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Article Info ABSTRACT 

Article History: 
Disasters that occur in Indonesia lead to financial loss. One approach to mitigating the 

financial impact is through the utilization of natural disaster insurance. Although natural 

disasters occur with a relatively small frequency, the associated losses are substantial. 

Insurance companies need to carefully consider the characteristics of natural disaster 

data, as these events can lead to significant claims and potentially result in the bankruptcy 

of insurance companies. Insurance companies can reduce the risk of bankruptcy by 

transferring some risk to reinsurance companies. In this paper, the disaster reinsurance 

premium is determined by considering both the mortality and economic risks using the 

peaks over threshold (POT) model under the standard deviation principle. The Poisson, 

generalized Pareto, and lognormal distributions are used to determine the premium, with 

parameters estimated using the maximum likelihood method. A simulation analysis is 

conducted using synthetic data generated with RStudio software, which includes the 

frequency of floods per year over 20 years, as well as the number of deaths and the 

number of houses damaged in each flood event. The threshold is determined using the 

percentage method, where 10% of the data is considered extreme values. The POT model 

is applied to various retention cases. The simulation results show that the risk of the 

number of damaged houses has a greater impact on the premium amount that the 

insurance company must pay to the reinsurance company than the risk of the number of 

deaths. Additionally, cases with retention values below the threshold result in the highest 

reinsurance premiums, while cases with retention values above the threshold result in the 

lowest reinsurance premiums. This paper also shows that the reinsurance premium 

changes almost linearly with the increase in the extreme value percentage. This study is 

among the first to apply the peaks over threshold model in combination with multiple 

distributions for reinsurance premium estimation in the Indonesian context. The findings 

provide new insights into the sensitivity of reinsurance premiums to damage thresholds 

and retention levels, offering a practical tool for insurers in disaster-prone regions. 
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1. INTRODUCTION 

Disasters occur relatively infrequently but result in significant losses. There have been many papers 

conducted by researchers that present mathematical modeling related to disasters [1]-[4]. This poses a risk of 

losses and even bankruptcy for insurance companies. Therefore, insurance companies consider setting a 

maximum payment limit to policyholders and transferring disaster risk to other institutions, such as 

reinsurance companies. 

Reinsurance is the process by which an insurance company (ceding company) transfers part or all of 

the insured risk to a reinsurance company (reinsurer). In the context of natural disaster reinsurance, the 

insurance company transfers the risk of losses due to natural disasters to the reinsurance company. This means 

that the insurance company is obliged to pay premiums to the reinsurance company. In determining the 

reserves and pricing of a reinsurance contract, the reinsurance company requires data on the number and size 

of claims submitted by policyholders each year due to natural disasters. This data is used to estimate potential 

risks and determine appropriate premiums. 

In research [5], the determination of disaster reinsurance premiums was investigated by considering 

one type of risk, namely the risk of the number of deaths, using the peaks over threshold (POT) model based 

on the standard deviation principle. The determination of disaster reinsurance premiums using the POT model 

with the standard deviation principle was proposed in research [6]. According to this study, the use of the 

standard deviation principle in premium determination is beneficial as it considers additional costs, such as 

operational and service costs, which are usually borne by the premium payer. Furthermore, the formula for 

determining disaster reinsurance premiums can be explicitly written when using the POT model [7]-[10], 

where the premium determination with the POT model uses a threshold value to determine extreme values. 

The POT model is applied to determine the premium amount for various retention cases, namely cases where 

the threshold is equal to the retention limit, the threshold is smaller than the retention limit, and the threshold 

is larger than the retention limit. Research [6] also mentioned that claims from policyholders usually do not 

come from a single type of risk but from several types of risks, such as claims for death, illness, injury, or 

property damage. Research [11] has demonstrated the determination of premiums by considering two types 

of risks, namely the risk of the number of deaths and the number of damaged houses. However, the case 

discussed in that study was only one of the nine possible retention case combinations. 

This research addresses the gap in disaster reinsurance premium pricing models that typically consider 

only a single risk factor. Previous studies have explored models involving either mortality or property 

damage, but few have examined both simultaneously across multiple retention-threshold scenarios. This 

paper contributes a comprehensive pricing framework that integrates two key risk factors—number of deaths 

and number of damaged houses—using the Peaks Over Threshold (POT) model with the standard deviation 

principle. The parameters of the generalized Pareto distribution are estimated via maximum likelihood, and 

extreme value theory (EVT) is applied to identify losses exceeding a defined threshold. This study introduces 

a general premium formula that accommodates all nine possible combinations of insurer retention and 

reinsurer threshold for dual risks. Simulation is performed using synthetic flood disaster data over 20 years 

generated in RStudio. Key findings reveal that the risk of house damage contributes more significantly to the 

reinsurance premium than the risk of deaths, and that lower insurer retention leads to higher premium costs. 

Moreover, the relationship between the percentage of extreme values and the premium amount is observed 

to be approximately linear.  

2. RESEARCH METHODS 

The premium determination in this study uses the standard deviation principle. The general formula 

for determining premiums for nine different cases will be derived by determining the expectation, second 

moment, and probability of each risk involved. After that, a simulation of premium determination for nine 

different cases will be conducted with the help of RStudio software. The data used is obtained by generating 

the frequency of flood disasters, as well as the number of deaths and the number of damaged houses due to 

these flood disasters. Then, the maximum likelihood estimator of the Poisson distribution for the flood 

disaster frequency data, as well as the generalized Pareto and lognormal distributions for the number of deaths 

and the number of damaged houses in previous flood disasters, will be determined. The Poisson distribution 

is used because it models the frequency of independent events occurring over a fixed period, which fits the 
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annual count of flood disasters. The generalized Pareto distribution is chosen due to its effectiveness in 

modeling extreme values, making it suitable for representing the number of deaths that exceed a certain 

threshold. The lognormal distribution is used for the number of damaged houses, as such loss data are 

typically positively skewed and continuous, which lognormal models can represent well. Furthermore, the 

Kolmogorov-Smirnov test will be conducted to assess goodness-of-fit and determine thresholds using the 

percentage method for the number of deaths and the number of damaged houses. 

2.1 Poisson Distribution 

Suppose the random variable 𝑋 follows a Poisson distribution with parameter 𝜆, which represents the 

number of events in a given time interval. The probability mass function (pmf) of the Poisson-distributed 

random variable 𝑋, denoted as 𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ) [12], is given by  

𝑝𝑋(𝑥) =
λ𝑥𝑒−λ

𝑥!
, 

where 𝜆 >  0 and 𝑥 ∈ A where 𝐴 = {𝑥|𝑥 = 0,1,2,… }. The mean of 𝑋 is  

E(𝑋) = 𝜆 

and the variance of 𝑋 is  

Var(𝑋) = 𝜆. 

As shown in Hogg et al. [12], the maximum likelihood estimator of 𝜆 is  

λ̂ = 𝑥̅. 

2.2 Generalized Pareto Distribution 

Suppose the continuous random variable 𝑿 follows a generalized Pareto distribution with two 

parameters, scale (𝝈) and shape (𝝃), denoted as 𝑿 ∼ 𝑮𝑷(𝛔, 𝛏). The probability density function (pdf) of 

𝑿 [13] is given by  

𝒇𝑿(𝒙) =

{
 
 

 
 𝟏

𝝈
(𝟏 +  𝝃

𝒙

𝝈
)
−
𝟏
𝝃
−𝟏

, if 𝒙 ≥ 𝟎,  𝝈 > 𝟎,  𝝃 ≠ 𝟎;

𝟏

𝝈
𝒆−

𝒙
𝝈, if 𝒙 ≥ 𝟎,  𝝈 > 𝟎,  𝝃 = 𝟎.

, 

The cumulative distribution function (cdf) of 𝑿 is  

𝑭𝑿(𝒙) = {
𝟏 − (𝟏 +  𝝃

𝒙

𝝈
)
−
𝟏
𝝃
, if 𝒙 ≥ 𝟎,  𝝈 > 𝟎,  𝝃 ≠ 𝟎;

𝟏 − 𝒆−
𝒙
𝝈, if 𝒙 ≥ 𝟎,  𝝈 > 𝟎,  𝝃 = 𝟎

, 

the mean of 𝑿 is  

E(𝑿) =
𝛔

𝟏 − 𝛏
, for 𝟎 ≤ 𝝃 < 𝟏, 

and the variance of 𝑿 is  

Var(𝑿) =
𝛔𝟐

(𝟏 − 𝟐𝛏)(𝟏 − 𝛏)𝟐
, for 𝟎 ≤ 𝛏 <

𝟏

𝟐
. 

2.3 Lognormal Distribution 

Suppose the continuous random variable 𝑋 follows a lognormal distribution with two parameters, μ 

and σ, denoted as 𝑋 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(μ, σ). The probability density function (pdf) of 𝑋 [13] is given by  

𝑓𝑋(𝑥) =
1

𝑥σ√2π
exp(−

(ln 𝑥 − μ)2

2σ2
), 

where 𝑥 >  0, μ ∈ 𝑅, and σ >  0. The mean of 𝑋 is  
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E(𝑋) = ∫
1

σ√2π

∞

0

exp(−
(ln 𝑥 − μ)2

2σ2
)𝑑𝑥 

and the variance of 𝑋 is  

Var(𝑋) = (𝑒σ
2
− 1)𝑒2μ+σ

2
. 

As shown in Klugman et al. [13], the maximum likelihood estimators of μ and σ2 are   

μ̂ =
1

𝑛
∑ln 𝑥𝑖

𝑛

𝑖=1

, 

𝜎2̂ =
∑ (ln 𝑥𝑖 − 𝜇̂)

2𝑛
𝑖=1

𝑛
. 

2.4 Peaks over Threshold 

Peaks over threshold (POT) builds a model based on a specified threshold. The POT model can only 

model data that exceeds the threshold. Therefore, if the losses borne by the insurance company exceed the 

threshold, the losses will be modeled using POT. In its application, the POT model utilizes all available data 

[14]. Let the random variables 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, … , 𝑿𝒏 represent the data indicating the number of deaths. Let 𝒖 be 

the threshold value, so there is a random variable 𝒀 =  𝑿 −  𝒖 representing the excess loss. The random 

variable 𝒀 represents the payment amount that follows a generalized Pareto distribution. The cumulative 

distribution function (cdf) of 𝒀 is 

𝑭(𝒚) = 𝑷(𝑿 − 𝒖 ≤ 𝒚 ∣∣ 𝑿 > 𝒖 ) =
𝑭(𝒚 + 𝒖) − 𝑭(𝒖)

𝟏 − 𝑭(𝒖)
, (𝟏) 

for 𝒖 >  𝟎 and 𝒚 > 𝟎. By letting 𝒙 =  𝒚 +  𝒖, (1) can be written as 

𝑭(𝒙 − 𝒖) =
𝑭(𝒙) − 𝑭(𝒖)

𝟏 − 𝑭(𝒖)
 , 

which yields 

𝑭(𝒙) = 𝑭(𝒙 − 𝒖)(𝟏 − 𝑭(𝒖)) + 𝑭(𝒖)

=

{
 
 

 
 
(𝟏 − 𝑭(𝒖)) (𝟏 − (𝟏 +  𝝃

𝒙 − 𝒖

𝝈
))

−
𝟏
𝝃

+  𝑭(𝒖), if 𝒙 ≥ 𝟎,  𝝈 > 𝟎,  𝝃 ≠ 𝟎;

(𝟏 − 𝑭(𝒖)) (𝟏 − 𝒆−
𝒙−𝒖
𝝈 )

−
𝟏
𝝃
+  𝑭(𝒖), if 𝒙 ≥ 𝟎,  𝝈 > 𝟎,  𝝃 = 𝟎.

  

2.5 Standard Deviation Principle 

The standard deviation principle equation is  

𝑉 = E(𝑍) + ρ√Var(𝑍), 

where 𝑍 represents the total amount of claims that must be paid by the reinsurance company to the insurance 

company due to the occurring disaster, E(𝑍) represents the pure premium that must be paid, and ρ√Var(𝑍) 
represents the loading factor required for the claims process. The value of ρ typically ranges from 0.1 ≤ ρ ≤
0.5 [6]. 

2.6 Kolmogorov-Smirnov Test 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample of size n with an unknown distribution function denoted as 

𝐹𝑋
∗(𝑥). Then, let 𝐹𝑋̂(𝑥) be the empirical distribution function of the data, and 𝐹𝑋(𝑥) be a model distribution 

that is hypothesized to fit the data distribution. The hypotheses to be tested [13] are: 

𝐻0: 𝐹𝑋
∗(𝑥) = 𝐹𝑋(𝑥); 

𝐻1: 𝐹𝑋
∗(𝑥) ≠ 𝐹𝑋(𝑥). 
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If 𝐻0 is accepted, it means the data comes from the distribution 𝐹𝑋(𝑥). Conversely, if 𝐻0 is rejected, it 

means the data does not come from the distribution 𝐹𝑋(𝑥). Define a test statistic 𝐷 as the maximum difference 

between 𝐹𝑋̂(𝑥) and 𝐹𝑋(𝑥) which is 

𝐷 = max
𝑥
|𝐹𝑋(𝑥) − 𝐹𝑋̂(𝑥)|. 

Define a significance level denoted by α, which is the probability of rejecting 𝐻0 when 𝐻0 is true, and 

the p-value is the minimum α value for which 𝐻0 is rejected. The approximate p-value of 𝐷 can be obtained 

from Kolmogorov-Smirnov critical values tables, or the exact value can be obtained using RStudio software. 

If the p-value > 𝛼, then 𝐻0 is accepted, whereas if the p-value ≤ 𝛼, then 𝐻0 is rejected. 

3. RESULTS AND DISCUSSION 

3.1 Premium Determination Model 

Let the random variable 𝑁(𝑡) denote the number of natural disaster events at time 𝑡 years. The random 

variable 𝑁(𝑡) follows a Poisson distribution with an event rate per unit time of λ, denoted as 𝑁(𝑡) ∼
𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ). Let the random variable 𝑋𝑖 denote the number of people who died in the 𝑖-th disaster and the 

random variable 𝑊𝑖 denote the number of houses damaged in the 𝑖-th disaster. The value 𝑑 is the retention of 

the insurance company for the risk of the number of deaths, the value 𝑟 is the retention of the insurance 

company for the risk of the number of houses damaged, the value 𝑐1 is the claim coefficient per one death, 

the value 𝑐2 is the claim coefficient per one house damaged, and 𝑁(𝑡) denotes the number of natural disaster 

events at time 𝑡 years. The total claim in determining the reinsurance premium considering two risks is 

denoted as 𝑍. The random variable 𝑍 is defined as 

𝑍 = ∑(𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+

𝑁(𝑡)

𝑖=1

 

with (𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+ = 𝑚𝑎𝑥{𝑐1
(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟), 0}. We assume that the random 

variables 𝑋𝑖 and 𝑊𝑖 are independent. The expectation of Z is determined as follows: 

E(𝑍) = E(∑(𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+

𝑁(𝑡)

𝑖=1

) = E(E (∑ (𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+
𝑁(𝑡)
𝑖=1 |𝑁(𝑡)))

= E(𝑁(𝑡))E ((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+)

= λ (E((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+|𝑋𝑖 > 𝑑,𝑊𝑖 > 𝑟)𝑃(𝑋𝑖 > 𝑑)𝑃(𝑊𝑖 > 𝑟)

+ E ((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+|𝑋𝑖 > 𝑑,𝑊𝑖 > 𝑟)𝑃(𝑋𝑖 < 𝑑)𝑃(𝑊𝑖 < 𝑟))

= λE ((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+|𝑋𝑖 > 𝑑,𝑊𝑖 > 𝑟)𝑃(𝑋𝑖 > 𝑑)𝑃(𝑊𝑖 > 𝑟)

= λ(𝑐1𝐸((𝑋𝑖 − 𝑑)+|𝑋𝑖 > 𝑑)𝑃(𝑋𝑖 > 𝑑) + 𝑐2𝐸((𝑊𝑖 − 𝑟)+|𝑊𝑖 > 𝑟)𝑃(𝑊𝑖 > 𝑟)). 

Furthermore, the variance of Z is determined as follows: 

Var(𝑍) = Var(∑(𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+

𝑁(𝑡)

𝑖=1

) 

= E(Var (∑ (𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+
𝑁(𝑡)
𝑖=1 |𝑁(𝑡)))     

+ Var (E(∑ (𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+
𝑁(𝑡)
𝑖=1 |𝑁(𝑡))) 

= E(𝑁(𝑡))Var ((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+) + Var(𝑁
(𝑡))E2 ((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+) 
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= λ(Var ((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+) + E
2 ((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+))  

 =  λ (𝐸 (((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+)
2
 ) − E2 ((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+)

+ E2 ((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+) ) 

=  λE (((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+)
2
 ) 

=  λE(((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+)
2
|𝑋𝑖 > 𝑑,𝑊𝑖 > 𝑟)𝑃(𝑋𝑖 > 𝑑)𝑃(𝑊𝑖 > 𝑟)

+ λE (((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+)
2
|𝑋𝑖 > 𝑑,𝑊𝑖 > 𝑟)𝑃(𝑋𝑖 < 𝑑)𝑃(𝑊𝑖 < 𝑟) 

= λE (((𝑐1(𝑋𝑖 − 𝑑) + 𝑐2(𝑊𝑖 − 𝑟))+)
2
|𝑋𝑖 > 𝑑,𝑊𝑖 > 𝑟)𝑃(𝑋𝑖 > 𝑑)𝑃(𝑊𝑖 > 𝑟) 

= λ(𝑐1
2E(((𝑋𝑖 − 𝑑)+)

2|𝑋𝑖 > 𝑑)𝑃(𝑋𝑖 > 𝑑) + 𝑐2
2E(((𝑊𝑖 − 𝑟)+)

2|𝑊𝑖 > 𝑟)𝑃(𝑊𝑖 > 𝑟)) . 

Therefore, the premium determination model is 

𝑉 = λ(𝑐1𝐸((𝑋𝑖 − 𝑑)+|𝑋𝑖 > 𝑑)𝑃(𝑋𝑖 > 𝑑) + 𝑐2𝐸((𝑊𝑖 − 𝑟)+|𝑊𝑖 > 𝑟)𝑃(𝑊𝑖 > 𝑟)  

+ρ√λ(𝑐1
2E(((𝑋𝑖 − 𝑑)+)

2|𝑋𝑖 > 𝑑)𝑃(𝑋𝑖 > 𝑑) + 𝑐2
2E(((𝑊𝑖 − 𝑟)+)

2|𝑊𝑖 > 𝑟)𝑃(𝑊𝑖 > 𝑟)). (2) 

In the reinsurance premium determination model considering two risks, there are two threshold values: 

𝑢𝑋 as the threshold value for the risk of the number of deaths and 𝑢𝑊 as the threshold value for the risk of 

the number of houses damaged. However, the relationship between 𝑢𝑋 and 𝑑, as well as 𝑢𝑊 and 𝑟, cannot be 

determined in practice. There are three cases that can occur in the relationship between 𝑢𝑋 and 𝑑, namely: 

1. Case 1a: 𝑢𝑋 = 𝑑;  

2. Case 2a: 𝑢𝑋 < 𝑑; 

3. Case 3a: 𝑢𝑋 > 𝑑. 

The formulas for determining the reinsurance premium for these cases are described below. 

1. Case 1a: 𝑢𝑋 = 𝑑 

This case occurs when the threshold of the reinsurance company and the retention of the insurance 

company are the same for the risk of the number of deaths. Note that 

E((𝑋𝑖 − 𝑑)+|𝑋𝑖 > 𝑑) = ∫ (𝑥 − 𝑑)
𝑓(𝑥)

𝑃(𝑋𝑖 > 𝑑)

∞

𝑑

𝑑𝑥 = ∫ 𝑡
∞

0

𝑓(𝑡 + 𝑑)

1 − 𝑃(𝑋𝑖 < 𝑑)
𝑑𝑡  

= ∫ 𝑡
∞

0

𝑓(𝑡 + 𝑢𝑋)

1 − 𝑃(𝑋𝑖 < 𝑢𝑋)
𝑑𝑡 = ∫ 𝑡

∞

0

𝑓𝑢𝑋(𝑡)𝑑𝑡 =
𝜎𝑋

1 − 𝜉𝑋
 

E(((𝑋𝑖 − 𝑑)+)
2|𝑋𝑖 > 𝑑) = ∫ (𝑥 − 𝑑)2

𝑓(𝑥)

𝑃(𝑋𝑖 > 𝑑)

∞

𝑑

𝑑𝑥 = ∫ 𝑡2
𝑓(𝑡 + 𝑑)

1 − 𝑃(𝑋𝑖 < 𝑑)

∞

0

 𝑑𝑡

= ∫ 𝑡2
𝑓(𝑡 + 𝑢𝑋)

1 − 𝑃(𝑋𝑖 < 𝑢𝑋)

∞

0

 𝑑𝑡 = ∫ 𝑡2𝑓𝑢𝑋(𝑡)
∞

0

 𝑑𝑡 =
2σ𝑋

2

(1 − ξ𝑋)(1 − 2ξ𝑋)
. 

Let 𝑛 denote the sample size. Let 𝑛𝑢𝑋 denote the sample size that exceeds 𝑑. Thus, it can be 

written that 𝑃(𝑋𝑖 > 𝑑) =
𝑛𝑢𝑋
𝑛
. 

2. Case 2a: 𝑢𝑋 < 𝑑  

This case occurs when the threshold of the reinsurance company is lower than the retention of the 

insurance company for the risk of the number of deaths. Based on the theorem in [15]-[16], when 

the value of 𝑑 > 0 is very large, the excess distribution of the generalized Pareto distribution can 

be approximated by its own distribution, so 𝐹𝑑(𝑡) = 𝐺𝜉𝑋,𝜎𝑋+𝜉𝑋(𝑑−𝑢𝑋)(𝑡). Note that 

E((𝑋𝑖 − 𝑑)+|𝑋𝑖 > 𝑑) = ∫ (𝑥 − 𝑑)
𝑓(𝑥)

𝑃(𝑋𝑖 > 𝑑)

∞

𝑑

𝑑𝑥 = ∫ 𝑡
∞

0

𝑓(𝑡 + 𝑑)

1 − 𝑃(𝑋𝑖 < 𝑑)
𝑑𝑡 
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= ∫ 𝑡
∞

0

𝑓𝑑(𝑡) 𝑑𝑡 =
σ𝑋 + ξ𝑋(𝑑 − 𝑢𝑋)

1 − ξ𝑋
, 

E(((𝑋𝑖 − 𝑑)+)
2|𝑋𝑖 > 𝑑) = ∫ (𝑥 − 𝑑)2

𝑓(𝑥)

𝑃(𝑋𝑖 > 𝑑)

∞

𝑑

 𝑑𝑥 = ∫ 𝑡2
𝑓(𝑡 + 𝑑)

1 − 𝑃(𝑋𝑖 < 𝑑)

∞

𝑑

 𝑑𝑡

= ∫ 𝑡2
𝑓(𝑡 + 𝑢𝑋)

1 − 𝑃(𝑋𝑖 < 𝑢𝑋)

∞

𝑑

 𝑑𝑡 = ∫ 𝑡2𝑓𝑢𝑋(𝑡)
∞

0

 𝑑𝑡 =
2(σ𝑋 + ξ𝑋(𝑑 − 𝑢𝑋))

2

(1 − ξ𝑋)(1 − 2ξ𝑋)
. 

In this case, the probability of the sample size exceeding the threshold can be written as follows 

𝑃(𝑋𝑖 > 𝑑) = 𝑃(𝑋𝑖 > 𝑑|𝑋𝑖 > 𝑢𝑋)𝑃(𝑋𝑖 > 𝑢𝑋) = (1 − 𝑃(𝑋𝑖 < 𝑑|𝑋𝑖 > 𝑢𝑋))𝑃(𝑋𝑖 > 𝑢𝑋)

= (1 −
𝐹(𝑑) − 𝐹(𝑢𝑋)

1 − 𝐹(𝑢𝑋)
) (1 − 𝐹(𝑢𝑋)). 

3. Case 3a: 𝑢𝑋 > 𝑑  

This case occurs when the threshold of the reinsurance company is higher than the retention of 

the insurance company for the risk of the number of deaths. When the threshold is higher than the 

retention, the POT model cannot detect the data. Therefore, the loss amount must be estimated 

with another distribution.  According to [17]-[22] the distribution that can be used to approximate 

disaster loss data well is the lognormal distribution. Therefore, the lognormal distribution is used 

to estimate the loss amount. Note that 

E(((𝑋𝑖 − 𝑑)+)
2|𝑋𝑖 > 𝑑) = ∫ (𝑥 − 𝑑)2

𝑓(𝑥)

𝑃(𝑋𝑖 > 𝑑)

∞

𝑑

 𝑑𝑥 

=
1

1 − 𝐹(𝑑)
(∫ (𝑥 − 𝑑)2𝑓(𝑥)

𝑢𝑋

𝑑

 𝑑𝑥 + ∫ ((𝑥 − 𝑢𝑋) + (𝑥 − 𝑑))
2

∞

𝑢𝑋

𝑓(𝑥) 𝑑𝑥) . 

Let 𝐽1 = ∫ (𝑥 − 𝑑)2𝑓(𝑥)
𝑢𝑋
𝑑

 𝑑𝑥 and 𝐽2 = ∫ ((𝑥 − 𝑢𝑋) + (𝑥 − 𝑑))
2∞

𝑢𝑋
𝑓(𝑥) 𝑑𝑥. Note that  𝐽1 =

∫ (𝑥 − 𝑑)2𝑓(𝑥)
𝑢𝑋
𝑑

 𝑑𝑥 = ∫ 𝑥2𝑓(𝑥)
𝑢𝑋
𝑑

 𝑑𝑥 − 2𝑑 ∫ 𝑥
𝑢𝑋
𝑑

𝑓(𝑥) 𝑑𝑥 + 𝑑2 ∫ 𝑓(𝑥) 𝑑𝑥.
𝑢𝑋
𝑑

 Then 

∫ 𝑥2𝑓(𝑥)
𝑢𝑋

𝑑

 𝑑𝑥 = ∫ 𝑥2
1

𝑥σ𝑋√2π

𝑢𝑋

𝑑

exp (−
(ln 𝑥 − μ𝑋)

2

2σ𝑋
2 )  𝑑𝑥

=
1

σ𝑋√2π
∫ exp (−

1

2
𝑦2)σ𝑋 exp(2μ𝑋 + 2σ𝑋𝑦)  𝑑𝑦

ln𝑢𝑋−μ𝑋
σ𝑋

ln𝑑−μ𝑋
σ𝑋

= exp(2μ𝑋 + 2σ𝑋
2)∫

1

√2π

ln𝑢𝑋−μ𝑋
σ𝑋

ln𝑑−μ𝑋
σ𝑋

exp (−
1

2
(𝑦 − 2σ𝑋)

2)  𝑑𝑦

= exp(2μ𝑋 + 2σ𝑋
2) (ϕ(

𝑦 − 2σ𝑋
1

) |ln 𝑑−μ𝑋
σ𝑋

ln𝑢𝑋−μ𝑋
σ𝑋 )

= exp(2μ𝑋 + 2σ𝑋
2) (ϕ(

ln𝑢𝑋 − μ𝑋 − 2σ
2

σ𝑋
) − ϕ(

ln𝑑 − μ𝑋 − 2σ
2

σ𝑋
)) . 

Using a similar approach, it is obtained that 

∫ 𝑥𝑓(𝑥)
𝑢𝑋

𝑑

 𝑑𝑥 = ∫ 𝑥
𝑢𝑋

𝑑

1

𝑥𝜎𝑋√2𝜋
exp (−

(ln 𝑥 − 𝜇𝑋)
2

2𝜎𝑋
2 )  𝑑𝑥

= exp (μ𝑋 +
1

2
σ𝑋
2)(ϕ(

ln𝑢𝑋 − μ𝑋 − σ
2

σ𝑋
) − ϕ(

ln𝑑 − μ𝑋 − σ
2

σ𝑋
)), 

∫ 𝑓(𝑥)
𝑢𝑋

𝑑

 𝑑𝑥 = ∫
1

𝑥σ𝑋√2π
exp(−

(ln 𝑥 − μ𝑋)
2

2σ𝑋
2 )  𝑑𝑥

𝑢𝑋

𝑑

= ϕ(
ln𝑢𝑋 − μ𝑋

σ𝑋
) − ϕ(

ln𝑑 − μ𝑋
σ𝑋

). 

Therefore, 
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𝐽1 = exp(2μ𝑋 + 2σ𝑋
2) (ϕ(

ln 𝑢𝑋 − μ𝑋 − 2σ
2

σ𝑋
) − ϕ(

ln𝑑 − μ𝑋 − 2σ
2

σ𝑋
))

− 2𝑑 exp (μ𝑋 +
1

2
σ𝑋
2) (ϕ(

ln𝑢𝑋 − μ𝑋 − σ
2

σ𝑋
) − ϕ(

ln𝑑 − μ𝑋 − σ
2

σ𝑋
))

+ 𝑑2 (ϕ(
ln 𝑢𝑋 − μ𝑋

σ𝑋
) − ϕ(

ln𝑑 − μ𝑋
σ𝑋

)) . 

Also note that 

    𝐽2 = ∫ ((𝑥 − 𝑢𝑋) + (𝑢𝑋 − 𝑑))
2∞

𝑢𝑋
𝑓(𝑥) 𝑑𝑥 

= ∫ (𝑥 − 𝑢𝑋)
2𝑓(𝑥)

∞

𝑢𝑋

 𝑑𝑥 + 2(𝑢𝑋 − 𝑑)∫ (𝑥 − 𝑢𝑋)𝑓(𝑥)
∞

𝑢𝑋

 𝑑𝑥 + (𝑢𝑋 − 𝑑)
2∫ 𝑓(𝑥)

∞

𝑢𝑋

 𝑑𝑥 

                     = (1 − 𝐹(𝑢𝑋))∫ 𝑧2
𝑓(𝑡 + 𝑢𝑋)

1 − 𝐹(𝑢𝑋)

∞

0

 𝑑𝑡 + 2(𝑢𝑋 − 𝑑)(1 − 𝐹(𝑢𝑋))∫ 𝑡
∞

0

𝑓(𝑡 + 𝑢𝑋)

1 − 𝐹(𝑢𝑋)
 𝑑𝑡

+ (𝑢𝑋 − 𝑑)
2(1 − 𝐹(𝑢𝑋)) 

        = (1 − 𝐹(𝑢𝑋)) (
2σ𝑋

2

(1−ξ𝑋)(1−2ξ𝑋)
+ 2(𝑢𝑋 − 𝑑)

σ𝑋

1−ξ𝑋
+ (𝑢𝑋 − 𝑑)

2) . 

 

Therefore, 

E(((𝑋𝑖 − 𝑑)+)
2|𝑋𝑖 > 𝑑)

=
1

1 − 𝑃(𝑋𝑖 < 𝑑)
(exp(2μ𝑋 + 2σ𝑋

2) (ϕ(
ln𝑢𝑋 − μ𝑋 − 2σ

2

σ𝑋
)

− ϕ(
ln𝑑 − μ𝑋 − 2σ

2

σ𝑋
))

− 2exp (μ𝑋 +
1

2
σ𝑋
2) (ϕ(

ln𝑢𝑋 − μ𝑋 − σ
2

σ𝑋
) − ϕ(

ln𝑑 − μ𝑋 − σ
2

σ𝑋
))

+ 𝑑2 (ϕ(
ln𝑢𝑋 − μ𝑋

σ𝑋
) − ϕ(

ln𝑑 − μ𝑋
σ𝑋

))

+ (1 − 𝐹(𝑢𝑋)) (
2σ𝑋

2

(1 − ξ𝑋)(1 − 2ξ𝑋)
+ 2(𝑢𝑋 − 𝑑)

σ𝑋
1 − ξ𝑋

+ (𝑢𝑋 − 𝑑)
2)). 

Using a similar method, it is obtained that 

E((𝑋𝑖 − 𝑑)+|𝑋𝑖 > 𝑑) =
𝐽1 + 𝐽2

1 − 𝑃(𝑋𝑖 < 𝑑)

=
1

1 − 𝑃(𝑋𝑖 < 𝑑)
(∫ (𝑥 − 𝑑)𝑓(𝑥)

𝑢𝑋

𝑑

 𝑑𝑥

+ ∫ ((𝑥 − 𝑢𝑋) + (𝑢𝑋 − 𝑑))𝑓(𝑥)
∞

𝑢𝑋

 𝑑𝑥) 
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=
1

1 − 𝑃(𝑋𝑖 < 𝑑)
(exp (μ𝑋 +

1

2
σ𝑋
2) (ϕ(

ln𝑢𝑋 − μ𝑋 − σ𝑋
2

σ𝑋
) − ϕ(

ln𝑑 − μ𝑋 − σ𝑋
2

σ𝑋
))

− 𝑑 (ϕ(
ln 𝑢𝑋 − μ𝑋

σ𝑋
) − ϕ(

ln𝑑 − μ𝑋
σ𝑋

))

+ (1 − 𝐹(𝑢𝑋)) (
σ𝑋

1 − ξ𝑋
+ (𝑢𝑋 − 𝑑))). 

The probability for the sample size exceeding the retention 𝑑 can be written as 𝑃(𝑋𝑖 > 𝑑) = 1 −
𝐹(𝑑), where 𝐹(𝑑) follows a lognormal distribution with parameters μ and σ. The probability for 

the sample size exceeding the threshold 𝑢𝑋 can be written as 𝑃(𝑋𝑖 > 𝑢𝑋) = 1 − 𝐹(𝑢𝑋) =
𝑛𝑢𝑋
𝑛

.  

Using a similar approach to the previous three cases, the expectation calculations for these cases are 

obtained. 

1. Case 1b: 𝑢𝑊 = 𝑟 

This case occurs when the threshold of the reinsurance company and the retention of the insurance 

company are the same for the risk of the number of houses damaged. Note that 

E((𝑊𝑖 − 𝑟)+|𝑊𝑖 > 𝑟) =
σ𝑊

1 − ξ𝑊
, 

E((Wi − r)+)
2|Wi > r) =

2σW
2

(1 − ξW)(1 − 2ξW)
, 

𝑃(𝑊𝑖 > 𝑟) =
𝑛𝑢𝑊
𝑛
. 

2. Case 2b: 𝑢𝑊 < 𝑟 

This case occurs when the threshold of the reinsurance company is lower than the retention of the 

insurance company for the risk of the number of houses damaged. Note that  

E((𝑊𝑖 − 𝑟)+|𝑊𝑖 > 𝑟) = E(𝑊) =
σ𝑊 + ξ𝑊(𝑟 − 𝑢𝑊)

1 − ξ𝑊
, 

E((𝑊𝑖 − 𝑟)+)
2|𝑊𝑖 > 𝑟) =

2(σ𝑊 + ξ𝑊(𝑟 − 𝑢𝑊))
2

(1 − ξ𝑊)(1 − 2ξ𝑊)
, 

𝑃(𝑊𝑖 > 𝑟) = (1 −
𝐹(𝑟) − 𝐹(𝑢𝑊)

1 − 𝐹(𝑢𝑊)
) (1 − 𝐹(𝑢𝑊)). 

3. Case 3b: 𝑢𝑊 > 𝑟 

This case occurs when the threshold of the reinsurance company is higher than the retention of 

the insurance company for the risk of the number of houses damaged. Note that   
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E(((𝑊𝑖 − 𝑟)+)
2|𝑊𝑖 > 𝑟)

=
1

1 − 𝑃(𝑊𝑖 < 𝑟)
(exp(2𝜇𝑊 + 2𝜎𝑊

2 ) (𝜙(
ln𝑢𝑊 − 𝜇𝑊 − 2𝜎𝑊

2

𝜎𝑊
)

− 𝜙(
ln 𝑟 − 𝜇𝑊 − 2𝜎𝑊

2

𝜎𝑊
))

− 2𝑟 exp (𝜇𝑊 +
1

2
𝜎𝑊
2 )(𝜙 (

ln𝑢𝑊 − 𝜇𝑊 − 𝜎𝑊
2

𝜎𝑊
) − 𝜙(

ln 𝑟 − 𝜇𝑊 − 𝜎𝑊
2

𝜎𝑊
))

+ 𝑟2 (𝜙 (
ln𝑢𝑊 − 𝜇𝑊

𝜎𝑊
) − 𝜙 (

ln 𝑟 − 𝜇𝑊
𝜎𝑊

))

+ (1 − 𝐹(𝑢𝑊)) (
2𝜎𝑊

2

(1 − 𝜉𝑊)(1 − 2𝜉𝑊)
+ 2(𝑢𝑊 − 𝑟)

𝜎𝑊
1 − 𝜉𝑊

+ (𝑢𝑊 − 𝑟)
2)), 

E((𝑊𝑖 − 𝑟)+|𝑊𝑖 > 𝑟)

=
1

1 − 𝑃(𝑊𝑖 < 𝑟)
(exp(μ𝑊 +

1

2
σ𝑊
2 )(ϕ(

ln𝑢𝑊 − μ𝑊 − σ𝑊
2

σ𝑊

−ϕ(
ln 𝑟 − μ𝑊 − σ𝑊

2

σ𝑊
)) − 𝑟(ϕ(

ln 𝑢𝑊 − μ𝑊
σ𝑊

) − ϕ(
ln 𝑟 − μ𝑊
σ𝑊

))

+ (1 − 𝐹(𝑢𝑊)) (
σ𝑊

1 − ξ𝑊
+ (𝑢𝑊 − 𝑟))). 

Additionally, the probability for the sample size exceeding the retention 𝑟 can be written as 

𝑃(𝑊𝑖 > 𝑟) = 1 − 𝐹(𝑟), where 𝐹(𝑟) follows a lognormal distribution with parameters 𝜇𝑊 and 

𝜎𝑊. The probability for the sample size exceeding the threshold 𝑢𝑊 can be written as 

𝑃(𝑊𝑖 > 𝑢𝑊) = 1 − 𝐹(𝑢𝑊) =
𝑛𝑢𝑊
𝑛
. 

Combination of these two retentions results in nine types of cases, namely:  

1. Case 1: 𝑢𝑋 = 𝑑 and 𝑢𝑊 = 𝑟; 

2. Case 2: 𝑢𝑋 = 𝑑 and 𝑢𝑊 < 𝑟;  

3. Case 3: 𝑢𝑋 = 𝑑 and 𝑢𝑊 > 𝑟;  

4. Case 4: 𝑢𝑋 < 𝑑 and 𝑢𝑊 = 𝑟;  

5. Case 5: 𝑢𝑋 < 𝑑 and 𝑢𝑊 < 𝑟;  

6. Case 6: 𝑢𝑋 < 𝑑 and 𝑢𝑊 > 𝑟; 

7. Case 7: 𝑢𝑋 > 𝑑 and 𝑢𝑊 = 𝑟;  

8. Case 8: 𝑢𝑋 > 𝑑 and 𝑢𝑊 < 𝑟; 

9. Case 9: 𝑢𝑋 > 𝑑 and 𝑢𝑊 > 𝑟. 

By substituting each expectation, second moment, and probability obtained according to the type of 

case into Eq. (2), a premium determination model for nine different cases can be obtained. 

3.2 Generating Data 

The frequency data of flood disasters, the number of deaths, and the number of houses damaged due 

to floods in Indonesia cannot be obtained completely. Therefore, synthetic data is used for the simulation. 

This synthetic data is generated using RStudio software. The flood disaster frequency data over 20 years 

(𝒏 = 𝟐𝟎) is assumed to follow a Poisson distribution with parameter 𝛌, the number of deaths is assumed to 

follow a generalized Pareto distribution with parameters 𝛔𝑿 and 𝛏𝑿, and the number of houses damaged is 

assumed to follow a generalized Pareto distribution with parameters 𝛔𝑾 and 𝛏𝑾.  

The flood disaster frequency data over 20 years is generated with 𝛌 = 𝟐𝟓𝟎. This data is assumed to 

represent the number of flood disasters occurring throughout Indonesia. The chosen value of 𝛌 = 𝟐𝟓𝟎 is 
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obtained by calculating the average from the flood disaster frequency data obtained from the National 

Disaster Management Agency (BNPB) [21]. The generated data is shown in Fig. 1. 

 
Figure 1. Bar Chart of Flood Disaster Frequency Over 20 Years 

The data on the number of deaths is generated, assumed to follow a generalized Pareto distribution 

with parameters 𝛔𝑿 and 𝛏𝑿, and the data on the number of houses damaged is generated, assumed to follow 

a generalized Pareto distribution with parameters 𝛔𝑾 and 𝛏𝑾. The data on the number of deaths is generated 

with 𝛔𝑿 = 𝟓𝟑. 𝟕𝟎𝟒 and 𝛏𝑿 = 𝟎. 𝟐𝟎𝟖, while the data on the number of houses damaged is generated with 

𝛔𝑾 = 𝟑𝟑𝟕𝟓. 𝟑𝟔𝟕 and 𝛏𝑾 = 𝟎. 𝟎𝟕𝟔. These parameter values are chosen following the parameter values 

obtained in [11]. After the data is generated, the data is randomly divided according to the flood disaster 

frequency per year. Fig. 2 (a) shows the number of deaths per year due to floods, and Fig. 2 (b) shows the 

number of houses damaged per year due to floods. 

 
(a) 

 
(b) 

Figure 2. Bar Chart Showing the Annual Impact of Floods Over a 20-year Period 

(a) Number of Deaths, (b) Number of Houses Damaged 

3.3 Simulation Data Processing 

The frequency of disaster events is modeled using a Poisson distribution with an event rate per unit 

time of λ. Therefore, the Poisson parameter is estimated from the flood disaster frequency data that has been 

generated. The parameter λ is estimated using the maximum likelihood method with the help of RStudio 

software. The parameter estimation result is λ̂ = 249. 
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Goodness-of-fit test is conducted between the empirical flood disaster frequency data and the model, 

which is the Poisson distribution, using the Kolmogorov-Smirnov test. The α value used is 5%. With RStudio, 

a p-value of 0.9807 is obtained. It indicates that there is a fit between the empirical data and the model. Also, 

Fig. 3 shows that there is a fit between the quantiles of the flood disaster frequency data and the Poisson 

distribution, indicating that the flood disaster frequency data follows a Poisson distribution. 

 
Figure 3. QQ-plot of Empirical Data Against the Poisson Distribution Model 

For premium determination in cases where the reinsurance company's threshold is equal to the 

insurance company's retention and cases where the reinsurance company's threshold is lower than the 

insurance company's retention, the generalized Pareto distribution approach is used. For premium 

determination in cases where the reinsurance company's threshold is higher than the insurance company's 

retention, the lognormal distribution approach is used. This applies to both types of risks, namely the risk of 

the number of deaths and the number of houses damaged. Using RStudio software, the parameter estimation 

results are obtained using the maximum likelihood method, as shown in Tables 1 and 2. 

Table 1. Parameter Estimation Results for Generalized Pareto and Lognormal Distributions for the Number of Deaths 

Distribution Generalized Pareto Lognormal 

Parameter 
σ𝑋̂ = 54.07 μ𝑋̂ = 3.57 

ξ𝑋̂ = 0.24 σ𝑋̂ = 1.29 

 

Table 2. Parameter Estimation Results for Generalized Pareto and Lognormal Distributions for the Number of Houses 

Damaged 

Distribution Generalized Pareto Lognormal 

Parameter 
σŴ = 3,334.05 μŴ = 7.59 

ξŴ = 0.11 σŴ = 1.33 

The data on the number of deaths and the number of houses damaged due to floods fits the pdf of the 

generalized Pareto distribution. This fit can be shown by the histograms in Fig. 4. 

 
 (a) 
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(b) 

Figure 4. Histogram Illustrating the Distribution of Flood Impacts  

(a) Number of Deaths, (b) Number of Houses Damaged 

The data on the number of deaths and the number of houses damaged are heavy-tailed and skewed to 

the right. This is supported by the kurtosis and skewness of each data set. The data on the number of deaths 

has a kurtosis of 79 and a skewness of 6, while the data on the number of houses damaged has a kurtosis of 

29 and a skewness of 3. Data with heavy tails is characteristic of data that follows a generalized Pareto 

distribution. 

Goodness-of-fit test is conducted between the data on the number of deaths following a generalized 

Pareto distribution and the model from the parameter estimation results using the Kolmogorov-Smirnov test. 

Using RStudio software, a p-value of 0.2185 is obtained at α = 0.05. This indicates that there is a fit between 

the empirical data and the model. Applying a similar method to the data on the number of houses damaged, 

a p-value of 0.9858 is obtained at α = 0.05. This indicates that there is a fit between the empirical data and 

the model. The QQ-plot images are shown in Fig. 5. It can be concluded that the data on the number of deaths 

and the data on the number of houses damaged follow a generalized Pareto distribution. 

 
(a) 

 

(b) 

Figure 5. QQ-plots for Flood Impacts  

(a) QQ-plot for the Number of Deaths, (b) QQ-plot for the Number of Houses Damaged 
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3.4 Threshold Selection 

The kurtosis of the data on the number of deaths is 79 and the data on the number of houses damaged 

is 29. This indicates that the data has extreme values. Then, the percentage method [14] is used. According 

to [22], the appropriate value of 𝒎 for determining the threshold is 10%. Therefore, it can be written that 

𝒏𝒖𝑿 = 𝒏𝒖𝑾 = 𝟏𝟎%× 𝟒, 𝟗𝟕𝟏 = 𝟒𝟗𝟕. 𝟏 ≈ 𝟒𝟗𝟕, where 𝒏𝒖𝑿 denotes the sample size exceeding 𝒅 and 𝒏𝒖𝑾 

denotes the sample size exceeding 𝒓. This means that there are 497 observations classified as extreme values 

out of the 𝟒, 𝟗𝟕𝟏 observations. Then, the threshold of the data can be determined as follows 𝒖𝑿 = 𝒖𝑾 =
𝟒𝟗𝟕 + 𝟏 = 𝟒𝟗𝟖. The data in the 498-th position, when sorted from the largest to the smallest, is the threshold 

of the data for both the number of deaths and the number of houses damaged. For the data on the number of 

deaths, the threshold is 𝒖𝑿 = 𝟏𝟔𝟐, while for the data on the number of houses damaged, the threshold is 

𝒖𝑾 = 𝟖, 𝟔𝟖𝟒. 

3.5 Determination of Premium Amount for Each Case 

The assumptions used in determining the premium amount are as follows:  

1. ρ = 0.3; 

2. 𝑐1 = Rp10,000,000 per death; 

3. 𝑐2 = Rp5,000,000 per house damaged; 

4. When 𝑢𝑋 > 𝑑, 𝑑 is assumed to be 62. When 𝑢𝑋 < 𝑑, 𝑑 is assumed to be 262; 

5. When 𝑢𝑊 > 𝑟, 𝑟 is assumed to be 7,684. When 𝑢𝑊 < 𝑟, 𝑟 is assumed to be 9,684. 

Table 3 shows the pure premium, additional premium, and reinsurance premium for each case 

described. 

Table 3. Comparison of Pure Premium, Additional Premium, and Reinsurance Premium for the Each Case 

Case Pure Premium Additional Premium Reinsurance Premium 

Case 1: 𝑢𝑋 = 𝑑 and 𝑢𝑊 = 𝑟 Rp484,105,800,000 Rp42,397,148,354 Rp526,502,948,354 

Case 2: 𝑢𝑋 = 𝑑 and 𝑢𝑊 < 𝑟 Rp403,137,972,000 Rp39,178,484,221 Rp442,316,456,221 

Case 3: 𝑢𝑋 = 𝑑 and 𝑢𝑊 > 𝑟 Rp580,598,280,000 Rp39,694,566,530 Rp620,292,846,530 

Case 4: 𝑢𝑋 < 𝑑 and 𝑢𝑊 = 𝑟 Rp476,622,852,000 Rp42,390,653,102 Rp519,013,505,102 

Case 5: 𝑢𝑋 < 𝑑 and 𝑢𝑊 < 𝑟 Rp395,655,024,000 Rp39,171,455,267 Rp434,826,479,267 

Case 6: 𝑢𝑋 < 𝑑 and 𝑢𝑊 > 𝑟 Rp573,115,332,000 Rp39,687,628,978 Rp612,802,960,978 

Case 7: 𝑢𝑋 > 𝑑 and 𝑢𝑊 = 𝑟 Rp494,720,670,000 Rp42,406,309,838 Rp537,126,979,838 

Case 8: 𝑢𝑋 > 𝑑 and 𝑢𝑊 < 𝑟 Rp413,752,842,000 Rp39,188,398,174 Rp452,941,240,174 

Case 9: 𝑢𝑋 > 𝑑 and 𝑢𝑊 > 𝑟 Rp591,213,150,000 Rp39,704,351,620 Rp630,917,501,620 

From Table 3, the pure premium amounts for the nine different cases are obtained. Cases 1, 2, and 3 

share the commonality of having the reinsurance company's threshold equal to the insurance company's 

retention 𝑑 for the risk of the number of deaths, which is 162. The highest pure premium among these three 

cases occurs in Case 3, where the insurance company has a retention 𝑟 for the risk of the number of houses 

damaged that is smaller than the reinsurance company's threshold (𝑢𝑊 > 𝑟). This is followed by Case 1, 

where the retention 𝑟 for the risk of the number of houses damaged and the reinsurance company's threshold 

are equal (𝑢𝑊 = 𝑟). The third is Case 2, where the insurance company has a retention 𝑟 for the risk of the 

number of houses damaged that is larger than the reinsurance company's threshold (𝑢𝑊 < 𝑟). 

Similarly, for Cases 4, 5, and 6, involving retention 𝑢𝑋 < 𝑑, the highest pure premium occurs in Case 

6 with retention 𝑢𝑊 > 𝑟, followed by Case 4 with retention 𝑢𝑊 = 𝑟, and Case 5 with retention 𝑢𝑊 < 𝑟. For 

Cases 7, 8, and 9, involving retention 𝑢𝑋 > 𝑑, the highest pure premium occurs in Case 9 with retention 

𝑢𝑊 > 𝑟, followed by Case 7 with retention 𝑢𝑊 = 𝑟, and Case 8 with retention 𝑢𝑊 < 𝑟. It can be seen that 

the pure premium involving retention 𝑢𝑊 > 𝑟, where the insurance company's retention 𝑟 for the risk of the 

number of houses damaged is smaller than the reinsurance company's threshold, has a higher premium 

compared to cases with retention 𝑢𝑊 = 𝑟, where the insurance company's retention 𝑟 for the risk of the 

number of houses damaged and the reinsurance company's threshold are equal, and 𝑢𝑊 < 𝑟, where the 

insurance company's retention 𝑟 for the risk of the number of houses damaged is larger than the reinsurance 

company's threshold. 

Additionally, Cases 1, 4, and 7 share the commonality of having the reinsurance company's threshold 

equal to the insurance company's retention 𝑟 for the risk of the number of houses damaged, which is 8,684. 
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The highest pure premium among these three cases occurs in Case 7, where the insurance company has a 

retention 𝑑 for the risk of the number of deaths that is smaller than the reinsurance company's threshold (𝑢𝑋 >
𝑑). This is followed by Case 1, where the retention 𝑑 for the risk of the number of deaths and the reinsurance 

company's threshold are equal (𝑢𝑋 = 𝑑). The third is Case 4, where the insurance company has a retention 𝑑 

for the risk of the number of deaths that is larger than the reinsurance company's threshold (𝑢𝑋 < 𝑑). 

The same pattern occurs for Cases 2, 5, and 8. For cases involving retention 𝑢𝑊 < 𝑟, the highest pure 

premium occurs in Case 8 with retention 𝑢𝑋 > 𝑑, followed by Case 2 with retention 𝑢𝑋 = 𝑑, and Case 5 with 

retention 𝑢𝑋 < 𝑑. For cases involving retention 𝑢𝑊 > 𝑟, namely Cases 3, 6, and 9, the highest pure premium 

occurs in Case 9 with retention 𝑢𝑋 > 𝑑, followed by Case 3 with retention 𝑢𝑋 = 𝑑, and Case 6 with retention 

𝑢𝑋 < 𝑑. It can be seen that the pure premium involving retention 𝑢𝑋 > 𝑑, where the insurance company's 

retention 𝑑 for the risk of the number of deaths is smaller than the reinsurance company's threshold, has a 

higher premium compared to cases with retention 𝑢𝑋 = 𝑑, where the insurance company's retention 𝑑 for the 

risk of the number of deaths and the reinsurance company's threshold are equal, and 𝑢𝑋 < 𝑑, where the 

insurance company's retention 𝑑 for the risk of the number of deaths is larger than the reinsurance company's 

threshold. 

When the premiums are ranked, the pure premium and reinsurance premium follow the same order. 

However, the additional premium does not follow the same order. This can occur because the determination 

of the additional premium is based on the variance value, which affects the randomness of the data. 

Additionally, it is known that the sum of the pure premium and the additional premium results in the 

reinsurance premium. From Table 3, it can be seen that the additional premium is relatively small compared 

to the pure premium, so the additional premium does not significantly impact the order of the insurance 

premiums, even though it has a different order. 

Therefore, it can be concluded that for each risk, cases involving retention values less than the threshold 

(𝑢𝑊 > 𝑟 and 𝑢𝑋 > 𝑑) result in the highest reinsurance premiums, while cases involving retention values 

greater than the threshold (𝑢𝑊 < 𝑟 and 𝑢𝑋 < 𝑑) result in the lowest reinsurance premiums. This occurs 

because when the insurance company has a retention less than the threshold, it means the insurance company's 

ability to bear the loss is small, so the reinsurance company has to bear a larger risk of loss. The larger the 

risk of loss that the reinsurance company has to bear, the higher the premium that the insured, i.e., the 

insurance company, has to pay. Conversely, when the insurance company has a retention greater than the 

threshold, it means the insurance company's ability to bear the loss is large, so the reinsurance company has 

to bear a smaller risk of loss. The smaller the risk of loss that the reinsurance company has to bear, the lower 

the premium that the insured has to pay. 

Based on Table 3, it can also be seen that the highest reinsurance premiums occur in Cases 9, 3, and 6, 

where retention 𝑢𝑊 > 𝑟 is always involved. For the fourth to sixth highest premiums, they occur in Cases 7, 

1, and 4, with retention 𝑢𝑊 = 𝑟 always involved. For the seventh to ninth highest premiums, they occur in 

Cases 8, 2, and 5, with retention 𝑢𝑊 < 𝑟 always involved. Therefore, it is concluded that the risk of the 

number of houses damaged has a greater impact compared to the risk of the number of deaths on the 

reinsurance premium amount. 

3.6 The Impact of Changes in the Percentage of Extreme Values on Reinsurance Premiums 

Table 4 shows the reinsurance premiums for Case 1, where 𝑢𝑋 = 𝑑 and 𝑢𝑊 = 𝑟, when the percentage 

of extreme values varies from 5% to 15%.  

Table 4. Reinsurance Premiums for Case 1 at Different Extreme Value Percentages 

Extreme 

Value 

Percentage 

𝒏𝒖𝑿 = 𝒏𝒖𝑾 𝒖𝑿 = 𝒖𝑾 𝒖𝑿 = 𝒅 𝒖𝑾 = 𝒓 
Reinsurance 

Premium 

Premium 

Increase 

Percentage 

Increase 

5% 249 250 241 12.048 Rp272,032,211,104   

6% 298 299 217 11.334 Rp323,304,169,900 Rp51,271,958,796 18.8% 

7% 348 349 200 10.445 Rp374,346,059,266 Rp51,041,889,366 15.8% 

8% 398 399 184 9.617 Rp425,205,802,308 Rp50,859,743,042 13.6% 

9% 447 448 173 9.090 Rp475,916,686,528 Rp50,710,884,220 11.9% 

10% 497 498 162 8.684 Rp526,502,948,354 Rp50,586,261,826 10.6% 

11% 547 548 153 8.323 Rp576,982,884,330 Rp50,479,935,976 9.6% 

12% 597 598 145 7.987 Rp627,370,709,054 Rp50,387,824,724 8.7% 
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Extreme 

Value 

Percentage 

𝒏𝒖𝑿 = 𝒏𝒖𝑾 𝒖𝑿 = 𝒖𝑾 𝒖𝑿 = 𝒅 𝒖𝑾 = 𝒓 
Reinsurance 

Premium 

Premium 

Increase 

Percentage 

Increase 

13% 646 647 140 7.624 Rp677,677,726,647 Rp50,307,017,593 8.0% 

14% 696 697 133 7.263 Rp727,913,102,447 Rp50,235,375,800 7.4% 

15% 746 747 126 6.966 Rp778,084,390,008 Rp50,171,287,561 6.9% 

From Table 4, it can be seen that the higher the percentage of extreme values selected, the higher the 

reinsurance premium for Case 1. Conversely, the lower the percentage of extreme values selected, the lower 

the reinsurance premium for Case 1. This is logical because a lower percentage of extreme values indicates 

a lower probability of extreme events, resulting in lower risk borne by the reinsurance company. 

Consequently, the premium paid is not too high. Conversely, a higher percentage of extreme values indicates 

a higher probability of extreme events, resulting in higher risk borne by the reinsurance company. Therefore, 

the premium paid by the insurance company is higher. 

 
Figure 6. Movement of Reinsurance Premiums for Case 1 with the Movement of Extreme Value Percentages 

Fig. 6 shows that the reinsurance premium for Case 1 appears to move linearly with the movement of 

the extreme value percentage. However, the movement of the reinsurance premium for Case 1 with the 

movement of the extreme value percentage is only nearly linear. Table 4 shows that the increase in 

reinsurance premiums is not the same but is in the same range, which is around Rp50,000,000,000. Table 4 

also shows that the higher the percentage of extreme values, the smaller the percentage increase in reinsurance 

premiums.  

3.7 The Impact of Changes in Risk Retention of the Number of Deaths on Reinsurance Premiums 

The threshold used in this analysis is 𝑢𝑋 = 162 and 𝑢𝑊 = 8.684, obtained by assuming 10% of the 

observations are classified as extreme values, as described in subsection 3.4. The cases discussed are cases 

involving retention 𝑢𝑊 = 𝑟 = 8.684, namely cases 1, 4, and 7. The retention value 𝑑 used in this analysis is 

162 for Case 1, while the retention value used in Case 4 is 162(1 + 10%) = 178, 162(1 + 10%)2 = 196, 

and 162(1 + 10%)3 = 216. In Case 7, the retention value used is 162(1 − 10%) = 146, 162(1 −
10%)2 = 131, and 162(1 − 10%)3 = 118. The reinsurance premiums with different retention 𝑑 values are 

shown in Table 5.  

Table 5. Reinsurance Premiums with Various Retention 𝑑 Values 

𝒊 Case Type 𝒅 Reinsurance Premium Premium Increase Percentage Increase 

1 Case 4 216 Rp 521,963,122,092   

2 Case 4 196 Rp 523,057,926,573 Rp 1,094,804,481 0.21% 

3 Case 4 178 Rp 525,486,401,164 Rp 2,428,474,591 0.46% 

4 Case 1 162 Rp 526,502,948,354 Rp 1,016,547,190 0.19% 

5 Case 7 146 Rp 531,233,404,737 Rp 4,730,456,383 0.90% 

6 Case 7 131 Rp 535,758,216,854 Rp 4,524,812,117 0.85% 

7 Case 7 118 Rp 538,268,535,043 Rp 2,510,318,189 0.47% 
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Figure 7. Movement of Retention Value 𝑑 Against Reinsurance Premiums 

From Table 5 and Figure 7, it can be concluded that the higher the retention 𝑑, the lower the reinsurance 

premium that must be paid. Conversely, the lower the retention 𝑑, the higher the reinsurance premium that 

must be paid. Table 5 shows no pattern of percentage increase in premiums due to the increase in retention 

value. 

3.8 The Impact of Changes in Risk Retention of the Number of Houses Damaged on Reinsurance 

Premiums 

The threshold used in this analysis is 𝑢𝑋 = 162 and 𝑢𝑊 = 8.684, obtained by assuming 10% of the 

observations are classified as extreme values, as described in subsection 3.4. The cases discussed are those 

involving retention 𝑢𝑋 = 𝑑 = 162, namely cases 1, 2, and 3. The retention value 𝑟 used in this analysis is 

8.684 for case 1, while the retention value used in case 2 is 8.684(1 + 10%) = 9.554, 8.684(1 + 10%)2 =
10.511, and 8.684(1 + 10%)3 = 11.586. In case 3, the retention value used is 8.684(1 − 10%) = 7.819, 

8.684(1 − 10%)2 = 7.035, and 8.684(1 − 10%)3 = 6.327. The reinsurance premiums with different 

retention 𝑟 values are shown in Table 6.  

Table 6. Reinsurance Premiums with Various Retention 𝑟 Values 

i Case Type 𝒓 Reinsurance Premium Premium Increase Percentage Increase 

1 Case 2 11.586 Rp 306,107,516,607   

2 Case 2 10.511 Rp 401,487,131,994 Rp 95,379,615,387 31.16% 

3 Case 2 9.554 Rp 440,553,563,959 Rp 39,066,431,965 9.73% 

4 Case 1 8.684 Rp 526,502,948,354 Rp 85,949,384,395 19.51% 

5 Case 3 7.819 Rp 596,104,992,754 Rp 69,602,044,400 13.22% 

6 Case 3 7.035 Rp 719,015,002,129 Rp 122,910,009,375 20.62% 

7 Case 3 6.327 Rp 795,213,182,872 Rp 76,198,180,743 10.60% 

 

 
Figure 8. Movement of Retention Value 𝑟 Against Reinsurance Premiums 

From Table 6 and Fig. 8, it can be concluded that the higher the retention 𝑟, the lower the reinsurance 

premium that must be paid. Conversely, the lower the retention 𝑟, the higher the reinsurance premium that 

must be paid. Table 6 shows no pattern of percentage increase in premiums due to the increase in retention 

value.  
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4. CONCLUSION 

Based on the author's analysis in the previous sections, the following conclusions were obtained:  

1. The risk of the number of damaged houses has a greater impact than the risk of death on the 

amount of premium that the insurance company must pay to the reinsurance company. 

Additionally, for each risk, cases involving retention values less than the threshold result in the 

highest reinsurance premiums, while cases involving retention values greater than the threshold 

result in the lowest reinsurance premiums.  

2. In cases where the threshold is equal to the retention for each risk, a low percentage of extreme 

values results in lower reinsurance premiums, while a high percentage of extreme values results 

in higher reinsurance premiums. Changes in the percentage of extreme values result in an almost 

linear change, where each 1% increase in the percentage of extreme values results in an increasein 

reinsurance premiums of approximately Rp50,000,000,000.  

3. In cases involving the threshold equal to the retention for the risk of the number of damaged 

houses, the higher the retention of the risk of death, the lower the reinsurance premium that must 

be paid. Conversely, the lower the retention of the risk of death, the higher the reinsurance 

premium that must be paid.  

4. In cases involving the threshold equal to the retention for the risk of death, the higher the retention 

of the risk of the number of damaged houses, the lower the reinsurance premium that must be 

paid. Conversely, the lower the retention of the risk of the number of damaged houses, the higher 

the reinsurance premium that must be paid. 
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