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 ABSTRACT 

Article History: 
A graph is a mathematical structure consisting of a non-empty set of vertices and a set of 

edges connecting these vertices. In recent years, extensive research on graphs has been 

conducted, with one of the intriguing topics being the representation of graphs within 

algebraic structures, particularly groups. This approach bridges two areas of 
mathematics: graph theory and algebra. This study focuses on graph representation, 

specifically non-coprime graphs in the group of integers modulo ℤ𝑛, where 𝑛 = 𝑝𝑘, 𝑝 is 

a prime number, and 𝑘 is a non-negative integer. The non-coprime graph of a group 𝐺 is 

defined as a graph with the vertex set 𝐺 {𝑒}⁄ , where 𝑒 is the identity element of 𝐺. Two 

distinct vertices 𝑟 and 𝑠 are connected by an edge if 𝑔𝑐𝑑(|𝑟|, |𝑠|) ≠ 1. Specifically, this 

research investigates the Sombor energy, the Degree Sum energy, the Degree Exponent 

Sum energy, the Laplacian energy, the Distance Laplacian energy, and the Distance 

Signless Laplacian energy of a non-coprime graph on a modulo group. 
 

Received: 23rd March 2025 

Revised: 29th May 2025 

Accepted: 16th June 2025 
Available online: 1st September 2025     

 

 

Keywords: 

C Non-Coprime Graph; 

Graph Energy; 

Graph Theory; 

Modulo Group. 

 This article is an open access article distributed under the terms and 

conditions of the Creative Commons Attribution-ShareAlike 4.0 

International License (https://creativecommons.org/licenses/by-sa/4.0/).  
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

How to cite this article: 

G. Y. Karang, I. G. A. W. Wardhana and M. Angamuthu., “ENERGY OF NON-COPRIME GRAPH ON MODULO GROUP,” 

BAREKENG: J. Math. & App., vol. 19, iss. 4, pp. 2937-2952, December, 2025. 

 

Copyright © 2025 Author(s)  

Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/  

Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id  

Research Article  ∙  Open Access 

 

mailto:adhitya.wardhana@unram.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id
mailto:g1d022027@student.unram.ac.id
mailto:https://orcid.org/0009-0004-4589-2548
mailto:adhitya.wardhana@unram.ac.id
mailto:https://orcid.org/0000-0002-1983-1619
mailto:manimaran.a@vit.ac.in
mailto:https://orcid.org/0000-0001-6717-1152


2938 Karang, et al.    ENERGY OF NON-COPRIME GRAPH ON MODULO GROUP …  

1. INTRODUCTION 

A graph is a mathematical structure consisting of a non-empty set of vertices and edges connecting 

those vertices. A graph is considered complete if every vertex is adjacent to every other vertex via an edge 

[1]. Research on graphs has been extensively conducted in recent years, with mathematicians studying various 

representations of graphs, such as commuting and non-commuting graphs, cycle graphs, identity graphs, and 

zero divisor graphs. One particularly interesting topic is the representation of graphs in algebraic structures, 

specifically groups, as it combines two fields of mathematics: graph theory and algebra. 

The research by  [2] introduced the concept of the non-coprime graph on finite groups. The non-

coprime graph represents the relationship between the elements of a group in algebra. For a given group 𝐺, 

the non-coprime graph of 𝐺 is defined as the set of vertices 𝐺\{𝑒} , where two distinct vertices 𝑥 and 𝑦 are 

adjacent if and only if gcd(|𝑥|, |𝑦|) ≠ 1. In addition,  [3]studied the representation of non-coprime graphs, 

focusing on the structure and properties of the non-coprime graph of the quaternion group. In a related study,  

[4] examined the neighbor energy and total degree energy of the non-coprime graph associated with the 

dihedral group. One of the algebraic structures examined in this study is the modulo group, which is a finite 

group with the operation of addition modulo 𝑛, denoted as ℤ𝑛  [5]. In addition,  [6] and  [7] also investigated 

the graph representation of the group of integers modulo 𝑛 and its subgroups of order 𝑛,where 𝑛 is a prime 

power. 

Graph theory finds diverse applications across both scientific and real-life contexts. For instance, [8] 

explores its use in determining the shortest paths between destinations. In contrast,  [9] applies graph models 

to optimize data transfer processes, and  [10] demonstrates the integration of graphs within an information 

system framework. Notably, in chemistry, a novelty and compelling application of graph theory is the concept 

of graph energy, which closely parallels the energy levels of π-electrons in conjugated carbon molecules, as 

discovered through the Hückel theory  [11]. This correspondence reveals a unique intersection between 

mathematics and chemistry, where mathematical structure, namely, graphs, offers insights into chemical 

behavior. The novelty lies in this interdisciplinary bridge, where the abstract notion of graph energy serves 

as a predictive tool for understanding molecular properties, thereby expanding the role of graph theory beyond 

its traditional domains. 

In this study, we aim to calculate various graph energies, including the Sombor energy, the Degree 

Sum energy, the Degree Exponent Sum energy, the Laplacian energy, the distance Laplacian energy, and the 

distance signless Laplacian energy, derived from the representation of non-coprime graphs on modulo groups.   

2. RESEARCH METHODS 

This research is a quantitative study using a literature review of previous studies. The research begins 

with a literature review, followed by deriving the general formula for the Sombor energy, the Degree Sum 

energy, the Degree Exponent Sum energy, the Laplacian energy, the distance Laplacian energy, and the 

distance signless Laplacian energy of non-coprime graph on modulo group, generalized for several cases of 

𝑛. Subsequently, a conjecture is formulated, and the conjecture is proven. If the conjecture is validated, it is 

then established as a theorem. 

3. RESULTS AND DISCUSSION 

In this section, we will determine the Sombor energy, the Degree Sum energy, the Degree Exponent 

Sum energy, the distance Laplacian energy, and the Laplacian energy of non-coprime graph on modulo group 

with order 𝑝𝑘, 𝑝 prime numbers, 𝑘 ∈ ℤ+. 

3.1 Preliminary 

The binary operation of addition modulo 𝑛 plays a crucial role in abstract algebra and is defined as 

follows: 

Definition 1. [5] The group of integers modulo 𝑛 is a finite set {0,1,2, … , 𝑛 − 1} equipped with the modulo 

addition operation. The group is denoted by ℤ𝑛. 
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The order of an element of groups is defined as follows. 

Definition 2.  [6] If  𝐺 is a group with identity element 𝑒 and 𝑥 ∈ 𝐺, the order of 𝑥 is the power of a natural 

number such that 𝑥𝑘 = 𝑒 is denoted by |𝑥| = 𝑘. 

A non-coprime graph of the group of integers modulo 𝑛 is a graph representation where the set of 

vertices includes all elements of the group except the identity element, denoted as ℤ𝑛\{𝑒}. Two vertices 𝑥 

and 𝑦 are adjacent if gcd(|𝑥|, |𝑦|) ≠ 1  [2]. Fundamentals in graph theory and connectivity are described by 

the concepts of vertex degree, paths, and distances. 

The vertex degree of the graph is defined as follows. 

Definition 3. [12] (Vertex Degree). Let 𝛤 be a graph, where 𝑉(𝛤) represents the set of vertices. The degree 

of 𝑣𝑖 ∈ 𝑉(𝛤) is defined as the number of edges connected to 𝑣𝑖 is denoted by 𝑑𝑖. 

A complete graph Γ is a simple graph in which every vertex is adjacent to all other vertices. In a 

complete graph with 𝑛 vertices, each vertex has degree  𝑛 − 1 [13] 

The path of the graph is defined as follows. 

Definition 4. [13] A path is a route in which the vertices and edges traversed must not repeat.  

The distance of the graph will be defined below 

Definition 5. [15] The distance in a graph between two vertices 𝑣𝑖 and 𝑣𝑗  is defined as the length of the 

shortest path connecting them, denoted by 𝑑{𝑣𝑖 , 𝑣𝑗}. 

The energy of the graph will be defined below 

Definition 6. [11] If 𝛤 is a graph and 𝛷 is an eigenvalue of the graph matrix of 𝛤, which is an algebraic 

representation that encodes information about the relationships between vertices, then the energy of 𝛤 is 

defined as 

𝐸(Γ) =∑|Φ𝑖|

𝑛

𝑖=1

. (1) 

Specifically, for the Laplacian energy and distance Laplacian energy of a graph, based on the upper 

and lower bounds of the energy of a graph, according to research by [16] [17] on the bounds of graph energy, 

the Laplacian energy of a graph is defined as follows: 

Definition 7. [18] If 𝛤 is a graph with vertex set 𝑉(𝛤) with |𝑉(𝛤)| = 𝑛, edge set 𝐸(𝛤) with |𝐸(𝛤)| = 𝑚 and 

𝛷 is an eigenvalue of the graph matrix of 𝛤 then the Laplacian energy of 𝛤 denoted by 𝐿𝐸(𝛤) is defined as 

𝐿𝐸(Γ) = ∑|Φ𝑖 −
2𝑚

𝑛
|

𝑛

𝑖=1

. (2) 

The distance Laplacian energy of a graph is defined as follows: 

Definition 8. [19] [20] If 𝛤 is a graph with 𝑉(𝛤) = {𝑣1, 𝑣2, … , 𝑣𝑛} where |𝑉(𝛤)| = 𝑛, the distance degree of 

the vertex 𝑣𝑖 is denoted by 𝐷𝑖, is given by 𝐷𝑖 = ∑ 𝑑{𝑣𝑖 , 𝑣𝑗} 
𝑛
𝑗=1  and 𝛷 is an eigenvalue of the graph matrix of 

𝛤 then the distance Laplacian energy and distance signless Laplacian energy of 𝛤 denoted by 𝐷𝐿𝐸(𝛤) is 

defined as 

𝐷𝐿(Γ) = 𝐷𝑆𝐿(Γ) =∑|Φ𝑖 −
1

𝑛
∑𝐷𝑗

𝑛

𝑗=1

|

𝑛

𝑖=1

. (3) 

The concept of the Sombor energy, the Degree Sum energy, the Degree Exponent Sum energy, the 

Laplacian energy, the distance Laplacian energy, and the distance signless Laplacian energy of graphs is often 

associated with matrix representations. The determinant of a unique matrix can be calculated using methods 

derived from the following. 
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Lemma 1. [21] If we have a matrix of order 𝑝, and 𝛼, 𝛽 are scalars then 

|

𝛼 𝛽 ⋯ 𝛽
𝛽 𝛼  ⋯ 𝛽
⋮ ⋮ ⋱ ⋮
𝛽 𝛽 ⋯ 𝛼

| = (𝛼 − 𝛽)𝑝−1[𝛼 − (𝑝 − 1)𝛽] (4) 

3.2 Sombor Energy 

The Sombor energy is a recent development in spectral graph theory, incorporating vertex degrees into 

the graph structure. This matrix-based formulation serves as the foundation for defining Sombor energy, a 

novel graph invariant with promising applications in structural analysis.  

Definition 9. [22] Let Γ be a graph, with 𝑉(Γ) = {𝑣1, 𝑣2, … , 𝑣𝑛} is the vertex set of the graph Γ, then its 

Sombor matrix of Γ is 𝑆𝑀(Γ) = [𝑠𝑖𝑗], where 

𝑠𝑖𝑗 = {
√𝑑𝑖

2 + 𝑑𝑗
2 

0

  
𝑖𝑓 {𝑣𝑖 , 𝑣𝑗} 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑖𝑛 Γ,

𝑒𝑙𝑠𝑒.
 (5) 

Theorem 1. Let ℤ𝑝𝑘  be a modulo group, where 𝑝 is a prime number, 𝑘 ∈ ℤ+, then Sombor energy of 𝛤ℤ
𝑝𝑘

 is 

𝐸𝑆𝑀 (𝛤ℤ
𝑝𝑘
) = 2 ((𝑝𝑘 − 2 )

2
√2) (6) 

Proof. Let ℤ𝑝𝑘 = {0,1,2, … , 𝑝
𝑘 − 1}, where 𝑝 is a prime number and 𝑘 ∈ ℤ+. The order of any elements 𝑥𝑖 ∈

ℤ𝑝𝑘  is of the form 𝑝𝑚, where 𝑚 ∈ ℕ. As a result, for all 𝑥𝑖 , 𝑥𝑗 ∈ ℤ𝑝𝑘  with 𝑖 ≠ 𝑗, then gcd(|𝑥𝑖|, |𝑥𝑗|) ≠ 1. 

Based on the definition of a non-coprime graph, for all 𝑥𝑖 , 𝑥𝑗 ∈ ℤ𝑝𝑘  are adjacent in Γ, forming a complete 

graph. Since the number of elements in ℤ𝑝𝑘  is 𝑝𝑘 and the non-coprime graph has ℤ𝑝𝑘\{𝑒} vertices, the number 

of vertices in Γ is 𝑝𝑘 − 1 with the degree of each vertex being 𝑝𝑘 − 2. Thus, the Sombor matrix of Γ will 

have an order of (𝑝𝑘 − 1) × (𝑝𝑘 − 1). Based on Definition 9, the Sombor matrix of Γℤ
𝑝𝑘

 is 

𝑆𝑀 (Γℤ
𝑝𝑘
) =

(

 
 

0 (𝑝𝑘 − 2)√2 ⋯ (𝑝𝑘 − 2)√2

(𝑝𝑘 − 2)√2 0  ⋯ (𝑝𝑘 − 2)√2
⋮ ⋮ ⋱ ⋮

(𝑝𝑘 − 2)√2 (𝑝𝑘 − 2)√2 ⋯ 0 )

 
 

 (7) 

The eigenvalues of the Sombor matrix are determined by solving the corresponding characteristic equation: 

| 𝑆𝑀 (Γℤ
𝑝𝑘
) − Φ𝐼| = |Φ𝐼 − 𝑆𝑀 (Γℤ

𝑝𝑘
)| = 0 (8) 

 |
|

Φ −((𝑝𝑘 − 2)√2) ⋯ −((𝑝𝑘 − 2)√2)

−((𝑝𝑘 − 2)√2) Φ  ⋯ −((𝑝𝑘 − 2)√2)

⋮ ⋮ ⋱ ⋮

−((𝑝𝑘 − 2)√2) −((𝑝𝑘 − 2)√2) ⋯ Φ

|
| = 0 (9) 

Based on Lemma 1, 

(Φ − [−((𝑝𝑘 − 2)√2)])
(𝑝𝑘−1)−1

 (Φ − [(𝑝𝑘 − 1) − 1][−((𝑝𝑘 − 2)√2)]) = 0  (10) 

Thus, we have  

[Φ + (𝑝𝑘 − 2)√2]
(𝑝𝑘−2)

 (Φ + (𝑝𝑘 − 2)
2
√2) = 0 

[Φ + (𝑝𝑘 − 2)√2]
(𝑝𝑘−2)

= 0 or (Φ + (𝑝𝑘 − 2)
2
√2) = 0 
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As a result, we obtain Φ = −(𝑝𝑘 − 2)√2 with multiplicity 𝑝𝑘 − 2 and Φ = (𝑝𝑘 − 2)
2
√2 with 

multiplicity 1. Using Definition 6, the Sombor energy of the graph can be calculated as follows 

𝐸𝑆𝑀 (Γℤ
𝑝𝑘
) =∑|Φ𝑖|

𝑛

𝑖=1

 

= (𝑝𝑘 − 2 )|−(𝑝𝑘 − 2)√2| + |(𝑝𝑘 − 2)
2
√2| 

= (𝑝𝑘 − 2 )
2
√2 + (𝑝𝑘 − 2)

2
√2 

                                                           = 2((𝑝𝑘 − 2 )
2
√2)∎  

 

Figure 1. The Example Values of The Sombor Energy 

After obtaining the Sombor energy theorem for the non-coprime graph on a modulo group of order 𝑝𝑘, 

where 𝑝 is a prime number, and 𝑘 ∈ ℤ+, an example case is presented for a simple value of n. 

Example 1. Let Γ be a non-coprime graph of the group ℤ𝑛 with 𝑛 = 3. Calculate the Sombor energy of Γℤ𝑛 

For 𝑛 = 3, the Sombor energy Γℤ3  is 

𝐸𝑆𝑀(Γℤ3) = 2(3 − 2)
2√2 

= 2√2 

𝐸𝑆𝑀(Γℤ3) ≈ 2.828427125. 

3.3 Degree Sum Energy 

The Degree Sum energy is a recent development in spectral graph theory, integrating vertex degrees 

directly into its structure. The associated matrix forms the basis for defining the Degree Sum energy, a novel 

graph invariant with promising applications in structural analysis. 

Definition 10. [23] Let Γ be a graph, with 𝑉(Γ) = {𝑣1, 𝑣2, … , 𝑣𝑛} is the vertex set of the graph Γ, then its 

Degree Sum matrix of Γ is 𝐷𝑆(Γ) = [𝑑𝑠𝑖𝑗], where 

𝑑𝑠𝑖𝑗 = {
𝑑𝑖 + 𝑑𝑗  

0
  𝑖𝑓 {𝑣𝑖 , 𝑣𝑗} 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑖𝑛 Γ,

𝑒𝑙𝑠𝑒.
 (11) 

Theorem 2. Let ℤ𝑝𝑘  be a modulo group, where 𝑝 is a prime number, 𝑘 ∈ ℤ+, then Degree Sum energy of 

𝛤ℤ
𝑝𝑘

 is 

𝐸𝐷𝑆 (Γℤ
𝑝𝑘
) = 4((𝑝𝑘 − 2 )

2
) (12) 
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Proof. Let ℤ𝑝𝑘 = {0,1,2, … , 𝑝
𝑘 − 1}, where 𝑝 is a prime number and 𝑘 ∈ ℤ+. The order of any elements 𝑥𝑖 ∈

ℤ𝑝𝑘  is of the form 𝑝𝑚, where 𝑚 ∈ ℕ. As a result for all 𝑥𝑖 , 𝑥𝑗 ∈ ℤ𝑝𝑘  with 𝑖 ≠ 𝑗, then gcd(|𝑥𝑖|, |𝑥𝑗|) ≠ 1. 

Based on the definition of a non-coprime graph, for all 𝑥𝑖 , 𝑥𝑗 ∈ ℤ𝑝𝑘  are adjacent in Γ, forming a complete 

graph. Since the number of elements in ℤ𝑝𝑘  is 𝑝𝑘 and the non-coprime graph has ℤ𝑝𝑘\{𝑒} vertices, the number 

of vertices in Γ is 𝑝𝑘 − 1 with the degree of each vertex being 𝑝𝑘 − 2. Thus, the Degree Sum matrix of Γ will 

have an order of (𝑝𝑘 − 1) × (𝑝𝑘 − 1). Based on Definition 10, the Degree Sum matrix of Γℤ
𝑝𝑘

 is 

𝐷𝑆 (Γℤ
𝑝𝑘
) =

(

 

0 2(𝑝𝑘 − 2) ⋯ 2(𝑝𝑘 − 2)

2(𝑝𝑘 − 2) 0  ⋯ 2(𝑝𝑘 − 2)
⋮ ⋮ ⋱ ⋮

2(𝑝𝑘 − 2) 2(𝑝𝑘 − 2) ⋯ 0 )

  

 

(13) 

The eigenvalues of the Degree Sum matrix are determined by solving the corresponding characteristic 

equation: 

| 𝐷𝑆 (Γℤ
𝑝𝑘
) − Φ𝐼| = |Φ𝐼 − 𝐷𝑆 (Γℤ

𝑝𝑘
)| = 0 (14) 

 |
|

Φ −(2(𝑝𝑘 − 2)) ⋯ −(2(𝑝𝑘 − 2))

−(2(𝑝𝑘 − 2)) Φ  ⋯ −(2(𝑝𝑘 − 2))

⋮ ⋮ ⋱ ⋮
−(2(𝑝𝑘 − 2)) −(2(𝑝𝑘 − 2)) ⋯ Φ

|
| = 0 (15) 

Based on Lemma 1, 

(Φ − [−(2(𝑝𝑘 − 2))])
(𝑝𝑘−1)−1

 (Φ − [(𝑝𝑘 − 1) − 1][−(2(𝑝𝑘 − 2))]) = 0  (16) 

Thus. we have  

[Φ + 2(𝑝𝑘 − 2)](𝑝
𝑘−2)  (Φ + 2(𝑝𝑘 − 2)

2
) = 0 

[Φ + 2(𝑝𝑘 − 2)](𝑝
𝑘−2) = 0 or (Φ + 2(𝑝𝑘 − 2)

2
) = 0 

As a result, we obtain Φ = −2(𝑝𝑘 − 2) with multiplicity 𝑝𝑘 − 2 and Φ = 2(𝑝𝑘 − 2)
2
 with multiplicity 1. 

Using Definition 6, the Degree Sum energy of the graph can be calculated as follows 

𝐸𝐷𝑆 (Γℤ
𝑝𝑘
) =∑|Φ𝑖|

𝑛

𝑖=1

 

= (𝑝𝑘 − 2 )|−2(𝑝𝑘 − 2)| + |2(𝑝𝑘 − 2)
2
| 

= 2(𝑝𝑘 − 2 )
2
+ 2(𝑝𝑘 − 2)

2
 

= 4 ((𝑝𝑘 − 2 )
2
) 

 ∎  
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Figure 2. The Example Values of The Degree Sum Energy 

After obtaining the Degree Sum energy theorem for the non-coprime graph on a modulo group of order 

𝑝𝑘,where 𝑝 is a prime number, and 𝑘 ∈ ℤ+, an example case is presented for a simple value of n. 

Example 2. Let Γ be a non-coprime graph of the group ℤ𝑛 with 𝑛 = 4. Calculate the Degree Sum energy of 

Γℤ𝑛. For 𝑛 = 4, the Degree Sum energy Γℤ4  is 

𝐸𝐷𝑆 (Γℤ
𝑝𝑘
) = 4(4 − 2)2 

= 16. 

3.4 Degree Exponent Sum Energy 

The Degree Exponent Sum energy represents a recent extension of spectral graph theory, incorporating 

vertex degrees raised to a power into its structural analysis. The resulting matrix also contributes to the 

definition of the Degree Exponent Sum energy, a distinctive graph invariant with valuable applications in 

structural and mathematical modeling. 

Definition 11. [24] Let 𝛤 be a graph, with 𝑉(𝛤) = {𝑣1, 𝑣2, … , 𝑣𝑛} is the vertex set of the graph 𝛤, then its 

Degree Exponent Sum matrix of 𝛤 is 𝐷𝐸𝑆(𝛤) = [𝑑𝑒𝑠𝑖𝑗], where 

𝑑𝑒𝑠𝑖𝑗 = {
𝑑
𝑖

𝑑𝑗
 + 𝑑

𝑖

𝑑𝑗
 

0
  

𝑖𝑓 𝑖 ≠ 𝑗,
𝑒𝑙𝑠𝑒.

 (17) 

Theorem 3. Let ℤ𝑝𝑘  be a modulo group, where 𝑝 is a prime number, 𝑘 ∈ ℤ+, then Degree Exponent Sum 

energy of 𝛤ℤ
𝑝𝑘

 is 

EDES (Γℤ
pk
) = 4 ((pk − 2)(p

k−1)) (18) 

Proof. Let ℤ𝑝𝑘 = {0,1,2, … , 𝑝
𝑘 − 1}, where 𝑝 is a prime number and 𝑘 ∈ ℤ+. The order of any elements 𝑥𝑖 ∈

ℤ𝑝𝑘  is of the form 𝑝𝑚, where 𝑚 ∈ ℕ. As a result, for all 𝑥𝑖 , 𝑥𝑗 ∈ ℤ𝑝𝑘 with 𝑖 ≠ 𝑗, then gcd(|𝑥𝑖|, |𝑥𝑗 |) ≠ 1. 

Based on the definition of non-coprime graph, for all 𝑥𝑖 , 𝑥𝑗 ∈ ℤ𝑝𝑘  are adjacent in Γ, forming a complete graph. 

Since the number of elements in ℤ𝑝𝑘  is 𝑝𝑘 and the non-coprime graph has ℤ𝑝𝑘\{𝑒} vertices, the number of 

vertices in Γ is 𝑝𝑘 − 1 with the degree of each vertex being 𝑝𝑘 − 2. Thus, the Degree Exponent Sum matrix 

of Γ will have an order of (𝑝𝑘 − 1) × (𝑝𝑘 − 1). Based on Definition 11, the Degree Exponent Sum matrix 

of Γℤ
𝑝𝑘

 is 

𝐷𝐸𝑆 (Γℤ
𝑝𝑘
) =

(

  
 

0 2 ((𝑝𝑘 − 2)(𝑝
𝑘−2)) ⋯ 2((𝑝𝑘 − 2)(𝑝

𝑘−2))

2 ((𝑝𝑘 − 2)(𝑝
𝑘−2)) 0  ⋯ 2((𝑝𝑘 − 2)(𝑝

𝑘−2))

⋮ ⋮ ⋱ ⋮

2 ((𝑝𝑘 − 2)(𝑝
𝑘−2)) 2 ((𝑝𝑘 − 2)(𝑝

𝑘−2)) ⋯ 0 )

  
 

 
(19) 
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The eigenvalues of the Degree Exponent Sum matrix are determined by solving the corresponding 

characteristic equation: 

| 𝐷𝐸𝑆 (Γℤ
𝑝𝑘
) − Φ𝐼| = |Φ𝐼 − 𝐷𝐸𝑆 (Γℤ

𝑝𝑘
)| = 0 (20) 

 

|

|

Φ −(2 ((𝑝𝑘 − 2)(𝑝
𝑘−2))) ⋯ −(2((𝑝𝑘 − 2)(𝑝

𝑘−2)))

− (2 ((𝑝𝑘 − 2)(𝑝
𝑘−2))) Φ  ⋯ −(2((𝑝𝑘 − 2)(𝑝

𝑘−2)))

⋮ ⋮ ⋱ ⋮

− (2 ((𝑝𝑘 − 2)(𝑝
𝑘−2))) −(2 ((𝑝𝑘 − 2)(𝑝

𝑘−2))) ⋯ Φ

|

|

= 0 (21) 

Based on Lemma 1, 

(Φ − [−(2 ((𝑝𝑘 − 2)(𝑝
𝑘−2)))])

(𝑝𝑘−1)−1

 (Φ − [(𝑝𝑘 − 1) − 1] [− (2((𝑝𝑘 − 2)(𝑝
𝑘−2)))]) = 0  (22) 

Thus, we have  

[Φ + 2 ((𝑝𝑘 − 2)(𝑝
𝑘−2))]

(𝑝𝑘−2)
 (Φ + 2 ((𝑝𝑘 − 2)(𝑝

𝑘−1))) = 0 

[Φ + 2((𝑝𝑘 − 2)(𝑝
𝑘−2))]

(𝑝𝑘−2)
= 0 or (Φ + 2((𝑝𝑘 − 2)(𝑝

𝑘−1))) = 0 

As a result, we obtain Φ = −2 ((𝑝𝑘 − 2)(𝑝
𝑘−2)) with multiplicity 𝑝𝑘 − 2 and Φ = −2 ((𝑝𝑘 −

2)(𝑝
𝑘−1)) with multiplicity 1. Using Definition 6, the Degree Exponent Sum energy of the graph can be 

calculated as follows 

𝐸𝐷𝐸𝑆 (Γℤ
𝑝𝑘
) =∑|Φ𝑖|

𝑛

𝑖=1

 

= (𝑝𝑘 − 2 ) |−2 ((𝑝𝑘 − 2)(𝑝
𝑘−2))| + |−2 ((𝑝𝑘 − 2)(𝑝

𝑘−1))| 

= 2 ((𝑝𝑘 − 2)(𝑝
𝑘−1)) + 2((𝑝𝑘 − 2)(𝑝

𝑘−1)) 

                                                      = 4 ((𝑝𝑘 − 2)(𝑝
𝑘−1)) ∎ 

   

 

Figure 3. The Example Values of The Degree Exponent Sum Energy 
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After obtaining the Degree Exponent Sum energy theorem for the non-coprime graph on a modulo 

group of order 𝑝𝑘, where 𝑝 is a prime number, and 𝑘 ∈ ℤ+, an example case is presented for a simple value 

of n. 

Example 3. Let Γ be a non-coprime graph of the group ℤ𝑛 with 𝑛 = 5. Calculate the Degree Exponent Sum 

energy of Γℤ𝑛 

For 𝑛 = 5, the Degree Exponent Sum energy Γℤ5 is 

𝐸𝐷𝐸𝑆(Γℤ5) = 4(5 − 2)
(5−1) 

= 4(3)(4) 
= 324. 

3.5 Laplacian Energy 

The Laplacian energy is a recent addition to spectral graph theory, as it incorporates vertex degrees 

into its structure. This matrix serves as the foundation for defining Laplacian energy, a novel graph invariant 

with potential applications in structural analysis 

Definition 12. [25] Let 𝛤 be a graph, with 𝑉(𝛤) = {𝑣1, 𝑣2, … , 𝑣𝑛} is the vertex set of the graph 𝛤, then its 

Laplacian matrix of 𝛤 is 𝐿(𝛤) = [𝑙𝑖𝑗], where 

𝑙𝑖𝑗 = {
−1 
0
𝑑𝑖

  

𝑖𝑓 {𝑣𝑖 , 𝑣𝑗} 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑖𝑛 Γ,

𝑖𝑓 {𝑣𝑖 , 𝑣𝑗} 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑖𝑛 Γ,

𝑖𝑓 𝑖 = 𝑗.

 (23) 

Theorem 4. Let ℤ𝑝𝑘  be a modulo group, where 𝑝 is a prime number, 𝑘 ∈ ℤ+, then Laplacian energy of 𝛤ℤ
𝑝𝑘

 

is 

EL (Γℤ
pk
) = 2(pk − 2 ) (24) 

Proof. Let ℤ𝑝𝑘 = {0,1,2, … , 𝑝
𝑘 − 1}, where 𝑝 is a prime number and 𝑘 ∈ ℤ+. The order of any elements 𝑥𝑖 ∈

ℤ𝑝𝑘  is of the form 𝑝𝑚, where 𝑚 ∈ ℕ. As a result, for all 𝑥𝑖 , 𝑥𝑗 ∈ ℤ𝑝𝑘 with 𝑖 ≠ 𝑗, then gcd(|𝑥𝑖|, |𝑥𝑗|) ≠ 1. 

Based on the definition of non-coprime graph, for all 𝑥𝑖 , 𝑥𝑗 ∈ ℤ𝑝𝑘  are adjacent in Γ, forming a complete graph. 

Since the number of elements in ℤ𝑝𝑘  is 𝑝𝑘 and the non-coprime graph has ℤ𝑝𝑘\{𝑒} vertices, the number of 

vertices in Γ is 𝑝𝑘 − 1 with the degree of each vertex being 𝑝𝑘 − 2. Thus, the Laplacian matrix of Γ will have 

an order of (𝑝𝑘 − 1) × (𝑝𝑘 − 1). Based on Definition 12, the Laplacian matrix of Γℤ
𝑝𝑘

 is 

𝐿 (Γℤ
𝑝𝑘
) =

(

 

𝑝𝑘 − 2 −1 ⋯ −1

−1 𝑝𝑘 − 2  ⋯ −1
⋮ ⋮ ⋱ ⋮
−1 −1 ⋯ 𝑝𝑘 − 2)

  (25) 

The eigenvalues of the Laplacian matrix are determined by solving the corresponding characteristic equation: 

| 𝐿 (Γℤ
𝑝𝑘
) − Φ𝐼| = |Φ𝐼 − 𝐿 (Γℤ

𝑝𝑘
)| = 0 (26) 

 |
|

Φ − (𝑝𝑘 − 2) 1 ⋯ 1

1 Φ − (𝑝𝑘 − 2)  ⋯ 1

⋮ ⋮ ⋱ ⋮
1 1 ⋯ Φ− (𝑝𝑘 − 2)

|
| = 0 (27) 

Based on Lemma 1, 
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(Φ − (𝑝𝑘 − 2) − 1)
(𝑝𝑘−1)−1

 (Φ − (𝑝𝑘 − 2) − [(𝑝𝑘 − 1) − 1]1) = 0  (28) 

Thus, we have  

[Φ − (𝑝𝑘 − 1)]
(𝑝𝑘−2)

 (Φ − 2(𝑝𝑘 − 2)) = 0 

[Φ − (𝑝𝑘 − 1)]
(𝑝𝑘−2)

= 0 or (Φ − 2(𝑝𝑘 − 2)) = 0 

As a result, we obtain Φ = 𝑝𝑘 − 1 with multiplicity 𝑝𝑘 − 2 and Φ = 2(𝑝𝑘 − 2) with multiplicity 1. 

Using Definition 7, with |𝑉(Γ)| = 𝑝𝑘 − 1 and |𝐸(Γ)| =
(𝑝𝑘−2)(𝑝𝑘−1)

2
  the Laplacian energy of the graph can 

be calculated as follows 

𝐸𝐿 (Γℤ
𝑝𝑘
) = ∑|

|Φ𝑖 −

2(
(𝑝𝑘 − 2)(𝑝𝑘 − 1)

2
)

(𝑝𝑘 − 1) |
|

𝑛

𝑖=1

 

= (𝑝𝑘 − 2 )|(𝑝𝑘 − 1) − (𝑝𝑘 − 2)| + |2(𝑝𝑘 − 2) − (𝑝𝑘 − 2)| 

= (𝑝𝑘 − 2 ) + (𝑝𝑘 − 2) 

= 2(𝑝𝑘 − 2 ) ∎ 

   

 

Figure 4. The Example Values of The Laplacian Energy 

After obtaining the Laplacian energy theorem for the non-coprime graph on a modulo group of order 

𝑝𝑘, where 𝑝 is a prime number, and 𝑘 ∈ ℤ+, an example case is presented for a simple value of n. 

Example 4. Let Γ be a non-coprime graph of the group ℤ𝑛 with 𝑛 = 7. Calculate the Laplacian energy of Γℤ𝑛 

For 𝑛 = 7, the Laplacian energy Γℤ7 is 

𝐸𝐿(Γℤ7) = 2(7 − 2) 

= 10. 
 

3.6 Distance Laplacian Energy 

The Distance Laplacian energy is a recent addition to spectral graph theory, as it incorporates vertex 

degrees into its structure. This matrix serves as the foundation for defining Distance Laplacian energy, a novel 

graph invariant with potential applications in structural analysis. 

Definition 13. [19] Let 𝛤 be a graph, with 𝑉(𝛤) = {𝑣1, 𝑣2, … , 𝑣𝑛} is the vertex set of the graph 𝛤, then its 

distance Laplacian matrix of 𝛤 is 𝐷𝐿(𝛤) = 𝑇𝑟(𝛤) − 𝐷(𝛤). 
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Where 𝑇𝑟(Γ) denotes the transmission matrix of Γ and 𝐷(Γ) denotes the distance matrix of Γ, with definitions 

given as follows. 

Definition 14. [26] Let 𝛤 be a graph, with 𝑉(𝛤) = {𝑣1, 𝑣2, … , 𝑣𝑛} is the vertex set of the graph 𝛤, then its 

transmission matrix of 𝛤 is 𝑇𝑟(𝛤) has elements in the 𝑖-th row and 𝑖-th column that represent the sum of 

distances from 𝑣𝑖 to all other vertices. 

Definition 15. [27] Let 𝛤 be a graph, with 𝑉(𝛤) = {𝑣1, 𝑣2, … , 𝑣𝑛} is the vertex set of the graph 𝛤, then its 

distance matrix of 𝛤 is 𝐷(𝛤), where the element in the (𝑖, 𝑗)-th position is the distance from 𝑣𝑖 to 𝑣𝑗  in 𝛤 

denoted 𝑑{𝑣𝑖 , 𝑣𝑗}. 

Theorem 5. Let ℤ𝑝𝑘  be a modulo group, where 𝑝 is a prime number, 𝑘 ∈ ℤ+, then Distance Laplacian energy 

of 𝛤ℤ
𝑝𝑘

 is 

𝐸𝐷𝐿 (Γℤ
𝑝𝑘
) = 2(𝑝𝑘 − 2 ) (29) 

Proof. Let ℤ𝑝𝑘 = {0,1,2, … , 𝑝
𝑘 − 1}, where 𝑝 is a prime number and 𝑘 ∈ ℤ+. The order of any elements 𝑥𝑖 ∈

ℤ𝑝𝑘  is of the form 𝑝𝑚, where 𝑚 ∈ ℕ. As a result, for all 𝑥𝑖 , 𝑥𝑗 ∈ ℤ𝑝𝑘  with 𝑖 ≠ 𝑗, then gcd(|𝑥𝑖|, |𝑥𝑗|) ≠ 1. 

Based on the definition of non-coprime graph, for all 𝑥𝑖 , 𝑥𝑗 ∈ ℤ𝑝𝑘  are adjacent in Γ, forming a complete graph. 

Since the number of elements in ℤ𝑝𝑘  is 𝑝𝑘 and the non-coprime graph has ℤ𝑝𝑘\{𝑒} vertices, the number of 

vertices in Γ is 𝑝𝑘 − 1 with the degree of each vertex being 𝑝𝑘 − 2. Thus, the distance Laplacian matrix of Γ 

will have an order of (𝑝𝑘 − 1) × (𝑝𝑘 − 1). Based on Definition 12, Definition 13, Definition 14, the 

distance Laplacian matrix of Γℤ
𝑝𝑘

 is 

𝐷𝐿 (Γℤ
𝑝𝑘
) =

(

 

𝑝𝑘 − 2 −1 ⋯ −1

−1 𝑝𝑘 − 2  ⋯ −1
⋮ ⋮ ⋱ ⋮
−1 −1 ⋯ 𝑝𝑘 − 2)

  (30) 

The eigenvalues of the distance Laplacian matrix are determined by solving the corresponding characteristic 

equation: 

| 𝐷𝐿 (Γℤ
𝑝𝑘
) − Φ𝐼| = |Φ𝐼 − 𝐷𝐿 (Γℤ

𝑝𝑘
)| = 0 (31) 

  

|
|

Φ − (𝑝𝑘 − 2) 1 ⋯ 1

1 Φ − (𝑝𝑘 − 2)  ⋯ 1

⋮ ⋮ ⋱ ⋮
1 1 ⋯ Φ − (𝑝𝑘 − 2)

|
| = 0 (32) 

Based on Lemma 1, 

(Φ − (𝑝𝑘 − 2) − 1)
(𝑝𝑘−1)−1

 (Φ − (𝑝𝑘 − 2) − [(𝑝𝑘 − 1) − 1]1) = 0  (33) 

Thus, we have  

[Φ − (𝑝𝑘 − 1)]
(𝑝𝑘−2)

 (Φ − 2(𝑝𝑘 − 2)) = 0 

[Φ − (𝑝𝑘 − 1)]
(𝑝𝑘−2)

= 0 or (Φ − 2(𝑝𝑘 − 2)) = 0 
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As a result, we obtain Φ = 𝑝𝑘 − 1 with multiplicity 𝑝𝑘 − 2 and Φ = 2(𝑝𝑘 − 2) with multiplicity 1. Using 

Definition 8, with ∑ 𝐷𝑗
𝑛
𝑗=1 = (𝑝𝑘 − 1)(𝑝𝑘 − 2) the distance Laplacian energy of the graph can be calculated 

as follows 

𝐸𝐷𝐿 (Γℤ
𝑝𝑘
) =∑|Φ𝑖 −

1

(𝑝𝑘 − 1)
∑𝐷𝑗

𝑛

𝑗=1

|

𝑛

𝑖=1

 

= (𝑝𝑘 − 2 ) |(𝑝𝑘 − 1) − (
(𝑝𝑘 − 1)(𝑝𝑘 − 2)

(𝑝𝑘 − 1)
)| + |2(𝑝𝑘 − 2) − (

(𝑝𝑘 − 1)(𝑝𝑘 − 2)

(𝑝𝑘 − 1)
)| 

= (𝑝𝑘 − 2 ) + (𝑝𝑘 − 2) 

= 2(𝑝𝑘 − 2 )∎ 

  

 
Figure 5. The Example Values of The Distance Laplacian Energy 

After obtaining the distance Laplacian energy theorem for the non-coprime graph on a modulo group 

with of 𝑝𝑘, where 𝑝 is a prime number, and 𝑘 ∈ ℤ+, an example case is presented for a simple value of n. 

Example 5. Let Γ be a non-coprime graph of the group ℤ𝑛 with 𝑛 = 8. Calculate the distance Laplacian 

energy of Γℤ𝑛 

For 𝑛 = 8, the Distance Laplacian energy Γℤ8 is 

𝐸𝐿(Γℤ7) = 2(8 − 2) 

= 12. 

3.7 Distance Signless Laplacian Energy 

The Distance Signless Laplacian energy is a recent addition to spectral graph theory, as it incorporates 

vertex degrees into its structure. This matrix serves as the foundation for defining Distance Signless Laplacian 

energy, a novel graph invariant with potential applications in structural analysis. 

Definition 16. [28] Let 𝛤 be a graph, with 𝑉(𝛤) = {𝑣1, 𝑣2, … , 𝑣𝑛} is the vertex set of the graph 𝛤, then its 

distance signless Laplacian matrix of 𝛤 is 𝐷𝑆𝐿(𝛤) = 𝑇𝑟(𝛤) + 𝐷(𝛤). 

Where 𝑇𝑟(Γ) denotes the transmission matrix of Γ and 𝐷(Γ) denotes the distance matrix of Γ, with definitions 

given as follows Definition 14 and Definition 15.   

Theorem 6. Let ℤ𝑝𝑘  be a modulo group, where 𝑝 is a prime number, 𝑘 ∈ ℤ+, then Distance Signless 

Laplacian Laplacian energy of 𝛤ℤ
𝑝𝑘

 is 

𝐸𝐷𝑆𝐿 (𝛤ℤ
𝑝𝑘
) = 2(𝑝𝑘 − 2 ) (34) 
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Proof. Let ℤ𝑝𝑘 = {0,1,2, … , 𝑝
𝑘 − 1}, where 𝑝 is a prime number and 𝑘 ∈ ℤ+. The order of any elements 𝑥𝑖 ∈

ℤ𝑝𝑘  is of the form 𝑝𝑚, where 𝑚 ∈ ℕ. As a result, for all 𝑥𝑖 , 𝑥𝑗 ∈ ℤ𝑝𝑘  with 𝑖 ≠ 𝑗, then gcd(|𝑥𝑖|, |𝑥𝑗|) ≠ 1. 

Based on the definition of non-coprime graph, for all 𝑥𝑖 , 𝑥𝑗 ∈ ℤ𝑝𝑘  are adjacent in Γ, forming a complete graph. 

Since the number of elements in ℤ𝑝𝑘  is 𝑝𝑘 and the non-coprime graph has ℤ𝑝𝑘\{𝑒} vertices, the number of 

vertices in Γ is 𝑝𝑘 − 1 with the degree of each vertex being 𝑝𝑘 − 2. Thus, the distance signless Laplacian 

matrix of Γ will have an order of (𝑝𝑘 − 1) × (𝑝𝑘 − 1). Based on Definition 16, Definition 14, Definition 

15, the distance signless Laplacian matrix of Γℤ
𝑝𝑘

 is 

𝐷𝑆𝐿 (Γℤ
𝑝𝑘
) =

(

 

𝑝𝑘 − 2 1 ⋯ 1

1 𝑝𝑘 − 2  ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 𝑝𝑘 − 2)

  (35) 

The eigenvalues of the distance signless Laplacian matrix are determined by solving the corresponding 

characteristic equation: 

| 𝐷𝑆𝐿 (Γℤ
𝑝𝑘
) − Φ𝐼| = |Φ𝐼 − 𝐷𝑆𝐿 (Γℤ

𝑝𝑘
)| = 0 (36) 

 |
|

Φ − (𝑝𝑘 − 2) −1 ⋯ −1

−1 Φ− (𝑝𝑘 − 2)  ⋯ −1

⋮ ⋮ ⋱ ⋮
−1 −1 ⋯ Φ− (𝑝𝑘 − 2)

|
| = 0 (37) 

Based on Lemma 1, 

(Φ − (𝑝𝑘 − 2) − (−1))
(𝑝𝑘−1)−1

 (Φ − (𝑝𝑘 − 2) − [(𝑝𝑘 − 1) − 1](−1)) = 0  (38) 

Thus, we have  

[Φ − (𝑝𝑘 − 3)]
(𝑝𝑘−2)

 (Φ) = 0 

[Φ − (𝑝𝑘 − 3)]
(𝑝𝑘−2)

= 0 or (Φ) = 0 

As a result, we obtain Φ = 𝑝𝑘 − 3 with multiplicity 𝑝𝑘 − 2 and Φ = 0 with multiplicity 1. Using 

Definition 8, with ∑ 𝐷𝑗
𝑛
𝑗=1 = (𝑝𝑘 − 1)(𝑝𝑘 − 2) the Distance Signless Laplacian energy of the graph can be 

calculated as follows 

𝐸𝐷𝑆𝐿 (Γℤ
𝑝𝑘
) =∑|Φ𝑖 −

1

(𝑝𝑘 − 1)
∑𝐷𝑗

𝑛

𝑗=1

|

𝑛

𝑖=1

 

= (𝑝𝑘 − 2 ) |(𝑝𝑘 − 3) − (
(𝑝𝑘 − 1)(𝑝𝑘 − 2)

(𝑝𝑘 − 1)
)| + |−(

(𝑝𝑘 − 1)(𝑝𝑘 − 2)

(𝑝𝑘 − 1)
)| 

= (𝑝𝑘 − 2 ) + (𝑝𝑘 − 2) 

= 2(𝑝𝑘 − 2 ) 

 ∎  
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Figure 6. The Example Values of The Distance Signless Laplacian Energy 

After obtaining the distance signless Laplacian energy theorem for the non-coprime graph on a modulo 

group with of 𝑝𝑘, where 𝑝 is a prime number, and 𝑘 ∈ ℤ+, an example case is presented for a simple value 

of n. 

Example 6. Let Γ be a non-coprime graph of the group ℤ𝑛 with 𝑛 = 9. Calculate the Distance Signless 

Laplacian energy of Γℤ𝑛 

For 𝑛 = 9, the Distance Signless Laplacian energy Γℤ9 is 

𝐸𝐿(Γℤ7) = 2(9 − 2) 

= 14. 

4. CONCLUSION 

Based on the result of the discussion above, the Sombor energy, the Degree Sum energy, the Degree 

Exponet Sum energy, the Laplacian energy, the Distance Laplacian energy, and the Distance Signless 

Laplacian energy of the non-coprime graph on modulo group ℤ𝑛, where 𝑛 = 𝑝𝑘, 𝑝 is a prime number, and 𝑘 

is a non-negative integer, are given repectively as follow: 

1. Sombor Energy 

𝐸𝑆𝑀 (Γℤ
𝑝𝑘
) = 2 ((𝑝𝑘 − 2 )

2
√2)  

2. Degree Sum Energy 

𝐸𝐷𝑆 (Γℤ
𝑝𝑘
) = 4((𝑝𝑘 − 2 )

2
)  

3. Degree Exponent Sum Energy 

𝐸𝐷𝐸𝑆 (Γℤ
𝑝𝑘
) = 4 ((𝑝𝑘 − 2)(𝑝

𝑘−1))  

4. Laplacian Energy 

𝐸𝐿 (Γℤ
𝑝𝑘
) = 2(𝑝𝑘 − 2 )  

5. Distance Laplacian Energy 

𝐸𝐷𝐿 (Γℤ
𝑝𝑘
) = 2(𝑝𝑘 − 2 )  
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6. Distance Signless Laplacian Energy 

𝐸𝐷𝑆𝐿 (Γℤ
𝑝𝑘
) = 2(𝑝𝑘 − 2 )  

There is a unique general form in which the Laplace energy and the Laplace energy share the same 

general form because the resulting graph is a simple complete graph. 
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