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Article Info ABSTRACT 

Article History: 
Forecasting is essential for improving aviation safety, with air humidity being a critical 

factor influenced by air temperature. This study analyzes daily humidity data from I Gusti 

Ngurah Rai Airport, one of Indonesia’s busiest air stations, using two time series 

modeling approaches: Autoregressive (AR) and high-order fuzzy modeling. The objective 

is to evaluate and compare their forecasting accuracy. Historical daily data from the 

Meteorology, Climatology, and Geophysics Agency of Indonesia were used to build the 

forecasting models. The optimal linear AR model served as the foundation for 

constructing the AR high-order fuzzy model, which incorporates linguistic rules to 

capture nonlinear patterns. Both models were implemented and evaluated using the Mean 

Squared Error (MSE) metric. Results show that the AR(2) model outperforms the AR high-

order fuzzy model, achieving a lower MSE of 13.23. This suggests that the AR(2) model 

provides more accurate humidity forecasts over the observed period. These findings offer 

practical insights for policymakers and decision-makers in forecasting daily humidity 

levels and supporting aviation operations. While the study confirms the effectiveness of 

traditional AR modeling, it also highlights limitations of the fuzzy approach, particularly 

its sensitivity to parameter tuning and data sparsity. The integration of high-order fuzzy 

modeling represents a novel contribution to this domain, though further refinement is 

needed to enhance its forecasting performance. 
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1. INTRODUCTION 

I Gusti Ngurah Rai Airport is located in Tuban Village, Kuta District, Badung Regency, which lies in 

the central region of Indonesia. Astronomically, Tuban Village is positioned between 8°44'14"LS - 

8°45'28"LS and 115°9'8"E - 115°11'9"E, characterized by a lowland physical environment [1]. As one of 

Indonesia's three busiest airports, maintaining the composition of air pressure and temperature is crucial. Air 

pressure and temperature are critical factors for ensuring flight safety, particularly during takeoff and landing. 

Among the key parameters associated with temperature is atmospheric humidity, which plays a significant 

role in influencing aviation conditions. Air humidity refers to the concentration of moisture present in the 

atmosphere, represented by the amount of water vapor contained in the air [2]. The air humidity factor also 

contributes to the airport’s runway [3]. Air humidity data, collected from various meteorological and 

climatological stations, typically exhibit characteristics of minimal abrupt changes. The data distribution 

tends to fluctuate around a stable average, maintaining a relatively constant pattern, which suggests 

stationarity. Stationarity is a crucial assumption in the analysis of time series data [4]. 

The time series method is an analytical approach designed for forecasting future data trends. One 

widely used method within this framework is the Box-Jenkins method, which focuses solely on the dependent 

variable using historical data while disregarding independent variables. The key advantage of the Box-Jenkins 

method is its flexibility, as it does not require the data to consistently exhibit stationary patterns and is also 

applicable to datasets with seasonal fluctuations. The method comprises various models, including 

Autoregressive (AR), Moving Average (MA), and Autoregressive Moving Average (ARMA) for stationary 

data, as well as Autoregressive Integrated Moving Average (ARIMA) and Seasonal Autoregressive 

Integrated Moving Average (SARIMA) for non-stationary and seasonally patterned data [5]. 

This method has been extensively studied. For instance, [2] utilized the ARIMA model to predict 

average air temperature and daily humidity, while [4] applied the Box-Jenkins method to forecast traffic 

accident data in Semarang. Another forecasting technique suitable for stationary data is the high-order fuzzy 

Autoregressive (AR) method, which integrates the AR(p) model from Box-Jenkins with fuzzy regression 

concepts for time series data.  

Fuzzy AR models have consistently garnered attention, with significant advancements made in recent 

years. Notable contributions to fuzzy time series research include studies by Chen and Chang [6], Cai et al. 

[7], Chen and Chen [8], Yolcu et al. [9], Ye et al. [10], and Chen and Jian [11]. Additionally, for trend data, 

Sulandari and Yudhanto employed a hybrid approach combining simple moving averages with weighted 

fuzzy time series to enhance forecasting accuracy [12]. Meanwhile, recent advancements in the Weighted 

Fuzzy Time Series (WFTS) optimized with Particle Swarm Optimization (PSO), have demonstrated 

improved predictive accuracy in modeling air temperature trends [13]. Given the importance of air 

temperature in regulating air humidity, which in turn affects flight safety, exploring robust forecasting 

techniques remains a critical area of study. 

While classical models such as AR and ARMA are effective and statistically interpretable, they may 

lack the flexibility of fuzzy systems in modeling nonlinear relationships and handling imprecise or ambiguous 

data, which are often present in meteorological forecasting [14]. Therefore, this study proposes a high-order 

fuzzy AR approach, aiming to integrate the temporal modeling strength of classical methods to enhance 

forecasting performance in dynamic environments such as airport humidity. 

The high-order AR fuzzy model was developed to address the limitations found in conventional high-

order fuzzy AR methods [7]. By incorporating principles from classical autoregressive models, it offers 

improved practicality and broader applicability. In a notable contribution, Kocak (2017) introduced a high-

order fuzzy ARMA(p,q) model designed to enhance forecasting accuracy, even in scenarios where the MA 

component is not explicitly applied [15]. A major issue underlined in that study is the prevailing reliance on 

fuzzy AR variables in most fuzzy time series models, which often overlook the importance of MA 

components. Unlike these models, classical time series approaches, AR, MA, and ARMA, are tailored to fit 

the data’s underlying patterns, and neglecting essential MA terms in fuzzy models can result in specification 

errors and diminished forecasting accuracy. To overcome these issues, researchers have designed fuzzy 

ARMA models that incorporate both fuzzy AR and MA elements [16], [17], [18], [19]. 

Building on this foundation, the present study conducts a comparative analysis between the Box-

Jenkins method and the high-order fuzzy AR model for forecasting air humidity at I Gusti Ngurah Rai Airport. 

Accurate humidity forecasts are essential for ensuring flight safety, especially in tropical regions. In this 
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study, the significant Box-Jenkins model is utilized as a benchmark for determining the appropriate order of 

the high-order fuzzy AR model. The performance of both models is evaluated based on forecasting accuracy, 

with the preferred model identified through the smallest residual errors. Although high-order fuzzy AR 

models provide the advantage of blending statistical structure with fuzzy logic, their application in forecasting 

air humidity, particularly in tropical airport settings, remains underexplored. This study aims to fill that gap 

by comparing both approaches and identifying the most effective method for aviation-related humidity 

forecasting. 

2. RESEARCH METHODS 

2.1 Box Jenkins Method 

The Box-Jenkins time series models, including AR, MA, and ARMA, are widely used for forecasting 

and require data to be stationary for effective application. These models rely on identifying and modeling 

patterns based on autocorrelation structures within the time series. 

1. Model Identification 

Based on [20] the AR limited coefficient parameter value is set between −1 < 𝜑 < 1 for the 

process of AR(1) whilst for the process of AR(2), the coefficient parameter value are −2 < 𝜑1 <
2 and −1 < 𝜑2 < 1. Generally, the AR(p) model can be written as follows: 

𝑍𝑡 = 𝜑1𝑍𝑡−1 + 𝜑2𝑍𝑡−2 + ⋯ + 𝜑𝑝𝑍𝑡−𝑝 + 𝑎𝑡 (1) 

According to [21], the coefficient value for the MA(1) process parameter is limited to |𝜃1| < 1  

while for the MA(2) process parameter are 𝜃1 + 𝜃2 < 1, 𝜃2 − 𝜃1 < 1, and −1 < 𝜃2 < 1. The MA 

parameters for a q order process are written as follows. 
𝑍𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞 (2) 

The ARMA process combines both AR and MA models. Generally, the equation for the 

ARMA(p,q) model is expressed as: 
𝑍𝑡 = 𝜑1𝑍𝑡−1 + ⋯ + 𝜑𝑝𝑍𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞 (3) 

If the autocorrelation function (ACF) decreases exponentially and the partial autocorrelation 

function (PACF) cuts off at the p-th lag, the time series can be modeled using the AR(p) process. 

If the PACF decreases exponentially and the ACF cuts off at the 𝑞-th lag, the time series is suitable 

for the MA(q) process. If both the ACF and PACF decrease exponentially, the ARMA model 

should be chosen. 

2. Stationarity Test 

To assess stationarity in the mean, this analysis employs a unit root test to determine whether the 

data contains a unit root. The unit root test used in this study is the Phillips-Perron Root Test. To 

evaluate stationarity in variance, the Box-Cox Transformation is applied, and any non-stationary 

variance is addressed through data transformation. The stationarity of the data can also be 

observed through the ACF and PACF plots, by checking if the patterns follow an exponential 

decay. If the data is stationary, a temporary model can be identified based on the ACF and PACF 

plots. 

a. ACF 

The autocorrelation coefficient shows the correlation between the time series and the time 

series itself with a lag difference of 0, 1, 2 periods or more. The covariance between 𝑍𝑡  and 

𝑍𝑡+𝑘  is as follows [20]. 

𝛾𝑘 = 𝐶𝑜𝑣(𝑍𝑡 , 𝑍𝑡+𝑘) = 𝐸(𝑍𝑡 − 𝜇)(𝑍𝑡+𝑘 − 𝜇) (4) 

Correlation between 𝑍𝑡 and 𝑍𝑡+𝑘 is 

 𝜌𝑘 =
𝐶𝑜𝑣(𝑍𝑡 , 𝑍𝑡+𝑘)

√𝑉𝑎𝑟(𝑍𝑡) √𝑉𝑎𝑟(𝑍𝑡+𝑘)
=  

𝛾𝑘

𝛾0

(5) 

b. PACF 

Used to measure the degree of closeness between 𝑍𝑡 and 𝑍𝑡+𝑘 after the effect of 𝑍𝑡+1, …, 

𝑍𝑡+𝑘 − 1 is removed [21]. The function is demonstrated as follows in (6). 
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𝜑̂𝑘+1,𝑘+1 =  
𝜌̂𝑘+1 −  ∑ 𝜑̂𝑘𝑗𝜌̂𝑘+1−𝑗

𝑘
𝑗=1

1 − ∑ 𝜑̂𝑘𝑗𝜌̂𝑗
𝑘
𝑗=1

(6) 

In time series analysis, a key aspect is the identification and configuration of the model based on 

the available data. The principle of parsimony applies to model identification, which suggests 

using as few parameters as necessary to achieve an effective model. 

3. Parameter Estimation 

The next step involves estimating the AR and MA parameters. The method used for this estimation 

is the least squares method. Significant parameter test is to find out the significance of the 𝜑 and 

𝜃  parameter using 𝑡𝑡𝑒𝑠𝑡. 

𝑡𝑡𝑒𝑠𝑡 =  
𝜑̂

𝑠𝑒(𝜑̂)
 𝑜𝑟 𝑡𝑡𝑒𝑠𝑡 =  

𝜃

𝑠𝑒(𝜃)
(7) 

If the absolute value of the t-statistic exceeds the critical value from the t-distribution at a chosen 

significance level (e.g., 𝛼 =  0.05), the null hypothesis is rejected, implying that the parameter is 

significant. 

4. Diagnostic Check 

The following step is examining the model in order to know whether it is good enough to be used. 

a. Residual Normality Assumption Test 

Residual normality can be assessed by examining the normality plot. If the residuals align 

closely with the diagonal line, it indicates that they are normally distributed. 

b. Residual Independent Test 

This test is conducted to detect the independence of residuals across time lags using the 

Ljung–Box test, which assesses whether autocorrelations of the residuals are significantly 

different from zero [22]. 

2.2 AR High-Order Fuzzy Method 

At this stage, the calculation process is carried out using the AR high-order fuzzy methods. The steps 

involved in the calculation are as follows: 

1. Fuzzy Time Series Process 

Fuzzy time series is a forecasting method that leverages fuzzy principles as its foundational 

framework. This method is designed to identify and capture patterns from historical data, enabling 

it to model trends and behaviours over time [23][24]. 

a. The universe of discourse 𝑈 

𝑈 = [𝑋𝑚𝑖𝑛 − 𝐷1, 𝑋𝑚𝑎𝑥 + 𝐷2] 

The 𝑢𝑖 interval is a sub interval of the universal set U [15].  

b. Sub-interval 𝐴𝑖 

𝐴𝑖 =
𝑓𝐴𝑖(𝑢1)

𝑢1
+

𝑓𝐴𝑖(𝑢2)

𝑢2
+ ⋯ +

𝑓𝐴𝑖(𝑢𝑏)

𝑢𝑏

(8) 

𝑓𝐴𝑖(𝑢1) = {
1                                             𝑘 = 𝑖 

0,5                    𝑘 = 𝑖 − 1 𝑎𝑛𝑑 𝑖 + 1
0                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

c. Determine fuzzy logic relations for AR(p) model 

For example, when the fuzzy logic relations for fuzzy AR(2) model are as 

𝐴2, 𝐴3 → 𝐴3, 𝐴2, 𝐴3 → 𝐴3, 𝐴2, 𝐴3 → 𝐴5 

are found out to be 

𝐴2, 𝐴3 → 𝐴3, 𝐴3, 𝐴5 

d. Forecast high-order fuzzy 

Classifying the FLR that has been obtained from the third stage into groups to form a Fuzzy 

Logical Relationship Group (FLRG) and combining the same relationship. 

2. Defuzzification Calculation Process 
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a. Defuzzification forms the prediction 

By using the middle value in the set U, the following formula obtained is: 

𝑥(𝑡) =
𝑎 × 𝑚𝑗 + 𝑏 × 𝑚𝑘 + 𝑐 × 𝑚𝑙

𝑎 + 𝑏 + 𝑐
(9) 

b. Determining residual 

Determination of residuals in the model can use the following formula. 

𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) (10) 

2.3 Criteria for Selection of the Method 

Mean Square Error (MSE) is one of the criteria used to select the better model based on the residual 

forecasting results. 

𝑀𝑆𝐸 =
∑ (𝑥𝑡 − 𝑥𝑡)𝑛

𝑡=1
2

𝑛
(11) 

2.4 Data Source 

This study employs secondary data obtained from the Meteorology, Climatology, and Geophysics 

Agency (BMKG), specifically covering the period from December 2020 to January 2021. This two-month 

period was chosen as it represents the peak of the wet season in Indonesia, where fluctuations in air humidity 

are more dynamic and can significantly impact aviation safety, particularly in tropical regions. The dataset 

consists of daily average air humidity recorded at I Gusti Ngurah Rai Airport.  

Data analysis was conducted using Minitab 16, Microsoft Excel, and R Studio. The research is 

structured into three main stages: forecasting using the Box-Jenkins method, forecasting using the high-order 

fuzzy autoregressive (AR) method, and evaluating the forecasting accuracy by comparing the results based 

on the highest level of accuracy achieved. 

1. Forecasting using the Box-Jenkins method 

The steps for forecasting using the Box-Jenkins method are as follows: 

a. Creating a time plot of the average air humidity data. 

b. Conducting data exploration by plotting the Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF). Then, testing for stationarity of the data using the Phillips-

Perron (PP) test to determine whether the data is stationary in both mean and variance. 

c. Identifying the time series model based on the ACF and PACF plots. 

d. Estimating the parameters of the selected time series model. 

e. Performing diagnostic checking to determine whether the model meets assumptions, namely 

the residual independence test and residual normality test. If the model meets the 

assumptions, proceed to the next step. 

f. Calculating the forecast values using the Box-Jenkins method. 

2. Forecasting using the high-order AR fuzzy method 

The steps for forecasting using the high-order AR fuzzy method are as follows [15]: 

a. Determining the order of the high-order AR fuzzy model based on the model obtained in step 

1.f. 

b. Defining the fuzzy interval. 

c. Determining the universe of discourse (U) and dividing it into several intervals of equal 

length. 

d. Establishing the fuzzy set 𝐴𝑖. 

e. Constructing the Fuzzy Logical Relationship (FLR) 𝐴𝑖→ 𝐴𝑗. 

f. Formulating the Fuzzy Logical Relationship Group (FLRG). 

g. Conducting the defuzzification process and calculating the forecast values. 

3. Comparing the accuracy of both forecasting methods 

The steps for comparing the forecasting accuracy are as follows: 

a. Calculating the residuals of both methods using the Mean Square Error (MSE) calculation. 

b. Determining the best forecasting model based on the smallest residual value. 
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3. RESULTS AND DISCUSSION 

3.1 Descriptive Statistics the Average Air Humidity Data 

This section presents the descriptive analysis of the average air humidity data used in the study. The 

dataset comprises 62 daily observations, and the descriptive statistics are shown in Table 1.  

Table 1. Descriptive Statistics of the Average Air Humidity Data 

Mean Minimum Median Maximum 

83.742 74 85 91 

Based on Table 1, the average air humidity during the observation period was 83.74%, with values 

ranging from 74% to 91%, indicating generally stable and humid conditions. This moderate variability 

supports the assumption of stationarity in the data. 

3.2 Modelling with Box-Jenkins Method 

The development of the average air humidity forecasting model is conducted using the Box-Jenkins 

method, based on 62 days of data. The modeling process involves several sequential steps, as outlined below: 

1. Model Identification 
At this stage, the stationarity of the data is checked using the actual data plot (see Fig. 1), the ACF 

and PACF plots (Fig. 2), and the unit root test.  

 
Figure 1. The Plot of Average Air Humidity Data 

(Source: Minitab 16) 

Based on Fig. 1, it is evident that the data does not exhibit a stationary pattern, as a trend is 

observed towards the end of the dataset. As a result, the Autocorrelation Function (ACF) and 

Partial Autocorrelation Function (PACF) plots will be examined to further assess the 

characteristics of the data (see Fig. 2). 

 (a)    (b) 

Figure 2. The Plot ACF (a) and PACF (b) of Average Air Humidity Data 

(Source: Minitab 16) 

The graphs shown in Fig. 2 indicates that the data may be stationary, based on the stable 

autocorrelation structure and absence of apparent trend or seasonal patterns.  
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2. Stationarity Test of Data in Mean 

The stationarity of the average air humidity data was tested using the Phillips-Perron Unit Root 

Test [25]. This test evaluates the null hypothesis 𝐻0 : ρ = 0, which indicates the presence of a unit 

root and suggests that the variable is not stationary. The alternative hypothesis is 𝐻1 : ρ ≠ 0, 

meaning that the variable does not have a unit root and is therefore stationary. Based on the test 

results for the data, the Dickey-Fuller value is -38.363, with a truncation lag parameter of 3 and a 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 of 0.01. Since the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 (0.01) less than the significance level 𝛼 =  0.05, we 

reject the null hypothesis. This implies that there is no unit root in the data, indicating that the 

average air humidity variable is stationary. To evaluate stationarity in variance, a Box-Cox 

transformation was applied. The transformation effectively stabilized the variance over time, as 

indicated by a relatively constant rolling standard deviation. This confirms the assumption of 

homoskedasticity required for the application of the Box-Jenkins model. 

3. Parameter Estimation 

Based on the ACF and PACF plots, the potential time series models identified are ARMA(2,2), 

ARMA(2,1), ARMA(1,1), AR(2), MA(2), AR(1), and MA(1). These models are considered based 

on the observed patterns in the autocorrelations and partial autocorrelations of the data. 

Table 2. Parameter Estimation and Significance Test of Time Series Model 

Model Parameter 
Parameter 

Estimated Value 

Standard 

Error 

𝒕𝒕𝒆𝒔𝒕 

Value 
p-value Significance 

ARMA(2,2) 

∅1  -0.1496 0.1404 -1.07 0.291 not significant 

∅2 0.7286 0.1408 5.18 0.000 significant 

𝜃1 -0.5687 0.2009 -2.83 0.006 significant 

𝜃2 0.1299 0.2009 0.65 0.521 not significant 

C 35.2686 0.652 54.09 0.000 significant 

ARMA(2,1) 

∅1  -0.2031 0.141 -1.44 0.155 significant 

∅2 0.6565 0.1002 6.55 0.000 not significant 

𝜃1 -0.6709 0.1653 -4.06 0.000 significant 

C 45.7985 0.7526 60.86 0.000 significant 

ARMA(1,1) 

∅1  0.8272 0.1191 6.95 0.000 significant 

𝜃1 0.4224 0.191 2.21 0.031 significant 

C 14.466 0.2789 51.86 0.000 significant 

AR(2) 

∅1  0.2942 0.118 2.49 0.016 significant 

∅2 0.4247 0.1179 3.6 0.001 significant 

C 23.5483 0.4621 50.96 0.000 significant 

AR(1) 
∅1  0.5174 0.1105 4.68 0.000 significant 

C 40.4361 0.5037 80.27 0.000 significant 

MA(2) 

𝜃1 -0.4004 0.118 -3.39 0.001 significant 

𝜃2 -0.423 0.1181 -3.58 0.001 significant 

C 83.8075 0.8814 95.09 0.000 significant 

MA(1) 
𝜃1 -0.2774 0.1241 -2.24 0.029 significant 

C 83.7560 0.6962 120.31 0.000 significant 

Based on the results from Table 2, the models with significant parameters are ARMA(1,1), AR(1), 

AR(2), MA(1), and MA(2). To ensure the adequacy of a significant model, a diagnostic check 

must be performed to verify that the residuals exhibit white noise characteristics and follow a 

normal distribution. 

4. Diagnostic Check 

Table 3. Residual Independence Test of Time Series 

Model Lag Q-Ljung Box p-value Residual Independence 

ARMA(1,1) 

12 27.5 0.001 not independent 

24 37.8 0.014 not independent 

36 43.5 0.104 independent 

48 5.5 0.207 independent 

AR(2) 

12 8.2 0.511 independent 

24 25.4 0.232 independent 

36 34.8 0.381 independent 

48 44 0.516 independent 
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Model Lag Q-Ljung Box p-value Residual Independence 

AR(1) 

12 45.7 0 not independent 

24 55 0 not independent 

36 60.4 0.003 independent 

48 69.6 0.014 independent 

MA(2) 

12 15 0.091 independent 

24 29.4 0.104 independent 

36 39.9 0.191 independent 

48 49 0.317 independent 

MA(1) 

12 43.6 0 not independent 

24 49.9 0.001 not independent 

36 64.8 0.001 not independent 

48 74.4 0.005 not independent 

As shown in Table 3, the independent models based on the residual independence test are the 

AR(2) and MA(2) models. The Q-Ljung Box test results indicate that the AR(2) and MA(2) 

models have independent residuals across multiple lags, as their p-values are consistently higher 

than the significance threshold (typically 0.05). In contrast, models such as AR(1), MA(1), and 

ARMA(1,1) show signs of residual dependence, meaning they do not fully meet the white noise 

assumption. Given that residual independence is a key requirement for a well-fitted time series 

model, AR(2) and MA(2) are considered suitable candidates for further evaluation. However, to 

fully determine the best-performing model, another diagnostic check, the residual normality test, 

is conducted, as shown in Table 4. This test examines whether the residuals of the selected models 

follow a normal distribution, which is essential for accurate forecasting and inference. 

Table 4. Residual Normality Test 

Model Residual Normality 

AR(2) fulfilled 

MA(2) not fulfilled 

According to the results of the parameter significance test presented in Table 4, the AR(2) model 

demonstrates the best performance, with significant residual independence and residual normality. 

This model has an MSE value of 13.23, indicating its suitability for forecasting.  

3.3 Modelling with AR(2) High-Order Fuzzy Method 

1. Fuzzy Time Series Process 

a. Determining the Universal Set U with an Interval Length of 5 

The first step in forecasting average air humidity using the high-order fuzzy AR method is to 

define the universal set 𝑈. The minimum and maximum humidity values are 74 and 91, 

respectively, resulting in an average-based interval of 5. An interval length of 5 was chosen 

to partition the universal set into equal segments, facilitating clear linguistic interpretation 

(e.g., “low”, “medium”, “high” humidity). This approach aligns with environmental fuzzy 

time series applications [26]. Thus, the universal set is 𝑈 =  [71,95], partitioned into 5 

intervals. The order used in this model is 2, where 𝐷1 and 𝐷2 represent the first and second 

lags of the historical data, respectively. Table 5 presents the interval partitions and their 

middle values. 

Table 5. Universal Set 𝑈 

Interval Middle Value 

U1 [71,75] m1 73 

U2 [75,79] m2 77 

U3 [79,83] m3 81 

U4 [83,87] m4 85 

U5 [87,91] m5 89 

U5 [91,95] m6 93 
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b. Fuzzy Set Determination 

After determining the membership values for each 𝑢𝑖(𝑖 = 1,2, … ,5) in the fuzzy set 𝐴𝑖 from 

the universal set 𝑈 based on the defined partition intervals, the next step is fuzzification of 

historical data. The results of the fuzzification process are presented in Table 6. 

Table 6. Fuzzification 

Date 𝒙(𝒕) Fuzzification Affecting 

01-12-2020 88 A5 - 

02-12-2020 81 A3 - 

03-12-2020 81 A3 A5,A3 

04-12-2020 81 A3 A3,A3 

05-12-2020 85 A4 A3,A3 

06-12-2020 81 A3 A3,A4 

⋮ ⋮ ⋮ ⋮ 
30-01-2021 83 A4 A3,A3 

31-01-2021 82 A3 A3,A4 

Table 6 presents the fuzzification results of daily average air humidity values  
𝑥(𝑡). Each value is mapped to its corresponding fuzzy set (𝐴1 − 𝐴5)  based on predefined 

intervals. The Affecting column indicates the fuzzy sets that influence the current state in the 

formation of fuzzy logical relationships, which are essential for developing the high-order 

fuzzy AR model. 

2. Defuzzification Calculation Process 

Table 7. Forecast Results and Error 

Date 𝒙(𝒕) Fuzzy Forecast (𝑭(𝒕)) Defuzzified Forecast 𝒙(𝒕) Error 

01-12-2020 88 - -  - 

02-12-2020 81 - - - 

03-12-2020 81 A3,A4,A5,A1,A2,A3,A4,A5 82.5 -1.5 

04-12-2020 81 A1,A2,A3,A4,A5,A1,A2,A3,A4,A5 81 0 

05-12-2020 85 A1,A2,A3,A4,A5,A1,A2,A3,A4,A5 81 4 

06-12-2020 81 A1,A2,A3,A4,A5,A2,A3,A4,A5,A6 83 -2 

07-12-2020 76 A2,A3,A4,A5,A6,A1,A2,A3,A4,A5 83 -7 

⋮ ⋮ ⋮ ⋮ ⋮ 
30-01-2021 83 A1,A2,A3,A4,A5,A1,A2,A3,A4,A5 81 2 

31-01-2021 82 A1,A2,A3,A4,A5,A2,A3,A4,A5,A6 83 -1 

Based on the results obtained from determining the universal set 𝑈 with an interval length of 5, as 

shown in Table 5, fuzzification in Table 6, and the predicted values and errors in Table 7, the AR 

High Order Fuzzy model yielded an MSE value of 13.45. 

3.4 Better Model Selection 

Based on the calculations above, the model with the smallest residual error was selected, as shown in 

Table 8.  

Table 8. Comparison MSE Value 

MSE 
Box-Jenkins AR High Order Fuzzy 

13.23 13.45 

Table 9. Average Humidity Forecasting Results 

Date Forecasted Value 

February 1st 2021 82.9 

February 2nd 2021 82.8 

February 3rd 2021 83.1 

February 4th 2021 83.1 

February 5th 2021 83.3 

February 6th 2021 83.4 

February 7th 2021 83.4 
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Table 8 and Table 9 present the model comparison and the resulting forecasts. Table 8 shows that the 

AR(2) model from the Box-Jenkins method produced the lowest MSE (13.23), indicating it as the most 

accurate model. Based on this, Table 9 provides the 7-day forecast of average air humidity, offering valuable 

insights for meteorological planning and enhancing operational safety at I Gusti Ngurah Rai Airport. 

The results indicate that the Box-Jenkins method, specifically the AR(2) model, outperforms the high-

order fuzzy AR model in forecasting air humidity at I Gusti Ngurah Rai Airport, as evidenced by the lower 

MSE value. These findings are consistent with previous studies that have demonstrated the effectiveness of 

the Box-Jenkins method in time series forecasting, particularly in meteorological applications. For example, 

Alfitri and Purnami [2] utilized the ARIMA model to predict average air temperature and daily humidity, 

showing that statistical models can provide reliable forecasts for weather-related parameters. However, some 

studies have highlighted the potential advantages of fuzzy AR models in capturing nonlinear patterns in 

environmental data, suggesting that further optimization may enhance their performance in specific contexts. 

4. CONCLUSION  

Based on the results and time series analysis, the Box-Jenkins method demonstrates higher suitability 

with the AR(2) model. This conclusion is supported by its lower MSE value of 13.23, compared to the MSE 

of the AR high-order fuzzy method, which is 13.45. The corresponding equation for the AR(2) model is 

𝑍𝑡 = 23.5483 + 0.2942𝑍𝑡−1 + 0.4247𝑍𝑡−2 + 𝑎𝑡 

The model has shown reliable forecasting performance in capturing humidity dynamics over the 

observation period. These findings can serve as a basis for policy-making and decision-making at 

meteorological and climatological stations. Considering the significant influence of air humidity on runway 

conditions, the results of air humidity forecasting provide valuable insights to support airport operations and 

safety measures. 
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