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 ABSTRACT 

Article History: 
Accurate rainfall estimation is crucial in climate analysis and water resource planning. 

Observational data from weather stations play a vital role in climatological analysis as 

they represent actual conditions at specific locations. However, many observation 
stations in Indonesia need more complete data, hindering analysis and data-driven 

decision-making. To address this issue, this study aims to impute missing rainfall data for 

BMKG stations in East Java using the Convolutional Neural Network (CNN) method. 

Satellite data used in this study include ERA5 without interpolation and ERA5 with 
interpolation. The study employs a spatial interpolation approach. Data were split into 

training and testing datasets with various ratios: 95:5%, 90:10%, 80:20%, 70:30%, and 

50:50%. The results show that the CNN method with spatially interpolated satellite data 

yields better results, with a Mean Absolute Error (MAE) of 7.50 on the training data and 
7.05 on the testing data, indicating better generalization capability than the method 

without interpolation. The combination of CNN and ERA5 with interpolation was chosen 

for imputing missing rainfall data at BMKG stations in East Java due to its lower MAE. 
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1. INTRODUCTION 

Rainfall is one of the natural water sources that play a significant role in replenishing Earth's water 

resources and supporting the hydrological cycle. In tropical Indonesia, rainfall is a key component of the 

water cycle, mainly since precipitation in many regions occurs seasonally. Adequate rainfall is crucial for the 

agricultural sector [1], energy [2], urban spatial planning [3], and maintaining the balance of the ecosystem 

on land and at sea [4]. Therefore, an accurate understanding of rainfall and systematic monitoring are essential 

to support various aspects of human life, sustain natural ecosystems, and mitigate the risks of disasters such 

as droughts or floods. 

Rainfall data is obtained through pluviometers or rain gauges placed at weather stations in various 

locations. Pluviometers measure the amount of rain that falls on a surface over a specific period. The data 

collected from these instruments is crucial as it is a primary reference for various climatological and 

hydrological studies [5], [6], [7]. However, rain gauges have limitations in capturing spatial variations in 

rainfall, especially over large areas or regions with complex topography, such as mountainous terrains. 

Additionally, these instruments are prone to technical and human errors, including equipment malfunctions, 

inadequate maintenance, and inaccurate manual recording. These issues can result in missing data, making it 

challenging for researchers to comprehensively explain the stochastic processes of rainfall [8]. 

In climatological data analysis, observation data from stations is crucial, representing measurements 

taken directly from the stations [9][10]. However, due to the significant amount of incomplete station data in 

Indonesia, analyzing rainfall data using station data alone becomes challenging. Consequently, many 

researchers turn to satellite data for their analyses [11], [12], [13]. However, generated data from a specific 

model inevitably contains errors. As a result, the analysis outcomes will also carry these errors. Bias 

correction is a method researchers use to reduce the mistakes in satellite data [14]. However, this method 

only reduces errors, particularly systematic errors. 

As a result, analysis with satellite data will not necessarily be better than analysis with station data. 

Therefore, missing data imputation is a method to handle incomplete station data to make it analyzable and 

produce accurate results. According to [15], imputation replaces missing data with estimated values based on 

other available information. One approach that can be used for missing data imputation is machine learning 

[16]. The study by [17], which compared machine learning-based methods with statistical methods for 

missing data imputation, showed that machine learning methods were more accurate in imputing missing data 

than statistical methods. 

A similar study was conducted by [13], where they researched missing data imputation using Beidou 

satellite data in China, applying the Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) 

method. [18] developed an efficient method to impute missing data in satellite imagery using CNN for 

Aerosol Optical Depth (AOD) data as well [19]. They integrated spatial, temporal, and spectral dimensions 

using deep CNNs to address the issue of missing data in satellite imagery. [20] studied missing data 

imputation using several satellite datasets, including ERA5, ERA5 Land, CMORPH CRT, CMORPH BLD, 

and CHIRPS. The results showed that ERA5 data provided the best performance. In this study, we propose 

using relatively more complete satellite data to fill in the missing station data. The method to be employed is 

a Convolutional Neural Network (CNN). 

The main objective of this study is to compare the performance of two approaches for imputing missing 

data, namely using ERA5 satellite data and ERA5 satellite data with an interpolation spline. This comparison 

assesses the extent to which spline interpolation contributes to reducing rainfall estimation errors. The 

analysis will involve testing several evaluation metrics, such as Mean Absolute Error (MAE) and correlation, 

to ensure objective and measurable results. This research's novelty is the application of interpolation to ERA5 

satellite data to compare its performance with ERA5 satellite data without interpolation. The findings from 

this study are expected to provide deeper insights into a more effective approach for imputing missing rainfall 

data using ERA5 data. 
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2. RESEARCH METHODS 

2.1 Study Area and Datasets 

This study focuses on the East Java Province, covering an area of approximately 47.799,75 km². 

Geographically, East Java is located between 5,37° - 8,48° South Latitude and 111,0° - 114,4° East Longitude. 

East Java experiences a varied climate due to its diverse topography, ranging from mountains to coastal areas. 

As one of Indonesia's major agricultural producers, the availability of accurate rainfall data is crucial for 

supporting water resource management and agricultural sector planning. However, the rainfall data collected 

by BMKG observation stations in East Java often suffers from missing data due to various factors, such as 

technical and human errors. The specifications of the station data are shown in Table 1. The ERA5 satellite 

data is used as an alternative to address the issue of missing data. This study implements two main approaches 

to solve the missing rainfall data problem at BMKG stations in East Java. The first approach uses ERA5 

satellite data directly. ERA5 is a global weather reanalysis dataset developed by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service (C3S) 

project. This dataset provides historical weather and climate information based on weather observations (such 

as satellite observations, weather station data, and ocean data) and complex atmospheric models. ERA5 offers 

high spatial resolution data (approximately 31 km) and detailed temporal resolution (hourly). 

Additionally, ERA5 provides complete rainfall data, which can be used to fill missing data at BMKG 

stations in East Java. The second approach involves using ERA5 satellite data that has undergone spline 

interpolation. This process is applied to refine the spatial resolution of the ERA5 data, hoping to improve the 

accuracy of the missing data imputation. 

Table 1. East Java BMKG Station Data Specifications 

Station Station Name Longitude Latitude Altitude 
Available 

data 

Missing 

data 

2010-2023 

1 Geofisika Malang 112.45000 -8.15000 285 2010-2024 34.18% 

2 Geofisika Nganjuk 111.76682 -7.73486 723 1982-2024 49.53% 

3 Geofisika Pasuruan 112.63533 -7.70456 832 1983-2024 31.59% 

4 Klimatologi Jawa Timur 112.59790 -7.90080 590 1988-2024 7.18% 

5 Meteorologi Banyuwangi 114.35530 -8.21500 52 1980-2024 34.04% 

6 Meteorologi Juanda 112.78330 -7.38460 3 1981-2024 11.15% 

7 Meteorologi Maritim 

Tanjung Perak 

112.73530 -7.20530 3 1981-2024 10.44% 

8 Meteorologi Perak 1 112.72390 -7.22360 3 1972-2024 15.94% 

9 Meteorologi Sangkapura 112.65780 -5.85110 3 1971-2024 19.00% 

10 Meteorologi Trunojoyo 113.91400 -7.03976 3 1980-2024 15.32% 

Table 1 presents information about ten weather stations in East Java operating over various periods. 

Each station is characterized by its geographical coordinates (longitude and latitude), elevation (altitude), and 

the range of years for which data is available, with some stations having data records dating back to the 1970s 

through 2024. In this study, rainfall data from 2010 to 2023 is used. The missing data rate varies across the 

stations. The station with the highest missing data rate is Geofisika Nganjuk, with a percentage of 49.53%, 

while the Klimatologi Jawa Timur station records the lowest missing data rate at 7.18%. 

 
Figure 1. Location of East Java BMKG Station 
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Figure 1 displays a map of East Java with the locations of weather stations identified by number 

according to the data in the table. Geographically, the stations are distributed across strategic areas for 

observation. This distribution allows for relatively even coverage of rainfall data and other weather 

parameters throughout East Java despite variations in each station's elevation and geographical positioning. 

The well-distributed stations across mountainous regions, lowlands, and coastal areas are crucial to ensuring 

the accuracy of climate data, as topography significantly influences rainfall patterns. However, the challenges 

associated with varying missing data across each station, as shown in Table 1, impact the completeness of 

historical data and weather analysis in several regions of the area. 

2.2 Spline Interpolation 

Interpolation is a method for estimating the value of a function. 𝑓(𝑥) at an unknown point, based on 

the values 𝑓(𝑥), which has been known at specific points (𝑥0, 𝑥1, … , 𝑥𝑁−1), by drawing a smooth curve 

through the data points, interpolation is performed if the point being searched for is within a known range of 

points, and extrapolation is performed outside that range [21]. A cubic polynomial between each pair of data 

points defines a cubic spline (𝑥𝑖 , 𝑦𝑖). If we have 𝑛 data point (𝑥0, 𝑦0), (𝑥1, 𝑦1),… , (𝑥𝑛 , 𝑦𝑛), then the cubic 

spline function 𝑆(𝑥) can be written in Equation (1). 

𝑆𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 −  𝑥𝑖)
𝟐 + 𝑐𝑖(𝑥 −  𝑥𝑖)

3 (1) 

for 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1, 𝑆𝑖(𝑥): a cubic spline for the interval [𝑥𝑖 , 𝑥𝑖+1] and 𝑎𝑖, 𝑏𝑖, 𝑐𝑖,  𝑑𝑖: the coefficient that must 

be determined for each interval. 

Spline interpolation is an alternative method of interpolation that is more interesting from a theoretical 

point of view than radial function-based interpolation [22]. In spline interpolation, we look for a prediction 

function 𝑦̂(𝑠) that meets the exact interpolation requirements; the function must pass through the given data 

points. This interpolation is expressed in Equation (2). 

𝑦̂(𝑠) = 𝑦𝑖 (2) 

𝑖 = 1, … , 𝑛 , although many smooth functions can satisfy this requirement, spline interpolation has the unique 

characteristic of selecting the smoothest function. To measure this "smoothness," we refer to the concept of 

curvature. The curvature of a function 𝑓(𝑠) in one dimension, measured using the second derivative 𝑓′′(𝑠), 

where the linear function 𝑓(𝑠) = 𝑎 + 𝑏𝑠 has zero curvature. To compare the curvature of a function at a 

specific interval, the total curvature can be calculated using the formula in Equation (3). 

𝐶(𝑓) = ∫ [𝑓′′(𝑠)]2𝑑𝑠
𝑏

𝑎

(3) 

The smaller the total curvature, the smoother the function [23]. The concept of curvature is extended 

using the Hessian matrix in two-dimensional problems, which consists of each variable's second partial 

derivatives of a function. The curvature of a two-dimensional function at the point (𝑠1, 𝑠2) counted as 

Equation (4). 

𝐻(𝑠) =

[
 
 
 
 

𝜕2𝑓

𝜕𝑠1
2

𝜕2𝑓

𝜕𝑠1𝜕𝑠2

𝜕2𝑓

𝜕𝑠2𝜕𝑠1

𝜕2𝑓

𝜕𝑠2
2 ]

 
 
 
 

(4) 

Curvature is measured by calculating the size of the Hessian, which is formulated as Equation (5). 

‖𝐻(𝑠)‖2 = (
𝜕2𝑓

𝜕𝑠1
2)

2

+ 2(
𝜕2𝑓

𝜕𝑠1𝜕𝑠2
)

2

+ (
𝜕2𝑓

𝜕𝑠2
2)

2

(5) 

The total curvature in two dimensions is calculated by integrating the curvature values over the entire 

region Equation (6). 

𝐶(𝑓) = ∫ ‖𝐻(𝑠)‖2𝑑𝑠1𝑑𝑠2
𝑅2

(6) 
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The problem of spline interpolation is finding a function 𝑦̂(𝑠) that minimizes this total curvature while 

still satisfying the interpolation conditions above. 

2.3 Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is an Artificial Neural Network (ANN) designed to process 

grid-like structured data, such as images. ANN is a machine-learning algorithm inspired by the function and 

structure of the human brain [24]. An ANN consists of interconnected artificial neurons that make predictions. 

It comprises three layers: the input, hidden, and output layers. Each layer contains a certain number of neurons 

responsible for processing input data, transforming it through weights and biases, and generating an output. 

Backpropagation is an algorithm used to train an ANN by adjusting the weights and biases of neurons to 

minimize the difference between the actual and predicted output. The concept of backpropagation is based 

on learning from mistakes. The network “learns” how to adjust its weights to improve its predictions when 

they are incorrect [25]. 

A CNN model generally consists of two stages: feature learning and classification. Feature learning 

includes convolutional layers and sub-sampling, while classification consists of fully connected layers [26]. 

In a CNN model, the first step is feature learning. During this stage, convolution is performed, resulting in a 

feature map output. The convolutional layer consists of four components: padding, stride, kernel, and 

activation function. Padding is essential for enlarging the input by adding zeros to each side, ensuring that 

information at the boundaries is preserved when the convolution kernel is adjusted to a specific size. 

Moreover, stride is used to control the density of the convolution. Stride refers to the length of the shifting 

step—a more significant stride results in a lower density of the convolution. In a two-dimensional CNN, the 

kernel is a matrix of size 𝑛 × 𝑛 and the kernel is a matrix of values containing a set of parameters. Each 

submatrix of the input is element-wise multiplied by the kernel, then summed up and passed through an 

activation function. After convolution, the feature map consists of several features prone to overfitting [27]. 

Therefore, a sub-sampling layer is proposed to avoid redundancy [28]. Various pooling techniques are used, 

such as max pooling, min pooling, average pooling, gated pooling, tree pooling, etc. Max pooling is the most 

popular and widely used pooling technique. After the convolution and sub-sampling processes are completed, 

the final feature map is input to the fully connected layer. The fully connected layer is used for regression, 

where each neuron is connected to every neuron from the previous layer. The final layer of the fully connected 

layer serves as the output (regression) layer of the CNN architecture. Figure 2 illustrates the procedure of a 

two-dimensional CNN.  

 

Figure 2. The Procedure of a Two-Dimensional CNN. Source [29] 

2.4 Activation Function 

In neural network-based models, the main task of the activation function is to map the input to the 

output. The input value is obtained by calculating the weighted sum of the inputs to the neuron and then 

adding the bias (if there is a bias). In other words, the activation function determines whether a neuron will 

activate for a specific input by producing the corresponding output. The activation functions used in this study 

are as follows.  
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2.4.1 Sigmoid 

The sigmoid activation function is suitable for non-linear data because it captures complex 

relationships between input and output. This helps the model learn patterns that simple linear functions cannot 

handle. The curve of the sigmoid activation function has an "S" shape, as shown in Figure 3 (a). 

 

Figure 3. (a) Sigmoid Curve, (b) ReLU Curve 

The sigmoid function takes real numbers as input and maps the output to an interval [0,1]. A small 

value of 𝑥 will approach 0, while a significant value of 𝑥 will approach 1. The mathematical representation 

of the Sigmoid in Equation (7). 

𝑓(𝑥)𝑠𝑖𝑔𝑚 =
1

1 + 𝑒−𝑥
(7) 

𝑥: the input or net of the neuron and 𝑒: an exponential number. 

2.4.2 ReLu 

Rectifier Linear Unit (ReLU) ReLU is the most commonly used activation function in Convolutional 

Neural Networks [30]. It is used to convert all input values into positive numbers. The advantage of this 

activation function is that it requires minimal computational cost compared to other functions. The 

mathematical representation of ReLU is as follows in Equation (8). 

𝑓(𝑥)𝑅𝑒𝐿𝑈 = max(0, 𝑥) (8) 

𝑥: the input or net of the neuron. 

2.5 Optimizer 

Before using the CNN model, it must be trained using training data to minimize the loss function. The 

loss function is a metric used in machine learning to assess how well or poorly the predictive model performs. 

This function calculates the difference between the model's predictions and the actual values. The loss value 

is used to guide the model training process: the smaller the loss value, the better the model’s performance. 

This study uses Mean Absolute Error (MAE) to calculate the loss value, as described by [31]. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑂𝑖 − 𝑃𝑖

𝑛

𝑖=1

| (9) 

𝑛: the amount of data, 𝑂𝑖: the original or actual value, and 𝑃𝑖: the predicted value. 

In the CNN model, an optimizer is used to update the weights and parameters of the model during 

training to minimize the loss function. Each parameter update is based on the learning rate, which determines 

the step size in the parameter update. An epoch refers to one complete iteration using all of the training data. 

Since the learning rate is a vital hyperparameter, its selection must be done carefully to avoid hindering the 

learning process. This study uses three optimizers, considered the best by [26], and will be explained as 

follows. 
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2.5.1 Adaptive Moment Estimation (Adam) 

Adam is an advanced gradient descent method that computes an adaptive learning rate for each 

parameter in the network and combines the advantages of Momentum and RMSprop. It maintains the 

exponentially decaying average of past gradients, like Momentum, and the exponentially decaying average 

of past squared gradients, like RMSprop. Therefore, the Adam formula is as follows: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (10) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (11) 

𝑚𝑡̂ =
𝑚𝑡

(1 − 𝛽1
𝑡)

(12) 

𝑣𝑡̂ =
𝑣𝑡

(1 − 𝛽2
𝑡)

(13) 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡̂ + 𝜖
𝑚𝑡̂ (14) 

where 𝑚𝑡 is the moving average of the gradients at time 𝑡, 𝑣𝑡 is the exponentially weighted average of squared 

gradients, 𝑔𝑡 is gradient, 𝜂 is learning rate, 𝑚𝑡̂ and 𝑣𝑡̂ are bias corrections,  𝛽1 and 𝛽2 are the exponential 

decay rate. The default values of 𝛽1, 𝛽2, and 𝜖, the recommended ones to be set in succession, are 0.9, 0.999, 

and 10−8 [𝟑𝟐]. 

2.5.2 Nesterov Adaptive Moment Estimation (NAdam) 

Nadam [33] is a modified version of the Adam optimizer that combines the advantages of both Adam 

and Nesterov Momentum. Like Adam, Nadam adapts the learning rate for each parameter based on the 

gradients’ first moment (Momentum) and second moment (squared gradients). However, Nadam also 

incorporates a component of Nesterov Momentum to improve convergence speed. The updated formula for 

Nadam is as follows in Equation (15). 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡̂ + 𝜖
(𝛽1𝑚𝑡̂ +

1 − 𝛽1

1 − 𝛽1
𝑡 𝑔𝑡) (15) 

2.5.3 Adaptive Moment Estimation with Weight Decay (AdamW) 

AdamW is a variation of the Adam optimizer that adds weight decay directly into the parameter update, 

providing better control over regularization. This optimizer was introduced to address the issue of ineffective 

regularization in the Adam algorithm. The updated formula for AdamW is as follows in Equation (16). 

𝜃𝑡+1 = 𝜃𝑡 − 𝜁𝑡 (
𝜂

√𝑣𝑡̂ + 𝜖
𝑚𝑡̂ + 𝜆𝜃𝑡) (16) 

Where 𝜆: the weight decay value, AdamW uses 𝑙2 regularization in the calculation of the gradient of the 

parameter 𝜃𝑡, which is written as 𝑔𝑡 =
𝜕𝐿(𝜃𝑡)

𝜕(𝜃)
+ 𝜆𝜃𝑡. To adjust the scheduling learning rate 𝜂 and weight decay 

𝜆, AdamW introduces a scaling factor 𝜁𝑡, which the user can set through procedures SetScheduleMultiplier(t). 

At each iteration, the value 𝜁𝑡 will decrease gradually following the cosine annealing method, where the 

learning rate decreases slowly in each batch during training [34]. 
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3. RESULTS AND DISCUSSION 

3.1 Preprocessing of Datasets 

3.1.1 Station Data 

Daily rainfall (RR) data were collected in Excel from the official BMKG East Java website, covering 

January 2010 to December 2023. The downloaded data were compiled into a tabular format to facilitate data 

analysis. Based on the analysis, the average percentage of missing data from January 2010 to December 2023 

is 22.87%. This value was obtained by calculating the percentage of missing data for each station, summing 

the results, and then dividing by the total number of stations used, which is ten. The tabular data was 

preprocessed using MATLAB software to prepare the data for imputation. During this stage, the index value 

“8888” used to indicate unmeasured data and empty cells was converted to Not a Number (NaN). 

Table 2. Missing Data Proportion in East Java BMKG Station  

Station Station Name 
Missing data 

2010-2023 

1 Geofisika Malang 34.18% 

2 Geofisika Nganjuk 49.53% 

3 Geofisika Pasuruan 31.59% 

4 Klimatologi Jawa Timur 7.18% 

5 Meteorologi Banyuwangi 34.04% 

6 Meteorologi Juanda 11.15% 

7 Meteorologi Maritim Tanjung Perak 10.44% 

8 Meteorologi Perak 1 15.94% 

9 Meteorologi Sangkapura 19.00% 

10 Meteorologi Trunojoyo 15.32% 

Table 2 shows the proportion of missing data for each station. This study focuses on determining the 

satellite data with the best performance for imputing missing rainfall data at BMKG East Java stations. 

3.1.2 Satellite ERA5 Dataset 

The satellite rainfall data used in this study is ERA5 data in a grid format with a spatial resolution of 

0.25°×0.25°. The dataset contains four variables: longitude, latitude, time, and total precipitation (tp). The 

data is stored in Network Common Data File (NetCDF) format. The dataset spans hourly data from January 

2010 to December 2023. ERA5 satellite data was preprocessed using MATLAB software, and the 

specifications of the preprocessing results are presented in Table 3. 

Table 3. ERA5 Satellite Data Specifications After Interpolation 

Variable Name Information ERA5 Size  
ERA5 Size With 

Interpolation 

Longitude 110°BT − 114° BT 17 × 1 161 × 1 
Latitude 5°LS − 8°LS 13 × 1 121 × 1 

Time day 5113 × 1 5113 × 1 
Total precipitation (tp) mm 17 × 13 × 5113 161 × 12 × 5113 

Table 3 provides information on rainfall data variables from ERA5 spatial. Before interpolation, the 

size of the ERA5 data matrix for longitude is 𝟏𝟕 × 𝟏, and for latitude is 𝟏𝟑 × 𝟏, reflecting the initial spatial 

resolution. After interpolation, the spatial resolution increases, with longitude becoming 𝟏𝟔𝟏 × 𝟏. Moreover, 

the latitude becomes 𝟏𝟐𝟏 × 𝟏; this means more regional observation points, enabling more accurate weather 

and rainfall analysis. For the time dimension, data is available for 5113 days. This interpolation is crucial for 

enhancing climate monitoring and prediction precision, especially when rainfall patterns need to be analyzed 

with higher spatial resolution. 

3.1.3 Satellite ERA5 Dataset with Interpolation Spline 

The preprocessed ERA5 data will be interpolated using the spline interpolation method. After 

interpolation, the resolution increases to 0.025° × 0.025°, changing the matrix size. The specifications of the 

ERA5 data after interpolation are presented in Table 3. With this higher resolution, the rainfall analysis is 
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expected to be more detailed and accurate, supporting a more effective missing data imputation process. A 

visualization of the ERA5 satellite rainfall data can be seen in Figure 4. 

 
(a)                                                    (b) 

Figure 4. Visualization Satellite Data 

(a) ERA5 Without Interpolation, (b) ERA5 With Interpolation 

Figure 4 illustrates the visualization of rainfall data from ERA5 satellite data. In Figure 4 (a), the 

spatial resolution appears lower, depicted by large blocky grids. This indicates that each data point covers a 

vast area, resulting in less visible spatial detail of the rainfall patterns. Rainfall variations are displayed in 

distinct blocks but lack precision in capturing subtle changes between regions. Conversely, Figure 4 (b) on 

the right demonstrates increased spatial resolution. The map’s colors are smoother than Figure 4 (a), and 

transitions between regions appear more seamless. This improvement suggests that interpolation helps 

estimate rainfall values between the original observation points, producing a more detailed and realistic 

rainfall distribution map. Overall, interpolation enhances the precision of visualization and analysis. The 

interpolated map is more representative of climate studies, especially when high-resolution patterns of 

weather or rainfall are crucial. However, it is important to note that interpolation does not generate new data 

but estimates values between existing points. 

After preparation, the data was divided into training and testing sets using five data split scenarios: 

95:5%, 90:10%, 80:20%, 70:30%, and 50:50%. The training data consisted of station and satellite data, while 

the testing data used complete station data. In the testing set, a portion of the values was randomly removed 

and then predicted using the model. Mean Absolute Error (MAE) was calculated to evaluate the magnitude 

of the difference between the original data and the predicted values. 

3.2 Parameters Initialization 

This section discusses setting up hyperparameters before constructing the model to ensure optimal 

performance. One important aspect of this setup is the selection of an optimization algorithm that plays a role 

in updating the model’s weights during the training process. Based on the study conducted by [27], three 

optimization algorithms identified as having the best performance were used to evaluate the model’s 

performance: Adam, NAdam, and AdamW. Three learning rate values were also tested: 0.1, 0.01, and 0.001. 

Before training the model across all 10 BMKG stations in East Java, an initial trial was conducted on 

a single station as a preliminary step. This trial aimed to determine the best combination of optimizer type 

and learning rate values, ensuring that the selected parameters deliver optimal performance before being 

applied to other datasets. The trial was conducted at the East Java Climatology Station, and the results are 

presented in Table 4.  

Table 4. Trial for Determining the Best Optimizer and Learning Rate (LR) 

LR/Optimizer  0.001   0.01   0.1  

 MAE 

train 

MAE 

test 
𝜺 

MAE 

train 

MAE 

test 
𝜺 

MAE 

train 

MAE 

test 
𝜺 

Adam 7.661 7.555 127 7.641 7.594 40 7.717 7.306 24 

NAdam 7.605 7.473 283 7.656 7.337 63 7.762 7.322 28 

AdamW 7.967 7.673 70 7.929 7.631 30 7.944 7.245 13 

Table 4 shows that the NAdam optimizer with a learning rate of 0.001 demonstrates the best 

performance, indicated by the low MAE values on both training and testing data, and optimal generalization 

capability. Therefore, this combination is selected for training the model on other stations, as it balances 

accuracy, learning stability, and generalization. The results of this testing will be applied to data from ten 

different stations. 
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3.3 Performance Loss Function and Metric Evaluation 

This section discusses the performance loss function and metric evaluation for two types of ERA5 

datasets: ERA5 without interpolation and ERA5 with interpolation spline. These two data types have different 

sizes, so the models were adjusted accordingly. 

3.3.1 ERA5 Satellite Data 

The CNN method has evolved with various architectural variations, such as LeNet, AlexNet, VGGNet, 

GoogLeNet, and ResNet. Among these architectures, LeNet and AlexNet have demonstrated high success 

rates in various applications. LeNet was designed and introduced by [35] as the first CNN architecture. In 

this study, the LeNet architecture was modified to adapt to the data size of the ERA5 satellite. The modified 

model was trained using observation station data, where missing values were predicted based on data from 

the ERA5 satellite. The design of the CNN architecture with the modified LeNet can be seen in Figure 5. 

 
Figure 5. Modified LeNet Architecture 

Following the construction of the model, it was trained on data from ten BMKG stations in East Java, 

conducted over 300 epoch (𝜺). Testing was performed using five scenarios for splitting training and testing 

data: 95:5%, 90:10%, 80:20%, 70:30%, and 50:50%. The procedure was repeated ten times to ensure 

consistent results and avoid computational bias. The average testing results for all stations are presented in 

Table 5. 

Table 5. Training and Testing Model Using ERA5 Satellite Data 

Station 95% 5%  90% 10%  80% 20%  

 
MAE 

train 

MAE 

test 
𝜺 

MAE 

train 

MAE 

test 
𝜺 

MAE 

train 

MAE 

test 
𝜺 

1 7.605 6.982 169 7.487 7.079 300 7.564 7.243 300 

2 13.666 13.525 163 13.654 13.376 199 13.666 13.383 260 

3 11.578 11.312 300 11.496 11.658 300 11.519 11.588 300 

4 5.907 5.603 300 5.880 6.307 300 5.886 6.110 300 

5 7.497 5.819 300 7.381 7.870 300 7.460 7.231 300 

6 6.745 6.093 300 6.794 6.569 300 6.748 6.671 300 

7 5.352 5.282 300 5.171 5.114 300 5.155 5.185 300 

8 6.198 5.858 300 6.194 6.031 300 6.209 6.026 300 

9 7.529 6.299 300 7.494 7.279 300 7.510 7.622 300 

10 4.720 4.623 300 4.689 4.275 300 4.774 4.446 300 

Mean 7.679 7.139  7.624 7.555  7.649 7.550  
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Station 70% 30%  50% 50%  

 MAE 

train 

MAE 

test 

𝜺 MAE 

train 

MAE 

test 

𝜺 

1 7.418 7.428 163 7.335 7.397 145 

2 13.149 13.024 238 13.196 13.025 318 

3 11.639 11.681 303 10.709 10.856 215 

4 5.905 5.873 152 5.836 5.981 126 

5 7.374 7.479 109 7.168 7.609 175 

6 6.529 6.639 195 6.496 6.738 114 

7 5.139 5.125 195 5.181 5.106 194 

8 6.269 6.024 130 6.300 6.098 120 

9 7.124 7.405 503 7.008 7.653 157 

10 4.732 4.482 263 4.689 4.653 139 

Mean 7.528 7.516  7.319 7.511  

Table 5 presents the MAE values for training and testing data and the number of iterations at BMKG 

stations in East Java, tested using ERA5 satellite data without interpolation. The gray color in the table 

indicates the risk of overfitting, which occurs when the model performs well on the training data but fails to 

maintain that performance on the testing data. In this context, overfitting is indicated by the significantly 

higher Mean Absolute Error (MAE) value on the testing data than the MAE on the training data. Stations two 

and three have relatively high MAE values compared to other stations. One of the main causes is the large 

amount of missing data at these stations, which hinders the model's ability to learn rainfall patterns optimally. 

In the 95:5% scenario, there was no indication of overfitting, demonstrating that the model could learn from 

the training data without losing its ability to generalize well on the testing data. This is evident from the MAE 

value on the testing data, which remained low and was not significantly different from the MAE value on the 

training data.  

On the other hand, in scenarios with a larger proportion of training data, some stations experienced 

overfitting. Overfitting occurs when the model becomes too aligned with specific patterns in the training data, 

causing its performance to decline when tested on new data. In this study, overfitting was indicated by a lower 

MAE on the training data compared to the MAE on the testing data. The larger the proportion of training 

data, the higher the risk of overfitting, as the model tends to focus more on specific details in the training data 

and becomes less flexible in recognizing more general patterns. Therefore, maintaining a balance between 

training and testing data is crucial to ensure that the model achieves high accuracy on the training data and 

retains strong generalization capabilities when applied to new data. Overall, the 95:5% scenario provided the 

best results, with the lowest MAE value on the testing data, reflecting the model's ability to handle missing 

data effectively. This scenario minimized overfitting and resulted in better prediction generalization 

compared to other scenarios, which tended to show potential overfitting and accuracy reduction.  

3.3.2 ERA5 Satellite Dataset Using Interpolation 

Inspired by LeNet, [36] developed AlexNet, the first large-scale CNN model. In this study, the AlexNet 

architecture was modified to accommodate the size of ERA5 satellite data that has undergone interpolation. 

The modified model was trained using data from observation stations to predict missing values based on the 

interpolated ERA5 satellite data. The structure of the CNN architecture with the modified AlexNet is shown 

in Figure 6. 
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Figure 6. Modified AlexNet Architecture 

The modified AlexNet architecture has more processing layers than the modified LeNet architecture. 

This architecture comprises 13 processing layers, including ten convolutional layers and three fully connected 

layers. Sub-sampling is performed using max pooling, and the activation function used is the rectified linear 

unit (ReLU). In deep learning, using limited data for parameter estimation can result in high variance and 

overfitting. The dropout technique is applied to the fully connected layers to address this issue and improve 

the network’s generalization ability. Dropout helps prevent overfitting by randomly turning off neurons 

during training [37]. Softplus activation function then follows the layer to produce the final prediction. 

After the model is successfully constructed, the next step is training and evaluating the model using 

data from 10 BMKG stations in East Java. The training is carried out until 30 epochs (𝜺) are reached. The 

number of epochs for the interpolated data is fewer because the computation time is significantly longer than 

that of the data without interpolation. This longer computation time is due to the much larger data size. The 

scenarios used are the same as when training the CNN model with ERA5 data. The results of the training and 

testing model are shown in Table 6. 

Table 6. Training and Testing Model Using ERA5 Satellite Data with Interpolation 

Station    MAE      

 95% train 5% test 𝜺 90% train 90% test 𝜺 80% train 20% test 𝜺 

1 7.50 6.78 25 7.33 7.89 24 7.44 7.38 30 

2 12.91 11.83 3 12.76 11.04 28 12.63 12.17 28 

3 11.08 10.75 19 11.04 12.68 29 11.19 12.89 3 

4 5.82 5.67 29 5.78 6.12 29 5.80 5.90 29 

5 7.48 4.99 30 7.59 5.26 30 7.32 7.52 17 

6 6.82 7.71 10 6.85 6.98 9 6.86 6.89 9 

7 5.35 5.74 9 5.13 4.92 30 5.09 5.20 29 

8 6.14 5.02 30 6.47 6.57 10 5.99 6.21 25 

9 7.15 6.33 24 7.32 6.85 29 7.24 7.43 30 

10 4.77 5.67 8 4.82 4.71 9 4.86 4.61 8 

Mean 7.50 7.05  7.51 7.30  7.44 7.62  

Station    MAE   

 70% train 30% test 𝜺 50% train 50% test 𝜺 

1 7.50 7.26 30 7.256 7.198 23 

2 12.79 12.06 23 12.626 12.458 30 

3 10.92 12.12 25 10.947 11.167 29 

4 6.22 5.89 1 6.097 6.269 10 

5 7.62 6.77 19 7.653 7.314 7 

6 6.89 6.81 9 6.540 6.557 29 

7 5.13 5.20 8 5.417 5.327 8 

8 6.43 6.62 9 6.529 6.444 9 

9 7.16 7.54 30 6.874 7.832 29 

10 4.82 4.82 8 4.725 4.910 7 

Mean 7.55 7.51  7.466 7.548  



BAREKENG: J. Math. & App., vol. 19(4), pp. 2921- 2936, December, 2025. 2933 

 

Table 6 presents the MAE values for training and testing data and the number of iterations at BMKG 

stations in East Java, tested using ERA5 satellite data with interpolation. The gray color in the table indicates 

the risk of overfitting, which occurs when the model performs well on the training data but fails to maintain 

that performance on the testing data. In this context, overfitting is indicated by the significantly higher Mean 

Absolute Error (MAE) value on the testing data than the MAE on the training data. In the 95:5% scenario, 

the average MAE on the test data is the lowest compared to other scenarios. In the 90:10% scenario, this 

value increases to 7.30, with several stations experiencing overfitting, indicating the model’s limited 

generalization ability. In the 80:20% scenario, the average MAE on the test data rises to 7.62, with most 

stations experiencing overfitting. In the 70:30% scenario, the MAE decreases to 7.51, but increases again in 

the 50:50% scenario to 7.55. Overall, the 95:5% scenario provides the best results, reflecting the model’s 

superior ability to predict rainfall and handle missing data. This scenario also demonstrates better 

generalization than the other scenarios, which tend to suffer from overfitting and reduced prediction accuracy. 

3.4 Imputation Missing Data 

This section discusses imputation of missing data using Convolutional Neural Network (CNN) with 

ERA5 satellite data interpolation. The visualization of missing data imputation is presented as a graph. The 

green bars represent the imputed missing data results, while the red line represents the actual rainfall data 

values from BMKG stations in East Java. 

 

 

Figure 7. Compared Imputation Missing Data with Actual Data 

(a) Station Geofisika Nganjuk 2013, (b) Station Geofisika Pasuruan 2019 

This section presents two stations as samples to demonstrate the model's ability to predict missing data, 

namely the Nganjuk Geophysics Station in 2013 and the Pasuruan Geophysics Station in 2019. These stations 

were selected due to the significant amount of missing data, indicated by dashed red lines in the rainfall data 

visualization. In both cases, the CNN-based model with interpolated ERA5 data successfully imputed the 

missing data. The green bars in the graph represent the model's imputation results, filling in the gaps caused 

by missing observations. This approach allows the rainfall patterns to be reconstructed accurately, closely 

approximating the actual available values. These findings highlight the effectiveness of combining the CNN 

method and interpolated ERA5 data in handling missing data, providing a potential solution for enhancing 

the completeness and quality of rainfall data at BMKG stations in East Java. 

4. CONCLUSION 

The conclusion of this study shows that imputing missing rainfall data using a spatial interpolation 

approach provides better performance than the approach without interpolation. This is evident from the lower 

Mean Absolute Error (MAE) values at most stations when the ERA5 data is first processed with spline 

interpolation before input into the CNN model. Based on the model evaluation results, the 95:5% data split 

scenario demonstrated the best performance in handling missing data. In this scenario, the average MAE on 

the test data was the lowest among all scenarios, indicating that the model could make predictions with 
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minimal error. Overall, the findings of this study provide evidence that the combination of spatial 

interpolation and CNN modeling can be an effective approach for addressing rainfall data completeness 

issues. 
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