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 ABSTRACT 

Article History: 
This study presents a prey-predator model incorporating the Allee effect and Holling Type 

IV Functional Response. The model identifies three equilibrium points: the zero-
equilibrium, the predator extinction equilibrium, and the positive equilibrium. Under 

specific conditions, all these points exhibit local asymptotic stability. The Allee effect is 

an important factor in determining the stability of the equilibrium point. A weak Allee 

effect can destabilize the zero-equilibrium point, while a strong Allee effect ensures its 
local asymptotic stability, potentially leading to the extinction of both species. 

Additionally, forward and Hopf bifurcation under weak Allee conditions occur at the 

predator extinction equilibrium point. In contrast, a strong Allee effect may cause 
bistability between the zero-equilibrium and predator extinction equilibrium points. This 

evidence suggests that prey can survive without predators; however, a strong Allee effect 

might result in prey extinction if the population decreases significantly. The Holling Type 

IV functional response illustrates the impact of prey group defense, which diminishes 
predation pressure as prey density increases, thereby facilitating the development of limit 

cycles and establishing a positive equilibrium under specific parameter conditions. This 

mechanism is crucial for managing predator-prey cohabitation and influencing the 

system's bifurcation structure. The final section of the study includes numerical 
simulations to support the analytical findings. The interplay between the Allee effect and 

the Holling Type IV functional response yields complex dynamics, encompassing 

bistability, oscillation behavior, and sensitivity to initial conditions. Their collaborative 

interaction amplifies the system's nonlinearity, enabling the creation of various dynamic 
behaviors that are extremely sensitive to fluctuations in parameter values. 
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1. INTRODUCTION 

One of the most significant environmental issues in the world remains the extinction of 

species.   Habitat loss, climate change, and human activity contribute to species' rapid extinction [1]. Several 

factors, such as the Allee effect, make small groups more susceptible to extinction. This is because the effect 

makes it harder for individuals to reproduce and survive in low population densities [2].   Besides that, 

alterations in behavior, such as collective defense among prey species, can influence predator-prey 

interactions and environmental stability [3].  Mathematical models can be crucial in advancing our 

understanding of complex ecological interactions and informing effective conservation strategies. Expanding 

on Malthus's population growth model [4], Lotka [5] and Volterra [6] developed models to examine the 

interactions between two species.  Their work, now called the Lotka-Volterra model, has established a basis 

for following significant models, including those created by Leslie-Gower [7] and Rosenzweig-MacArthur 

[8]. The examination of prey-predator models is essential for comprehending various biological processes.  

Current initiatives seek to develop more accurate models that closely correspond with observable biological 

events.  These developments have facilitated integrating various biological processes into prey-predator 

models, thus representing the complexity of actual ecological systems more realistically. 

Various biological processes in prey and predators have been extensively studied through model 

development. Specific phenomena have been incorporated into certain models, such as changes in prey age 

structure [9][10], anti-predator behavior [11], fear effects on prey [12], competition within species [13][14], 

and disease occurrence among species [12]. Prey-predator models continue to undergo rigorous examination, 

integrating additional ecological factors relevant to particular species. 

The Allee effect plays a crucial role in ecology, particularly for species at risk of extinction, as it 

outlines the reproductive challenges that heighten the likelihood of species loss. Numerous studies have 

explored prey-predator models that incorporate the Allee effect, assessing its impact on established models 

such as the Leslie-Gower model [15], Lotka-Volterra model [16], and Rosenzweig-MacArthur model [17]. 

Scholars have also investigated the Allee effect using various functional responses, including Holling type I 

functional response [18], Holling type III functional response [19], Beddington-DeAngelis [20], and 

Michaelis-Menten [21][22]. Anggriani et al. [23] examined the Allee effect in conjunction with intraspecific 

competition among predators, while its implications for eco-epidemiological models were explored by Rahmi 

et al. [24] and Sidik et al. [25]. Studies incorporating the Allee effect on predators can be found in the works 

of [15] [26][27], whereas the Allee effect on prey is analyzed in models by [28][29][30][31]. 

Beyond the Allee effect, researchers have observed that prey groups often engage in collective defense 

against predator attacks [32]. This behavior has been integrated into various mathematical models. For 

example, Zhang et al. [32] examine Hopf bifurcation in predator-prey models incorporating prey group 

defense and time delays, representing this defense mechanism through an exponential function. In a different 

approach, Jiao et al. [33] construct a Leslie-Gower model that includes prey group defense with a threshold 

value, employing a type IV functional response. Patra et al. [34] also explore prey group defense, utilizing a 

modified Holling type IV functional response in their study. The collective defensive actions of prey can 

impact predator population density and improve the survival chances of potential victims. 

The ongoing enhancement of models incorporating biological phenomena in predator and prey species 

aims to create more realistic representations. Our study introduces a prey-predator model that combines the 

Allee effect and prey group defense. We draw upon the model by [28], which integrates the Allee effect, and 

the model by [33], which accounts for prey group defense. While [28] utilized a Holling type I functional 

response in their prey-predator model with the Allee effect, we adapt this by implementing Holling's type IV 

functional response. This response function offers greater ecological relevance and reflects the defensive 

mechanisms of prey groups. It suggests that larger prey populations experience reduced predation rates, as 

they can collectively defend against predators, making it more challenging for predators to capture them. 

Consequently, the predator attack rate decreases, demonstrating the protective effect of group behavior in 

prey. Although Jiao et al [33] employed the Holling type IV functional response to illustrate prey group 

defense, they did not account for the Allee effect. Our research develops a model incorporating the Holling 

Type IV Functional Response for prey group defense, as presented by [33], and the Allee effect on prey, as 

examined by [28]. We analyze the resulting prey-predator model for local stability and further explore 

bifurcations and population dynamics through numerical simulations. 
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2. RESEARCH METHODS 

The research employs a systematic approach to evaluate the suggested mathematical model, as depicted 

in the flowchart in Figure 1. 

 

 
Figure 1.  Flowchart of the Research Stages 

 

The study starts with the model construction, which is then followed by the existence of equilibrium 

points and their stability. Numerical simulations are performed to confirm the theoretical results, culminating 

in the final conclusions and insights. The detailed phases of the research are outlined below. 

2.1 Model Construction 

This research was conducted by constructing a mathematical model that describes the interaction 

between two populations: prey and predator. The model was constructed by considering the ecological 

phenomena of prey and predator in the real world and referring to previously developed models. Following 

the model's formulation, analytical dynamic analysis was performed, accompanied by numerical simulations 

to support the analytical results. The following section describes how the model was developed in this 

research. 

The developed model incorporates two key variables: the density of the prey population (𝑋) and the 

density of the predator population (𝑌) at a given time 𝑡. This model is known as the prey-predator model, 

which takes into account both the Allee effect and Holling Type IV Functional Response, as shown in system 

of Equation (1). 

               
𝑑𝑋

𝑑𝑡
= 𝜌𝑋 (1 −

𝑋

𝜅
−

𝜑

𝜁 + 𝑋
) −

𝛼𝑋𝑌

𝛽 + 𝑋2 

 
𝑑𝑌

𝑑𝑡
=

𝜎𝑋𝑌

𝛽 + 𝑋2 − 𝛿𝑌                                                                                   (1) 

with 𝜌, 𝛼, 𝛽, 𝜎, 𝜑, 𝜁, 𝛿 and 𝜅 as a positive parameter. 𝜌 and 𝛼 represent the intrinsic growth rate of the prey 

and the predation rate on the prey by the predator, respectively. 𝛽 represents the environmental protection 

rate, and 𝜎 represent the biomass conversion coefficients, i.e., the conversion rate of prey predation to 

predator birth. 𝛿 and 𝜅 represent the natural mortality rate of predators and the environmental carrying 

capacity of prey, respectively. Meanwhile 𝜑, 𝜁 > 0 describes the level of the Allee effect, with 𝜑 is the 

severity of Allee, and 𝜁 is the degree of Allee effect. In particular, if 𝜑 < 𝜁 or 𝜁 < 𝜑, then Equation (1) 

exhibits a weak or strong Allee effect, respectively [29]. 

Specifically, Equation (1) describes the dynamics of prey population density, denoted by 
𝑑𝑋

𝑑𝑡
, and 

predator population density, denoted by 
𝑑𝑌

𝑑𝑡
. The prey population grows logistically, represented by 

𝜌𝑋 (1 −
𝑋

𝜅
), but its growth is further limited by the Allee effect, represented by 

𝜑

𝜁 + 𝑋
. Additionally, the prey 

population decreases due to predation, characterized by the Holling type IV functional response, represented 

by 
𝛼𝑋𝑌

𝛽 + 𝑋2. Meanwhile, the predator population increases through predation on prey, represented by 
𝜎𝑋𝑌

𝛽 + 𝑋2, and 

decreases due to natural mortality, represented by 𝛿𝑌. 
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2.2 Existence of Equilibrium Point 

To determine the equilibrium points of Equation (1), one must concurrently solve the equations 
𝑑𝑋

𝑑𝑡
= 0 

and 
𝑑𝑌

𝑑𝑡
= 0. This process involves: 

𝜌𝑋 (1 −
𝑋

𝜅
−

𝜑

𝜁 + 𝑋
) −

𝛼𝑋𝑌

𝛽 + 𝑋2 = 0,                                                             (2) 

𝜎𝑋𝑌

𝛽 + 𝑋2
− 𝛿𝑌 = 0.                                                                    

2.3 Local Stability Analysis 

The stability of the equilibrium points is analyzed using the Jacobian matrix evaluation. If we suppose 

𝑓1 =
𝑑𝑋

𝑑𝑡
 and 𝑓2 =

𝑑𝑌

𝑑𝑡
, then the Jacobian matrix from Equation (1) can be defined as: 

𝐽 = [

𝜕𝑓1
𝜕𝑋

𝜕𝑓1
𝜕𝑌

𝜕𝑓2
𝜕𝑋

𝜕𝑓2
𝜕𝑌

]. 

The stability of the equilibrium point can be determined by calculating the eigenvalues of the Jacobian 

matrix. The equilibrium point is considered locally asymptotically stable if all eigenvalues have negative 

values. 

2.4 Numerical Simulation 

Numerical simulations were carried out to support the analytical findings by selecting parameter values 

that were in agreement with the analytical results.  Several variations of parameter values are given to observe 

the sensitivity of changes in parameter values to the system dynamics. 

3. RESULTS AND DISCUSSION 

3.1 The Existence of Equilibrium Points 

When resolving Equation (2), three distinct categories of equilibrium points emerge: zero-equilibrium, 

predator-free, and positive. 

3.1.1 Zero-equilibrium Point 

The state of extinction for all populations is represented by the zero-equilibrium point. This point, 

symbolized by 𝐸0(0,0), is always exists in 𝑅+
2 ∪ (0,0). 

3.1.2 Predator-free Equilibrium Point 

The predator-free equilibrium points are symbolized by 𝐸𝑥(𝑋𝑥, 0), 𝑥 = 1,2,3. These points are derived 

from Equation (3): 

𝑋2 − (𝜅 − 𝜁)𝑋 + 𝜅(𝜑 − 𝜁) = 0.                                                         (3) 

If we consider 𝑋1 and 𝑋2 as the two solutions to Equation (3), we can conclude that: 

𝑋1 =
(𝜅 − 𝜁)  + √(𝜅 − 𝜁)2 − 4𝜅(𝜑 − 𝜁)

2
                                                (4) 

𝑋2 =
(𝜅 − 𝜁) − √(𝜅 − 𝜁)2 − 4𝜅(𝜑 − 𝜁)

2
                                                 (5) 



BAREKENG: J. Math. & App., vol. 19(4), pp. 2891- 2904, December, 2025. 2895 

 

 

The existence of 𝑋𝑥 can be determined by examining the Allee effect condition (𝜑 − 𝜁), the value of 

(𝜅 − 𝜁), and the discriminant value from Equation (3), namely: 

    Π1 = (𝜅 − 𝜁)2 − 4𝜅(𝜑 − 𝜁).                                                          (6) 

1. Weak Allee Effect Case 

The weak Allee effect in Equation (1) occurs if 𝜑 < 𝜁. If 𝜑 < 𝜁, then Π1 > 0, which leads to the 

existence of predator-free equilibrium points depending on the value of 𝜅 − 𝜁: 

In Equation (1), the weak Allee effect occurs when 𝜑 < 𝜁. When 𝜑 < 𝜁, it follows that Π1 > 0, 

resulting in the presence of predator-free equilibrium points that are contingent on the value of 𝜅 −
𝜁: 

a. When 𝜅 > 𝜁, √(𝜅 − 𝜁)2 − 4𝜅(𝜑 − 𝜁) > (𝜅 − 𝜁), resulting 𝑋1 > 0 and 𝑋2 < 0. 

b. When 𝜅 < 𝜁, √(𝜁 − 𝜅)2 − 4𝜅(𝜑 − 𝜁) > (𝜁 − 𝜅), resulting 𝑋1 > 0 and 𝑋2 < 0. 

Therefore, in the presence of a weak Allee effect within Equation (1), a single predator-free 

equilibrium point exists, specifically 𝐸1(𝑋1, 0). 

2. Strong Allee Effect Case 

In Equation (1), the strong Allee effect occurs when 𝜑 > 𝜁. The existence of predator-free 

equilibrium points is contingent on the discriminant (Π1) in Equation (6) and the (𝜅 − 𝜁) value, 

provided: 

a. Π1 < 0 case 

If Π1 < 0 then the predator-free equilibrium point 𝐸𝑥(𝑋𝑥, 0) do not exist. 

b. Π1 > 0 case 

If Π1 > 0, then  𝜑 <
(𝜅+𝜁)2

4𝐾
. Additionally, the 𝜅 − 𝜁 value determines whether the predator-

free equilibrium point exists: 

i. When 𝜅 > 𝜁, √(𝜅 − 𝜁)2 − 4𝜅(𝜑 − 𝜁) < (𝜅 − 𝜁), resulting 𝑋1 > 0 and 𝑋2 > 0. For this 

scenario, two predator-free equilibrium points exist: specifically, 𝐸1(𝑋1, 0) and 𝐸2(𝑋2, 0). 

ii. When 𝜅 < 𝜁, √(𝜅 − 𝜁)2 − 4𝜅(𝜑 − 𝜁) < (𝜅 − 𝜁), resulting 𝑋1 < 0 and 𝑋2 < 0. In this 

scenario, 𝐸1(𝑋1, 0) and 𝐸2(𝑋2, 0) do not exist. 

c. Π1 = 0 case 

When the condition is met, a single predator-free equilibrium point exists, specifically 

𝐸3(𝑋3, 0), with 𝑋3 =
𝜅−𝜁

2
. 𝐸3 exists if 𝜅 > 𝜁 and do not exist if 𝜅 < 𝜁. 

Consequently, there exist three equilibrium points without predators, specifically 𝐸1(𝑋1, 0), 𝐸2(𝑋2, 0), 
and 𝐸3(𝑋3, 0), whose presence is contingent upon the conditions of the Allee effect. Theorem 1 establishes 

the conditions under which the predator-free equilibrium point exists under a weak Allee effect. In contrast, 

Theorem 2 establishes the conditions under which the predator-free equilibrium point exists under a strong 

Allee effect. 

Theorem 1. If the Equation (1) exhibits a weak Allee effect (𝜑 < 𝜁), then the equilibrium point 𝐸1(𝑋1, 0) 

exists and is unique. 

Theorem 2. Let 𝜅 > 𝑤 and the Equation (1) has a strong Allee effect (𝜑 > 𝜁): 

1. If 𝜑 >
(𝜅+𝜁)2

4𝜅
, then there are no predator-free equilibrium points. 

2. If 𝜑 =
(𝜅+𝜁)2

4𝜅
, then there exists exactly one predator-free equilibrium point, namely, 𝐸3. 

3. If 𝜑 <
(𝜅+𝜁)2

4𝜅
, then there are two predator-free equilibrium point, namely, 𝐸1 and 𝐸2. 

  



2896 Resmawan, et al.    DYNAMICS OF A PREY-PREDATOR MODEL WITH ALLEE EFFECTS AND HOLLING…  

 

3.1.3 Positive Equilibrium Point 

The positive equilibrium points are denoted by 𝐸𝑖(𝑋𝑖 , 𝑌𝑖), 𝑖 = 4,5,6, which represent the condition 

where all populations exist, with 𝑋𝑖and 𝑌𝑖 are derived from Equation (7) and Equation (8). 

𝜎𝑋𝑖

𝛽 + 𝑋𝑖
2 − 𝛿 = 0                                                              (7) 

𝜌 (1 −
𝑋𝑖

𝜅
−

𝜑

𝜁 + 𝑋𝑖
) −

𝛼𝑌𝑖

𝛽 + 𝑋𝑖
2 = 0                                                              (8) 

From Equation (7), we obtain 

Π2 = 𝜎2 − 4𝛽𝛿2,   𝑋4 =
𝜎 + √Π2

2𝛿
   and   𝑋5 =

𝜎 − √Π2

2𝛿
 .                                       (9) 

𝑁4,5 exists if Π2 ≥ 0 or 𝛽 ≤ (
𝜎

2𝛿
)
2
. 

From Equation (8), we obtain 

𝑌𝑖 =
𝜌(𝛽 + 𝑋𝑖

2)[(𝜅 − 𝜁)𝑋𝑖 − 𝜅(𝜑 − 𝜁) − 𝑋𝑖
2]

𝜅𝛼(𝜁 + 𝑋𝑖)
,   𝑖 = 4,5,6. 

Theorem 3 establishes the conditions under which the existence of positive equilibrium point depends 

on 𝑏. 

 

Theorem 3. Define 𝛱2 = 𝜎2 − 4𝛽𝛿2 and let 𝑋4 =
𝜎+√𝛱2

2𝛿
, 𝑋5 =

𝜎−√𝛱2

2𝛿
, 𝑋6 =

𝜎

2𝛿
. Furthermore, define 𝑌𝑖 =

𝜌(𝛽+𝑋𝑖
2)[(𝜅−𝜁)𝑋𝑖−𝜅(𝜑−𝜁)−𝑋𝑖

2]

𝜅𝛼(𝜁+𝑋𝑖)
, 𝑖 = 4,5,6, with (𝜅 − 𝜁)𝑋𝑖 − 𝜅(𝜑 − 𝜁) − 𝑋𝑖

2 > 0. 

1. If  𝛽 > (
𝜎

2𝛿
)
2
, then there are no positive equilibrium points. 

2. If  𝛽 = (
𝜎

2𝛿
)
2
, then there exists exactly one positive equilibrium point, namely 𝐸6(𝑋6, 𝑌6). 

3. If 𝛽 < (
𝜎

2𝛿
)
2
, then there are two positive equilibrium points, namely 𝐸4(𝑋4, 𝑌4) and 𝐸5(𝑋5, 𝑌5). 

 

3.2 Local Stability 

Equation (1) is linearized around its equilibrium point to analyze local stability. The linear component 

of the linearized model is referred to as the Jacobian matrix. Furthermore, the eigenvalues of the Jacobian 

matrix are used to assess the stability of the equilibrium points in the prey-predator model [35]. This stability 

indicates whether the predator and prey populations will remain balanced, fluctuate, or even become extinct, 

depending on the eigenvalues. This analysis is crucial for understanding how biological interactions and 

external factors affect the balance of the prey-predator ecosystem. Linearization around the equilibrium point 

is carried out so that the Jacobian matrix is obtained as 

𝐽 =

[
 
 
 
 𝜌 −

2𝜌

𝜅
𝑋 −

𝜌𝜑𝜁

(𝜁 + 𝑋)2 −
𝛼𝑌(𝛽 − 𝑋2)

(𝛽 + 𝑋2)2 −
𝛼𝑋

𝛽 + 𝑋2

𝜎𝑌

𝛽 + 𝑋2 −
2𝜎𝑋2𝑌

(𝛽 + 𝑋2)2

𝜎𝑋

𝛽 + 𝑋2 − 𝛿
]
 
 
 
 

.                                           (10) 

The stability of the equilibrium points of Equation (1) is determined by the Jacobian matrix Equation 

(10), eigenvalues, and the result is presented in the following theorem. Theorem 4 provides a condition that 

determines how the strength of the Allee effect influences the local stability of the zero-equilibrium point. 

Theorem 4. If the Allee effect is strong (𝜑 > 𝜁), then the zero-equilibrium point 𝐸0(0,0) is locally 

asymptotically stable. Conversely, if the Allee effect is weak (𝜑 < 𝜁), this equilibrium point is unstable. 

Proof. By substituting 𝐸0(0,0) to the Jacobian matrix Equation (10), gives 
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𝐽𝐸0
= [

𝜌(𝜁 − 𝜑)

𝜁
0

0 −𝛿

], 

and we get two eigen values 𝜆1 =
𝜌(𝜁−𝜑)

𝜁
 and 𝜆2 = −𝛿 < 0. Hence, 𝐸0 is locally asymptotically stable if 𝜑 >

𝜁 and unstable if 𝜑 < 𝜁. ■ 

Theorem 5 establishes a condition that explains how the local stability of the predator-free equilibrium 

point, under the weak Allee effect, is influenced by the parameter 𝑐. 

Theorem 5. Suppose that the Equation (1) exhibits a weak Allee effect. The predator-free equilibrium point, 

𝐸1(𝑋1, 0) is locally asymptotically stable when 𝜎 <
𝛿(𝛽+𝑋1

2)

𝑋1
 and unstable when  𝜎 >

𝛿(𝛽+𝑋1
2)

𝑋1
. 

Proof. By substituting 𝐸1(𝑋1, 0) to the Jacobian matrix Equation (10), we obtain 

𝐽𝐸1
=

[
 
 
 
 𝜌𝑋1 (

𝜑

(𝜁 + 𝑋1)
2 −

1

𝜅
) −

𝛼𝑋1

𝛽 + 𝑋1
2

0
𝜎𝑋1 − 𝛿(𝛽 + 𝑋1

2)

𝛽 + 𝑋1
2 ]

 
 
 
 

. 

And we get eigen values 𝜆1 = 𝜌𝑋1 (
𝜑

(𝜁+𝑋1)2
−

1

𝜅
)  and 𝜆2 =

𝜎𝑋1−𝛿(𝛽+𝑋1
2)

𝛽+𝑋1
2 . If the Allee effect is weak, then 

𝜑 <
(𝐾+𝜁)2

4𝜅
, and it can be shown that 𝜆1 < 0. Furthermore, it can be shown that the value of 𝜆2 depends on 

𝜎. If 𝜎 <
𝛿(𝛽+𝑋1

2)

𝑋1
, then 𝜆2 < 0 making the predator-free equilibrium point, 𝐸1, is locally asymptotically stable 

and if 𝜎 >
𝛿(𝛽+𝑋1

2)

𝑋1
  then 𝜆2 > 0 making the predator-free equilibrium point is unstable. ■ 

Theorem 6 establishes a condition that explains how the local stability of the predator-free equilibrium 

point, under the strong Allee effect, is influenced by the parameter ℎ. 

Theorem 6. Suppose 𝐸𝑥 = (𝑋𝑥, 0), 𝑥 = 1,2,3, 𝜅 > 𝜁, 𝜎 <
𝛿(𝛽+𝑋2)

𝑋
 and the Equation (1) has a strong Allee 

effect: 

1. If 𝜑 =
(𝜅+𝜁)2

4𝜅
, then the predator-free equilibrium point, 𝐸3 is non-hyperbolic, 

2. If 𝜑 <
(𝜅+𝜁)2

4𝜅
, then the predator-free equilibrium point, 𝐸1 is locally asymptotically stable and the 

predator-free equilibrium point, 𝐸2 is unstable (saddle node).  

Proof. By substituting 𝐸𝑥(𝑋𝑥 , 0) to the Jacobian matrix Equation (10), gives 

𝐽𝐸𝑥
=

[
 
 
 
 𝜌𝑋𝑥 (

𝜑

(𝜁 + 𝑋𝑥)
2
−

1

𝜅
) −

𝛼𝑋𝑥

𝛽 + 𝑋𝑥
2

0
𝜎𝑋 − 𝛿(𝛽 + 𝑋𝑥

2)

𝛽 + 𝑋𝑥
2 ]

 
 
 
 

, 

where its eigenvalues are, 

𝜆1 = 𝜌𝑋𝑥 (
𝜑

(𝜁 + 𝑋𝑥)
2 −

1

𝜅
)      and      𝜆2 =

𝜎𝑋 − 𝛿(𝛽 + 𝑋𝑥
2)

𝛽 + 𝑋𝑥
2 . 

We can show that 𝜆2 < 0 if  𝜎 <
𝛿(𝛽+𝑋𝑥

2)

𝑋𝑥
. Furthermore, 𝜆1 is depend on the Allee effect case. For the strong 

Allee effect (𝜑 > 𝜁), we have the following case:  

1. If 𝜑 =
(𝜅+𝜁)2

4𝜅
, then 𝜆1 = 0. Since 𝜆1 = 0, the predator-free equilibrium point 𝐸3 (

𝜅−𝜁

2
, 0) is non-

hyperbolic. 
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2. If  𝜑 <
(𝜅+𝜁)2

4𝜅
, then 

𝜆1 = 𝜌𝑋𝑥 (
𝜑

(𝜁 + 𝑋𝑥)
2 −

1

𝜅
)  <

𝜌𝑋1,2

𝜅
(
(𝜅 + 𝜁)2 − ((𝜅 + 𝜁) ± √(𝜅 + 𝜁)2 − 4𝜅𝜑)

2

((𝜅 + 𝜁) ± √(𝜅 + 𝜁)2 − 4𝜅𝜑)
2 ). 

a. For 𝐸1, 

𝜆1 <
𝜌𝑋1

𝜅
(
(𝜅 + 𝜁)2 − ((𝜅 + 𝜁) + √(𝜅 + 𝜁)2 − 4𝜅𝜑)

2

((𝜅 + 𝜁) + √(𝜅 + 𝜁)2 − 4𝜅𝜑)
2 ). 

Furthermore, it is shown that  

(𝜅 + 𝜁)2 − ((𝜅 + 𝜁) + √(𝜅 + 𝜁)2 − 4𝜅𝜑)
2

= −2(𝜅 + 𝜁)√(𝜅 + 𝜁)2 − 4𝜅𝜑 − (𝜅 + 𝜁)2 + 4𝜅𝜑 

                                                                       

< −2(𝜅 + 𝜁)√(𝜅 + 𝜁)2 − 4𝜅𝜑 − (𝜅 + 𝜁)2 + (𝜅 + 𝜁)2 

                                                                       = −2(𝜅 + 𝜁)√(𝜅 + 𝜁)2 − 4𝜅𝜑 < 0. 

Since 𝜆1 < 0 and 𝜆2 < 0, then 𝐸1 is locally asymptotically stable. 

b. For 𝐸2, 

𝜆1 <
𝜌𝑋2

𝜅
(
(𝜅 + 𝜁)2 − ((𝜅 + 𝜁) − √(𝜅 + 𝜁)2 − 4𝜅𝜑)

2

((𝜅 + 𝜁) − √(𝜅 + 𝜁)2 − 4𝜅𝜑)
2 ) 

Moreover, it has been demonstrated that 

(𝜅 + 𝜁)2 − ((𝜅 + 𝜁) − √(𝜅 + 𝜁)2 − 4𝜅𝜑)
2

= 2(𝜅 + 𝜁)√(𝜅 + 𝜁)2 − 4𝜅𝜑 − (𝜅 + 𝜁)2 + 4𝜅𝜑 

                                                                      

< 2(𝜅 + 𝜁)√(𝜅 + 𝜁)2 − 4𝜅𝜑 − (𝜅 + 𝜁)2 + (𝜅 + 𝜁)2 

                                                                      = 2(𝜅 + 𝜁)√(𝜅 + 𝜁)2 − 4𝜅𝜑 > 0 

Since 𝜆1 > 0 and 𝜆2 < 0, then 𝐸2 is unstable (saddle-node). ■ 

Theorem 7 provides a condition that elucidates how the local stability of the positive equilibrium point 

is affected by the parameter 𝛽. 

Theorem 7. Suppose 𝐸𝑖 = (𝑋𝑖 , 𝑌𝑖), 𝑖 = 4,5,6, 𝛱2 = 𝜎2 − 4𝛽𝛿2, 𝑋4 =
𝜎+√𝛱2

2𝛿
, 𝑋5 =

𝜎−√𝛱2

2𝛿
, 𝑋6 =

𝜎

2𝛿
, and 

𝑌𝑖 =
𝜌(𝛽+𝑋𝑖

2)[(𝜅−𝜁)𝑋𝑖−𝜅(𝜑−𝜁)−𝑋𝑖
2]

𝜅𝛼(𝜁+𝑋𝑖)
. Also suppose 𝑌4 > 0, 𝑌5 > 0, and 𝑌6 > 0. 

1. If  𝛽 = (
𝜎

2𝛿
)
2
, then the positive equilibrium point 𝐸6 is non-hyperbolic. 

2. If 𝛽 < (
𝜎

2𝛿
)
2
,  then the positive equilibrium point 𝐸4 is unstable. Moreover, if 𝑡𝑟(𝐽𝐸𝑖

) < 0, then 𝐸4 

is saddle-node and 𝐸5 is locally asymptotically stable. 

Proof. By substituting 𝐸𝑖(𝑋𝑖 , 0) to the Jacobian matrix Equation (10), we obtain 
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𝐽𝐸𝑖
=

[
 
 
 
 

𝜌𝜑𝑋𝑖

(𝜁 + 𝑋𝑖)
2 

+
2𝛼𝑋𝑖

2𝑌𝑖

(𝛽 + 𝑋𝑖
2)

2 −
𝜌𝑋𝑖

𝜅
−

𝛿

𝜎

(𝜎 − 2𝛿𝑋𝑖)𝑌𝑖

𝛽 + 𝑋𝑖
2 0

]
 
 
 
 

,                                                 (11) 

where 

𝑋4 =
𝜎 + √Π2

2𝛿
, 𝑋5 =

𝜎 − √Π2

2𝛿
, 𝑋6 =

𝜎

2𝛿
, 𝑌𝑖 =

𝜌(𝛽 + 𝑋𝑖
2)[(𝜅 − 𝜁)𝑋𝑖 − 𝜅(𝜑 − 𝜁) − 𝑋𝑖

2]

𝜅𝛼(𝜁 + 𝑋𝑖)
, 𝑖 = 4,5,6. 

From Equation (11), the determinant and trace of the Jacobian matrix are obtained as follows: 

det (𝐽𝐸𝑖
) = − (−

𝛿

𝜎
)(

(𝜎 − 2𝛿𝑋𝑖)𝑌𝑖

𝛽 + 𝑋𝑖
2 ) =

𝛿(𝜎 − 2𝛿𝑋𝑖)𝑌𝑖

𝜎(𝛽 + 𝑋𝑖
2)

, 

   tr (𝐽𝐸𝑖
) =

𝜌𝜑𝑋𝑖

(𝜁 + 𝑋𝑖)
2 

+
2𝛼𝑋𝑖

2𝑌𝑖

(𝛽 + 𝑋𝑖
2)

2 −
𝜌𝑋𝑖

𝜅
. 

Furthermore, the stability of 𝐸𝑖 can be determined by examining the determinant and trace of 𝐽𝐸𝑖: 

1. For 𝐸6(𝑋6, 𝑌6), we obtain det (𝐽𝐸6
) = 0, so that 𝐸6 is non-hyperbolic. 

2. For  𝐸4(𝑋4, 𝑌4), we can show that 

𝜎 − 2𝛿𝑋4 = 𝜎 − 2𝛿 (
𝜎 + √𝜎2 − 4𝛿2𝛽

2𝛿
) = −√𝜎2 − 4𝛿2𝛽 < 0. 

Since 𝜎 − 2𝛿𝑋4 < 0, then det(𝐽𝐸4
) < 0. Hence, 𝐸4 is unstable. Moreover, if tr (𝐽𝐸4

) < 0, then 

𝐸4 is saddle-node. 

3. For  𝐸5(𝑋5, 𝑌5), we can show that 

𝜎 − 2𝛿𝑋5 = 𝜎 − 2𝛿 (
𝜎 − √𝜎2 − 4𝛿2𝛽

2𝛿
) = √𝜎2 − 4𝛿2𝛽 > 0. 

Since 𝜎 − 2𝛿𝑋5 > 0, then det(𝐽𝐸5
) > 0. Hence, 𝐸5 is locally asymtotically stable if tr (𝐽𝐸5

) < 0. 

■ 

3.3 Numerical Simulation 

This work does not particularly investigate real-world ecological scenarios. Instead, it concentrates on 

the dynamics of prey-predator interactions, incorporating ecological elements such as the Allee effect and 

prey group defense. Consequently, the parameter values employed in the numerical simulations are 

hypothetically selected to satisfy the mathematical conditions and constraints established in the preceding 

analytical results. The analysis indicates that the predation conversion rate (𝜎) and the environmental 

protection rate (𝛽) affect the model's stability; therefore, numerical simulations are performed by altering the 

parameters 𝜎 and 𝛽. The parameter values listed in Table 1 were chosen to facilitate the simulation. 

Table 1. Hypothetical Parameter Values 

Parameter 𝜌 𝜅 𝜁 𝛼 𝛿 

Value 1.00 1.00 0.30 0.60 0.10 

 

3.3.1 The Influence of Predation Conversion Rate 

The simulations presented in this section employ the parameter values listed in Table 1,  𝛽 = 0.70 and 

utilize the predation conversion rate 𝜎 ∈  [0.10,0.50]. Figure 2 displays bifurcation diagrams that 

demonstrate how elevating the predation conversion rate affects the convergence of the system's solution 

under weak Allee effect conditions. 
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Figure 2.  Bifurcation Diagrams of the Equation (1) With a Weak Allee Effect (𝜑 = 0.2) and Parameter 

Values as Given in Table 1 

(a) Influence of 𝜎 on Prey (𝑋) and (b) Influence of 𝜎 on Predator (𝑌) 

 

The bifurcation diagram depicted in Figure 2 highlights two critical bifurcation points, 𝜎1
∗ ≈ 0.167 

and 𝜎2
∗ ≈ 0.359, which are connected to fluctuations in the predation conversion rate. A forward bifurcation 

causes the equilibrium point 𝐸1 to transition from a locally asymptotically stable state to an unstable one. 

Specifically, 𝐸1 maintains local asymptotic stability when 𝜎 < 𝜎1
∗, but loses this stability when 𝜎 > 𝜎1

∗. For 

𝜎 > 𝜎1
∗, the positive point 𝐸5 achieves local asymptotic stability, provided that 𝐸1 is unstable and 𝜎 < 𝜎2

∗. 

The occurrence of a Hopf bifurcation is signaled by the formation of a limit cycle surrounding 𝐸5 at and 𝜎 =
𝜎2

∗. Figure 3 provides a visual representation of these stability alterations within the phase portrait. 

 

 
Figure 3.  The Phase Portraits of the Equation (1) With a Weak Allee Effect (𝜑 =  0.2), Demonstrate the 

Influence of Increasing Predation Conversion Rates on the Stability of Equilibrium Points, Highlighting 

the Transition from Stable Predator-Free Equilibrium to Oscillatory Behavior 

(a) Small Predation Conversion Rate, (b) Medium Predation Conversion Rate, (c) High Predation 

Conversion Rate 

Figure 3 displays the population dynamics of Equation (1) under a weak Allee effect through phase 

portraits. When the predation conversion rate is 𝜎 = 0.10  (Figure 3 (a)), the system exhibits two equilibrium 

points: the zero-equilibrium point 𝐸0(0,0) and the predator-free equilibrium point 𝐸1(0.822,0). The system 

converges to 𝐸1, signifying predator extinction and prey survival. As the predation rate increases to 𝜎 = 0.30 

(Figure 3 (b)), three equilibrium points emerge, with convergence to the positive equilibrium point 

𝐸5(0.255,0.490), indicating stable coexistence of both populations. At 𝜎 = 0.40 (Figure 3 (c)), the system 
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maintains three equilibrium points but converges to a limit cycle around 𝐸5, suggesting long-term stable 

oscillations between prey and predator populations. These simulations imply that a slight increase in 

predation efficiency could potentially disrupt prey-predator coexistence, leading to population oscillations in 

real-world scenarios. 

Further simulations explore the impact of the predation conversion rate on population dynamics 

characterized by a strong Allee effect in Equation (1). Figure 4 presents phase portraits for various 𝜎 values, 

with corresponding parameter values listed in Table 1. 

 

 
Figure 4.  The Phase Portraits of the Equation (1) With a Strong Allee Effect (𝜑 =  0.4), Demonstrate 

the Influence of Increasing Predation Conversion Rates on the Stability of Equilibrium Points, 

Highlighting the Potential Extinction of Both Populations 

(a) Small Predation Conversion Rate, (b) Medium Predation Conversion Rate, (c) High Predation 

Conversion Rate 

Figure 4 displays the population dynamics of Equation (1) with a strong Allee effect through phase 

portraits. When the predation conversion rate is 𝜎 = 0.10 (Figure 4 (a)), the system exhibits three 

equilibrium points: the zero-equilibrium point 𝐸0(0,0) and two predator-free equilibrium points 𝐸1(0.50,0) 

and 𝐸2(0.20,0). The system's convergence to either 𝐸0 or 𝐸1 indicates bistability, suggesting that the initial 

population size determines prey survival. At 𝜎 = 0.30 Figure 4 (b), four equilibrium points emerge: the zero-

equilibrium point 𝐸0(0,0), predator-free equilibrium points 𝐸1(0.50,0) and 𝐸2(0.20,0), and the positive 

equilibrium point 𝐸5(0.255,0.031). The system's convergence to 𝐸0 signifies the extinction of both 

populations. In Figure 4 (c), where 𝜎 = 0.40, three equilibrium points exist: the zero-equilibrium point 

𝐸0(0,0) and predator-free equilibrium points 𝐸1(0.50,0) and 𝐸2(0.20,0). The positive equilibrium point does 

not exist, and the system converges to 𝐸0, implying that increased predation conversion rates lead to the 

extinction of both populations. These simulations indicate that in real-world scenarios, a minor increase in 

predation efficiency, coupled with strong Allee effects, may result in population extinction. 

3.3.2 The Influence of Environmental Protection Rate 

The parameter values listed in Table 1, 𝜎 = 0.20 and the environmental protection rate 𝛽 ∈ [0.1, 1.2] 
are utilized in the simulations for this section. Figure 5 presents bifurcation diagrams that demonstrate how 

elevating the environmental protection rate affects the convergence of the system's solution under weak Allee 

effect conditions. 
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Figure 5.  Bifurcation Diagrams of the Equation (1) With a Weak Allee Effect (𝜑 = 0.2) and Parameter 

Values as Given in Table 1 

(a) Influence of 𝛽 on Prey (𝑋) and (b) Influence of 𝛽 on Predator (𝑌) 

Figure 5 displays a bifurcation diagram revealing two critical points for environmental protection rate 

changes: 𝛽1
∗ ≈ 0.465 and 𝛽2

∗ ≈ 0.972. The first bifurcation point indicates a Hopf bifurcation, transitioning 

from a limit cycle to a stable positive point, 𝐸5. When 𝛽 < 𝛽1
∗, a limit cycle surrounds 𝐸5. As 𝛽 reaches 𝛽1

∗ <
𝛽 < 𝛽2

∗, the point 𝐸5 becomes locally asymptotically stable, while 𝐸1 loses stability. Once 𝛽 exceeds 𝛽2
∗, a 

forward bifurcation occurs, causing 𝐸5 to become unstable and 𝐸1 to gain locally asymptotically stable. These 

stability shifts are visually represented in the phase portrait shown in Figure 6. 

 

 
Figure 6.  The Phase Portraits of the Equation (1) With a Weak Allee Effect (𝜑 = 0.2), Demonstrate the 

Influence of Increasing Environmental Protection Rates on the Stability of Equilibrium Points, 

Highlighting the Transition from Oscillatory Behavior to Stable Predator-Free Equilibrium  

(a) Small Environmental Protection Rate, (b) Medium Environmental Protection Rate, (c) High 

Environmental Protection Rate 

Figure 6 displays the population dynamics of Equation (1) under a weak Allee effect through phase 

portraits. When 𝛽 = 0.30 (Figure 6 (a)), the system exhibits three equilibrium points: the zero-equilibrium 

point 𝐸0(0,0), the predator-free equilibrium point 𝐸1(0.822,0), and the positive equilibrium point 

𝐸5(0.163,0.221). The solution oscillates stably around 𝐸5, forming a limit cycle. For 𝛽 = 0.70 (Figure 6 

(b)), three equilibrium points persist, with the solution converging to 𝐸5(0.452,0.425). This indicates that 𝐸5 

is locally asymptotically stable, while 𝐸0 and 𝐸1 are unstable, suggesting stable positive conditions. At 𝛽 =
1.10 (Figure 6 (c)), only 𝐸0 and 𝐸1 remain, and the solution converges to 𝐸1, signifying predator extinction 

and prey survival. Furthermore, simulations demonstrate how the environmental protection rate influences 
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population dynamics in Equation (1) with a strong Allee effect. Figure 7 presents phase portraits using 

parameter values from Table 1 and varying environmental protection rates (𝛽). 

 

 
Figure 7.  The Phase Portraits of the System (1) With a Strong Allee Effect (𝜑 = 0.4), Demonstrate the 

Influence of Increasing Environmental Protection Rates on the Stability of Equilibrium Points, 

Highlighting the Transition from Potential Extinction of Both Populations to Potential Survival 

(a) Small Environmental Protection Rate, (b) Medium Environmental Protection Rate, (c) High 

Environmental Protection Rate 

Figure 7 displays phase portraits depicting population dynamics in Equation (1) under a strong Allee 

effect. When the environmental protection rate is 𝛽 = 0.30 (Figure 7 (a)), three equilibrium points exist: the 

zero-equilibrium point 𝐸0(0,0) and two predator-free equilibrium points 𝐸1(0.5,0) and 𝐸2(0.2,0). As 𝐸0 is 

stable and the others are unstable, solutions converge to 𝐸0, suggesting possible extinction. As the protection 

rate increases to 𝛽 = 0.70 (Figure 7 (b)), a positive point 𝐸5(0.452,0.024) emerges, and solutions converge 

to either 𝐸0 or 𝐸5. This demonstrates bistability, where survival is contingent on the initial population size. 

At 𝛽 = 1.10 (Figure 7 (c)), only 𝐸0 and 𝐸1 remain, with solutions converging to these points. This indicates 

potential extinction unless the initial prey population surpasses the Allee threshold. 

This study has analytically proven local stability and the occurrence of bifurcations through numerical 

simulation. Future research may focus on broadening existing findings to understand the system's dynamics 

better. Future research could be done to derive global stability criteria through mathematical analysis. 

Moreover, analytically demonstrating the existence of bifurcations before numerical validation would 

enhance the theoretical framework of the model.  Alongside the study of stability and bifurcations, 

forthcoming enhancements to the model could integrate additional significant ecological variables to augment 

its realism and applicability for practical conservation initiatives. 

4. CONCLUSION 

This research examines the dynamic behavior of a prey-predator model that incorporates both the Allee 

effect and Holling Type IV functional response, with several conclusions following: 

1. The model reveals three equilibrium points: zero, predator extinction, and positive, each 

demonstrating local asymptotic stability under certain conditions. When a weak Allee effect is 

present, the zero-equilibrium point becomes unstable; however, with a strong Allee effect, it 

exhibits local asymptotic stability. A significant Allee effect may result in both populations 

becoming extinct. In the case of a weak Allee effect, forward and Hopf bifurcations occur at the 

predator extinction equilibrium point. Conversely, a strong Allee effect indicates bistability at zero 

and predator extinction equilibrium points. This suggests that prey can survive without predators, 

but a strong Allee effect might lead to prey extinction if the population falls below a critical 

threshold.  
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2. The study concludes with numerous numerical simulations that support these findings. The model 

can be applied to study the population dynamics of endangered species in their interactions with 

predators, particularly species that exhibit social behaviors such as group defense and potential 

extinction due to ecological factors. These factors may include difficulties finding mates, 

challenges in regeneration, monogamous living, or living in small groups.  

3. In ecosystem management, this model can assist in designing more effective predator control or 

prey conservation strategies by accounting for how group protection and population density 

influence prey-predator interactions. Additionally, the model can be utilized to predict the impact 

of human interventions, such as habitat modifications or species protection measures, on 

ecosystem balance. 
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