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1. INTRODUCTION

| Gusti Ngurah Rai Airport is located in Tuban Village, Kuta District, Badung Regency, which lies in
the central region of Indonesia. Astronomically, Tuban Village is positioned between 8°44'14"LS -
8°45'28"LS and 115°9'8"E - 115°11'9"E, characterized by a lowland physical environment [1]. As one of
Indonesia's three busiest airports, maintaining the composition of air pressure and temperature is crucial. Air
pressure and temperature are critical factors for ensuring flight safety, particularly during takeoff and landing.
Among the key parameters associated with temperature is atmospheric humidity, which plays a significant
role in influencing aviation conditions. Air humidity refers to the concentration of moisture present in the
atmosphere, represented by the amount of water vapor contained in the air [2]. The air humidity factor also
contributes to the airport’s runway [3]. Air humidity data, collected from various meteorological and
climatological stations, typically exhibit characteristics of minimal abrupt changes. The data distribution
tends to fluctuate around a stable average, maintaining a relatively constant pattern, which suggests
stationarity. Stationarity is a crucial assumption in the analysis of time series data [4].

The time series method is an analytical approach designed for forecasting future data trends. One
widely used method within this framework is the Box-Jenkins method, which focuses solely on the dependent
variable using historical data while disregarding independent variables. The key advantage of the Box-Jenkins
method is its flexibility, as it does not require the data to consistently exhibit stationary patterns and is also
applicable to datasets with seasonal fluctuations. The method comprises various models, including
Autoregressive (AR), Moving Average (MA), and Autoregressive Moving Average (ARMA) for stationary
data, as well as Autoregressive Integrated Moving Average (ARIMA) and Seasonal Autoregressive
Integrated Moving Average (SARIMA) for non-stationary and seasonally patterned data [5].

This method has been extensively studied. For instance, [2] utilized the ARIMA model to predict
average air temperature and daily humidity, while [4] applied the Box-Jenkins method to forecast traffic
accident data in Semarang. Another forecasting technique suitable for stationary data is the high-order fuzzy
Autoregressive (AR) method, which integrates the AR(p) model from Box-Jenkins with fuzzy regression
concepts for time series data.

Fuzzy AR models have consistently garnered attention, with significant advancements made in recent
years. Notable contributions to fuzzy time series research include studies by Chen and Chang [6], Cai et al.
[7], Chen and Chen [8], Yolcu et al. [9], Ye et al. [10], and Chen and Jian [11]. Additionally, for trend data,
Sulandari and Yudhanto employed a hybrid approach combining simple moving averages with weighted
fuzzy time series to enhance forecasting accuracy [12]. Meanwhile, recent advancements in the Weighted
Fuzzy Time Series (WFTS) optimized with Particle Swarm Optimization (PSO), have demonstrated
improved predictive accuracy in modeling air temperature trends [13]. Given the importance of air
temperature in regulating air humidity, which in turn affects flight safety, exploring robust forecasting
techniques remains a critical area of study.

While classical models such as AR and ARMA are effective and statistically interpretable, they may
lack the flexibility of fuzzy systems in modeling nonlinear relationships and handling imprecise or ambiguous
data, which are often present in meteorological forecasting [14]. Therefore, this study proposes a high-order
fuzzy AR approach, aiming to integrate the temporal modeling strength of classical methods to enhance
forecasting performance in dynamic environments such as airport humidity.

The high-order AR fuzzy model was developed to address the limitations found in conventional high-
order fuzzy AR methods [7]. By incorporating principles from classical autoregressive models, it offers
improved practicality and broader applicability. In a notable contribution, Kocak (2017) introduced a high-
order fuzzy ARMA(p,q) model designed to enhance forecasting accuracy, even in scenarios where the MA
component is not explicitly applied [15]. A major issue underlined in that study is the prevailing reliance on
fuzzy AR variables in most fuzzy time series models, which often overlook the importance of MA
components. Unlike these models, classical time series approaches, AR, MA, and ARMA, are tailored to fit
the data’s underlying patterns, and neglecting essential MA terms in fuzzy models can result in specification
errors and diminished forecasting accuracy. To overcome these issues, researchers have designed fuzzy
ARMA models that incorporate both fuzzy AR and MA elements [16], [17], [18], [19].

Building on this foundation, the present study conducts a comparative analysis between the Box-
Jenkins method and the high-order fuzzy AR model for forecasting air humidity at | Gusti Ngurah Rai Airport.
Accurate humidity forecasts are essential for ensuring flight safety, especially in tropical regions. In this
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study, the significant Box-Jenkins model is utilized as a benchmark for determining the appropriate order of
the high-order fuzzy AR model. The performance of both models is evaluated based on forecasting accuracy,
with the preferred model identified through the smallest residual errors. Although high-order fuzzy AR
models provide the advantage of blending statistical structure with fuzzy logic, their application in forecasting
air humidity, particularly in tropical airport settings, remains underexplored. This study aims to fill that gap
by comparing both approaches and identifying the most effective method for aviation-related humidity
forecasting.

2. RESEARCH METHODS

2.1 Box Jenkins Method

The Box-Jenkins time series models, including AR, MA, and ARMA, are widely used for forecasting
and require data to be stationary for effective application. These models rely on identifying and modeling
patterns based on autocorrelation structures within the time series.

1. Model Identification
Based on [20] the AR limited coefficient parameter value is set between —1 < ¢ < 1 for the
process of AR(1) whilst for the process of AR(2), the coefficient parameter value are —2 < ¢4 <
2 and —1 < ¢, < 1. Generally, the AR(p) model can be written as follows:
Zt = Q1L Y @l 5+ Qple_p +ay €]
According to [21], the coefficient value for the MA(L) process parameter is limited to |6;| < 1
while for the MA(2) process parameterare 8, + 0, < 1,8, —0; < 1,and -1 < 6, < 1. The MA
parameters for a q order process are written as follows.
Zy = ap — 010, 1 — 0204 — - — Oga; (2)
The ARMA process combines both AR and MA models. Generally, the equation for the
ARMA(p,q) model is expressed as:
Zy =@1Zia+ ot Qpli p+ar— 010, 1 — = 04a¢ 4 (3)
If the autocorrelation function (ACF) decreases exponentially and the partial autocorrelation
function (PACF) cuts off at the p-th lag, the time series can be modeled using the AR(p) process.
If the PACF decreases exponentially and the ACF cuts off at the g-th lag, the time series is suitable
for the MA(q) process. If both the ACF and PACF decrease exponentially, the ARMA model
should be chosen.
2. Stationarity Test
To assess stationarity in the mean, this analysis employs a unit root test to determine whether the
data contains a unit root. The unit root test used in this study is the Phillips-Perron Root Test. To
evaluate stationarity in variance, the Box-Cox Transformation is applied, and any non-stationary
variance is addressed through data transformation. The stationarity of the data can also be
observed through the ACF and PACF plots, by checking if the patterns follow an exponential
decay. If the data is stationary, a temporary model can be identified based on the ACF and PACF
plots.
a. ACF
The autocorrelation coefficient shows the correlation between the time series and the time
series itself with a lag difference of 0, 1, 2 periods or more. The covariance between Z, and
Zi 41 isas follows [20].

Yie = Cov(Z, Zeyr) = E(Zy — 1) (Zeyr — 1) (4)
Correlation between Z; and Z;,, is
Cov(Zy, Zivi) 145
P u == (5)

B \/Var(Zt) \/Var(ZH_k) Y

b. PACF
Used to measure the degree of closeness between Z;, and Z,,, after the effect of Z;,4, ..
Ziox — 1isremoved [21]. The function is demonstrated as follows in (6).

*
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Prev1 = X1 PujPrr1-j
1— Xk Pujb;

In time series analysis, a key aspect is the identification and configuration of the model based on

the available data. The principle of parsimony applies to model identification, which suggests

using as few parameters as necessary to achieve an effective model.

Parameter Estimation

The next step involves estimating the AR and MA parameters. The method used for this estimation

is the least squares method. Significant parameter test is to find out the significance of the ¢ and

6 parameter using t;pg;-

(6)

Pr+1,k+1 =

~

t 4 t o
= ——— or = —=
test S€((p) test 56(9)

If the absolute value of the t-statistic exceeds the critical value from the t-distribution at a chosen
significance level (e.g., @ = 0.05), the null hypothesis is rejected, implying that the parameter is
significant.
Diagnostic Check
The following step is examining the model in order to know whether it is good enough to be used.
a. Residual Normality Assumption Test
Residual normality can be assessed by examining the normality plot. If the residuals align
closely with the diagonal line, it indicates that they are normally distributed.
b. Residual Independent Test
This test is conducted to detect the independence of residuals across time lags using the
Ljung—Box test, which assesses whether autocorrelations of the residuals are significantly
different from zero [22].

()

2.2 AR High-Order Fuzzy Method

At this stage, the calculation process is carried out using the AR high-order fuzzy methods. The steps
involved in the calculation are as follows:

1.

Fuzzy Time Series Process

Fuzzy time series is a forecasting method that leverages fuzzy principles as its foundational
framework. This method is designed to identify and capture patterns from historical data, enabling
it to model trends and behaviours over time [23][24].

a. The universe of discourse U

U = [Xmin — Dy, Xmax + D,]

The u; interval is a sub interval of the universal set U [15].
b. Sub-interval 4;

=fAi(u1)+fAi(u2)+m+fAi(ub)

A (8)
Uq Uy Up
1 k=i
fAi(u) =10,5 k=i—1landi+1
0 otherwise

c. Determine fuzzy logic relations for AR(p) model
For example, when the fuzzy logic relations for fuzzy AR(2) model are as

A2,A3 > A3,A2,A3 — A3,A42,A3 - A5
are found out to be
A2,A3 —» A3,A3, A5

d. Forecast high-order fuzzy
Classifying the FLR that has been obtained from the third stage into groups to form a Fuzzy
Logical Relationship Group (FLRG) and combining the same relationship.

Defuzzification Calculation Process
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a. Defuzzification forms the prediction
By using the middle value in the set U, the following formula obtained is:

axmj+bXxXmg+cXxm

x(t) = 9
*(®) a+b+c ©
b. Determining residual
Determination of residuals in the model can use the following formula.
e(t) = x(t) —x(t) (10)

2.3 Criteria for Selection of the Method

Mean Square Error (MSE) is one of the criteria used to select the better model based on the residual
forecasting results.
a\2
Di=1(xe — %)

MSE ==—"—"" " (11)
n

2.4 Data Source

This study employs secondary data obtained from the Meteorology, Climatology, and Geophysics
Agency (BMKG), specifically covering the period from December 2020 to January 2021. This two-month
period was chosen as it represents the peak of the wet season in Indonesia, where fluctuations in air humidity
are more dynamic and can significantly impact aviation safety, particularly in tropical regions. The dataset
consists of daily average air humidity recorded at | Gusti Ngurah Rai Airport.

Data analysis was conducted using Minitab 16, Microsoft Excel, and R Studio. The research is
structured into three main stages: forecasting using the Box-Jenkins method, forecasting using the high-order
fuzzy autoregressive (AR) method, and evaluating the forecasting accuracy by comparing the results based
on the highest level of accuracy achieved.

1. Forecasting using the Box-Jenkins method

The steps for forecasting using the Box-Jenkins method are as follows:

a. Creating a time plot of the average air humidity data.

b. Conducting data exploration by plotting the Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF). Then, testing for stationarity of the data using the Phillips-
Perron (PP) test to determine whether the data is stationary in both mean and variance.
Identifying the time series model based on the ACF and PACF plots.

Estimating the parameters of the selected time series model.

e. Performing diagnostic checking to determine whether the model meets assumptions, namely
the residual independence test and residual normality test. If the model meets the
assumptions, proceed to the next step.

f.  Calculating the forecast values using the Box-Jenkins method.

2. Forecasting using the high-order AR fuzzy method

The steps for forecasting using the high-order AR fuzzy method are as follows [15]:

a. Determining the order of the high-order AR fuzzy model based on the model obtained in step
1.f.

b. Defining the fuzzy interval.

Determining the universe of discourse (U) and dividing it into several intervals of equal
length.

Establishing the fuzzy set A;.

Constructing the Fuzzy Logical Relationship (FLR) 4;— 4;.

Formulating the Fuzzy Logical Relationship Group (FLRG).

Conducting the defuzzification process and calculating the forecast values.

3. Comparlng the accuracy of both forecasting methods

The steps for comparing the forecasting accuracy are as follows:

a. Calculating the residuals of both methods using the Mean Square Error (MSE) calculation.

b. Determining the best forecasting model based on the smallest residual value.

Qo

Q-+~ oo
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3. RESULTS AND DISCUSSION

3.1 Descriptive Statistics the Average Air Humidity Data

This section presents the descriptive analysis of the average air humidity data used in the study. The
dataset comprises 62 daily observations, and the descriptive statistics are shown in Table 1.

Table 1. Descriptive Statistics of the Average Air Humidity Data
Mean Minimum Median Maximum
83.742 74 85 91

Based on Table 1, the average air humidity during the observation period was 83.74%, with values
ranging from 74% to 91%, indicating generally stable and humid conditions. This moderate variability
supports the assumption of stationarity in the data.

3.2 Modelling with Box-Jenkins Method

The development of the average air humidity forecasting model is conducted using the Box-Jenkins
method, based on 62 days of data. The modeling process involves several sequential steps, as outlined below:

1. Model Identification
At this stage, the stationarity of the data is checked using the actual data plot (see Fig. 1), the ACF
and PACF plots (Fig. 2), and the unit root test.

92,5

90,0

87,5

85,0

BAL1

82,5

80,0

77,5

75,0

1 6 12 18 24 30 3 4 4 514 60
Index
Figure 1. The Plot of Average Air Humidity Data
(Source: Minitab 16)

Based on Fig. 1, it is evident that the data does not exhibit a stationary pattern, as a trend is
observed towards the end of the dataset. As a result, the Autocorrelation Function (ACF) and
Partial Autocorrelation Function (PACF) plots will be examined to further assess the
characteristics of the data (see Fig. 2).
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Figure 2. The Plot ACF (a) and PACF (b) of Average Air Humidity Data
(Source: Minitab 16)

The graphs shown in Fig. 2 indicates that the data may be stationary, based on the stable
autocorrelation structure and absence of apparent trend or seasonal patterns.
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2. Stationarity Test of Data in Mean
The stationarity of the average air humidity data was tested using the Phillips-Perron Unit Root
Test [25]. This test evaluates the null hypothesis H, : p = 0, which indicates the presence of a unit
root and suggests that the variable is not stationary. The alternative hypothesis is H; : p # 0,
meaning that the variable does not have a unit root and is therefore stationary. Based on the test
results for the data, the Dickey-Fuller value is -38.363, with a truncation lag parameter of 3 and a
p — value of 0.01. Since the p — value (0.01) less than the significance level « = 0.05, we
reject the null hypothesis. This implies that there is no unit root in the data, indicating that the
average air humidity variable is stationary. To evaluate stationarity in variance, a Box-Cox
transformation was applied. The transformation effectively stabilized the variance over time, as
indicated by a relatively constant rolling standard deviation. This confirms the assumption of
homoskedasticity required for the application of the Box-Jenkins model.

3. Parameter Estimation
Based on the ACF and PACF plots, the potential time series models identified are ARMA(2,2),
ARMA(2,1), ARMA(1,1), AR(2), MA(2), AR(1), and MA(1). These models are considered based
on the observed patterns in the autocorrelations and partial autocorrelations of the data.

Table 2. Parameter Estimation and Significance Test of Time Series Model

Parameter Standard t -

Model Parameter . tod Value Error V;elﬁe p-value  Significance
?, -0.1496 0.1404 -1.07 0.291  not significant

@, 0.7286 0.1408 5.18 0.000 significant

ARMA(2,2) 0, -0.5687 0.2009 -2.83 0.006 significant
0, 0.1299 0.2009 0.65 0.521 not significant

C 35.2686 0.652 54.09 0.000 significant

?4 -0.2031 0.141 -1.44 0.155 significant
D, 0.6565 0.1002 6.55 0.000  not significant

ARMA(2,1) 0, -0.6709 0.1653 -4.06 0.000 significant

C 45.7985 0.7526 60.86 0.000 significant

?4 0.8272 0.1191 6.95 0.000 significant

ARMA(1,1) 0, 0.4224 0.191 2.21 0.031 significant

C 14.466 0.2789 51.86 0.000 significant

?, 0.2942 0.118 2.49 0.016 significant

AR(2) 2, 0.4247 0.1179 3.6 0.001 significant

C 23.5483 0.4621 50.96 0.000 significant

AR(1) 0, 0.5174 0.1105 4.68 0.000 sign!ficant

C 40.4361 0.5037 80.27 0.000 significant

0, -0.4004 0.118 -3.39 0.001 significant

MA(2) 0, -0.423 0.1181 -3.58 0.001 significant

C 83.8075 0.8814 95.09 0.000 significant

MA(L) 0, -0.2774 0.1241 -2.24 0.029 significant

C 83.7560 0.6962 120.31 0.000 significant

Based on the results from Table 2, the models with significant parameters are ARMA(1,1), AR(1),
AR(2), MA(1), and MA(2). To ensure the adequacy of a significant model, a diagnostic check
must be performed to verify that the residuals exhibit white noise characteristics and follow a
normal distribution.

4. Diagnostic Check

Table 3. Residual Independence Test of Time Series
Model Lag Q-LjungBox p-value Residual Independence

12 27.5 0.001 not independent
24 37.8 0.014 not independent
ARMA(L1) 36 435 0.104 independent
48 5.5 0.207 independent
12 8.2 0.511 independent
24 25.4 0.232 independent
AR() 36 34.8 0.381 independent

48 44 0.516 independent
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Model Lag Q-LjungBox p-value Residual Independence

12 457 0 not independent
24 55 0 not independent
AR(1 .
@) 36 60.4 0.003 independent
48 69.6 0.014 independent
12 15 0.091 independent
24 29.4 0.104 independent
MA(2 .
@ 36 39.9 0.191 independent
48 49 0.317 independent
12 43.6 0 not independent
24 49.9 0.001 not independent
MA(L) 36 64.8 0.001 not independent
48 74.4 0.005 not independent

As shown in Table 3, the independent models based on the residual independence test are the
AR(2) and MA(2) models. The Q-Ljung Box test results indicate that the AR(2) and MA(2)
models have independent residuals across multiple lags, as their p-values are consistently higher
than the significance threshold (typically 0.05). In contrast, models such as AR(1), MA(1), and
ARMA(1,1) show signs of residual dependence, meaning they do not fully meet the white noise
assumption. Given that residual independence is a key requirement for a well-fitted time series
model, AR(2) and MA(2) are considered suitable candidates for further evaluation. However, to
fully determine the best-performing model, another diagnostic check, the residual normality test,
is conducted, as shown in Table 4. This test examines whether the residuals of the selected models
follow a normal distribution, which is essential for accurate forecasting and inference.

Table 4. Residual Normality Test

Model Residual Normality
AR(2) fulfilled
MA(2) not fulfilled

According to the results of the parameter significance test presented in Table 4, the AR(2) model
demonstrates the best performance, with significant residual independence and residual normality.
This model has an MSE value of 13.23, indicating its suitability for forecasting.

3.3 Modelling with AR(2) High-Order Fuzzy Method

1. Fuzzy Time Series Process
a. Determining the Universal Set U with an Interval Length of 5
The first step in forecasting average air humidity using the high-order fuzzy AR method is to
define the universal set U. The minimum and maximum humidity values are 74 and 91,
respectively, resulting in an average-based interval of 5. An interval length of 5 was chosen
to partition the universal set into equal segments, facilitating clear linguistic interpretation
(e.g., “low”, “medium”, “high” humidity). This approach aligns with environmental fuzzy
time series applications [26]. Thus, the universal set is U = [71,95], partitioned into 5
intervals. The order used in this model is 2, where D1 and D2 represent the first and second
lags of the historical data, respectively. Table 5 presents the interval partitions and their

middle values.
Table 5. Universal Set U

Interval Middle Value
U1 [71,75] mil 73
u2 [75,79] m2 77
U3 [79,83] m3 81
U4 [83,87] m4 85
U5 [87,91] m5 89

Us [91,95] mé 93
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b. Fuzzy Set Determination
After determining the membership values for each u; (i = 1,2, ...,5) in the fuzzy set A; from
the universal set U based on the defined partition intervals, the next step is fuzzification of
historical data. The results of the fuzzification process are presented in Table 6.

Table 6. Fuzzification

Date x(t) Fuzzification Affecting
01-12-2020 88 A5 -
02-12-2020 81 A3 -
03-12-2020 81 A3 A5,A3
04-12-2020 81 A3 A3,A3
05-12-2020 85 A4 A3,A3
06-12-2020 81 A3 A3,A4
30-01-2021 83 A4 A3,A3
31-01-2021 82 A3 A3,A4

Table 6 presents the fuzzification results of daily average air humidity values
x(t). Each value is mapped to its corresponding fuzzy set (A; — As) based on predefined
intervals. The Affecting column indicates the fuzzy sets that influence the current state in the
formation of fuzzy logical relationships, which are essential for developing the high-order
fuzzy AR model.

2. Defuzzification Calculation Process

Table 7. Forecast Results and Error

Date x(t) Fuzzy Forecast (F(t)) Defuzzified Forecast X(t) Error
01-12-2020 88 - - -

02-12-2020 81 - -

03-12-2020 81 A3,A4,A5A1,A2,A3,A4,A5 82.5 -15

04-12-2020 81 Al1,A2A3,A4,A5AL1A2A3A4A5 81 0
05-12-2020 85 Al1,A2,A3,A4,A5AL1A2A3A4A5 81 4
06-12-2020 81 Al1,A2A3,A4,A5A2,A3,A4,A5 A6 83 -2
07-12-2020 76  A2,A3,A4,A5A6,ALA2,A3,A4,A5 83 -7
30-01-2021 83 Al,A2,A3,A4,A5A1A2,A3,A4A5 81 2
31-01-2021 82  Al,A2,A3,A4,A5A2 A3,A4,A5 A6 83 -1

Based on the results obtained from determining the universal set U with an interval length of 5, as
shown in Table 5, fuzzification in Table 6, and the predicted values and errors in Table 7, the AR
High Order Fuzzy model yielded an MSE value of 13.45.

3.4 Better Model Selection

Based on the calculations above, the model with the smallest residual error was selected, as shown in
Table 8.

Table 8. Comparison MSE Value
Box-Jenkins AR High Order Fuzzy

MSE

13.23 13.45
Table 9. Average Humidity Forecasting Results
Date Forecasted Value

February 1% 2021 82.9
February 2™ 2021 82.8
February 3" 2021 83.1
February 4t 2021 83.1
February 51" 2021 83.3
February 61" 2021 83.4

February 71" 2021 83.4
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Table 8 and Table 9 present the model comparison and the resulting forecasts. Table 8 shows that the
AR(2) model from the Box-Jenkins method produced the lowest MSE (13.23), indicating it as the most
accurate model. Based on this, Table 9 provides the 7-day forecast of average air humidity, offering valuable
insights for meteorological planning and enhancing operational safety at I Gusti Ngurah Rai Airport.

The results indicate that the Box-Jenkins method, specifically the AR(2) model, outperforms the high-
order fuzzy AR model in forecasting air humidity at | Gusti Ngurah Rai Airport, as evidenced by the lower
MSE value. These findings are consistent with previous studies that have demonstrated the effectiveness of
the Box-Jenkins method in time series forecasting, particularly in meteorological applications. For example,
Alfitri and Purnami [2] utilized the ARIMA model to predict average air temperature and daily humidity,
showing that statistical models can provide reliable forecasts for weather-related parameters. However, some
studies have highlighted the potential advantages of fuzzy AR models in capturing nonlinear patterns in
environmental data, suggesting that further optimization may enhance their performance in specific contexts.

4. CONCLUSION

Based on the results and time series analysis, the Box-Jenkins method demonstrates higher suitability
with the AR(2) model. This conclusion is supported by its lower MSE value of 13.23, compared to the MSE
of the AR high-order fuzzy method, which is 13.45. The corresponding equation for the AR(2) model is

Z, = 23.5483 + 0.2942Z,_, + 0.4247Z,_, + a,

The model has shown reliable forecasting performance in capturing humidity dynamics over the
observation period. These findings can serve as a basis for policy-making and decision-making at
meteorological and climatological stations. Considering the significant influence of air humidity on runway
conditions, the results of air humidity forecasting provide valuable insights to support airport operations and
safety measures.
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