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ABSTRACT

This study presents a prey-predator model incorporating the Allee effect and Holling Type
1V Functional Response. The model identifies three equilibrium points: the zero-
equilibrium, the predator extinction equilibrium, and the positive equilibrium. Under
specific conditions, all these points exhibit local asymptotic stability. The Allee effect is
an important factor in determining the stability of the equilibrium point. A weak Allee
effect can destabilize the zero-equilibrium point, while a strong Allee effect ensures its
local asymptotic stability, potentially leading to the extinction of both species.
Additionally, forward and Hopf bifurcation under weak Allee conditions occur at the
predator extinction equilibrium point. In contrast, a strong Allee effect may cause
bistability between the zero-equilibrium and predator extinction equilibrium points. This
evidence suggests that prey can survive without predators; however, a strong Allee effect
might result in prey extinction if the population decreases significantly. The Holling Type
1V functional response illustrates the impact of prey group defense, which diminishes
predation pressure as prey density increases, thereby facilitating the development of limit
cycles and establishing a positive equilibrium under specific parameter conditions. This
mechanism is crucial for managing predator-prey cohabitation and influencing the
system's bifurcation structure. The final section of the study includes numerical
simulations to support the analytical findings. The interplay between the Allee effect and
the Holling Type IV functional response yields complex dynamics, encompassing
bistability, oscillation behavior, and sensitivity to initial conditions. Their collaborative
interaction amplifies the system's nonlinearity, enabling the creation of various dynamic
behaviors that are extremely sensitive to fluctuations in parameter values.
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1. INTRODUCTION

One of the most significant environmental issues in the world remains the extinction of
species. Habitat loss, climate change, and human activity contribute to species' rapid extinction |1]. Several
factors, such as the Allee effect, make small groups more susceptible to extinction. This is because the effect
makes it harder for individuals to reproduce and survive in low population densities [2]. Besides that,
alterations in behavior, such as collective defense among prey species, can influence predator-prey
interactions and environmental stability [3]. Mathematical models can be crucial in advancing our
understanding of complex ecological interactions and informing effective conservation strategies. Expanding
on Malthus's population growth model [4], Lotka |5] and Volterra [6] developed models to examine the
interactions between two species. Their work, now called the Lotka-Volterra model, has established a basis
for following significant models, including those created by Leslie-Gower |7] and Rosenzweig-MacArthur
[8]. The examination of prey-predator models is essential for comprehending various biological processes.
Current initiatives seek to develop more accurate models that closely correspond with observable biological
events. These developments have facilitated integrating various biological processes into prey-predator
models, thus representing the complexity of actual ecological systems more realistically.

Various biological processes in prey and predators have been extensively studied through model
development. Specific phenomena have been incorporated into certain models, such as changes in prey age
structure [9][10], anti-predator behavior [11], fear effects on prey [12], competition within species [13][14],
and disease occurrence among species |12]. Prey-predator models continue to undergo rigorous examination,
integrating additional ecological factors relevant to particular species.

The Allee effect plays a crucial role in ecology, particularly for species at risk of extinction, as it
outlines the reproductive challenges that heighten the likelihood of species loss. Numerous studies have
explored prey-predator models that incorporate the Allee effect, assessing its impact on established models
such as the Leslie-Gower model [15], Lotka-Volterra model [16], and Rosenzweig-MacArthur model [17].
Scholars have also investigated the Allee effect using various functional responses, including Holling type |
functional response [18], Holling type III functional response [19], Beddington-DeAngelis [20], and
Michaelis-Menten [21][22]. Anggriani et al. [23] examined the Allee effect in conjunction with intraspecific
competition among predators, while its implications for eco-epidemiological models were explored by Rahmi
et al. [24] and Sidik et al. [25]. Studies incorporating the Allee effect on predators can be found in the works
of [15] [26]]27], whereas the Allee effect on prey is analyzed in models by [28][29][30][31].

Beyond the Allee effect, researchers have observed that prey groups often engage in collective defense
against predator attacks [32]. This behavior has been integrated into various mathematical models. For
example, Zhang et al. [32] examine Hopf bifurcation in predator-prey models incorporating prey group
defense and time delays, representing this defense mechanism through an exponential function. In a different
approach, Jiao et al. [33] construct a Leslie-Gower model that includes prey group defense with a threshold
value, employing a type IV functional response. Patra et al. [34] also explore prey group defense, utilizing a
modified Holling type IV functional response in their study. The collective defensive actions of prey can
impact predator population density and improve the survival chances of potential victims.

The ongoing enhancement of models incorporating biological phenomena in predator and prey species
aims to create more realistic representations. Our study introduces a prey-predator model that combines the
Allee effect and prey group defense. We draw upon the model by [28], which integrates the Allee effect, and
the model by [33], which accounts for prey group defense. While [28] utilized a Holling type I functional
response in their prey-predator model with the Allee effect, we adapt this by implementing Holling's type IV
functional response. This response function offers greater ecological relevance and reflects the defensive
mechanisms of prey groups. It suggests that larger prey populations experience reduced predation rates, as
they can collectively defend against predators, making it more challenging for predators to capture them.
Consequently, the predator attack rate decreases, demonstrating the protective effect of group behavior in
prey. Although Jiao et al [33] employed the Holling type IV functional response to illustrate prey group
defense, they did not account for the Allee effect. Our research develops a model incorporating the Holling
Type IV Functional Response for prey group defense, as presented by [33], and the Allee effect on prey, as
examined by [28]. We analyze the resulting prey-predator model for local stability and further explore
bifurcations and population dynamics through numerical simulations.
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2. RESEARCH METHODS

The research employs a systematic approach to evaluate the suggested mathematical model, as depicted
in the flowchart in Figure 1.

i

Local Stability
Analysis

Numerical

End Simulation

Start Model Existence of
Construction Equilibrium Point

Figure 1. Flowchart of the Research Stages

The study starts with the model construction, which is then followed by the existence of equilibrium
points and their stability. Numerical simulations are performed to confirm the theoretical results, culminating
in the final conclusions and insights. The detailed phases of the research are outlined below.

2.1 Model Construction

This research was conducted by constructing a mathematical model that describes the interaction
between two populations: prey and predator. The model was constructed by considering the ecological
phenomena of prey and predator in the real world and referring to previously developed models. Following
the model's formulation, analytical dynamic analysis was performed, accompanied by numerical simulations
to support the analytical results. The following section describes how the model was developed in this
research.

The developed model incorporates two key variables: the density of the prey population (X) and the
density of the predator population (Y) at a given time t. This model is known as the prey-predator model,
which takes into account both the Allee effect and Holling Type IV Functional Response, as shown in system
of Equation (1).

X X © aXY

e

dt k (+X/ B+X?

dYy  oXY sy D
dt B+ X2

with p, @, 5,0,¢,{,5 and k as a positive parameter. p and « represent the intrinsic growth rate of the prey
and the predation rate on the prey by the predator, respectively. B represents the environmental protection
rate, and o represent the biomass conversion coefficients, i.e., the conversion rate of prey predation to
predator birth. § and k represent the natural mortality rate of predators and the environmental carrying
capacity of prey, respectively. Meanwhile ¢, > 0 describes the level of the Allee effect, with ¢ is the
severity of Allee, and { is the degree of Allee effect. In particular, if ¢ < { or { < ¢, then Equation (1)
exhibits a weak or strong Allee effect, respectively [29].

Specifically, Equation (1) describes the dynamics of prey population density, denoted by Z—f, and
predator population density, denoted by %. The prey population grows logistically, represented by
pX (1 - %), but its growth is further limited by the Allee effect, represented by “LX. Additionally, the prey
population decreases due to predation, characterized by the Holling type IV functional response, represented
by Baf)tz.
decreases due to natural mortality, represented by Y.

Meanwhile, the predator population increases through predation on prey, represented by and

oXY
B+x%
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2.2 Existence of Equilibrium Point

. s . . . dx
To determine the equilibrium points of Equation (1), one must concurrently solve the equations i 0

dy . .
and e 0. This process involves:

X @ aXY
pX<1_E_5+X>_ﬁ+X2=O’ @
aXY

2.3 Local Stability Analysis

The stability of the equilibrium points is analyzed using the Jacobian matrix evaluation. If we suppose
fi= i—f and f, = %, then the Jacobian matrix from Equation (1) can be defined as:

o oh
j=|ox o
0X 0dY

The stability of the equilibrium point can be determined by calculating the eigenvalues of the Jacobian
matrix. The equilibrium point is considered locally asymptotically stable if all eigenvalues have negative
values.

2.4 Numerical Simulation

Numerical simulations were carried out to support the analytical findings by selecting parameter values
that were in agreement with the analytical results. Several variations of parameter values are given to observe
the sensitivity of changes in parameter values to the system dynamics.

3. RESULTS AND DISCUSSION

3.1 The Existence of Equilibrium Points
When resolving Equation (2), three distinct categories of equilibrium points emerge: zero-equilibrium,
predator-free, and positive.
3.1.1 Zero-equilibrium Point
The state of extinction for all populations is represented by the zero-equilibrium point. This point,
symbolized by E,(0,0), is always exists in RZ U (0,0).
3.1.2 Predator-free Equilibrium Point

The predator-free equilibrium points are symbolized by E, (X,,0), x = 1,2,3. These points are derived
from Equation (3):

X =k =X +x(p-9) =0 (3)
If we consider X; and X, as the two solutions to Equation (3), we can conclude that:

_ k=D V=2 -4k -0
2

X1

4)

R [ St

X
2 2

(5)
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The existence of X, can be determined by examining the Allee effect condition (¢ — (), the value of
(x — ), and the discriminant value from Equation (3), namely:

M = (k=% = 4x(p = 0). (6)

1. Weak Allee Effect Case

The weak Allee effect in Equation (1) occurs if ¢ < . If ¢ < , then I[1; > 0, which leads to the
existence of predator-free equilibrium points depending on the value of k — (:

In Equation (1), the weak Allee effect occurs when ¢ < {. When ¢ < (, it follows that [T1; > 0,
resulting in the presence of predator-free equilibrium points that are contingent on the value of k —

:
a. Whenkx > (,\/(K —0)? —4k(p — () > (k — {), resulting X; > 0 and X, < 0.

b. Whenk < {,+/({ — k)% — 4k(p — {) > ({ — k), resulting X; > 0 and X, < 0.

Therefore, in the presence of a weak Allee effect within Equation (1), a single predator-free
equilibrium point exists, specifically E; (X3, 0).

2. Strong Allee Effect Case

In Equation (1), the strong Allee effect occurs when ¢ > {. The existence of predator-free
equilibrium points is contingent on the discriminant (I1;) in Equation (6) and the (k — {) value,
provided:

a. II; <0 case
If T1; < 0 then the predator-free equilibrium point E, (X,, 0) do not exist.
b. II; > 0 case

2
IfI1; >0, then ¢ < (K:—KO. Additionally, the k¥ — { value determines whether the predator-
free equilibrium point exists:

i. When k >, \/(K —0)? —4k(p — ) < (k — (), resulting X; > 0 and X, > 0. For this
scenario, two predator-free equilibrium points exist: specifically, E; (X1, 0) and E, (X3, 0).

ii. When k <, \/(K —0)? —4k(p — ) < (k— ), resulting X; <0 and X, < 0. In this
scenario, E; (X4, 0) and E, (X5, 0) do not exist.

c. II; =0 case
When the condition is met, a single predator-free equilibrium point exists, specifically

E5(X3,0), with X5 = KT_( E; exists if k > ¢ and do not exist if &k < (.

Consequently, there exist three equilibrium points without predators, specifically E; (Xy, 0), E; (X5, 0),
and E5(X3,0), whose presence is contingent upon the conditions of the Allee effect. Theorem 1 establishes
the conditions under which the predator-free equilibrium point exists under a weak Allee effect. In contrast,

Theorem 2 establishes the conditions under which the predator-free equilibrium point exists under a strong
Allee effect.

Theorem 1. If the Equation (1) exhibits a weak Allee effect (¢ < (), then the equilibrium point E;(X4,0)
exists and is unique.

Theorem 2. Let k > w and the Equation (1) has a strong Allee effect (¢ > {):

2
1. Ifp> %, then there are no predator-free equilibrium points.
2
2. Ifo= %, then there exists exactly one predator-free equilibrium point, namely, E3.

2
3. Ifo< %, then there are two predator-free equilibrium point, namely, E; and E,.
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3.1.3 Positive Equilibrium Point

The positive equilibrium points are denoted by E;(X;,Y;),i = 4,5,6, which represent the condition
where all populations exist, with X;and Y; are derived from Equation (7) and Equation (8).

K _s=0 %)
X7
X; ® aY;
p( kK (+X/) B+X? ®)
From Equation (7), we obtain

o 2 o — /I,

_ 2 _ 2 — —__ N2
HZ o 4‘ﬁ6 ) X4 25 and X5 25 . (9)

. . g 2
Ny exists if [I = 0 or f < (5) .

From Equation (8), we obtain

o _ PB+XE)[Ce = OXi —1elp = ) — X¢]
L ka({ + X;) a

= 4,5,6.

Theorem 3 establishes the conditions under which the existence of positive equilibrium point depends
on b.

ij -/
Theorem 3. Define I, = 6? — 462 and let X, = a+‘/_2,X5 =2 ‘/_2,X6 = %. Furthermore, define Y; =

28 26
p(B+XP) (k=D Xi—r(p-0)-XF] . _ . Ay 7Y w2
K(Z(f+Xi) :l - 4’,5,6, Wlth (K ()Xl K((p Z) Xi > O

2
1. If > (%) , then there are no positive equilibrium points.
2
2. If p= (%) , then there exists exactly one positive equilibrium point, namely E¢(Xg, Ye).

2
3. Ifp< (%) , then there are two positive equilibrium points, namely E4(X4,Y,) and E5 (X5, Ys).

3.2 Local Stability

Equation (1) is linearized around its equilibrium point to analyze local stability. The linear component
of the linearized model is referred to as the Jacobian matrix. Furthermore, the eigenvalues of the Jacobian
matrix are used to assess the stability of the equilibrium points in the prey-predator model [35]. This stability
indicates whether the predator and prey populations will remain balanced, fluctuate, or even become extinct,
depending on the eigenvalues. This analysis is crucial for understanding how biological interactions and
external factors affect the balance of the prey-predator ecosystem. Linearization around the equilibrium point
is carried out so that the Jacobian matrix is obtained as

2p, __ppl _a¥(B-X %) aX
P T T+ 02 (Brx? B+ x?
J= , . (10)
oY B 20X°Y oX _s
B+X B+ XY grxr°l

The stability of the equilibrium points of Equation (1) is determined by the Jacobian matrix Equation
(10), eigenvalues, and the result is presented in the following theorem. Theorem 4 provides a condition that
determines how the strength of the Allee effect influences the local stability of the zero-equilibrium point.

Theorem 4. If the Allee effect is strong (@ > (), then the zero-equilibrium point E;(0,0) is locally
asymptotically stable. Conversely, if the Allee effect is weak (¢ < {), this equilibrium point is unstable.

Proof. By substituting E,(0,0) to the Jacobian matrix Equation (10), gives
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P —9)
_|— 0
]Eo - ¢ ’
0 =)
and we get two eigen values 4; = @ and 4, = =6 < 0. Hence, E| is locally asymptotically stable if ¢ >
¢ and unstable if ¢ < (. m

Theorem 5 establishes a condition that explains how the local stability of the predator-free equilibrium
point, under the weak Allee effect, is influenced by the parameter c.

Theorem 5. Suppose that the Equation (1) exhibits a weak Allee effect. The predator-free equilibrium point,

2 2
S(B+x1) and unstable when o > M

E; (X1, 0) is locally asymptotically stable when o < ~ ~
1 1

Proof. By substituting E; (X4, 0) to the Jacobian matrix Equation (10), we obtain

10 1 aXq
~ le(((+X1)2_E) ESS
Jen = ; oX, 8B +XD)|
B+X°

oX1-8(B+X%)
B+X1?
, and it can be shown that 4; < 0. Furthermore, it can be shown that the value of 1, depends on

And we get eigen values 1; = pX; ( Tix? %) and A, = . If the Allee effect is weak, then

(1<+O2

2
(BX 1) ,then 1, < 0 making the predator-free equilibrium point, E;, is locally asymptotically stable

5(B+x%)

1

o<
o.lfo <
and if ¢ > then 1, > 0 making the predator-free equilibrium point is unstable. m

Theorem 6 establishes a condition that explains how the local stability of the predator-free equilibrium
point, under the strong Allee effect, is influenced by the parameter h.

S 2
Theorem 6. Suppose E, = (X,,0),x =123, k >, 0 < @ and the Equation (1) has a strong Allee
effect:
2
1. If p = (K:—O, then the predator-free equilibrium point, E5 is non-hyperbolic,
2. If @ < ) then the predator-free equilibrium point, E; is locally asymptotically stable and the

predator- free equilibrium point, E, is unstable (saddle node).

Proof. By substituting E, (X,, 0) to the Jacobian matrix Equation (10), gives

" ( Q 1) aX,
B (TS B+ X2
Je, = 0 oX —8(B+X2)|
| B+X2
where its eigenvalues are,
@ 1 oX —8(B + X2)
A = pX (— - —) d 1, =
PR GE T T T TR
5(B+x32)

We can show that 1, < 0 if ¢ < . Furthermore, 1, is depend on the Allee effect case. For the strong
Allee effect (¢ > ¢), we have the following case:

2 —
1. If o = %, then 1; = 0. Since 1; = 0, the predator-free equilibrium point E3 (KT(, O) is non-

hyperbolic.
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2. If o< (+O , then

2
+ z _ + + + 2_4
Alszx<%_l><PX1,z (k+9) ((K SEUCETS) z;cq))
(Z"‘ x) K K ((K+Z)i\/(’€+()2—4k(p)
a. ForEj,
2 <PX1 (K+Z)2_((K+Z)+\/(K+5)2—4K’(p)2
1
K

(G +Q) + /¥ 07 )

Furthermore, it is shown that

2
(x+()2—((K+C)+\/(K+O2—4K‘P>
= =20 + O (e + % — 4cp — (i + O? + 4o

< =20+ OV + 2% — 4kp — (K + D2 + (k + {)?

=2k + O (k + {2 — 4Kk < 0.
Since 4; < 0 and 4, < 0, then E; is locally asymptotically stable.

b. ForE,,

oy (04D~ (0 0~ VGT D7 )
« (G +9) G+ 07 )

Moreover, it has been demonstrated that

2
(K+C)2—((K+C)—\/(K+()2—4K(p)
=20k + O (i + 2 — 4xp — (k + ) + 4K

<20+ OV + 2 —dxp — (k + % + (i + {)?

=20+ Oy + )2 —4rp >0
Since A; > 0 and 4, < 0, then E, is unstable (saddle-node). m

Theorem 7 provides a condition that elucidates how the local stability of the positive equilibrium point
is affected by the parameter S.

Theorem 7. Suppose E; = (X;,Y;), i = 4,5,6, II, = 0% —4B52%, X, = a+‘/— , X5 = oz , X = i, and

28
p(B+X})[(x—-DXi—Kk(p-0)—-XF]
ka({+X;)

Y, = . Also suppose Y, > 0,Ys > 0, and Yy > 0.

2
1. If = ( ) then the positive equilibrium point Eg is non-hyperbolic.
2
2. IfB < (%) , then the positive equilibrium point E, is unstable. Moreover, iftr(]Ei) <0, then E,
is saddle-node and E5 is locally asymptotically stable.

Proof. By substituting E;(X;, 0) to the Jacobian matrix Equation (10), we obtain
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[_peXi | 2aXVi _pXi 9]
)2 2
Jo=|CTHT (Brxr)T K , (11)
' (o —28X)Y; 0
B + X}
where

_ o+ X :a—,/l'lz v -2 Ylzp(ﬂ-i-Xiz)[(K—()Xi—K(¢_5)—Xi2] [ =456
o 26 % 26 T0 T 280 ka({ + X;) ’

From Equation (11), the determinant and trace of the Jacobian matrix are obtained as follows:

B 8\ ((0 —28X)Y;\ _8(0c—28X)Y,
det(’“)‘_<_3)< B+ X? )‘ o(B+X7)

pPPX; 2aX}Y,  pX;

C+x? " (prxr)y *

tr (]Ei) =

Furthermore, the stability of E; can be determined by examining the determinant and trace of Jg:
1. For E¢(Xg,Ys), we obtain det (]Es) = 0, so that Eg is non-hyperbolic.

2. For E,(X,,Y,), we can show that
o+ o?— 462
0—26X4=J—28< oF; ﬁ>=—\/02—46zﬁ<0.

Since 0 — 26X, < 0, then det(]E4) < 0. Hence, E, is unstable. Moreover, if tr (],54) < 0, then
E, is saddle-node.

3. For E5(Xs,Ys), we can show that

— 2—452
0—26X5=0—26(U Vo ﬁ>=‘/02—452/3>0.

26

Since 0 — 28 X5 > 0, then det(]ES) > 0. Hence, Ej5 is locally asymtotically stable if tr (]Es) <0.
[

3.3 Numerical Simulation

This work does not particularly investigate real-world ecological scenarios. Instead, it concentrates on
the dynamics of prey-predator interactions, incorporating ecological elements such as the Allee effect and
prey group defense. Consequently, the parameter values employed in the numerical simulations are
hypothetically selected to satisfy the mathematical conditions and constraints established in the preceding
analytical results. The analysis indicates that the predation conversion rate (o) and the environmental
protection rate (f3) affect the model's stability; therefore, numerical simulations are performed by altering the
parameters o and . The parameter values listed in Table 1 were chosen to facilitate the simulation.

Table 1. Hypothetical Parameter Values
Parameter p K 4 a é
Value 1.00 1.00 0.30 0.60 0.10

3.3.1 The Influence of Predation Conversion Rate

The simulations presented in this section employ the parameter values listed in Table 1, § = 0.70 and
utilize the predation conversion rate ¢ € [0.10,0.50]. Figure 2 displays bifurcation diagrams that
demonstrate how elevating the predation conversion rate affects the convergence of the system's solution
under weak Allee effect conditions.
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Figure 2. Bifurcation Diagrams of the Equation (1) With a Weak Allee Effect (¢ = 0.2) and Parameter
Values as Given in Table 1

(a) Influence of o on Prey (X) and (b) Influence of ¢ on Predator (Y)

The bifurcation diagram depicted in Figure 2 highlights two critical bifurcation points, a; = 0.167
and o, = 0.359, which are connected to fluctuations in the predation conversion rate. A forward bifurcation
causes the equilibrium point E; to transition from a locally asymptotically stable state to an unstable one.
Specifically, E; maintains local asymptotic stability when o < o7, but loses this stability when ¢ > o7. For
o > o7, the positive point E5 achieves local asymptotic stability, provided that E; is unstable and ¢ < g5.
The occurrence of a Hopf bifurcation is signaled by the formation of a limit cycle surrounding E5 at and o =
o5 . Figure 3 provides a visual representation of these stability alterations within the phase portrait.
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Figure 3. The Phase Portraits of the Equation (1) With a Weak Allee Effect (9 = 0.2), Demonstrate the
Influence of Increasing Predation Conversion Rates on the Stability of Equilibrium Points, Highlighting
the Transition from Stable Predator-Free Equilibrium to Oscillatory Behavior
(a) Small Predation Conversion Rate, (b) Medium Predation Conversion Rate, (c) High Predation
Conversion Rate

Figure 3 displays the population dynamics of Equation (1) under a weak Allee effect through phase
portraits. When the predation conversion rate is ¢ = 0.10 (Figure 3 (a)), the system exhibits two equilibrium
points: the zero-equilibrium point Ey(0,0) and the predator-free equilibrium point E; (0.822,0). The system
converges to E;, signifying predator extinction and prey survival. As the predation rate increases to ¢ = 0.30
(Figure 3 (b)), three equilibrium points emerge, with convergence to the positive equilibrium point
E5(0.255,0.490), indicating stable coexistence of both populations. At ¢ = 0.40 (Figure 3 (c)), the system
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maintains three equilibrium points but converges to a limit cycle around Es, suggesting long-term stable
oscillations between prey and predator populations. These simulations imply that a slight increase in
predation efficiency could potentially disrupt prey-predator coexistence, leading to population oscillations in
real-world scenarios.

Further simulations explore the impact of the predation conversion rate on population dynamics
characterized by a strong Allee effect in Equation (1). Figure 4 presents phase portraits for various ¢ values,
with corresponding parameter values listed in Table 1.
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Figure 4. The Phase Portraits of the Equation (1) With a Strong Allee Effect (9 = 0.4), Demonstrate
the Influence of Increasing Predation Conversion Rates on the Stability of Equilibrium Points,
Highlighting the Potential Extinction of Both Populations
(a) Small Predation Conversion Rate, (b) Medium Predation Conversion Rate, (c) High Predation
Conversion Rate

Figure 4 displays the population dynamics of Equation (1) with a strong Allee effect through phase
portraits. When the predation conversion rate is o = 0.10 (Figure 4 (a)), the system exhibits three
equilibrium points: the zero-equilibrium point Ey(0,0) and two predator-free equilibrium points E; (0.50,0)
and E,(0.20,0). The system's convergence to either E, or E; indicates bistability, suggesting that the initial
population size determines prey survival. At o = 0.30 Figure 4 (b), four equilibrium points emerge: the zero-
equilibrium point E(0,0), predator-free equilibrium points E;(0.50,0) and E,(0.20,0), and the positive
equilibrium point E5(0.255,0.031). The system's convergence to E, signifies the extinction of both
populations. In Figure 4 (c), where 0 = 0.40, three equilibrium points exist: the zero-equilibrium point
E((0,0) and predator-free equilibrium points E; (0.50,0) and E,(0.20,0). The positive equilibrium point does
not exist, and the system converges to E,, implying that increased predation conversion rates lead to the
extinction of both populations. These simulations indicate that in real-world scenarios, a minor increase in
predation efficiency, coupled with strong Allee effects, may result in population extinction.

3.3.2 The Influence of Environmental Protection Rate

The parameter values listed in Table 1, ¢ = 0.20 and the environmental protection rate f € [0.1,1.2]
are utilized in the simulations for this section. Figure 5 presents bifurcation diagrams that demonstrate how
elevating the environmental protection rate affects the convergence of the system's solution under weak Allee
effect conditions.
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Figure 5. Bifurcation Diagrams of the Equation (1) With a Weak Allee Effect (9 = 0.2) and Parameter
Values as Given in Table 1
(a) Influence of 5 on Prey (X) and (b) Influence of 8 on Predator (Y)

Figure 5 displays a bifurcation diagram revealing two critical points for environmental protection rate
changes: f; = 0.465 and f; =~ 0.972. The first bifurcation point indicates a Hopf bifurcation, transitioning
from a limit cycle to a stable positive point, E5. When § < f1, a limit cycle surrounds E5. As f§ reaches 1 <
B < B, the point E5 becomes locally asymptotically stable, while E; loses stability. Once f exceeds 5, a
forward bifurcation occurs, causing Es to become unstable and E; to gain locally asymptotically stable. These
stability shifts are visually represented in the phase portrait shown in Figure 6.
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Figure 6. The Phase Portraits of the Equation (1) With a Weak Allee Effect (¢ = 0.2), Demonstrate the
Influence of Increasing Environmental Protection Rates on the Stability of Equilibrium Points,
Highlighting the Transition from Oscillatory Behavior to Stable Predator-Free Equilibrium
(a) Small Environmental Protection Rate, (b) Medium Environmental Protection Rate, (¢) High
Environmental Protection Rate

Figure 6 displays the population dynamics of Equation (1) under a weak Allee effect through phase
portraits. When 8 = 0.30 (Figure 6 (a)), the system exhibits three equilibrium points: the zero-equilibrium
point Ey(0,0), the predator-free equilibrium point E;(0.822,0), and the positive equilibrium point
E5(0.163,0.221). The solution oscillates stably around E5, forming a limit cycle. For § = 0.70 (Figure 6
(b)), three equilibrium points persist, with the solution converging to E5(0.452,0.425). This indicates that E
is locally asymptotically stable, while E, and E; are unstable, suggesting stable positive conditions. At § =
1.10 (Figure 6 (c)), only E, and E; remain, and the solution converges to E;, signifying predator extinction
and prey survival. Furthermore, simulations demonstrate how the environmental protection rate influences
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population dynamics in Equation (1) with a strong Allee effect. Figure 7 presents phase portraits using
parameter values from Table 1 and varying environmental protection rates (f3).
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Figure 7. The Phase Portraits of the System (1) With a Strong Allee Effect (¢ = 0.4), Demonstrate the
Influence of Increasing Environmental Protection Rates on the Stability of Equilibrium Points,
Highlighting the Transition from Potential Extinction of Both Populations to Potential Survival

(a) Small Environmental Protection Rate, (b) Medium Environmental Protection Rate, (¢) High
Environmental Protection Rate

Figure 7 displays phase portraits depicting population dynamics in Equation (1) under a strong Allee
effect. When the environmental protection rate is § = 0.30 (Figure 7 (a)), three equilibrium points exist: the
zero-equilibrium point E;(0,0) and two predator-free equilibrium points E; (0.5,0) and E;(0.2,0). As Ej is
stable and the others are unstable, solutions converge to E,, suggesting possible extinction. As the protection
rate increases to f = 0.70 (Figure 7 (b)), a positive point E5(0.452,0.024) emerges, and solutions converge
to either E or Es. This demonstrates bistability, where survival is contingent on the initial population size.
At = 1.10 (Figure 7 (¢)), only Ey and E; remain, with solutions converging to these points. This indicates
potential extinction unless the initial prey population surpasses the Allee threshold.

This study has analytically proven local stability and the occurrence of bifurcations through numerical
simulation. Future research may focus on broadening existing findings to understand the system's dynamics
better. Future research could be done to derive global stability criteria through mathematical analysis.
Moreover, analytically demonstrating the existence of bifurcations before numerical validation would
enhance the theoretical framework of the model. Alongside the study of stability and bifurcations,
forthcoming enhancements to the model could integrate additional significant ecological variables to augment
its realism and applicability for practical conservation initiatives.

4. CONCLUSION

This research examines the dynamic behavior of a prey-predator model that incorporates both the Allee
effect and Holling Type IV functional response, with several conclusions following:

1. The model reveals three equilibrium points: zero, predator extinction, and positive, each
demonstrating local asymptotic stability under certain conditions. When a weak Allee effect is
present, the zero-equilibrium point becomes unstable; however, with a strong Allee effect, it
exhibits local asymptotic stability. A significant Allee effect may result in both populations
becoming extinct. In the case of a weak Allee effect, forward and Hopf bifurcations occur at the
predator extinction equilibrium point. Conversely, a strong Allee effect indicates bistability at zero
and predator extinction equilibrium points. This suggests that prey can survive without predators,
but a strong Allee effect might lead to prey extinction if the population falls below a critical
threshold.
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2. The study concludes with numerous numerical simulations that support these findings. The model
can be applied to study the population dynamics of endangered species in their interactions with
predators, particularly species that exhibit social behaviors such as group defense and potential
extinction due to ecological factors. These factors may include difficulties finding mates,
challenges in regeneration, monogamous living, or living in small groups.

3. In ecosystem management, this model can assist in designing more effective predator control or
prey conservation strategies by accounting for how group protection and population density
influence prey-predator interactions. Additionally, the model can be utilized to predict the impact
of human interventions, such as habitat modifications or species protection measures, on
ecosystem balance.
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