residual variance. In addition to the ACF and PACF plots, heteroscedasticity can be

tested using the ARCH-LM (Lagrange Multiplier) test, with the null hypothesis of no conditional
heteroskedasticity in the ARIMA model residuals.

Table 6. ARCH-LM Test Results

Order Significsis LM-Test
1 0.01205348
2 0.03445677
3 0.06469904
4 0.1147188
5 0.1885327

The test results in Table 6 show that for five lags, the initial two lags of significance value (p-value)
are less than (5%) so the decision is to fail to reject the null hypothesis. Thus, it can be concluded that there
is an autocorrelation between the residual squares of the ARIMA model (0,2,1). To overcome this, advanced
modeling is needed to deal with heteroscedasticity that occurs using ARCH/GARCH.

3.2.6 Estimation of the ARCH/GARCH Model

In the previous point, it was known that the estimation results of the ARIMA model (0,2,1) experienced
heteroscedasticity symptoms in its residuals, so it was necessary to model variance with ARCH. The
ARCH/GARCH modeling was based on the square residual ACF and PACF plots with the provision that the
ARCH(p) model was determined by the p-second lag that came out in the ACF plot, the variances were
ARCH (1) or GARCH (1.0) and ARCH (2) or GARCH (2.0).

Table 7. GARCH Model Estimation

Model Parameter Coefficient Estimation Significance AIC
) 11463.98576 0
GARCH (1,0) o 0.23613 0.026004 12.30645
w 1.1279E+04 0
GARCH (2,0) a, 2.0591E-01 0.044909 12.31652
a, 2.8284E-02 0.049992

Based on Table 7, The selection of the GARCH(1,0) model was based on two primary considerations,
the Akaike Information Criterion (AIC) and the statistical significance of the estimated parameters. As shown
in the results, the GARCH(1,0) model yields an AIC value of 12.30645, which is slightly lower than that of
the GARCH(2,0) model (12.31652). A lower AIC indicates a better balance between model fit and
parsimony, favoring simpler models with strong explanatory power. Furthermore, both parameters in the
GARCH(1,0) model are statistically significant at the 5% level. The constant term w has a p-value of 0, and
the lagged error term coefficient a has a p-value of 0.026004, confirming the relevance of past shocks in
explaining current volatility. Although the GARCH(2,0) model also produces significant coefficients, the
additional parameter @, only marginally contributes to the model while increasing complexity. Given this,
the GARCH(1,0) model is selected as the final volatility model due to its lower AIC and more efficient
structure.Thus, the variance equation of the ARIMA residuals is as follows in Egs. (13) and (14).
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o2 =11463.98576+0.23613¢7, (13)
& = Vi 0y (14)

3.2.7 ARIMA-GARCH Model Estimation

The combination of Eqgs. (13) and (14) represents the merged equation of the ARIMA mean model and
the ARCH variance model, forming ARIMA(0,2,1)-ARCH(1), which can be mathematically expressed as
follows in Eq. (17).

Z; =277, —Zi,+ yt\/11463.98576+0.23613s,_?_1

(15)
+ 0,99087y; \/ 11463.98576+0.23613¢2,
7% = <2zg‘_1 —Zi, + ytJ11463.98576+0.23613s§_1
2 16
1 0,99087yt\/11463.98576+0.23613et2_2) (16)
of = <zzg*_1 —Zf 5+ yt\/11463.98576+0.23613e§_1
(17)

2
+ 0,99087ytJ11463.98576+0.23613£tz_2>

3.2.8 Evaluation of ARIMA (0,2,1) - ARCH(1) Model Performance

The accuracy of the ARIMA (0,2,1) - ARCH(1) model can be assessed by comparing the estimated
values with the actual data. Fig. 6 illustrates the comparison between the actual values and the predicted
results, showing how well the model captures the observed trend and volatility.

— Training
ARMA
— ARMA-GARCH

V

4500 5000 5500 B00D 6500 7000 7500

T T T T T
0 50 100 150 200

Figure 6. Plot Comparison of Actual Value and Estimated Results

As in Fig. 6, the results of ICI modeling provide a pattern that is quite volatile and has an upward trend
according to actual data, The results of the calculation of the goodness of the ARIMA model (0,2,1) for in
sample data are given in Table 8 as follows.

Table 8. Results of the Goodness of the ARIMA Model (0, 2, 1) - ARCH(1) on Data In-Sample and Out-Sample
In-Sample Out-Sample
MAPE 0.3% 5%
R-Square 97% 85.6%
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3.2.9 ICI Forecasting with ARIMA-GARCH

Forecasting aims to predict an event for several future periods. Table 9 presents the forecasting results
for the ICI over the next 15 periods, from March 10, 2020, to June 23, 2024, as an out-sample prediction
using the ARIMA(0,2,1)-ARCH(1) model.

Table 9. Summary of ICI Predictions

Date Current  Predictions  Upper Limit of Prediction Lower Limit of Prediction
10/3/2024 7328.05 7245.488 8575.215 6503.762
17/03/2024 7350.15 7200.460 8491.247 6323.672
24/03/2024 7288.81 7378.234 8541.428 6299.041
31/03/2024 7286.88 7345.009 8586.180 6279.838
14/04/2024 7087.32 7185.784 8627.517 6264.051
21/04/2024 7036.08 7145.559 8666.466 6250.651
28/04/2024 7134.72 7067.333 8703.635 6239.032

5/5/2024 7088.79 7189.108 8739.418 6228.798
12/5/2024 7317.24 7245.883 8774.087 6219.679
19/05/2024 7221.04 7324.658 8807.839 6211.477
26/05/2024 6970.74 6945.433 8840.822 6204.043

2/6/2024 6897.95 6876.207 8873.151 6197.264

9/6/2024 6734.83 6894.982 8904.916 6191.048
16/06/2024 6879.98 6856.757 8936.191 6185.323
23/06/2024 7063.58 7145.532 8967.036 6180.028

Based on Table 9, predicted values closely follow actual ICI values during the testing period, with
most actual values remaining within the 95% confidence interval. This indicates the model performs well in
capturing market trends.

3.3 Fourier Forecasting

3.3.1 Lambda Determination

Fourier series data estimation requires Fourier coefficients that represent the underlying cyclical
patterns in the time series. The number of Fourier terms used in the estimation is controlled by a parameter
called lambda (1), also known as the smoothing parameter. A higher value of 4 allows the model to capture
more variation and detail, but it can also lead to overfitting if too many coefficients are used. Conversely, a
A that is too low may oversimplify the model. Therefore, determining the optimal value of A is essential, and
this is done using the Generalized Cross Validation (GCV) method.

Table 10. GCV Value for Each Lambda

Lambda GCV
10 59956.11
19 46225.93
25 44548.98
28 40801,95

Based on Table 10, the GCV values are evaluated across various A values. The GCV score indicates
the model’s prediction error, and a lower value suggests a better balance between smoothness and accuracy.
In this case, the lowest GCV value (39010.12) is obtained when A = 34, meaning that using 34 sine and cosine
terms yields the best-fitting model for the ICI data. Therefore, the final model will use A = 34 Fourier
coefficients in its estimation.

To better visualize the behavior of GCV values across different A values, a plot of GCV versus A is
presented in Fig. 7. This helps illustrate how the smoothing parameter affects model performance.
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Figure 7. GCV and Lambda Plot

The graphin Fig. 7 shows that the GCV values generally decrease as A increases, reaching a minimum
at A = 34. After that point, GCV begins to increase again or flatten, indicating that larger A values no longer
improve model accuracy and may cause overfitting. This confirms that A = 34 is the optimal choice for
balancing model complexity and predictive accuracy.

3.3.2 Determining Fourier Modeling

Next, determine the value of a; as the cosine function component and a;. b; as the sine Fourier function
component presented in the following Table 11 and obtain the estimation model in Eq. (18).

Table 11. Fourier Parameter Value

Lambda Value a; Value b; Lambda Value a; Value b;
1 -463.524 -641.7841 18 22.4228 -32.602
2 -10.89533 -302.4193 19 -16.92024 -84.93953
3 -81.29823 -396.3109 20 -15.5431 -24.95324
4 51.20761 -287.7816 21 -15.3916 -33.02719
5 25.27814 -115.0535 22 -36.55945 -31.69785
6 -45.00541 -105.1539 23 -15.1187 -36.95112
7 -88.00813 -157.9726 24 -39.77752 -32.56711
8 -1.518772 -144.5985 25 1.063712 -38.71983
9 -19.99195 -192.3657 26 -32.91205 -31.18255
10 5.581796 -72.86746 27 -13.13657 -34.16038
11 -25.13977 -86.53688 28 -33.26339 -57.04202
12 0.4737994 -36.63409 29 -5.003212 -7.928584
13 -19.45094 -22.95041 30 -19.41951 -31.87481
14 -45.28438 -62.66026 31 -37.58458 -16.36071
15 11.39632 -64.61948 32 -19.87968 -46.58064
16 -10.10649 -67.25473 33 -16.32611 -31.15632
17 -6.821116 -38.72626 34 -23.85774 -25.06652

m(tr) = 6393.361 — 641.7841 cos(2nt,) — 463.524 sin(2nt,) — 302.4193 cos(4mt,)
—10.89533 sin(4nt,) — --- — 23.85774 cos(68nt,.) — 25.06652 sin(68mt,)

(18)

To evaluate the performance of the Fourier model in predicting ICI share prices, a comparison between
the estimated and actual values is presented. Fig. 8 illustrates the relationship between the predicted results
and the actual data, showing the model’s accuracy in capturing market trends.
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Figure 8. Plot of Estimated and Actual Results

Based on Fig. 8, the estimation results are quite close to the actual value of the ICI share price with
the calculation of the goodness test of the out sample and in sample data models as follows.

Table 12. Results of the Virtue of the Fourier Model on In-Sample and Out-Sample Data

In-Sample Out-Sample
MAPE 1.24% 8.57%
R-Square 97% 85%

Based on Table 12, in the in-sample data, the forecasting results obtained a MAPE value of 1.24%
with an r square value of 97%. Meanwhile, the outsample data obtained a MAPE value of 8.75% with an R-
square value of 85%. From the MAPE value obtained, it can be said that ICI modeling with the Fourier series
has high accurate prediction.

3.3.3 ICI Forecasting with Fourier Series

Forecasting aims to find out the prediction of an event over the next several periods. In Table 13, the
data from the ICI forecast for the next 15 periods is presented, namely March 10, 2020 to June 23, 2024 or
predictions in an out sample with the Fourier model.

Table 13. Summary of ICI Stock Price Prediction

Date Current Predictions  Upper Limit of Prediction  Lower Limit of Prediction

10/3/2024 7328.05 7076.34 7500.82 6340.89
17/03/2024 7350.15 6869.02 7450.15 6133.57
24/03/2024 7288.81 6792.93 7289.81 6057.49
31/03/2024 7286.88 6812.84 7200.88 6077.39
14/04/2024 7087.32 6856.05 7200.32 6120.60
21/04/2024 7036.08 6870.29 7267.08 6134.84
28/04/2024 7134.72 6850.78 7634.72 6115.33

5/5/2024 7088.79 6823.97 7456.79 6088.53
12/5/2024 7317.24 6813.07 7000.24 6077.62
19/05/2024 7221.04 6819.44 7003.04 6084.00
26/05/2024 6970.74 6709.45 6831.18 6095.74

2/6/2024 6897.95 67390.0 6840.96 6105.52

9/6/2024 6734.83 6756.96 6849.96 6114.51
16/06/2024 6879.98 6769.48 6854.48 6119.03
23/06/2024 7063.58 6997.87 7005.53 6091.45

The results of the ICI forecast provide a pattern that is quite volatile. as well as actual data. Although
there are prediction results that exceed the stock price in the original data. it is still considered reasonable
because it is still between the upper and lower limits of the prediction.

The results of this study are in line with previous research according to [8], the study shows that the
ARCH-GARCH model is able to predict ICI volatility well with a MAPE of 17.26%. However, unlike
previous studies that only used ARCH-GARCH, this study combined ARCH-GARCH with Fourier to
capture cycle patterns that may not have been detected by the ARCH-GARCH model alone. The results
obtained show that this approach can improve the accuracy of predictions, which can be seen from the lower
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MAPE values compared to previous studies. Thus, this study contributes to developing a more
comprehensive ICI volatility prediction method.

4. CONCLUSION

This study found ARIMA-GARCH closely matches ICI data, with ARIMA(0,2,1) as the best model.
Despite heteroskedasticity, further testing with ARCH achieved excellent accuracy (MAPE 0.3%, R-squared
97% and 85.6%). Fourier series estimation also performed well (MAPE 1.24% in-sample, 8.57% out-sample),
but ARIMA-GARCH proved superior due to its lower MAPE. The modeling from this study can be used to
predict the next period without having to include the actual data as the modeling is pre-trained.

This study is limited to the use of weekly ICI data up to June 2024, and future research could use actual
data and add macroeconomic variables. Future research could explore the integration of macroeconomic
indicators, test longer forecasting horizons, and compare with other relevant models to improve the goodness
of model.

Based on these findings, investors are encouraged to take advantage of the upward trend in the ICI by
increasing exposure to Indonesian equities, particularly in sectors showing strong, consistent growth and low
volatility. Investors should also consider diversifying their portfolios to mitigate risk and optimize returns.
Policymakers are recommended to maintain economic stability, strengthen investment-friendly regulations,
and invest in key infrastructure to support sustained market growth and attract both domestic and international
capital.
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