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1. INTRODUCTION 

A ring is an algebraic structure consisting of a set equipped with two binary operations, addition and 

multiplication, that satisfy certain axioms. Rings are foundational tools in various disciplines, including 

physics, chemistry, economics, finance, and cryptography, highlighting their broad applicability. Among the 

core concepts in ring theory is derivation, a special type of function from a ring to itself that satisfies linearity 

and the Leibniz rule. 

Over the past few decades, there has been a significant increase in research on derivations in ring 

structures and their diverse applications. A notable element in ring theory is the nil element, which plays a 

crucial role in several branches of mathematics, particularly in commutative algebra, algebraic geometry, 

deformation theory, Lie algebras, and mathematical physics. A nil derivation is a type of derivation that has 

a special property, namely that there is a positive integer 𝑛 that depends on the ring element so that when the 

derivation is applied repeatedly 𝑛 times on the ring element, it will result in zero. The smallest positive integer 

𝑛 that satisfies this condition is called the index of nilpotency. This has led to the development of the concept 

of nil derivations, a growing area of study with applications in algebra and functional analysis. 

The study of derivations across different algebraic structures continues to attract significant scholarly 

attention. Numerous studies have explored derivations in various contexts, including different types of rings 

and modules. In the context of ring derivations, Guven [1] investigated special derivations on prime rings. 

This was followed by Golbasi and Koc [2], who extended the concept to Lie ideals. In 2014, Ali et al. [3] 

examined the commutativity of derivation maps on prime and semiprime rings, and this line of research was 

further expanded by Ali and Alhazmi [4] through generalizations of derivation and commutativity in prime 

rings. Atteya [5] continued these efforts by studying the commutativity of derivations in semiprime rings. 

Belkadi et al. contributed to this area by investigating nilpotent homoderivations [6] and n-Jordan 

homoderivations [7] on prime rings. El-Sayiad et al. [8] also studied homoderivations in semiprimary rings. 

El-Deken and El-Soufi [9] explored derivation bindings and their generalizations, which were later developed 

into homoderivation structures [10]. The research on derivations continues to evolve. Thomas et al. [11] 

examined derivation aspects on various ring types, while Ezzat [12] explored the idea of higher-derivations. 

In 2024, Gouda and Nabiel [13] extended the concept of left derivations. 

Within the framework of modules, Bracic [14] studied derivations and their representations on 

modules, whereas Gurjar and Patra [15] explored minimum generators of module derivations. The topic 

of commuting derivations has also been widely investigated. Retert [16] analyzed commuting derivations in 

simple rings, followed by Chen and Wang [17], who applied this study to Lie algebras. Maubach [18] 

proposed a conjecture on commuting derivations in rings, Pogudin [19] examined such derivations in fields, 

and Fitriani et al. [20] investigated commuting and centralizing in modules. Additionally, Fitriani et al. [21] 

conducted research on 𝑓-derivations in polynomial modules, where derivations on rings served as the 

foundation for constructing derivations in more complex module structures. 

Given the expanding landscape of research in this area, the exploration of nil derivations on polynomial 

rings presents a promising avenue. This study aims to construct nil derivations on polynomial rings, 

investigate their connections to derivations, and examine the properties of 𝑑-ideals, ideal that remains stable 

against the derivation operation 𝑑, in this context. 

2. RESEARCH METHODS 

This research is focused on nil derivation on the polynomial ring, properties of nil derivation, 𝑑-ideal 

on nil derivation, and followed by nil derivation on the quotient ring. At the beginning of the research, a 

literature study is conducted on rings, polynomial ring, derivations on rings, nil derivation on rings, 

composition and linear combination of derivations, 𝑑-ideal and some definitions found in [22], [23], [24], 

[11], [25], [26], [27], [28], [29], [30]. After that, we construct a conjecture regarding the properties of nil 

derivation on the specified ring and 𝑑-ideal. In the last step, we will prove some properties that we have 

established. In investigating the properties of nil derivations, we will first introduce the polynomial ring, nil 

derivation, 𝑑-ideal, and derivation on the quotient ring.   
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One type of ring is the polynomial ring, an algebra structure consisting of a set of polynomials with 

coefficients from a ring, equipped with the addition and multiplication operations of polynomials that fulfill 

the properties of the ring. 

Definition 1. [22] Given a ring 𝑅. The set 𝑅[𝑥] is denoted as the set of all infinite series (𝑎0, 𝑎1, 𝑎2, … ) with 

𝑎𝑖 ∈ 𝑅, 𝑖 = 0,1,2, … and there exists a nonnegative integer 𝑛 such that for every 𝑘 ≥ 𝑛, 𝑎𝑘 = 0. The elements 

of 𝑅[𝑥] are called polynomials over 𝑅. 

In the introduction, we explained the definition of derivation. Suppose given any derivation 𝑑 on the ring 𝑅, 

if for every 𝑥 ∈ 𝑅 there exists 𝑛 ∈ ℕ such that 𝑑𝑛(𝑥) = 0, then the derivation 𝑑 is called a nil derivation as 

described in the following definition. 

Definition 2. [23] A mapping 𝑓 ∶ 𝑅 → 𝑅 is said to be nil if for every 𝑥 ∈ 𝑅 there exists a number 𝑛 (depending 

on 𝑥) such that 𝑓𝑛(𝑥) = 0. The smallest number 𝑛 is called the index of nilpotency of 𝑓 with respect to 𝑥, 

denoted by 𝑛𝑖𝑙(𝑓, 𝑥). 

In ring, we know the concept of an ideal which is a special subring of a ring. For example, the ring 𝑅 with 

derivative 𝑑 and ideal 𝐼. Ideal 𝐼 is called a 𝑑-ideal if 𝐼 remain stable against the derivation operation 𝑑 as 

explained in the following definition. 

Definition 3. [24] Given any ring 𝑅, an ideal 𝐼 in 𝑅, and a derivation of 𝑑 on 𝑅. Ideal 𝐼 is called 𝑑-ideal if 

𝑑(𝐼) ⊆ 𝐼. 

Furthermore, the quotient ring of a ring and its 𝑑-ideal can be constructed as described in the following 

theorem.  

Theorem 1. [11] Let a ring 𝑅 with unity, a map 𝑑 ∶ 𝑅 → 𝑅 is a derivation on ring 𝑅, and set 𝐼 is a 𝑑-ideal of 

𝑅. A map 𝑑̅ ∶ 𝑅/𝐼 → 𝑅/𝐼 with the definition 𝑑̅(𝑎 + 𝐼) = 𝑑(𝑎) + 𝐼 for all 𝑎 + 𝐼 ∈ 𝑅/𝐼 is a derivation on the 

quotient ring 𝑅/𝐼. 

After understanding the underlying definitions and theorems, the next step is to formulate and prove the 

conjecture into a theorem or proposition. 

3. RESULTS AND DISCUSSION 

The derivation discussed in this paper is the nil derivation on the ring, especially the nil derivation on 

the polynomial ring, the relationship between nil derivation and nilpotent derivation, the properties of nil 

derivation, nil derivation on 𝑑-ideal, and nil derivation on the quotient ring. 

3.1 Nil Derivation on Polynomial Ring 

To extend the concept of nil derivation of a ring as in Definition 1 to a polynomial ring, the relevant 

theorem is presented below. Before proving the main theorem, the following lemma will first be proved which 

forms the basis of the proof. 

Lemma 1. Given ring 𝑅 and 𝑑 ∶ 𝑅 → 𝑅 a derivation on ring 𝑅. If we define 𝑑̂ ∶ 𝑅[𝑥]  → 𝑅[𝑥], with 

 𝑑̂(∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0 ) = ∑ 𝑑(𝑎𝑖)𝑥
𝑖𝑛

𝑖=0 , then for every positive integer 𝑁 holds: 𝑑̂𝑁(∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0 ) = ∑ 𝑑𝑁(𝑎𝑖)𝑥
𝑖𝑛

𝑖=0 . 

Proof. It will be shown 𝑑̂𝑁(∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0 ) = ∑ 𝑑𝑁(𝑎𝑖)𝑥
𝑖𝑛

𝑖=0  by using mathematical induction on 𝑁. For 𝑁 = 1 

it is obtained: 

𝑑̂1 (∑ 𝑎𝑖𝑥
𝑖

𝑛

𝑖=0
) =∑ 𝑑1(𝑎𝑖)𝑥

𝑖
𝑛

𝑖=0
=∑ 𝑑(𝑎𝑖)𝑥

𝑖
𝑛

𝑖=0
. 

Furthermore, suppose that 𝑁 = 𝑘 holds: 

𝑑̂𝑘 (∑ 𝑎𝑖𝑥
𝑖

𝑛

𝑖=0
) =∑ 𝑑𝑘(𝑎𝑖)𝑥

𝑖
𝑛

𝑖=0
. 

It will be shown that for 𝑁 = 𝑘 + 1 holds: 𝑑̂𝑘+1(∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0 ) = ∑ 𝑑𝑘+1(𝑎𝑖)𝑥
𝑖𝑛

𝑖=0 . 

From the definition of 𝑑̂,  we obtain: 
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𝑑̂𝑘+1 (∑ 𝑎𝑖𝑥
𝑖

𝑛

𝑖=0
) = 𝑑̂ (𝑑̂𝑘 (∑ 𝑎𝑖𝑥

𝑖
𝑛

𝑖=0
)) 

= 𝑑̂ (∑ 𝑑𝑘(𝑎𝑖)𝑥
𝑖

𝑛

𝑖=0
) 

= 𝑑̂(𝑑𝑘(𝑎0) + 𝑑
𝑘(𝑎1)𝑥 + ⋯+ 𝑑

𝑘(𝑎𝑛)𝑥
𝑛) 

= 𝑑 (𝑑𝑘(𝑎0)) + 𝑑 (𝑑
𝑘(𝑎𝑖)) 𝑥 + ⋯+ 𝑑 (𝑑

𝑘(𝑎𝑛)) 𝑥
𝑛 

= ∑ 𝑑 (𝑑𝑘(𝑎𝑖)) 𝑥
𝑖

𝑛

𝑖=0
 

= ∑ 𝑑𝑘+1(𝑎𝑖)𝑥
𝑖 .

𝑛

𝑖=0
 

Thus, the statement is proven for 𝑁 = 𝑘 + 1. Therefore, for every positive integer 𝑁 holds: 

𝑑̂𝑁 (∑ 𝑎𝑖𝑥
𝑖

𝑛

𝑖=0
) =∑ 𝑑𝑁(𝑎𝑖)𝑥

𝑖
𝑛

𝑖=0
. ∎ 

The result of Lemma 1 becomes the basis for the proof of the following theorem. 

Theorem 2. Given a ring 𝑅. If 𝑑 ∶ 𝑅 → 𝑅 is a nil derivation on the ring 𝑅, then there exists 𝑑̂ ∶ 𝑅[𝑥] → 𝑅[𝑥] 
which is a nil derivation on the polynomial ring 𝑅[𝑥]. 

Proof. Given an arbitrary derivation of nil 𝑑 ∶ 𝑅 → 𝑅 with 𝑑(𝑎) = 𝑎 for every 𝑎 ∈ 𝑅. We define:  

𝑑̂ ∶ 𝑅[𝑥] → 𝑅[𝑥] 

∑ 𝑎𝑖𝑥
𝑖 ⟼ 𝑑̂ (∑ 𝑎𝑖𝑥

𝑖
𝑛

𝑖=0
)

𝑛

𝑖=0
 

= 𝑑̂(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛𝑥

𝑛) 

= 𝑑(𝑎0) + 𝑑(𝑎1)𝑥 + 𝑑(𝑎2)𝑥
2 +⋯+ 𝑑(𝑎𝑛)𝑥

𝑛 

= ∑ 𝑑(𝑎𝑖)𝑥
𝑖

𝑛

𝑖=0
, 

with 𝑎𝑖 ∈ 𝑅, 𝑖 = 0,1, … , 𝑛. We will show that 𝑑̂ is a nil derivation. Let 𝑑 be a nil derivation, meaning that for 

every 𝑎𝑖 ∈ 𝑅 there is a positive integer 𝑛𝑖  such that 𝑑𝑛𝑖(𝑎𝑖) = 0. Define 𝑁 = 𝑚𝑎𝑥(𝑛𝑖) which is the largest 

positive integer of all 𝑛𝑖. By Lemma 1, we have: 

𝑑̂𝑁 (∑ 𝑎𝑖𝑥
𝑖

𝑛

𝑖=0
) =∑ 𝑑𝑁(𝑎𝑖)𝑥

𝑖
𝑛

𝑖=0
. 

Since 𝑁 = 𝑚𝑎𝑥(𝑛𝑖) and for every 𝑛𝑖  holds  𝑑𝑛𝑖(𝑎𝑖) = 0, then  𝑑𝑁(𝑎𝑖) = 0 for all 𝑖. Thus, 𝑑𝑁(∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0 ) =

∑ 𝑑𝑁(𝑎𝑖)𝑥
𝑖𝑛

𝑖=0 = 0. Hence, 𝑑̂ is a nil derivation on 𝑅[𝑥].           ∎ 

The following example is an illustration of Theorem 2. 

Example 1. Given a ring 𝑅 = ℤ2, a nil derivation 𝑑 ∶  ℤ2 ⟶ ℤ2 with 𝑑(𝑥) = 2𝑥 𝑚𝑜𝑑 2 for every 𝑥 ∈ ℤ2. 

We define the derivation of 𝑑̂ ∶ 𝑅[𝑥] ⟶ 𝑅[𝑥], which is a polynomial ring with integer coefficients modulo 

2. Thus, every element in 𝑅[𝑥] is of the form: 

∑ 𝑎𝑖𝑥
𝑖 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 +⋯+ 𝑎𝑛𝑥
𝑛,

𝑛

𝑖=0
 

where 𝑎𝑖 ∈ ℤ2for every 𝑖. Next, it will be shown 𝑑̂ is a nil derivation. 

𝑑̂ (∑ 𝑎𝑖𝑥
𝑖

𝑛

𝑖=0
) = 𝑑̂(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 +⋯+ 𝑎𝑛𝑥
𝑛) 

= 𝑑(𝑎0) + 𝑑(𝑎1)𝑥 + 𝑑(𝑎2)𝑥
2 +⋯+ 𝑑(𝑎𝑛)𝑥

𝑛 

= ∑ 𝑑(𝑎𝑖)𝑥
𝑖𝑛

𝑖=0 , for every 𝑎𝑖 ∈ ℤ2. 
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It is known that 𝑑 is a nil derivation, and hence for every 𝑎𝑖 ∈ ℤ2 there is a positive integer 𝑛𝑖 such that 

𝑑𝑛𝑖(𝑎𝑖) = 0, that is: 

𝑑(0̅) = 2.0 𝑚𝑜𝑑 2 = 0 

𝑑(1̅) = 2.1 𝑚𝑜𝑑 2 = 0. 

By choosing 𝑛 = 1, we obtain: 

𝑑̂(∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0 ) = ∑ 𝑑(𝑎𝑖)𝑥
𝑖𝑛

𝑖=0 = 0. 

Since 𝑑(𝑎𝑖) = 0 for every 𝑖. Therefore, 𝑑̂ is a nil derivation on 𝑅[𝑥] with 𝑅 = ℤ2.  

In general, on the polynomial ring 𝑅[𝑥], the value of 𝑛 needed for 𝑓𝑛(𝑝(𝑥)) = 0 as in Theorem 2 depends 

on the highest degree of the polynomial 𝑝(𝑥) ∈ 𝑅[𝑥]. The following theorem gives the relationship between 

the highest degree of the polynomial and the index of nilpotency of the derivation. 

Theorem 3. Given a derivation of 𝑓 on the polynomial ring 𝑅[𝑥]. If we define a mapping 𝑓(𝑝(𝑥)) = 𝑝′(𝑥) 

for every 𝑝(𝑥) ∈ 𝑅[𝑥], then the index of nilpotency of 𝑓 with respect to 𝑝(𝑥) is 𝑛 = 𝑛𝑖𝑙(𝑓, 𝑝(𝑥)) = 𝑘 + 1 

where 𝑘 is the highest degree of 𝑝(𝑥). 

Proof. Given any 𝑝(𝑥) ∈ 𝑅[𝑥] and a derivation 𝑓 defined by 𝑓(𝑝(𝑥)) = 𝑝′(𝑥). We will show that 

𝑓𝑛(𝑝(𝑥)) = 0, where 𝑛 = 𝑘 + 1. Given any 𝑝(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑘

𝑖=0  with 𝑎𝑖 ∈ 𝑅, we have: 

𝑓(𝑝(𝑥)) = 𝑓 (∑ 𝑎𝑖𝑥
𝑖

𝑘

𝑖=0
) =∑ 𝑎𝑖𝑓(𝑥

𝑖)
𝑘

𝑖=0
, 

by using the definition 𝑓(𝑥𝑖) = 𝑖𝑥𝑖−1: 

𝑓(𝑝(𝑥)) =∑ 𝑎𝑖𝑖𝑥
𝑖−1.

𝑘

𝑖=0
 

Next, we will calculate 𝑓2(𝑝(𝑥)) as follows: 

𝑓 (∑ 𝑎𝑖𝑖𝑥
𝑖−1

𝑘

𝑖=0
) =∑ 𝑎𝑖𝑖𝑓(𝑥

𝑖−1) =∑ 𝑎𝑖𝑖(𝑖 − 1)𝑥
𝑖−2

𝑘

𝑖=0

𝑘

𝑖=0
. 

In general, 𝑓𝑛(𝑝(𝑥)) is: 

𝑓𝑛(𝑝(𝑥)) =∑ 𝑎𝑖𝑖(𝑖 − 1)(𝑖 − 2)… (𝑖 − (𝑛 − 1))𝑥
𝑖−𝑛

𝑛

𝑖=0
. 

If 𝑖 = 𝑘 = 𝑛 − 1, then 𝑖(𝑖 − 1)(𝑖 − 2)… (𝑖 − (𝑛 − 1)) = 0, meaning 𝑓𝑛(𝑝(𝑥)) = 0 with 𝑖 = 𝑘 being the 

highest degree of 𝑝(𝑥). Thus, 𝑓𝑛(𝑝(𝑥)) = 0 when it reaches the 𝑛 = 𝑘 + 1th iteration. In other words, it is 

proved that the index of nilpotency of 𝑓 with respect to 𝑝(𝑥) is 𝑛 = 𝑛𝑖𝑙(𝑓, 𝑝(𝑥)) = 𝑘 + 1, where 𝑘 is the 

highest degree of 𝑝(𝑥).                   ∎ 

3.2 Properties of Nil Derivation on Ring 

To better understand the properties of nil derivation, we will first discuss the concept of composition 

and linear combination of derivations in general. If 𝑑 is a derivation, then the composition of 𝑑 ∘ 𝑑 = 𝑑2 is 

not always a derivation. Here is an example of a problem regarding the composition of two derivations that 

are not derivations. 

Example 2. Given a ring 𝑅 = ℤ[𝑥], a polynomial ring with integer coefficients and a derivation 𝑑 defined 

by 𝑑(𝑝(𝑥)) = 𝑝′(𝑥) for every 𝑝(𝑥) ∈ ℤ[𝑥]. Choose 𝑝(𝑥) = 𝑥3 + 3 and 𝑞(𝑥) = 2𝑥2, since 𝑑2(𝑝(𝑥) +

𝑞(𝑥)) = 𝑑2(𝑝(𝑥)) + 𝑑2(𝑞(𝑥)) = 6𝑥 + 4 then 𝑑 satisfies the additive property, but 𝑑 does not satisfy 

Leibniz's rule because 𝑑2(𝑝(𝑥)𝑞(𝑥)) = 40𝑥3 + 12 ≠ 𝑑2(𝑝(𝑥))𝑞(𝑥) + 𝑝(𝑥)𝑑2(𝑞(𝑥)) = 16𝑥3 + 12. Thus, 

𝑑2 is not a derivation on ring ℤ[𝑥]. 

Based on Example 2, since the composition of a derivation 𝑑2 is not always a derivation, it is not possible to 

define the composition as a nil derivation. However, there is a special condition that a derivation composition 

can be a derivation if the derivation defined is a trivial derivation. This trivial derivation is also a nil 
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derivation, since 𝑑𝑛(𝑥) = 0 for every 𝑛 ≥ 1 and 𝑥 ∈ 𝑅. Next, we will discuss the linear combination of 

derivations in general. 

Theorem 4. Given a ring 𝑅.  If 𝑑1, 𝑑2, … , 𝑑𝑛 is a derivation on the ring 𝑅, then 𝑑 = 𝑐1𝑑1 + 𝑐2𝑑2 +⋯+ 𝑐𝑛𝑑𝑛 

with 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ 𝑅 is a derivation on 𝑅. 

Proof. We define: 𝑑(𝑟) = 𝑐1𝑑1(𝑟) + 𝑐2𝑑2(𝑟) + ⋯+ 𝑐𝑛𝑑𝑛(𝑟), for every 𝑟 ∈ 𝑅 and 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ 𝑅. We 

will show that 𝑑 is a derivation. Given any 𝑟, 𝑠 ∈ 𝑅 and 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ 𝑅, we have: 

1. 𝑑(𝑟 + 𝑠) = 𝑐1𝑑1(𝑟 + 𝑠) + 𝑐2𝑑2(𝑟 + 𝑠) + ⋯+ 𝑐𝑛𝑑𝑛(𝑟 + 𝑠) 

= 𝑐1𝑑1(𝑟) + 𝑐1𝑑1(𝑠) + 𝑐2𝑑2(𝑟) + 𝑐2𝑑2(𝑠) + ⋯+ 𝑐𝑛𝑑𝑛(𝑟) + 𝑐𝑛𝑑𝑛(𝑠) 

= 𝑐1𝑑1(𝑟) + 𝑐2𝑑2(𝑟) + …+ 𝑐𝑛𝑑𝑛(𝑟) + 𝑐1𝑑1(𝑠) + 𝑐2𝑑2(𝑠) + ⋯+ 𝑐𝑛𝑑𝑛(𝑠) 

= 𝑑(𝑟) + 𝑑(𝑠). 

2. 𝑑(𝑟𝑠) = 𝑐1𝑑1(𝑟𝑠) + 𝑐2𝑑2(𝑟𝑠) + ⋯+ 𝑐𝑛𝑑𝑛(𝑟𝑠) 

= 𝑐1(𝑑1(𝑟)𝑠 + 𝑟𝑑1(𝑠)) + 𝑐2(𝑑2(𝑟)𝑠 + 𝑟𝑑2(𝑠)) + ⋯+ 𝑐𝑛(𝑑𝑛(𝑟)𝑠 + 𝑟𝑑𝑛(𝑠))  

= 𝑐1𝑑1(𝑟)𝑠 + 𝑐1𝑟𝑑1(𝑠) + ⋯+ 𝑐𝑛𝑑𝑛(𝑟)𝑠 + 𝑐𝑛𝑟𝑑𝑛(𝑠)  

= (𝑐1𝑑1(𝑟) + 𝑐2𝑑2(𝑟) + ⋯+ 𝑐𝑛𝑑𝑛(𝑟))𝑠 + 𝑟(𝑐1𝑑1(𝑠) + 𝑐2𝑑2(𝑠) + ⋯+ 𝑐𝑛𝑑𝑛(𝑠)) 

= 𝑑(𝑟)𝑠 + 𝑟𝑑(𝑠). 

So, it is proven that 𝑑 is a derivation.              ∎ 

Based on Theorem 4, this inspires to define the derivation to be a nil derivation and produces the following 

theorem. 

Theorem 5. Given a ring 𝑅. If 𝑑1, 𝑑2, … , 𝑑𝑛 are nil derivations in the ring 𝑅[𝑥] then 𝑑 =
∑ 𝑐𝑖𝑑𝑖 = 𝑐1𝑑1 + 𝑐2𝑑2 +⋯+ 𝑐𝑛𝑑𝑛
𝑛
𝑖=1  with 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ 𝑅 being nil derivations. 

Proof. Since 𝑑1, 𝑑2, … , 𝑑𝑛 are nil derivations, it means that for every 𝑑𝑖(𝑝(𝑥)) there exists 𝑘 ∈ ℕ such that 

𝑑𝑖
𝑘(𝑝(𝑥)) = 0 with 𝑝(𝑥) ∈ 𝑅[𝑥]. Defined: 𝑑(𝑝(𝑥)) = ∑ 𝑐𝑖𝑑𝑖(𝑝(𝑥)) =

𝑛
𝑖=1 𝑐1𝑑1(𝑝(𝑥)) + 𝑐2𝑑2(𝑝(𝑥)) + ⋯+

𝑐𝑛𝑑𝑛(𝑝(𝑥)) for every 𝑝(𝑥) ∈ 𝑅[𝑥] and 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ 𝑅. It will be shown that 𝑑 is a nil derivation on 𝑅[𝑥].  

First iteration: 𝑑(𝑝(𝑥)) = ∑ 𝑐𝑖𝑑𝑖(𝑝(𝑥)) =
𝑛
𝑖=1 𝑐1𝑑1(𝑝(𝑥)) + 𝑐2𝑑2(𝑝(𝑥)) + ⋯+ 𝑐𝑛𝑑𝑛(𝑝(𝑥)). 

Second iteration: 𝑑2(𝑝(𝑥)) = 𝑑(𝑑(𝑝(𝑥))) 

= 𝑑 (∑ 𝑐𝑖𝑑𝑖(𝑝(𝑥))
𝑛

𝑖=1
) 

=∑ 𝑐𝑖𝑑𝑖(𝑑(𝑝(𝑥)))
𝑛

𝑖=1
 

=∑ 𝑐𝑖𝑑𝑖 (∑ 𝑐𝑖𝑑𝑖(𝑝(𝑥))
𝑛

𝑖=1
)

𝑛

𝑖=1
. 

𝑚-th iteration: 𝑑𝑚(𝑝(𝑥)) = 𝑑(𝑑𝑚−1(𝑝(𝑥))) 

=∑ 𝑐𝑖𝑑𝑖 (∑ 𝑐𝑖𝑑𝑖
𝑛

𝑖=1
)…(∑ 𝑐𝑖𝑑𝑖(𝑝(𝑥))

𝑛

𝑖=1
)

𝑛

𝑖=1⏟                            
𝑚 𝑡𝑖𝑚𝑒𝑠

 

The general form of 𝑑𝑚(𝑝(𝑥)) will involve a combination of derivations 𝑑1, 𝑑2, … , 𝑑𝑛. If 𝑑1, 𝑑2, … , 𝑑𝑛 are 

nil derivation, meaning that these derivations will be zero at the 𝑘-th iteration, then there exists 𝑚 = 𝑘 such 

that 𝑑𝑚(𝑝(𝑥)) = 0. Thus, 𝑑 is a nil derivation.              ∎ 

Next, we give an example of a linear combination of nil derivation. 

Example 3. Given a ring 𝑅 = ℤ[𝑥] and we define: 

𝑑1(𝑝(𝑥)) = 𝑝′(𝑥) 

𝑑2(𝑝(𝑥)) = 3𝑝
′(𝑥), 



BAREKENG: J. Math. & App., vol. 20(1), pp. 0325- 0334, Mar, 2026.     331 

 

 

for every 𝑝(𝑥) ∈ ℤ[𝑥]. Defined 𝑑 = 𝑐1𝑑1 + 𝑐2𝑑2 with 𝑐1 = 3 and 𝑐2 = 2, obtained: 

𝑑(𝑝(𝑥)) = 𝑐1𝑑1(𝑝(𝑥)) + 𝑐2𝑑2(𝑝(𝑥)) = 3𝑝
′(𝑥) + 6𝑝′(𝑥) = 9𝑝′(𝑥). 

It will be shown that 𝑑 is a nil derivation. Given any 𝑑1 and 𝑑2 is a nil derivation, by Theorem 3 it is proved 

that the mapping 𝑑 is a nil derivation at the 𝑛 = 𝑘 + 1th iteration where 𝑘 is the highest degree of the 

polynomial 𝑝(𝑥). Thus, 𝑑 is a nil derivation. 

Remark 1. If one of the derivations is not a nil derivation, then 𝑑 is not always a nil derivation. 

The following is an example of applying the Remark 1. 

Example 4. Given a ring 𝑅 = ℤ[𝑥], choose 𝑝(𝑥) = 𝑥2 + 1, 𝑐1 = 3 and 𝑐2 = 2. 𝑑1 and 𝑑2 are defined as 

𝑑1(𝑝(𝑥)) = 𝑝′(𝑥) and 𝑑2(𝑝(𝑥)) = 𝑥𝑝
′(𝑥). The linear combination of them: 𝑑(𝑝(𝑥)) = 3𝑝′(𝑥) + 2𝑥𝑝′(𝑥), 

we have 𝑑(𝑝(𝑥)) = 6𝑥 + 4𝑥2, 𝑑2(𝑝(𝑥)) = 18 + 36𝑥 + 16𝑥2, 𝑑3(𝑝(𝑥)) = 108 + 168𝑥 + 64𝑥2. After 𝑑 is 

iterated 3 times, it can be seen that the result of the derivation will not be close to zero. Thus, it is proven that 

𝑑 is not always a nil derivation. 

Remark 2. If the derivations 𝑑1, 𝑑2, … , 𝑑𝑛 are not nil derivation, then 𝑑 is also not always a nil derivation. 

The following is an example of applying the Remark 2. 

Example 5. Given a ring 𝑅 = ℤ[𝑥], choose 𝑝(𝑥) = 𝑥2 + 1, 𝑐1 = 1 and 𝑐2 = 2. 𝑑1 and 𝑑2 are defined as 

𝑑1(𝑝(𝑥)) = 𝑥𝑝′(𝑥) and 𝑑2(𝑝(𝑥)) = 𝑥𝑝
′(𝑥). The linear combination of them: 𝑑(𝑝(𝑥)) = 𝑥𝑝′(𝑥) +

2𝑥𝑝′(𝑥) = 3𝑥𝑝′(𝑥), we have 𝑑(𝑝(𝑥)) = 6𝑥2, 𝑑2(𝑝(𝑥)) = 36𝑥2, 𝑑3(𝑝(𝑥)) = 216𝑥2. After 𝑑 is iterated 3 

times, it can be seen that the result of the derivation will not be close to zero. Thus, it is proven that 𝑑 is not 

always a nil derivation.  

3.3 𝒅-Ideal with 𝒅 being a Nil Derivation 

Based on Definition 3 of the concept of 𝑑-ideal, that is an ideal 𝐼 on ring 𝑅 is called 𝑑-ideal if 𝑑(𝐼) ⊆
𝐼. The concept of 𝑑-ideal on the polynomial ring 𝑅[𝑥] is highly dependent on the type of derivation used. 

Some ideal 𝐼 on the polynomial ring 𝑅[𝑥] will be a 𝑑-ideal if the derivation of 𝑑 used is not a nil derivation. 

On the other hand, if the derivation of 𝑑 used is a nil derivation, then the ideal 𝐼 is not an 𝑑- ideal. Here is an 

example that illustrates the statement. 

Example 6. Given an ideal 𝐼 = 〈𝑥3〉 is an ideal constructed by the polynomial 𝑥3 in the polynomial ring ℤ[𝑥]. 

If the derivation of 𝑑 is defined as a nil derivation, i.e. 𝑑(𝑝(𝑥)) = 𝑝′(𝑥), choose 𝑝(𝑥) = 𝑥2 + 1, meaning 

𝑑(𝐼) = 𝑑(𝑥3(𝑥2 + 1)) = 𝑑(𝑥5 + 𝑥3) + 5𝑥4 + 3𝑥2 ∉ 𝐼. Thus, the ideal 𝐼 = 〈𝑥3〉 is not an 𝑑-ideal if 𝑑 is a 

nil derivation. If the derivation of 𝑑 is not a nil derivation, suppose 𝑑(𝑝(𝑥)) = 𝑥𝑝′(𝑥), the result will be 

different. In this case, it is obtained 𝑑(𝐼) = 𝑑(𝑥3𝑝(𝑥)) = 𝑥(3𝑥2)𝑝(𝑥) + 𝑥3𝑥𝑝′(𝑥) = 3𝑥3𝑝(𝑥) + 𝑥4𝑝′(𝑥) =
𝑥3(3𝑝(𝑥) + 𝑥𝑝′(𝑥)) = 𝑥3ℎ(𝑥) ∈ 𝐼 for every ℎ(𝑥) ∈ ℤ[𝑥]. Thus, the ideal 𝐼 = 〈𝑥3〉 is an 𝑑-ideal if 𝑑 is not 

a nil derivation. 

Here is another example of an ideal on the polynomial ring 𝑅[𝑥] that is also not a 𝑑-ideal, with 𝑑 being a nil 

derivation and not a nil derivation. 

Example 7. Given an ideal 𝐼 = 〈𝑥2 + 1〉 in the polynomial ring ℤ[𝑥]. The derivation  𝑑 is a nil derivation 

defined as 𝑑(𝑝(𝑥)) = 𝑝′(𝑥) obtained 𝑑(𝐼) = 2𝑥𝑝(𝑥) + (𝑥2 + 1)𝑝′(𝑥) ∉ 𝐼. If we define 𝑑 is not a nil 

derivation, i.e. 𝑑(𝑝(𝑥)) = 𝑥𝑝′(𝑥) we get 𝑑(𝐼) = 𝑥(2𝑥)𝑝(𝑥) + (𝑥2 + 1)𝑥𝑝′(𝑥) = 2𝑥2𝑝(𝑥) + 𝑥(𝑥2 +

1)𝑝′(𝑥) ∉ 𝐼. Thus, the ideal 𝐼 = 〈𝑥2 + 1〉 is not an 𝑑-ideal, with 𝑑 being a nil derivation and not a nil 

derivation. 

One example of an ideal that is an 𝑑-ideal with 𝑑 being a nil derivation on the polynomial ring ℤ[𝑥] is 𝐼 =
〈𝑥𝑛, 𝑛〉 and 𝐼 = 〈𝑥𝑛, 𝑚〉 provided 𝑛 is a multiple of 𝑚.  

3.4 Nil Derivation on the Quotient Ring 

Furthermore, a nil derivation can be formed on the quotient ring 𝑅/𝐼 of the 𝑑-ideal concept based on 

the Theorem 1 which will be explained in the following theorem. 
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Theorem 6. Given a ring 𝑅 and an ideal 𝐼 in 𝑅. If 𝑑 ∶ 𝑅 → 𝑅 is a nil derivation on ring 𝑅 and ideal 𝐼 is 𝑑-

ideal, then 𝑑̅ ∶ 𝑅/𝐼 → 𝑅/𝐼  by definition 𝑑̅(𝑟 + 𝐼) = 𝑑(𝑟) + 𝐼 for every 𝑟 + 𝐼 ∈ 𝑅/𝐼 is a nil derivation on 

the quotient ring 𝑅/𝐼. 

Proof. Given any nil derivation 𝑑 ∶ 𝑅 → 𝑅 with 𝑑(𝑟) = 𝑟 for every 𝑟 ∈ 𝑅. An ideal 𝐼 is an 𝑑-ideal, meaning 

𝑑(𝑟) ⊆ 𝐼 if and only if 𝑟 ∈ 𝐼. We define derivation 𝑑̅ ∶ 𝑅/𝐼 → 𝑅/𝐼  by 𝑑̅(𝑟 + 𝐼) = 𝑑(𝑟) + 𝐼 for every 𝑟 +
𝐼 ∈ 𝑅/𝐼. It will be shown that 𝑑̅ is a nil derivation on the quotient ring 𝑅/𝐼 and it will be determined that 𝑑̅ 

will be nil at which iteration. It will be reviewed in two cases as follows. 

1. Case 1: 𝑟 ∈ 𝐼. 

Suppose 𝐼 is a 𝑑-ideal, then 𝑑(𝑟) ∈ 𝐼. Consequently, for every 𝑟 ∈ 𝐼, we have 𝑑̅(𝑟 + 𝐼) = 𝑑(𝑟) +
𝐼 = 0 + 𝐼. In other words, the derivation of 𝑑̅ will be a nil derivation at the first iteration for every 

𝑟 ∈ 𝐼. 

2. Case 2: 𝑟 ∉ 𝐼. 

Given 𝑟 ∉ 𝐼, then 𝑑(𝑟) ∉ 𝐼. In this case, the iteration of 𝑑̅ follows the iteration of the derivation 

of 𝑑 on 𝑅, viz 𝑑̅𝑛(𝑟 + 𝐼) = 𝑑𝑛(𝑟) + 𝐼. It is known that 𝑑 is a nil derivation, meaning that for 

every 𝑟 ∈ 𝐼 there is 𝑛 ∈ ℕ such that 𝑑𝑛(𝑟) = 0. Hence it is obtained 𝑑̅𝑛(𝑟 + 𝐼) = 𝑑𝑛(𝑟) + 𝐼 =
0 + 𝐼. This shows that the derivation of 𝑑̅ becomes a nil derivation at the 𝑛-th iteration, which is 

the same as the iteration of 𝑑 on 𝑅. Thus, 𝑑̅ is also a nil derivation on the quotient ring 𝑅/𝐼.      ∎ 

4. CONCLUSION 

A derivation on the polynomial ring 𝑅[𝑥] can be a nil derivation with the index of nilpotency 𝑛 = 𝑘 +
1, where 𝑘 is the highest degree of the polynomial 𝑝(𝑥) ∈ 𝑅[𝑥]. Furthermore, this research also shows that 

nil derivations can be used to form and analyse linear combinations of 𝑛 nil derivations that are also nil 

derivations. In addition, this study found that the linear combination of derivations that are not nil derivations 

does not always result in nil derivations, and if one of the derivations in the combination is not a nil derivation, 

then the result is also not always a nil derivation.The nil derivation can also be developed in the concept of 

𝑑-ideal on polynomial ring. Ideal 𝐼 will be an 𝑑-ideal if the derivation of each element forming the ideal 

remains in the ideal. In addition, the nil derivation can also be applied to the quotient ring by definition 

𝑑̅(𝑟 + 𝐼) = 𝑑(𝑟) + 𝐼 for every 𝑟 + 𝐼 ∈ 𝑅/𝐼 of the 𝑑-ideal concept.  

However, this study has several limitations. The construction and analysis are currently restricted 

to commutative rings with identity and focus only on polynomial rings in one variable. The behavior of nil 

derivations in non-commutative rings, multivariate polynomial rings, or rings with additional algebraic 

structure remains unexplored. Furthermore, the general criteria or characterization for when linear 

combinations of arbitrary derivations yield nil derivations have not been fully formalized, leaving room for 

deeper algebraic investigation. 
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