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Article Info ABSTRACT

Disasters that occur in Indonesia lead to financial loss. One approach to mitigating the
financial impact is through the utilization of natural disaster insurance. Although natural
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1. INTRODUCTION

Disasters occur relatively infrequently but result in significant losses. There have been many papers
conducted by researchers that present mathematical modeling related to disasters [1]-[4]. This poses a risk of
losses and even bankruptcy for insurance companies. Therefore, insurance companies consider setting a
maximum payment limit to policyholders and transferring disaster risk to other institutions, such as
reinsurance companies.

Reinsurance is the process by which an insurance company (ceding company) transfers part or all of
the insured risk to a reinsurance company (reinsurer). In the context of natural disaster reinsurance, the
insurance company transfers the risk of losses due to natural disasters to the reinsurance company. This means
that the insurance company is obliged to pay premiums to the reinsurance company. In determining the
reserves and pricing of a reinsurance contract, the reinsurance company requires data on the number and size
of claims submitted by policyholders each year due to natural disasters. This data is used to estimate potential
risks and determine appropriate premiums.

In research [5], the determination of disaster reinsurance premiums was investigated by considering
one type of risk, namely the risk of the number of deaths, using the peaks over threshold (POT) model based
on the standard deviation principle. The determination of disaster reinsurance premiums using the POT model
with the standard deviation principle was proposed in research [6]. According to this study, the use of the
standard deviation principle in premium determination is beneficial as it considers additional costs, such as
operational and service costs, which are usually borne by the premium payer. Furthermore, the formula for
determining disaster reinsurance premiums can be explicitly written when using the POT model [7]-[10],
where the premium determination with the POT model uses a threshold value to determine extreme values.
The POT model is applied to determine the premium amount for various retention cases, namely cases where
the threshold is equal to the retention limit, the threshold is smaller than the retention limit, and the threshold
is larger than the retention limit. Research [6] also mentioned that claims from policyholders usually do not
come from a single type of risk but from several types of risks, such as claims for death, illness, injury, or
property damage. Research [11] has demonstrated the determination of premiums by considering two types
of risks, namely the risk of the number of deaths and the number of damaged houses. However, the case
discussed in that study was only one of the nine possible retention case combinations.

This research addresses the gap in disaster reinsurance premium pricing models that typically consider
only a single risk factor. Previous studies have explored models involving either mortality or property
damage, but few have examined both simultaneously across multiple retention-threshold scenarios. This
paper contributes a comprehensive pricing framework that integrates two key risk factors—number of deaths
and number of damaged houses—using the Peaks Over Threshold (POT) model with the standard deviation
principle. The parameters of the generalized Pareto distribution are estimated via maximum likelihood, and
extreme value theory (EVT) is applied to identify losses exceeding a defined threshold. This study introduces
a general premium formula that accommodates all nine possible combinations of insurer retention and
reinsurer threshold for dual risks. Simulation is performed using synthetic flood disaster data over 20 years
generated in RStudio. Key findings reveal that the risk of house damage contributes more significantly to the
reinsurance premium than the risk of deaths, and that lower insurer retention leads to higher premium costs.
Moreover, the relationship between the percentage of extreme values and the premium amount is observed
to be approximately linear.

2. RESEARCH METHODS

The premium determination in this study uses the standard deviation principle. The general formula
for determining premiums for nine different cases will be derived by determining the expectation, second
moment, and probability of each risk involved. After that, a simulation of premium determination for nine
different cases will be conducted with the help of RStudio software. The data used is obtained by generating
the frequency of flood disasters, as well as the number of deaths and the number of damaged houses due to
these flood disasters. Then, the maximum likelihood estimator of the Poisson distribution for the flood
disaster frequency data, as well as the generalized Pareto and lognormal distributions for the number of deaths
and the number of damaged houses in previous flood disasters, will be determined. The Poisson distribution
is used because it models the frequency of independent events occurring over a fixed period, which fits the
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annual count of flood disasters. The generalized Pareto distribution is chosen due to its effectiveness in
modeling extreme values, making it suitable for representing the number of deaths that exceed a certain
threshold. The lognormal distribution is used for the number of damaged houses, as such loss data are
typically positively skewed and continuous, which lognormal models can represent well. Furthermore, the
Kolmogorov-Smirnov test will be conducted to assess goodness-of-fit and determine thresholds using the
percentage method for the number of deaths and the number of damaged houses.

2.1 Poisson Distribution

Suppose the random variable X follows a Poisson distribution with parameter A, which represents the
number of events in a given time interval. The probability mass function (pmf) of the Poisson-distributed
random variable X, denoted as X ~ Poisson() [12], is given by

Ae 2
px(x) = T
where 1 > 0 and x € Awhere A = {x|x = 0,1,2, ... }. The mean of X is
EX) =121
and the variance of X is
Var(X) = A
As shown in Hogg et al. [12], the maximum likelihood estimator of A is
A =X

2.2 Generalized Pareto Distribution

Suppose the continuous random variable X follows a generalized Pareto distribution with two
parameters, scale (o) and shape (£), denoted as X ~ GP(o,&). The probability density function (pdf) of
X [13] is given by

1 x ‘%‘1 .
;(14_;;) , ifx>0,6>0,¢&+0;
fX(x)_ 1 x '

;e_E, ifx>0,6>0,§=0.

The cumulative distribution function (cdf) of X is
1

1-(1+¢0) 7, ifx20,0>0,¢%0;
Fx(x) = o B )

X

1-eo ifx>20,0>0¢=0
the mean of X is

E(X) =

o
1_E,forOSf< 1,
and the variance of X is

2

1
for0 <<=

()
VarX) =q2pa -7 2

2.3 Lognormal Distribution

Suppose the continuous random variable X follows a lognormal distribution with two parameters, p
and o, denoted as X ~ Lognormal(y, o). The probability density function (pdf) of X [13] is given by

( (lnx—u)2>
exp| —————),

202

1
0 =

wherex > 0,u € R,and o > 0. The mean of X is



350 Anggriawan etal.  FLOOD REINSURANCE PREMIUM PRICING BASED ON THE STANDARD ...

E(X) =f0

oo

( (Inx — u)2> 4
exp | ———————|dx
oV2m P 202

and the variance of X is
Var(X) = (e"2 - 1)62“+"2.
As shown in Klugman et al. [13], the maximum likelihood estimators of p and o2 are

A_1zl
IJ-—n nx;,

i=1
- Z?:l(lnxi _ﬂ)z
n .

2.4 Peaks over Threshold

Peaks over threshold (POT) builds a model based on a specified threshold. The POT model can only
model data that exceeds the threshold. Therefore, if the losses borne by the insurance company exceed the
threshold, the losses will be modeled using POT. In its application, the POT model utilizes all available data
[14]. Let the random variables X4, X5, X3, ..., X, represent the data indicating the number of deaths. Let u be
the threshold value, so there is a random variable Y = X — wu representing the excess loss. The random
variable Y represents the payment amount that follows a generalized Pareto distribution. The cumulative
distribution function (cdf) of Y is

F(y+u)—F(u)

Fy)=P(X—-u<y|X>u)= 1= Fa) (1)
foru > 0andy > 0.By lettingx = y + u, (1) can be written as
_F(x)-F(w)
F(x_u)_l——F(u)'

which yields
F(x) =F(x —uw)(1—-F(u) + F(u)

(1—F(u))(1—(1 + E?)) $+ F(u), ifx>0,0>0,§&+0;
- 1
(1—F(u))(1—e_¥) Sy F(w), ifx>0,0>0,&=0.

2.5 Standard Deviation Principle

The standard deviation principle equation is

V =E(Z) + p/Var(2),

where Z represents the total amount of claims that must be paid by the reinsurance company to the insurance
company due to the occurring disaster, E(Z) represents the pure premium that must be paid, and p,/Var(Z)

represents the loading factor required for the claims process. The value of p typically ranges from 0.1 < p <
0.5 [6].
2.6 Kolmogorov-Smirnov Test

Suppose X3, X5, ..., X,, is a random sample of size n with an unknown distribution function denoted as
F3(x). Then, let Fx(x) be the empirical distribution function of the data, and Fy(x) be a model distribution
that is hypothesized to fit the data distribution. The hypotheses to be tested [13] are:

Ho: Fx (x) = Fx(x);
Hy: Fx(x) # Fx(x).
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If H, is accepted, it means the data comes from the distribution Fy(x). Conversely, if H, is rejected, it
means the data does not come from the distribution Fy (x). Define a test statistic D as the maximum difference
between Fy (x) and Fy(x) which is

D= m3x|FX(x) — F';(x)|.

Define a significance level denoted by a, which is the probability of rejecting H, when H, is true, and
the p-value is the minimum o value for which H,, is rejected. The approximate p-value of D can be obtained
from Kolmogorov-Smirnov critical values tables, or the exact value can be obtained using RStudio software.
If the p-value > «a, then H,, is accepted, whereas if the p-value < a, then H, is rejected.

3. RESULTS AND DISCUSSION

3.1 Premium Determination Model

Let the random variable N (t) denote the number of natural disaster events at time t years. The random
variable N(t) follows a Poisson distribution with an event rate per unit time of A, denoted as N(t) ~
Poisson(}). Let the random variable X; denote the number of people who died in the i-th disaster and the
random variable IW; denote the number of houses damaged in the i-th disaster. The value d is the retention of
the insurance company for the risk of the number of deaths, the value r is the retention of the insurance
company for the risk of the number of houses damaged, the value ¢, is the claim coefficient per one death,
the value ¢, is the claim coefficient per one house damaged, and N (t) denotes the number of natural disaster
events at time t years. The total claim in determining the reinsurance premium considering two risks is
denoted as Z. The random variable Z is defined as

N(t)

2= (- d)+ (W - 1),
i=1

with (c;(X; — d) + c,(W; — r))+ =max{c;(X; —d) + c,(W; —r),0}. We assume that the random
variables X; and W; are independent. The expectation of Z is determined as follows:

N(t)

B@) =B D (a(i-d) + W -1), | =E (E (ZX0 (e 0 = D + Wi =), \N(t)))
i=1

= E(N(O)E ((co(X; — d) + ;(W; = 1)), )
= A(E (i = D) + ;W = 1) X > d. W, > 1) P(X; > D)P(W; > 1)
+E ((cl(Xl- —d) +c,(W; — r))+|XL- >d,W; > r) P(X; < d)P(W; < r))

= AE ((cl(Xl- —d) +c,(W; — r))+|XL- >d,W; > r) P(X; > d)P(W; >r)
= MaE((X; — d)41X; > DP(X; > d) + E((W; = 1) [W; > r)P(W; > 1)).

Furthermore, the variance of Z is determined as follows:

N(D)
Var(Z) = Var Z(cl(Xi —d)+c,(W; — r))+
i=1
=E <Var (Z?’:(P(cl(Xi —d) +c,(W; — r))+ |N(t)>>
+ Var (E (zﬂ?(cl(xi ~ D)+ oW -1), |N(t))>

= B(N(t))Var ((cy(X; — d) + c;(W; = 1)), ) + Var(N©)E? (e (X; — ) + ¢, (W; = 1)), )
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- }\(Var ((ex = D) + (W, =), ) + B2 ((er (K, — ) + ¢ (W, r))+))

R (GRS 1),)’ )= B2 ((c (= @) + (Wi = 1)),
+E2 (X — d) + (W, — 7)), ) )

= 28 (10 = @) + e, (W; = ),) )

= AE (((cl(Xi —d) +c,(W; — r))+)2 |Xl- >d, W, > r) P(X; > A)P(W; > 1)

28 (06— ) + 0% - 1), )’

Xi > d,Wi > T')P(Xl < d)P(Wl < 7')
= AE (((01(Xi - d) + CZ(Wi - T))+)2 |Xl > d, Wi > T) P(XL > d)P(Wl > T)

= A(FE(X; = d) )21, > DPCL; > d) + FE(W; = 1), 2IW; > IPOW, > 7).

Therefore, the premium determination model is
V=M E((X; — D)4 1X; > DPX; > d) + E((W; — 1)L W > r)P(W; > 1)

+p\/7\(c E(((X; — d))21X; > DPX; > d) + cZE((W; — 1) )W, > r)P(W; > 1)). (2)

In the reinsurance premium determination model considering two risks, there are two threshold values:
uy as the threshold value for the risk of the number of deaths and w,, as the threshold value for the risk of
the number of houses damaged. However, the relationship between uy and d, as well as uy, and r, cannot be
determined in practice. There are three cases that can occur in the relationship between uy and d, namely:

1. Casela:uy =d,;
2. Case2a:uy <d;
3. Case3a: uy >d.

The formulas for determining the reinsurance premium for these cases are described below.

1. Caselaiuy=d
This case occurs when the threshold of the reinsurance company and the retention of the insurance
company are the same for the risk of the number of deaths. Note that

E((X; — d)41X; > d) = f D () R foot fera
a 0

P(X; > d) 1-PX; <d)
e e L G
E(((X; — d),)2IX; >d)_f (x — d)? (f(x)d)dx=J:otz% dt
o o 2
= [, R Sy = ], a0 = s

Let n denote the sample size. Let n,, denote the sample size that exceeds d. Thus, it can be
written that P(X; > d) = n”TX

2. CaseZauy<d
This case occurs when the threshold of the reinsurance company is lower than the retention of the
insurance company for the risk of the number of deaths. Based on the theorem in [15]-[16], when

the value of d > 0 is very large, the excess distribution of the generalized Pareto distribution can
be approximated by its own distribution, so F(t) = Gg, g, +£y(a—uy) (£)- Note that

fe j‘”t ft+d)
0

A T
PX, > ) TP, <d)

E((X; — )4 1%, > d) —f od)— 2
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(" _ oy +&x(d —uy)

_JO tfa(t)dt = 1-%, )

e f@ (P, ferd)
B~ 0> D = [ i gt de= | e

© 2
_ f , flt+uy) 2(ox +&x(d — ux))
d 1-P(X; <wuy) (1-8x)(1 —28)

In this case, the probability of the sample size exceeding the threshold can be written as follows
P(X; >d) = P(X; > d|X; > ux)P(X; > uy) = (1 — P(X; < d|X; > uy))P(X; > uyx)

F(d) — F(uy)
= <1 T Fau) ) (1= F(uy)).

dt = footzfux(t) dt =
0

Case 3a:uy >d

This case occurs when the threshold of the reinsurance company is higher than the retention of
the insurance company for the risk of the number of deaths. When the threshold is higher than the
retention, the POT model cannot detect the data. Therefore, the loss amount must be estimated
with another distribution. According to [17]-[22] the distribution that can be used to approximate
disaster loss data well is the lognormal distribution. Therefore, the lognormal distribution is used
to estimate the loss amount. Note that

f()

d
PX, > d)

E(((X; — d) 21X > d) = foo(x —d)?
da

_ 1_;F(d)< dux(x — d)PF(x) dx + fu O:((x —u) + (- D) F) dx).
Let Jy = [;*(c— d)2f(x) dx and J = [ ((x —ux) + (x = d))” f(x) dx. Note that J, =
[5G = d)?f(x0) dx = [, %22 (x) dx — 2d [ x f(x) dx + d? [* f(x) dx. Then
Ux 2 _ Ux 2 1 <_ (Inx — IJX)2>
L x“f(x) dx L X O exp —20}2( dx

Inuy—px
1 Ox

B oxV2mJ/nd-ux
Ox

1
exp (_ 5}'2) ox exp(2py + 20xy) dy

Inuy—px

— Quy + 2 2)f ox L (_1( -2 )Z)d
=expux +200) J, ., e (-5 0~ 2007 dy

Ox

Inuy—pyx

y — 20x

=eXp(2ux+20§)<¢( T )Ilnd"_Xux>
Ox
Inuy — py — 262 Ind — py — 20?2
=eXp(2ux+20)2()<¢< — >—¢< = :
X X

Using a similar approach, it is obtained that

tx Ux 1 (Inx — .Ux)z)
xf(x) dx = f X exp| ——————] dx
L 1o a  xoxV2m p( 20}
1 Inuy — puy — o2 Ind — puy — o2
— Z a2 X X =X 7
—eXp(ux+26x)(<l>< or ) cb( o )

:Xf(x) D = f“x 1 <_ (Inx —zux)2> dx =4 (ln Uy — px> b (lnd - Hx>'

exp
d XOxV2m 20% Oy Oy

Therefore,
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— — 2062 _ _9n2
11=exp(2ux+20§)(¢(lnux - 20)—¢<l“d — ))

Ox Ox

1 Inuy — uy — 62 Ind — puy — o?
— 2d exp (Mx +—0,2(> (¢< x ~ Hx >_¢<¢>>
2 O-X GX

Inuy — py Ind — py
@ o(=5—)-o(=5) )
+ (d) o (=,
Also note that

J2 = J (G =) + (ux — )" f(x) dx

- f (x = u)?F () dx + 2(uy — d) f (x = w)f (x) dx + (uy — d)? f Q) dx

_ L f(t+ ) PRAGRATY
= (1—F(ux)).’; Zzl—F(uX) dt+2(ux_d)(1_F(uX))f0 tl—F(uX) dt

+ (uy — d)?*(1 - F(uy))

—(1— _ 2% _ 1\ 5x Y
=(1 F(ux))((1_EX)(1_ZEX)+2(uX d) 72+ (ux d)).

Therefore,
E(((X; — d))?1X; > d)

1 Inuy — py — 202
= 2y + 20%
1_P(Xl<d) <exp( IJX+ O-X) (q)( Ox

Ind — py — 202
—<|>( Ox ))
— — 2 _ A2
—2eXp(Hx+%0§)(¢(lnuX sz G)‘d)(—]nd GL;X G))
Inuy — puy Ind — py
() g ()

1-F 20% 2 d)—X_ d)?
+- (”"))<(1—zx)(1—zzx)+ (=) g, + (ux = )> '

Using a similar method, it is obtained that

E((X; = d)4|X; > d) = _];(;] 2< 5
1 ux
= TP <D d)( ) (x —d)f(x) dx

+ f (= w) + (uy — D)F ) dx)
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3 1 1 Inuy — py — 0% Ind — uy — 0%
T1-P(X, <d) eXp(“XJrEG)Z‘)(q’( ox >_¢< ox ))
lnuX_l,lX lnd_l,lX
oo (M) o)

+(1 —F(ux))<

Ox
1—§x+(ux_d)> .

The probability for the sample size exceeding the retention d can be writtenas P(X; > d) =1 —
F(d), where F(d) follows a lognormal distribution with parameters p and o. The probability for

the sample size exceeding the threshold uy can be written as P(X; > uy) =1 — F(uy) = n%

Using a similar approach to the previous three cases, the expectation calculations for these cases are
obtained.

1. Caselb:uy =7

This case occurs when the threshold of the reinsurance company and the retention of the insurance
company are the same for the risk of the number of houses damaged. Note that

Ow
1-%&
20y

(1 —&w) (1 — 25w)’
P(Wl > T) = nuTW

E((W; =)W >71) =

E((Wi —1))?[W; > 1) =

2. Case2biuy <r

This case occurs when the threshold of the reinsurance company is lower than the retention of the
insurance company for the risk of the number of houses damaged. Note that

ow + &w( —uy)
1-%8w '

Z(GW + & (r — UW))Z
(1 -8y —28,) '

E((W; —r)4[W; >7) =EW) =

E((W; =) )* W, > 1) =

F - F
PW; >7) = (1 — %) (1 = F(uw)).
3. Casedb:uy >r

This case occurs when the threshold of the reinsurance company is higher than the retention of
the insurance company for the risk of the number of houses damaged. Note that
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E(((W; =) )2 W; > 1)

= 2 207

Inr — py, — 204
_¢< ow >>
1, Inuy, — py — 0% Inr — py, — 0
— 2r exp (,uW + EO'W) 0] ( o > - ¢ <T>
Inuy, — py Inr — py,
(o (M) g ()

L F 20% ) ow 5
+( - (uW))((l—fW)(l—ZfW)-l_ (UW_T')—l_fW"‘(uW_T)) )

E(W; =) IW; > 1)

T1-P(W, <) 2 ow

o) () e ()

+(1—F(uy)) (1 ‘iw + (uy — r)) .

1 1 Inuy, — Wy — 0%
exp (uw + —Gﬁ/) (d)(

Sw

Additionally, the probability for the sample size exceeding the retention r can be written as
P(W; >r)=1-—F(r), where F(r) follows a lognormal distribution with parameters y,, and
ow. The probability for the sample size exceeding the threshold wy, can be written as
P(W; > wy) = 1 F(uy) = =2,

Combination of these two retentions results in nine types of cases, namely:

Lo

©CooNoOkRWLDN

Case 1l: uy = d and uy, =r;
Case 2: uy =dand uy, <r;
Case 3: uy = d and uy, > r;
Case 4:uy < danduy =r;
Case 5:uy < danduy, <r;
Case 6: uy < d and uy, > r;
Case 7: uy > d and uy, =r;
Case 8 uy >dand uy, <r;
Case 9: uy >dand uy, >r.

By substituting each expectation, second moment, and probability obtained according to the type of
case into Eq. (2), a premium determination model for nine different cases can be obtained.

3.2 Generating Data

The frequency data of flood disasters, the number of deaths, and the number of houses damaged due
to floods in Indonesia cannot be obtained completely. Therefore, synthetic data is used for the simulation.
This synthetic data is generated using RStudio software. The flood disaster frequency data over 20 years
(n = 20) is assumed to follow a Poisson distribution with parameter A, the number of deaths is assumed to
follow a generalized Pareto distribution with parameters oy and €y, and the number of houses damaged is
assumed to follow a generalized Pareto distribution with parameters oy, and &,

The flood disaster frequency data over 20 years is generated with A = 250. This data is assumed to
represent the number of flood disasters occurring throughout Indonesia. The chosen value of A = 250 is
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obtained by calculating the average from the flood disaster frequency data obtained from the National
Disaster Management Agency (BNPB) [21]. The generated data is shown in Fig. 1.
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Figure 1. Bar Chart of Flood Disaster Frequency Over 20 Years

The data on the number of deaths is generated, assumed to follow a generalized Pareto distribution
with parameters oy and &y, and the data on the number of houses damaged is generated, assumed to follow
a generalized Pareto distribution with parameters oy, and &;,,. The data on the number of deaths is generated
with oy = 53.704 and §x = 0.208, while the data on the number of houses damaged is generated with
oy = 3375.367 and &, = 0.076. These parameter values are chosen following the parameter values
obtained in [11]. After the data is generated, the data is randomly divided according to the flood disaster
frequency per year. Fig. 2 (a) shows the number of deaths per year due to floods, and Fig. 2 (b) shows the
number of houses damaged per year due to floods.
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Figure 2. Bar Chart Showing the Annual Impact of Floods Over a 20-year Period
(a) Number of Deaths, (b) Number of Houses Damaged
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3.3 Simulation Data Processing

The frequency of disaster events is modeled using a Poisson distribution with an event rate per unit
time of A. Therefore, the Poisson parameter is estimated from the flood disaster frequency data that has been
generated. The parameter A is estimated using the maximum likelihood method with the help of RStudio
software. The parameter estimation result is A = 249.
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Goodness-of-fit test is conducted between the empirical flood disaster frequency data and the model,
which is the Poisson distribution, using the Kolmogorov-Smirnov test. The o value used is 5%. With RStudio,
a p-value of 0.9807 is obtained. It indicates that there is a fit between the empirical data and the model. Also,
Fig. 3 shows that there is a fit between the quantiles of the flood disaster frequency data and the Poisson
distribution, indicating that the flood disaster frequency data follows a Poisson distribution.
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Figure 3. QQ-plot of Empirical Data Against the Poisson Distribution Model

For premium determination in cases where the reinsurance company's threshold is equal to the
insurance company's retention and cases where the reinsurance company's threshold is lower than the
insurance company's retention, the generalized Pareto distribution approach is used. For premium
determination in cases where the reinsurance company's threshold is higher than the insurance company's
retention, the lognormal distribution approach is used. This applies to both types of risks, namely the risk of
the number of deaths and the number of houses damaged. Using RStudio software, the parameter estimation
results are obtained using the maximum likelihood method, as shown in Tables 1 and 2.

Table 1. Parameter Estimation Results for Generalized Pareto and Lognormal Distributions for the Number of Deaths

Distribution Generalized Pareto Lognormal
Gy = 54.07 fix = 3.57
Parameter £ =024 5 = 1.29

Table 2. Parameter Estimation Results for Generalized Pareto and Lognormal Distributions for the Number of Houses

Damaged
Distribution Generalized Pareto Lognormal
6w = 3,334.05 fw = 7.59
Parameter wo i
fw =0.11 6w = 1.33

The data on the number of deaths and the number of houses damaged due to floods fits the pdf of the
generalized Pareto distribution. This fit can be shown by the histograms in Fig. 4.
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Figure 4. Histogram Illustrating the Distribution of Flood Impacts
(a) Number of Deaths, (b) Number of Houses Damaged

The data on the number of deaths and the number of houses damaged are heavy-tailed and skewed to
the right. This is supported by the kurtosis and skewness of each data set. The data on the number of deaths
has a kurtosis of 79 and a skewness of 6, while the data on the number of houses damaged has a kurtosis of
29 and a skewness of 3. Data with heavy tails is characteristic of data that follows a generalized Pareto
distribution.

Goodness-of-fit test is conducted between the data on the number of deaths following a generalized
Pareto distribution and the model from the parameter estimation results using the Kolmogorov-Smirnov test.
Using RStudio software, a p-value of 0.2185 is obtained at « = 0.05. This indicates that there is a fit between
the empirical data and the model. Applying a similar method to the data on the number of houses damaged,
a p-value of 0.9858 is obtained at a = 0.05. This indicates that there is a fit between the empirical data and
the model. The QQ-plot images are shown in Fig. 5. It can be concluded that the data on the number of deaths
and the data on the number of houses damaged follow a generalized Pareto distribution.
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Figure 5. QQ-plots for Flood Impacts
(a) QQ-plot for the Number of Deaths, (b) QQ-plot for the Number of Houses Damaged
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3.4 Threshold Selection

The kurtosis of the data on the number of deaths is 79 and the data on the number of houses damaged
is 29. This indicates that the data has extreme values. Then, the percentage method [14] is used. According
to [22], the appropriate value of m for determining the threshold is 10%. Therefore, it can be written that
ny, =Ny, = 10% x 4,971 = 497.1 ~ 497, where n,, denotes the sample size exceeding d and n,,,
denotes the sample size exceeding r. This means that there are 497 observations classified as extreme values
out of the 4,971 observations. Then, the threshold of the data can be determined as follows uy = uy, =
497 + 1 = 498. The data in the 498-th position, when sorted from the largest to the smallest, is the threshold
of the data for both the number of deaths and the number of houses damaged. For the data on the number of
deaths, the threshold is uy = 162, while for the data on the number of houses damaged, the threshold is
uy = 8,684.

3.5 Determination of Premium Amount for Each Case
The assumptions used in determining the premium amount are as follows:

p=0.3;

¢; = Rp10,000,000 per death;

¢, = Rp5,000,000 per house damaged:;

When uy > d, d is assumed to be 62. When uy < d, d is assumed to be 262;

5. When uy, > r, r is assumed to be 7,684. When uy, < r, r is assumed to be 9,684.

o

Table 3 shows the pure premium, additional premium, and reinsurance premium for each case
described.

Table 3. Comparison of Pure Premium, Additional Premium, and Reinsurance Premium for the Each Case

Case Pure Premium Additional Premium  Reinsurance Premium
Casel:uy =danduy,, =r Rp484,105,800,000 Rp42,397,148,354 Rp526,502,948,354
Case 2: uy =danduy <r Rp403,137,972,000 Rp39,178,484,221 Rp442,316,456,221
Case 3: uy =danduy, >r Rp580,598,280,000 Rp39,694,566,530 Rp620,292,846,530
Case4:uy <danduy =r Rp476,622,852,000 Rp42,390,653,102 Rp519,013,505,102
Case 5:uy <danduy, <r Rp395,655,024,000 Rp39,171,455,267 Rp434,826,479,267
Case 6: uy < danduy, >r Rp573,115,332,000 Rp39,687,628,978 Rp612,802,960,978
Case 7:uy >danduy, =r Rp494,720,670,000 Rp42,406,309,838 Rp537,126,979,838
Case 8:uy >danduy <r Rp413,752,842,000 Rp39,188,398,174 Rp452,941,240,174
Case 9:uy >danduy >r Rp591,213,150,000 Rp39,704,351,620 Rp630,917,501,620

From Table 3, the pure premium amounts for the nine different cases are obtained. Cases 1, 2, and 3
share the commonality of having the reinsurance company's threshold equal to the insurance company's
retention d for the risk of the number of deaths, which is 162. The highest pure premium among these three
cases occurs in Case 3, where the insurance company has a retention r for the risk of the number of houses
damaged that is smaller than the reinsurance company's threshold (uy, > r). This is followed by Case 1,
where the retention r for the risk of the number of houses damaged and the reinsurance company's threshold
are equal (uy, = r). The third is Case 2, where the insurance company has a retention r for the risk of the
number of houses damaged that is larger than the reinsurance company's threshold (uy, < ).

Similarly, for Cases 4, 5, and 6, involving retention uy < d, the highest pure premium occurs in Case
6 with retention uy, > r, followed by Case 4 with retention w,, = r, and Case 5 with retention uy, < r. For
Cases 7, 8, and 9, involving retention uy > d, the highest pure premium occurs in Case 9 with retention
uy, > 1, followed by Case 7 with retention uy,, = r, and Case 8 with retention uy, < r. It can be seen that
the pure premium involving retention u,, > r, where the insurance company's retention r for the risk of the
number of houses damaged is smaller than the reinsurance company's threshold, has a higher premium
compared to cases with retention u,, = r, where the insurance company's retention r for the risk of the
number of houses damaged and the reinsurance company's threshold are equal, and uy, < r, where the
insurance company's retention r for the risk of the number of houses damaged is larger than the reinsurance
company's threshold.

Additionally, Cases 1, 4, and 7 share the commonality of having the reinsurance company's threshold
equal to the insurance company's retention r for the risk of the number of houses damaged, which is 8,684.
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The highest pure premium among these three cases occurs in Case 7, where the insurance company has a
retention d for the risk of the number of deaths that is smaller than the reinsurance company's threshold (uy >
d). This is followed by Case 1, where the retention d for the risk of the number of deaths and the reinsurance
company's threshold are equal (uy = d). The third is Case 4, where the insurance company has a retention d
for the risk of the number of deaths that is larger than the reinsurance company's threshold (uy < d).

The same pattern occurs for Cases 2, 5, and 8. For cases involving retention u,, < r, the highest pure
premium occurs in Case 8 with retention uy > d, followed by Case 2 with retention uy = d, and Case 5 with
retention uy < d. For cases involving retention uy, > r, namely Cases 3, 6, and 9, the highest pure premium
occurs in Case 9 with retention uy > d, followed by Case 3 with retention uy = d, and Case 6 with retention
uy < d. It can be seen that the pure premium involving retention uy > d, where the insurance company's
retention d for the risk of the number of deaths is smaller than the reinsurance company's threshold, has a
higher premium compared to cases with retention uy = d, where the insurance company's retention d for the
risk of the number of deaths and the reinsurance company's threshold are equal, and uy < d, where the
insurance company's retention d for the risk of the number of deaths is larger than the reinsurance company's
threshold.

When the premiums are ranked, the pure premium and reinsurance premium follow the same order.
However, the additional premium does not follow the same order. This can occur because the determination
of the additional premium is based on the variance value, which affects the randomness of the data.
Additionally, it is known that the sum of the pure premium and the additional premium results in the
reinsurance premium. From Table 3, it can be seen that the additional premium is relatively small compared
to the pure premium, so the additional premium does not significantly impact the order of the insurance
premiums, even though it has a different order.

Therefore, it can be concluded that for each risk, cases involving retention values less than the threshold
(uy > r and uy > d) result in the highest reinsurance premiums, while cases involving retention values
greater than the threshold (u,, < r and uy < d) result in the lowest reinsurance premiums. This occurs
because when the insurance company has a retention less than the threshold, it means the insurance company's
ability to bear the loss is small, so the reinsurance company has to bear a larger risk of loss. The larger the
risk of loss that the reinsurance company has to bear, the higher the premium that the insured, i.e., the
insurance company, has to pay. Conversely, when the insurance company has a retention greater than the
threshold, it means the insurance company's ability to bear the loss is large, so the reinsurance company has
to bear a smaller risk of loss. The smaller the risk of loss that the reinsurance company has to bear, the lower
the premium that the insured has to pay.

Based on Table 3, it can also be seen that the highest reinsurance premiums occur in Cases 9, 3, and 6,
where retention uy, > r is always involved. For the fourth to sixth highest premiums, they occur in Cases 7,
1, and 4, with retention uy, = r always involved. For the seventh to ninth highest premiums, they occur in
Cases 8, 2, and 5, with retention u,, < r always involved. Therefore, it is concluded that the risk of the
number of houses damaged has a greater impact compared to the risk of the number of deaths on the
reinsurance premium amount.

3.6 The Impact of Changes in the Percentage of Extreme Values on Reinsurance Premiums

Table 4 shows the reinsurance premiums for Case 1, where uy = d and uy, = r, when the percentage
of extreme values varies from 5% to 15%.

Table 4. Reinsurance Premiums for Case 1 at Different Extreme Value Percentages

Extreme Rei b ) p ;
einsurance remium ercentage
value  my =y, ux=wy ux=d wy =r Premium Increase IncreasgJ
Percentage
5% 249 250 241 12.048 Rp272,032,211,104
6% 298 299 217 11.334 Rp323,304,169,900 Rp51,271,958,796 18.8%
7% 348 349 200 10.445 Rp374,346,059,266 Rp51,041,889,366 15.8%
8% 398 399 184 9.617 Rp425,205,802,308 Rp50,859,743,042 13.6%
9% 447 448 173 9.090 Rp475,916,686,528 Rp50,710,884,220 11.9%
10% 497 498 162 8.684 Rp526,502,948,354 Rp50,586,261,826 10.6%
11% 547 548 153 8.323 Rp576,982,884,330 Rp50,479,935,976 9.6%
12% 597 598 145 7.987 Rp627,370,709,054 Rp50,387,824,724 8.7%
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Extreme Reinsurance Premium Percentage
value  myy =, uy=uy ux=d uy =r Premium Increase Increase
Percentage
13% 646 647 140 7.624 Rp677,677,726,647 Rp50,307,017,593 8.0%
14% 696 697 133 7.263 Rp727,913,102,447 Rp50,235,375,800 7.4%
15% 746 747 126 6.966 Rp778,084,390,008 Rp50,171,287,561 6.9%

From Table 4, it can be seen that the higher the percentage of extreme values selected, the higher the
reinsurance premium for Case 1. Conversely, the lower the percentage of extreme values selected, the lower
the reinsurance premium for Case 1. This is logical because a lower percentage of extreme values indicates
a lower probability of extreme events, resulting in lower risk borne by the reinsurance company.
Consequently, the premium paid is not too high. Conversely, a higher percentage of extreme values indicates
a higher probability of extreme events, resulting in higher risk borne by the reinsurance company. Therefore,
the premium paid by the insurance company is higher.
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Figure 6. Movement of Reinsurance Premiums for Case 1 with the Movement of Extreme Value Percentages

Fig. 6 shows that the reinsurance premium for Case 1 appears to move linearly with the movement of
the extreme value percentage. However, the movement of the reinsurance premium for Case 1 with the
movement of the extreme value percentage is only nearly linear. Table 4 shows that the increase in
reinsurance premiums is not the same but is in the same range, which is around Rp50,000,000,000. Table 4
also shows that the higher the percentage of extreme values, the smaller the percentage increase in reinsurance
premiums.

3.7 The Impact of Changes in Risk Retention of the Number of Deaths on Reinsurance Premiums

The threshold used in this analysis is uy = 162 and uy, = 8.684, obtained by assuming 10% of the
observations are classified as extreme values, as described in subsection 3.4. The cases discussed are cases
involving retention u;, = r = 8.684, namely cases 1, 4, and 7. The retention value d used in this analysis is
162 for Case 1, while the retention value used in Case 4 is 162(1 + 10%) = 178, 162(1 + 10%)? = 196,
and 162(1 + 10%)3 = 216. In Case 7, the retention value used is 162(1 —10%) = 146, 162(1 —
10%)? = 131, and 162(1 — 10%)3 = 118. The reinsurance premiums with different retention d values are
shown in Table 5.

Table 5. Reinsurance Premiums with Various Retention d Values

i Case Type d Reinsurance Premium  Premium Increase  Percentage Increase
1 Case 4 216 Rp 521,963,122,092

2 Case 4 196 Rp 523,057,926,573 Rp 1,094,804,481 0.21%

3 Case 4 178 Rp 525,486,401,164 Rp 2,428,474,591 0.46%

4 Case 1 162 Rp 526,502,948,354 Rp 1,016,547,190 0.19%

5 Case 7 146 Rp 531,233,404,737 Rp 4,730,456,383 0.90%

6 Case 7 131 Rp 535,758,216,854 Rp 4,524,812,117 0.85%

7 Case 7 118 Rp 538,268,535,043 Rp 2,510,318,189 0.47%
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From Table 5 and Figure 7, it can be concluded that the higher the retention d, the lower the reinsurance
premium that must be paid. Conversely, the lower the retention d, the higher the reinsurance premium that
must be paid. Table 5 shows no pattern of percentage increase in premiums due to the increase in retention
value.

3.8 The Impact of Changes in Risk Retention of the Number of Houses Damaged on Reinsurance
Premiums

The threshold used in this analysis is uy = 162 and uy, = 8.684, obtained by assuming 10% of the
observations are classified as extreme values, as described in subsection 3.4. The cases discussed are those
involving retention uy = d = 162, namely cases 1, 2, and 3. The retention value r used in this analysis is
8.684 for case 1, while the retention value used in case 2 is 8.684(1 + 10%) = 9.554, 8.684(1 + 10%)? =
10.511, and 8.684(1 + 10%)3 = 11.586. In case 3, the retention value used is 8.684(1 — 10%) = 7.819,
8.684(1 — 10%)? = 7.035, and 8.684(1 — 10%)3 = 6.327. The reinsurance premiums with different
retention r values are shown in Table 6.

Table 6. Reinsurance Premiums with Various Retention » Values

i Case Type r Reinsurance Premium Premium Increase  Percentage Increase
1 Case 2 11.586 Rp 306,107,516,607

2 Case 2 10.511 Rp 401,487,131,994 Rp 95,379,615,387 31.16%

3 Case 2 9.554 Rp 440,553,563,959 Rp 39,066,431,965 9.73%

4 Case 1 8.684 Rp 526,502,948,354 Rp 85,949,384,395 19.51%

5 Case 3 7.819 Rp 596,104,992,754 Rp 69,602,044,400 13.22%

6 Case 3 7.035 Rp 719,015,002,129 Rp 122,910,009,375 20.62%

7 Case 3 6.327 Rp 795,213,182,872 Rp 76,198,180,743 10.60%
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Figure 8. Movement of Retention Value r Against Reinsurance Premiums

From Table 6 and Fig. 8, it can be concluded that the higher the retention r, the lower the reinsurance
premium that must be paid. Conversely, the lower the retention r, the higher the reinsurance premium that
must be paid. Table 6 shows no pattern of percentage increase in premiums due to the increase in retention
value.
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4. CONCLUSION

Based on the author's analysis in the previous sections, the following conclusions were obtained:

1.

The risk of the number of damaged houses has a greater impact than the risk of death on the
amount of premium that the insurance company must pay to the reinsurance company.
Additionally, for each risk, cases involving retention values less than the threshold result in the
highest reinsurance premiums, while cases involving retention values greater than the threshold
result in the lowest reinsurance premiums.

In cases where the threshold is equal to the retention for each risk, a low percentage of extreme
values results in lower reinsurance premiums, while a high percentage of extreme values results
in higher reinsurance premiums. Changes in the percentage of extreme values result in an almost
linear change, where each 1% increase in the percentage of extreme values results in an increasein
reinsurance premiums of approximately Rp50,000,000,000.

In cases involving the threshold equal to the retention for the risk of the number of damaged
houses, the higher the retention of the risk of death, the lower the reinsurance premium that must
be paid. Conversely, the lower the retention of the risk of death, the higher the reinsurance
premium that must be paid.

In cases involving the threshold equal to the retention for the risk of death, the higher the retention
of the risk of the number of damaged houses, the lower the reinsurance premium that must be
paid. Conversely, the lower the retention of the risk of the number of damaged houses, the higher
the reinsurance premium that must be paid.
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