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ABSTRACT
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Article History: invertible M-matrix, then both T and I — T~ are also invertible M-matrices. We extend
Received: 16" April 2025 this implication to a broader class—inverse H-matrices. The expressions T — I and I —
Revised: 28" May 2025 T~ commonly arise in the analysis of matrix stability, convergence of iterative methods,
Accepted: 10" June 2025 and spectral transformations, making their structural properties important for numerical

Available online: I September 2025 gpalysis. We demonstrate that this implication does not generally hold for inverse H-
matrices. However, we derive some conditions under which it remains valid. Specifically,
we prove that under certain conditions, if T — I is an inverse H-matrix, then T and I —

Keywords: T~ are also inverse H-matrices. Additionally, we investigate the result in the context of
Group Inverse; group inverses, showing that it does not hold for group inverse M-matrices and H-
H-Matrix; matrices.

Inverse H-Matrix;

M-Matrix.

This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution-ShareAlike 4.0
International License (https:/creativecommons.org/licenses/by-sa/4.0/).

How to cite this article:

J. Gormantara, H. Garminia, A. K. Amir and E. Ramdan., “ON CONDITIONS FOR MATRICES T SUCH THAT T-I AND I-T"' ARE
INVERSE H-MATRICES*,” BAREKENG: J. Math. & App., vol. 19, iss. 4, pp. 2953-2962, December, 2025.

Copyright © 2025 Author(s)
Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/
Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id

Research Article -+ Open Access

2953



http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id
mailto:jerikogormantara@unhas.ac.id
mailto:https://orcid.org/0000-0001-9691-1260
mailto:garminia@itb.ac.id
mailto:https://orcid.org/0009-0001-8949-4961
mailto:amirkamir@science.unhas.ac.id
mailto:https://orcid.org/0000-0003-1539-4922
mailto:evanramdan9@gmail.com
mailto:https://orcid.org/0009-0007-2541-7207

2954 Gormantara, etal. ON CONDITIONS FOR MATRICES T SUCH THAT T-I AND I-T" ARE ...

1. INTRODUCTION

Matrix theory is central in pure and applied mathematics, with uses as varied as numerical analysis and
optimization, economics, physics, and the social sciences. Among the various classes of matrices,
nonnegative matrices (matrices whose entries are all nonnegative) are a fundamental concept. The Z-matrix
is another closely related, widely studied class, a real matrix with nonpositive off-diagonal entries. Alexander
Ostrowski formulated 1937 a significant subclass of Z-matrices known as M-matrices which have become
fundamental due to their applications. M-matrices are used in eigenvalue approximation, convergence
analysis of iterative methods for solving linear systems, Markov chain analysis, probability, and operations
research.

The M-matrix theory was extended later on to complex field matrices, leading to the definition of the
H-matrix. The new class has some beneficial properties of M-matrices and has been the focus of considerable
theoretical research. For instance, Bru (2015) analyzed classes of H-matrices and Hadamard products [1].
Zhao proposed a new subclass of the class of H-matrices in 2018 [2]. Chatterjee et al. (2019) investigated
inverse H-matrices 3], while McDonald (2020) investigated generalizations of M-matrices [4]. Chatterjee
(2021) investigated the relationship between interval H-matrices and inverse M-matrices [5], and Mondal in
2022 provided new results for inverse M-matrices and extended it to H-matrices [6]. Recently, Cvetkovié¢
(2024) and Luo (2024) investigated subclasses of H-matrices, and they also applied M-matrices to the global
exponential stability of neural networks |7], [8]. Encinas (2025) later contributed by studying the group
inverse of tridiagonal M-matrices and generalized singular M-matrix properties extended to Lyapunov and
Stein operators |9], [10]. Another study also applied M-matrices to stability analysis of a class of quaternion-
valued memristor [11], studied Riccati equations with irreducible singular M-matrices [12], and studied
nonsymmetric complex algebraic Riccati equations involving H-matrices [13]. Moreover, recent studies have
continued to expand the application of M-matrices. For example, Guo [14] examined absolute value equations
involving M-matrices and H-matrices and established conditions under which solutions exist and are unique.
Guan and Wang [15] analyzed a class of quadratic matrix equations that share structural similarities with
complementarity problems where M-matrices naturally arise. Zhong [16] derived new lower bounds for the
minimal eigenvalue of M-matrices, which is crucial for spectral analysis and matrix stability. On the H-matrix
side, Wang et al. [17] proposed improved matrix-splitting methods for solving horizontal implicit
complementarity problems, where convergence criteria rely on properties of M- and H-matrices. Nedovi¢
and Arsi¢ [18] introduced new scaling techniques to identify H-matrices, enhancing classification within
general matrix classes. Liu et al. [19] improved convergence theorems for modulus-based splitting methods,
often depending on whether the involved matrices satisfy H-matrix conditions. Ma et al. [20] developed
Newton-based iterative techniques for generalized absolute value equations, many of which can be
formulated using H-matrices. Kolotilina [21] studied the relationship between strictly diagonally dominant
matrices and nonsingular H-matrices, while Zeng et al. [22] constructed scaling matrices to characterize and
decompose S¥-SDD matrices, a subclass closely related to H-matrix structures.

Fan's result is a nicely referenced work towards this end, in which matrix inequalities with expressions
like A — I and I — A~! are investigated. Fan’s result states that if A — I is an invertible M-matrix, then A and
I — A™1 are also invertible M-matrices [23]. These expressions are important because they appear naturally
when analyzing iterative methods, stability criteria, and matrix perturbation theory. For instance, A — [ is a
transformed version of the original matrix that often preserves diagonal dominance or positivity properties.
At the same time, I — A™! arises in contexts where inverse-based transformations are considered, i.e.,
preconditioning techniques or spectral radius estimations. Structural matrix behavior under these
transformations helps determine principal matrix subclasses and offers convergence assurances in numerical
solutions.

Fan's result has been a core topic of investigation in matrix theory due to its structural and analytic
significance. The converse of Fan's result has also been shown to be true in M-matrices by Kalauch et al. in
2019 [23]. In the same year, Chatterjee also extended both the original and the converse of Fan's result to the
class of invertible H-matrices with certain additional conditions, as stated in Theorem 3 and Theorem 4 [24].
Furthermore, Kalauch et al. later showed that Fan’s result and its converse are also valid for inverse M-
matrices [25].

Motivated by the depth and variety of research on Fan's result and its generalizations, this paper
investigates the analogue of Fan's result for the class of inverse H-matrices. We identify some conditions in
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which the analogue and its converse hold. Our findings include counterexamples where the analogue fails
and some conditions under which it is preserved.

2. RESEARCH METHODS

This research used a literature study approach to investigate an analogue of Fan's result for inverse H-
matrices and extend it using group inverse concepts. The steps of this work were organized as follows: first,
some related articles were collected and studied to understand the development and characterization of
inverse M-matrices, H-matrices, and their generalized inverses. Secondly, the focus was whether Fan's result,
established for class inverse M-matrices, is extendable to the inverse H-matrices and group inverse H-
matrices. The review highlighted gaps in the literature concerning such analogues. Based on this research,
we formulated theorems and theoretical results for inverse H-matrices and group inverse H-matrices. The last
phase was to prove mathematically these findings and to support them with illustrative examples to
demonstrate the validity of our claims.

Next, we begin with some basic concepts by defining the following notations. Let R¥*¥ and Ck**
denote the set of all real and complex k X k matrices. Suppose 4 = (ai]-) € R¥*¥ then it is called a
nonnegative or positive matrix if all its entries are nonnegative or positive, i.e., a;; = 0 or a;; > 0 for all i, j.
We denote a nonnegative matrix as A = 0 and a positive matrix as A > 0. Additionally, if there are matrices
A and B such that A — B is nonnegative or positive, then it is denoted by A = B or A > B respectively.
Similarly, if there are vectors § = (sq, S5, ..., Si)T and & = (ty, tp, ..., tx)7, then § > 0 or § > 0 denote vectors
with all nonnegative or positive entries and if § — t is nonnegative or positive, then it is denoted by § > t or
5§ >t respectively. Next, we define the absolute matrix as |A|:= (|ai j ), absolute vector as [S]| =
(Is11, 1521, ..., Isg DT, and we denote vector e as the all-ones vector, i.e., e = (1,1,1, ..., 1)T € R¥. Then, we
denote p(A) as the spectral radius of 4, i.e., p(A) = max {|v|:v € d(A)}and a(A) is the set of eigenvalues
of A. Lastly, we denote D, as a diagonal matrix with entries a;;.

A matrix T € R¥¥¥ is called a Z-matrix if all its off-diagonal entries are nonpositive. Any Z-matrix
can be written in the form T = tI — D where t € R and D = 0. If, in addition, t = p(D), then T is called an
M-matrix. Moreover, according to the Perron-Frobenius theorem, such a matrix T is invertible if and only if
t > p(D). A nonnegative matrix T = 0 is said to be convergent if }111_{120 (Th)i]_ = 0. It is well known that T is
convergent if and only if p(T) < 1, or equivalently, if (I — T) ™! exists and (I — T)~! > 0. Finally, matrix
T is a nonsingular or an invertible M-matrix if T is an M-matrix and T~ exists. We recall some equivalent
conditions for an invertible M-matrix.

Theorem 1. [24] IfT € R¥*¥ then these statements are equivalent:

1. T is an invertible M-matrix.
2. T Yexistsand T™' > 0.
3. There exists U € R¥ with © > 0 such that Tv > 0.

We now introduce the concept of the comparison matrix, defined for a complex matrix T = (ti ]-) €
C**k_ The comparison matrix of T, denoted by M (T) = (m; ;), is defined as follows:

_ [ Il =]
m;j = ..
|tij| , 1 F ]
The comparison matrix of any matrix is a Z-matrix. Now, matrix T is called an H-matrix if the M (T)
is an M-matrix. Also, matrix T is an invertible H-matrix if T is an H-matrix and T~ exists.

We now define the group inverse. Let G € C¥*¥, then matrix N € C**¥ is called the group inverse of
G if GNG = G,NGN = N, and GN = NG and we denote it by G¥. If the group inverse exists, then it is unique.
In other words, matrix G has the group inverse if and only if rank(G) = rank(G?). Another equivalent
condition is using full-rank factorization. This is a technique to factorize a nonzero matrix into a product of
a matrix of full column rank and a matrix of full row rank. Let G € C**¥ be written as G = PQ with P and Q
as full-rank factorization, then G has a group inverse if and only if QP is invertible, in this case we can find
the group inverse as G* = P(QP)~2P.
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The main result of this work is to extend the analogue of Fan’s result for inverse H-matrices. First of
all, the class inverse H-matrix is different from the invertible H-matrix. We define an inverse H-matrix as a
matrix T € R¥*¥ such that its inverse T~ is an H-matrix (or equivalently, an M-matrix). In invertible H-
Matrix, the matrix T must be an H-matrix, but in inverse H-matrix, the matrix T must not be an H-matrix.
Now, we have Fan’s result regarding invertible M-matrices, which is a foundation for our proposed analogue
involving inverse H-matrices.

Theorem 2. [23]. Let T € R}¥**_ If T — I is an invertible M-matrix, then T and I — T~ are invertible M-
matrices.

In [23], it was shown that the converse of Theorem 2 also holds. Morecover, we obtained a related
result for another class of M-matrices, i.e., singular irreducible M-matrices and those with “property ¢”. More
recently, an analogue of Fan’s result and its converse was established for inverse M-matrices [25].

The analogue for H-matrices has also been found. In [24], it was shown that a similar result holds for
invertible H-matrices under certain additional conditions.

Theorem 3. [24]. Let H € R¥*¥ with Dy > I and |H™Y|e < e. If H — I is an invertible H-matrix, then both
H and I — H™! are invertible H-matrices.

If we put on a stronger condition, we also ensure H — I and it stated as theorem belows

Theorem 4. [24]. Let H € R**¥ with h;; > 0 and M'(H)e > e. Then H,H — I, and I — H™" are invertible
H-matrices.

Before stating the main results, we state a helpful condition for determining whether a matrix is an H-
matrix. Let us first define a matrix T = (tl- j) € C**¥ is called strictly row diagonally dominant (SDD) if
k
|t | > Z |ti;]
j=1j#i
Note that, the symbol > means the absolute value of t;; being more than the sigma of the absolute value of
tij. Moreover, it is called a generalized strictly row diagonally dominant (GSDD) matrix if there exists a
positive diagonal matrix V such that TV is an SDD matrix.

The following theorem provides a tool for identifying whether a matrix is an invertible H-matrix. This
theorem will be used later in some examples of this article.

Theorem 5. Let T = (tl-j) € Ckxk, If T is GSDD, then T is an invertible H-matrix.

Proof. Let T = (tij) be a GSDD matrix, then V = diag (v, vy, ..., V) exists, where v; > 0, such that TV is
an SDD matrix. That is,
k
tilv; > z |tijv;
j=1,j%i
By the definition of the comparison matrix, M (T)V has the same diagonal and off diagonal magnitudes

as TV, thus M (T)V is also SDD. It follows from classical results that a Z-matrix whose product with a
positive diagonal matrix is SDD must be an invertible M-matrix. Therefore, M (T) is invertible. Let D =
diag(|t;]), then

DIM(T)=1-W

where
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0 [t1,2] |t1,k—1| M
[t1,1] [t1,1] [t1,1]
[t2,1] 0 |f2,k—1| |f2,k|
[t2,2] [t2,2] [t2,2]
w = : : i : :
sl el g e
|tk—1,k—1| |tk—1,k—1| |tk—1,k—1|
[¢a 7 I 21
|fk,k| |fk,k| |fk,k|

Note that I — W is invertible and W > 0. Since M (T) is SDD, then

k k |t..|

[t > E |tij] & 1> E e

L Lo |ty
j=1j#i j=1,j#i

and by spectral radius properties, we have

k k
< | =
pOW) < max D Jwy| = max )
j=1 j=1,j#1

Since p(W) < 1, then W is convergent and (I — W)~! > 0. We have

t::
ul _
|t

(DM (1) 20 e MT)™D > 0

Note that since D > 0, then M (T)™! > 0. By Theorem 1 (ii), we have M (T) is an invertible M-matrix.
Therefore, T is an invertible H-matrix. m

This article extends Theorem 3 and Theorem 4 to get the analogue of Fan’s result for inverse H-
matrices. The results are provided in Theorem 6 and Theorem 7. In addition, several illustrative examples
are included to support the theoretical results. Furthermore, we show that the analogue of Fan’s result does
not generally hold for group inverse M-matrices. Lastly, we demonstrate that group inverse H-matrices
contain the group inverse M-matrices. This confirms that the analogue result also fails for the group inverse
H-matrices.

3. RESULTS AND DISCUSSION

In this part, we show that the analogue of Fan’s result holds for inverse H-matrices under certain
additional conditions. Now, we investigate whether the analogue of Fan’s result holds in the context of inverse
H-matrices. In general, this analogue does not hold. Specifically, even if both T and (I — T~1) are inverse
H-matrices, it does not follow that T — [ is also an inverse H-matrix. Conversely, if T — I is known to be an
inverse H-matrix, this does not imply that T is an inverse H-matrix.

Example 1. These examples illustrate that the analogue of Fan’s result does not generally hold for inverse
H-matrices.

3/8 —-3/8 9/8
1 LetH=<—1/4 1/4 5/4>.Wecompute
3/2 5/2 —-23/2
-50/23 15/23 —-3/23
(H-D1= ( 10/23 —49/23 —4/23)
—-4/23 —-8/23 —-3/23

Then, the inverse of its comparison matrix is:
5/8 3/8 9/8
(M(H-DD) " = (1/4 3/4 5/4 )
3/2 5/2 25/2
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By Theorem 1(ii), since M'((H — I)™1) is an invertible M-matrix, we conclude that (H — 1)~}
is an invertible H-matrix. Hence, H — I is an inverse H-matrix. Now consider
2 1/2 1/4
H1= <1/3 2 1/4)
1/3 1/2 0

However, it can be verified that (M (H '1))_1 £ 0,s0 by Theorem 1 (ii), H~! isnot an invertible
H-matrix. Therefore, H is not an inverse H-matrix, even though H — [ is.

3/2 1/2 3/5 —1/5
-1/2 3/2 1/5 3/5
X~1is an invertible H-matrix. Therefore, X is an inverse H-matrix. Next,

= (Y- 3)

2. LetX = ( ) Then X~ 1 = ( ) Since X! is SDD, then by Theorem 5,

Since (I — X~ 1)1 is SDD, then it is also an invertible H-matrix. Therefore, I — X~ is an inverse
H-matrix. However,

== o =4 )

Since there is no vector ¥ € R¥ with ¥ > 0 such that M'((X — I)~1)¥ > 0, then by Theorem 1
(iil), M ((X — I)™1) is not an invertible M-matrix. So, X — I is not an inverse H-matrix.

Motivated by Theorem 3, which provides a condition such that the analogue of Fan’s result holds for
invertible H-matrices, then by adding some additional conditions, we obtained an analogue for inverse H-
matrices.

Theorem 6. Let T € RF¥K ywith Dir_p-14p = 1 and |((T — D'+ D Ye<e IfT—1is an inverse H-
matrix, then both T and I — T~ are inverse H-matrices.

Proof. Suppose that T is a k X k real matrix with Dp_jy-1,; =2 Tand [((T =D~ '+ )7 'le <eand T — I is
an inverse H-matrix. Then, (T — I)~? is an invertible H-matrix; by definition, M’ ((T — I)™1) is an invertible
M-matrix.

We aim to show that T and I — T~ are inverse H-matrices. Let us define

S=(T-D"1+1I

S—I1=(T-D"1
which is an invertible H-matrix.
Since Dy_p-14; 21 and [((T =)' +1)7'|e < e, then we have Dg > I and |S™'|e < e, Theorem 3
implies that both S and I — S~ are invertible H-matrices. Now observe that:

T=1+@E-D1=GE-D(S-D+1)=(SU-5D) 'S=U-s1H1

So, we have
Tl=1-5"1
Since S~ is an invertible H-matrix, so is I — S™1, and hence T is an inverse H-matrix. Finally, since ™! =
I —T71, then
I-TH1=s5,

which is also an invertible H-matrix. Thus, I — T~ is an inverse H-matrix. m

Example 2. Here is an example to illustrate the theorem. Let
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—6/17 39/17 —4/17

38/17 —9/17 —3/17
T =
(—4/17 —8/17 37/17)

Then
2 1/2 1/4
(T-D1+1= (1/3 2 1/4)
1/3 1/2 2

93/176 —21/176 —9/176
(T-D1+Dt= (—7/88 47/88  —5/88 )
—3/44  —5/44  23/44

Clearly, D(r_p-14; 2 Tand [(T = D'+ D7 e <e.

Moreover,
1 1/2 1/4
(T-D"1= (1/3 1 1/4),
1/3 1/2 1

which is SDD, and by Theorem 5, we have (T — I)~! is an invertible H-matrix. Hence, (T — I) is an inverse
H-matrix. Next,

7/88  41/88 5/88

83/176 21/176 9/176
T_1:< )’
3/44  5/44  21/44

which is also SDD and therefore an invertible H-matrix. Thus, T is an inverse H-matrix.

93/176 -21/176 —9/176 2 1/2 1/4
1—T-1=<—7/88 47/88 —5/88),(1—T‘1)‘1=<1/3 2 1/4)

—3/44  —5/44  23/44 1/3 1/2 2

Finally,

Since (I — T~1)~1 is also SDD, then by Theorem 5 (I — T~1)™! is an invertible H-matrix. Therefore, I —
T~ is an inverse H-matrix.

Now, motivated by Theorem 4, we demonstrate that the converse also holds under certain additional
conditions.

Theorem 7. Let T € R*¥*¥ with M((I =T Y)"Ye > e and all diagonal entries of (I —T~1)1 are
nonnegative. If both T and I — T~ are inverse H-matrices, then T — I is also an inverse H-matrix.

Proof. Assume that T and I — T~ are inverse H-matrices. Consequently, T~ and (I — T~1)~! are invertible
H-matrices. Define

S=U-T"H1

It follows that S and I — S™1 = T~! are invertible H-matrices. Furthermore, if M (S)e > e and the diagonal
entries of S are nonnegative, then by Theorem 4, S — [ is an invertible H-matrix. Next, we observe that

S—I1=(-TH1-I1=0-TH(-U-TH)=U-THT1
Thus,

S—I1=(TU-TH) ' =T -1,

which is an invertible H-matrix. Therefore, T — I is an inverse H-matrix.m
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Example 3. Here is an example to illustrate the theorem. Let

r= (111//99 453//3366)

Then, we have

=S wms) a-t7 =G D)

Verifying that M((I —T71)™1) e > e and all the diagonal entries of (I — T™1)7! are nonnegative is
straightforward. Since both T7! and (I — T™1)~! are SDD, then by Theorem 5, they are invertible H-
matrices. Therefore, T and I — T~ ! are inverse H-matrices. Now compute:

-G -, )

Since (T — 1)~ is also SDD, it follows from Theorem 5 that (T — 1)~ is an invertible H-matrix. So, T — I
is an inverse H-matrix.

We now observe a different class of matrices. In this part, we show that the analogue of Fan’s result
and its converse does not hold in general for the class of group inverse M-matrices. Additionally, we
demonstrate that the class of group inverse H-matrices contains all group inverse M-matrices. Consequently,
the analogue of Fan’s result and its converse also fail for group inverse H-matrices. We begin by defining the
relevant matrix classes. A real matrix T € R¥*¥ is called a group inverse M-matrix, if its group inverse T* is
an M-matrix. Similarly, a complex matrix T € C**¥ is called a group inverse H-matrix if T# is an H-matrix.

As previously discussed, the analogue of Fan’s result does not generally hold for group inverse M-
matrices. In particular, the matrix X — I need not be a group inverse M-matrix, even if both X and (I -X #)
are group inverse M-matrices. Conversely, X need not be a group inverse M-matrix, even if X — [ is. These
facts are supported by examples originally discussed in [25], and we include them here with additional
explanations and details.

0

Example 4. Let B = ( (1)) Using full rank factorization, write B = FG where F = (2) and G =(0 1).

0
. (00
Then B¥ = F(GF) G—(O .

0and s = p(C) for s = 1 and then B¥ is an M-matrix. Hence, B is a group inverse M-matrix. Next, consider

). We observe that B¥ can be written in the form B* = sI — C where C >

1-B* = ((1) 8), which also admits a full rank factorization and satisfies the M-matrix condition. Thus,
-1

(I - B#) is a group inverse M-matrix. Now, consider B — [ = ( 0

(_01 8) Suppose (B — I)* is an M-matrix. Then, there exists t > 0 such that (B — I)* = tI — D where

D >0 and t = p(D). Note that t > 1 is required due to the diagonal entry —1. However, this implies that
p(D) =1+t > t, contradicts the M-matrix condition t > p(D). Therefore, (B — I)* is not an M-matrix,
and B — [ is not a group inverse M-matrix.

8) It is clear that (B —D* =

1011 0 _( 1/10 0) . o .
Example 5. Let P = m (_ 3 1 0). Note that P — I = (_3 /10 0) Using full rank factorization, we obtain
ot _ (10 0y . N . (0 0 _
(P-D"= (_30 0). Since it can be expressed as (P — )" = sl — X, with X = (30 11),5 =10, and
s = p(X), then it is clear that (P — I)¥ is an M-matrix. Hence, P — I is a group inverse M-matrix. Since P

is invertible, its group inverse is P = P~1, which equals P¥ = 11—1 (130 101

Z-matrix, then P* is not an M-matrix. Therefore, P is not a group inverse M-matrix.

). Observe that P* is not even a

Now, let us consider the analogue for group inverse H-matrices. Let GM be the class of all group
inverse M-matrices, and GH be the class of all group inverse H-matrices. Recall that any arbitrary M-matrix
is also an H-matrix. Therefore, if A € GM, then by definition, A* is an M-matrix and then it is also an H-
matrix. This implies that A € GH, so we have the relation:

GM S GH
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From this relation and the counterexamples given earlier, we conclude that the analogue of Fan’s result
and its converse also fail for group inverse H-matrices. In particular, if Y and (I - Y#) are group inverse H-
matrices, then Y — I need not be a group inverse H-matrix. Conversely, even if Y — I is a group inverse H-
matrix, Y need not be a group inverse H-matrix.

4. CONCLUSION

In this study, we established the analogue of Fan’s result and its converse for inverse H-matrices. We
further revealed that the analogue does not generally hold for the group inverse H-matrices, highlighting the
need for exact structural characterizations. The impact of this work lies in providing criteria to design efficient
preconditioners in iterative solvers and advancing numerical linear algebra. Future work will extend the
concepts developed here to other matrix classes, such as singular irreducible H-matrices and H-matrices with
“property c”, thereby further developing the understanding of inverse-related matrix structures.
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