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 ABSTRACT 

Article History: 
Iterative algorithms play an important role in mathematical optimization, particularly in 

solving large-scale unconstrained optimization problems. The conjugate gradient (CG) 
methods are widely used due to their low memory requirements and efficiency. However, 

their performance highly depends on the choice of parameters that influence search 

directions and convergence speed. Despite their advantages, traditional CG algorithms 
sometimes suffer from slow convergence or poor accuracy, especially for ill-conditioned 

problems. The selection of conjugate gradient parameters significantly influences the 

performance, and there is a need to develop improved strategies to enhance solution 

accuracy and efficiency. This study constructs a new conjugate gradient parameter using 
the curvature condition to refine search directions and accelerate convergence. The 

proposed approach ensures a more effective balance between descent properties and 

numerical stability. Preliminary numerical experiments demonstrate that the proposed 

method outperforms classical CG variants regarding convergence rate and accuracy. The 
improved search directions lead to faster and more reliable optimization solutions. The 

newly developed conjugate gradient formula contributes to a more robust and efficient 

optimization. This advancement enhances the applicability of CG methods in solving 

complex optimization problems, paving the way for more effective computational 
efficiency. 
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1. INTRODUCTION 

Large-scale unconstrained optimization lies at the core of numerous scientific and engineering 

challenges, including machine learning, motion control, computational physics, heat transfer, and resource 

allocation [1], [2], [3], [4], [5], [6], [7]. Recently, the demand for effective methods to solve such problems 

has grown exponentially, particularly with the continuous expansion of model complexities and datasets. 

Among iterative algorithms, nonlinear conjugate gradient (CG) formulas have emerged as crucial tools due 

to their simplicity, low memory requirements, and ability to avoid explicit computation of Hessian matrices 

[8], [9], [10]. Since their inception, CG formulas have evolved into a family of variants, including the 

Hestenes-Stiefel (HS) [11], Fletcher-Reeves (FR) [12], Polak-Ribière-Polyak (PRP) [13], [14], and Dai-Yuan 

(DY) [15], Conjugate Descent (CD) [16] methods. These algorithms iteratively refine search directions using 

parameters that balance descent properties and conjugacy conditions, enabling them to navigate high-

dimensional spaces efficiently. 

Despite their widespread adoption, classical CG algorithms are not without limitations. A critical 

challenge lies in the selection of the conjugate gradient parameter, 𝛽𝑘, which directly governs the search 

direction and, consequently, the algorithm’s convergence behavior [9], [17]. Suboptimal choices of 𝛽𝑘 can 

lead to inefficient step directions, resulting in slow convergence, stagnation, or even divergence, particularly 

for ill-conditioned or non-convex problems [18], [19]. For instance, the FR method may suffer from 

"jamming" phenomena, while the PRP method can lose global convergence guarantees under certain 

conditions [20]. Even modern hybrid approaches, such as the Dai-Liao (DL) method [21], which introduced 

a tunable parameter to unify classical formulas, face challenges in maintaining robustness across diverse 

problem landscapes [22]. This highlights the need for parameter selection strategies that better align with 

problem-specific curvature information and ensure a robust balance between descent properties and 

conjugacy requirements [23], [24]. 

Recent advancements have emphasized integrating curvature conditions into CG parameter design. 

The Dai-Liao method, for example, leverages the secant condition from quasi-Newton methods to enhance 

conjugacy [25], [26]. However, its performance remains sensitive to the choice of the tuning parameter 𝑡, 

which influences the trade-off between conjugacy and numerical stability [25]. Prior studies have 

demonstrated that improper parameterization can lead to insufficient descent or directional rigidity, limiting 

the method’s applicability to complex optimization tasks [9], [25]. To address these gaps, this study proposes 

an enhanced Dai-Liao CG method that systematically incorporates curvature information through a novel 

parameterization strategy. By redefining 𝛽𝑘 using a dynamically adjusted curvature-aware term, the proposed 

algorithm strengthens the conjugacy condition while preserving the global convergence properties essential 

for reliability. 

The primary objectives of this research are as follows:  

1. To derive a new 𝛽𝑘 parameter that explicitly incorporates curvature information, ensuring stronger 

conjugacy and descent properties. 

2. To establish rigorous global convergence guarantees under standard assumptions. 

3. To validate the method’s efficacy through comprehensive numerical comparisons against classical 

CG variants.  

Theoretical analysis demonstrates that the proposed parameter satisfies the sufficient descent condition 

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖2 and maintains bounded search directions, thereby enhancing numerical stability. 

Preliminary experiments on benchmark problems reveal significant improvements in convergence rates and 

solution accuracy, particularly for ill-conditioned and non-convex functions. 

This study contributes to the broader topography of optimization by advancing the Dai-Liao structure, 

offering a more adaptable and robust CG algorithm. The improved conjugate gradient method bridges the 

gap between theoretical conjugacy requirements and practical numerical performance. It is a viable candidate 

for high-dimensional optimization applications like deep learning and large-scale simulations. By addressing 

the limitations of traditional parameter selection strategies, this research paves the way for more efficient and 

reliable computational tools in data-driven domains. 
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2. RESEARCH METHOD 

The conjugate gradient formula is designed to tackle the optimization problem of the form: 

𝑀𝑖𝑛𝑓(𝑥)  ,  x ∈ 𝑅𝑛  (1) 

where 𝑓 is a smooth  function [27]. The CG algorithm usually generates a sequence of iterates using the 

following recursive formula: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (2) 

where 𝛼𝑘 is the step-size and 𝑑𝑘 is the search-direction, which is defined as follows [28]: 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘 . 𝑠𝑘 (3) 

2.1 Related Work 

In the conjugate gradient direction Equation (3), 𝛽𝑘 is a parameter that defines characterize different 

CG methods. Some of the classical techniques mentioned above have the following formulas:  

𝛽𝑘
𝐹𝑅 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

 
 

 

 

 

 

(4) 

𝛽𝑘
𝑃𝑅𝑃 =

𝑦𝑘
𝑇𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

 

𝛽𝑘
𝐻𝑆 =   

𝑔𝑘
𝑇𝑦𝑘

𝑑𝑘−1
𝑇 𝑦𝑘−1

 

𝛽𝑘
𝐷𝑌 =  

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

 

𝛽𝑘
𝐶𝐷 =   

𝑔𝑘
𝑇𝑔𝑘

𝑑𝑘−1
𝑇 𝑔𝑘−1

 

Each of the above formulas has its unique strengths. For instance, the FR method ensures global 

convergence, while the PRP formula often performs better in practice. HS algorithm is direction-sensitive, 

CD maintains conjugacy through gradient projection, while DY is conservative but globally convergent [9]. 

To meet specific requirements, step length 𝛼𝑘 is often selected in iterative approaches. The following 

criteria must be satisfied in order for the Wolfe conditions to be used in convergence analysis and conjugate 

gradient technique implementations: 

𝑓(𝑢𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑢𝑘) + 𝛿. 𝛼𝑘𝑔𝑘
𝑇𝑑𝑘 (5) 

𝑑𝑘
𝑇𝑔(𝑢𝑘 + 𝛼𝑘𝑑𝑘) ≥ 𝜎. 𝑑𝑘

𝑇𝑔𝑘 (6) 

where 0 < δ < σ < 1 [29]. Regretfully, if the objective function is nonconvex and the usual Wolfe line 

search is applied, all of the presented techniques might not converge. 

The theoretical advantages and computational advantages of the conjugate gradient methods proposed 

by Dai-Liao in [21] were attempted to be attained once again, as:  

𝛽𝑘
𝐷𝐿 =

ɠ𝑘+1
𝑇 𝑦𝑘 − 𝑡ɠ𝑘+1

𝑇 𝑠𝑘

𝑑𝑘
𝑇𝑦𝑘

 (7) 

An extra effort was placed into achieving the computational and theoretical benefits of the conjugate 

gradient approaches (see; [8], [30], [31], [32]). 

It is captivating to employ the conjugate gradient method within mathematical constructs. An 

innovative equation that conforms to the curvature criterion is developed. In contrast to the Dai-Liao 

paradigm, which amalgamates gradient and differential point information in its computations, the refined 
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technique exhibits enhanced efficiency by utilizing functional data. Empirical numerical analyses are 

performed to demonstrate the effectiveness of the recently introduced methodology. 

2.2 New Method Formulation 

Based on quadratic model, Basim et al. [30] presented a curvature condition which is written explicitly 

as: 

𝑠𝑘
𝑇𝑄(𝑢𝑘)𝑠𝑘 = (𝑓𝑘 − 𝑓𝑘+1) + 1/2𝑠𝑘

𝑇𝑦𝑘 (8) 

By inserting Bk+1 ≅ Q(uk) into Equation (8) we conclude that: 

𝑠𝑘
𝑇𝐵𝑘+1𝑠𝑘 ≅ (𝑓𝑘 − 𝑓𝑘+1) + 1/2𝑠𝑘

𝑇𝑦𝑘 (9) 

Inside [33], Perry’s conjugacy condition as (dk+1
T yk = −gk+1

T sk) and using in the Equation (9), it is obtained: 

𝑑𝑘+1
𝑇 𝐵𝑘+1𝑠𝑘 ≅ −[1/2 + (𝑓𝑘 − 𝑓𝑘+1)/𝑠𝑘

𝑇𝑦𝑘]𝑔𝑘+1
𝑇 𝑠𝑘 (10) 

Therefore, it can be seen that: 

𝑑𝑘+1
𝑇 𝐵𝑘+1𝑠𝑘 ≅ −(1/2 + (𝑓𝑘 − 𝑓𝑘+1)/𝑠𝑘

𝑇𝑦𝑘)𝑔𝑘+1
𝑇 𝑠𝑘 (11) 

Hence, by Equation (11) and search direction dk+1, we have: 

(−𝑔𝑘+1 + 𝛽𝑘𝑑𝑘)𝑇𝑦𝑘 ≅ −(1/2 + (𝑓𝑘 − 𝑓𝑘+1)/𝑠𝑘
𝑇𝑦𝑘)𝑔𝑘+1

𝑇 𝑠𝑘 (12) 

This implies: 

𝛽𝑘
𝐷𝑎𝑖−𝐿𝑖𝑎𝑜 (𝐵𝐶)

=
𝑔𝑘+1

𝑇 𝑦𝑘 − [1/2 + (𝑓𝑘 − 𝑓𝑘+1)/𝑠𝑘
𝑇𝑦𝑘]𝑔𝑘+1

𝑇 𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

 (13) 

They are referred to as Dai-Liao (BC) for convenience. 

Algorithm 1. Dai-Liao (BC). 

Input: Minimize a nonlinear function, edit 𝒙𝟎 ∈ 𝑹𝒏 , 𝜺. 

Output: Minimizer x such that gradient is approximately zero. 

1. If   ‖𝒈𝒌‖ < 𝜺 stop. 

2. Obtain  𝜶𝒌 by Equation (5) and Equation (6). 

3. Update 𝒙𝒌+𝟏 = 𝒙𝒌 + 𝜶𝒌𝒅𝒌 and 𝜷𝒌 by Equation (14). 

4. Compute  𝒅𝒌+𝟏 = −𝒈𝒌+𝟏 + 𝜷𝒌𝒔𝒌.  

5. Set 𝒌 = 𝒌 + 𝟏 and return to step 2. 

3. RESULTS AND DISCUSSION 

3.1 Convergence Results 

The global convergence theorem of Algorithm Dai-Liao (BC) is proved using the following 

presumptions: 

Assumption 3.1 

1. Level is set to  𝐿0  = {𝑥 ∈ 𝑅𝑛: 𝑓(𝑥) ≤ 𝑓(𝑥0)} be convex. 

2. Since the gradient is Lipschitz continuous, a positive constant is present 𝐿 > 0: 
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(𝛻𝑓(𝑜
−

) − 𝛻𝑓(𝑣+)) ≤ 𝐿‖𝑜
−

− 𝑣+‖  , ∀𝑜
−

, 𝑣+ ∈ 𝐿0. (14) 

3. Assumptions 1 and 2 immediately imply that there is a positive constant 𝛱 > 0 such that: 

‖𝑔𝑘+1‖ ≤ 𝛱. (15) 

Theorem 1. Let 𝒅𝒌+𝟏 be generated based on Dai-Liao (BC) formula framework. Then: 

011 ++ k

T

k gd
 

(16) 

Proof: 

Using Equation (4) is definition of 𝑑𝑘+1, we obtain: 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖2 + (

ɠ𝑘+1
𝑇 𝑦𝑘 − [1/2 + (𝑓𝑘 − 𝑓𝑘+1)/𝑠𝑘

𝑇𝑦𝑘]ɠ𝑘+1
𝑇 𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

) 𝑠𝑘
𝑇𝑔𝑘+1     (17) 

By using Lipschitz continuity, we obtain: 

𝑔𝑘+1
𝑇 𝑦𝑘 ≤ 𝐿𝑔𝑘+1

𝑇 𝑠𝑘 (18) 

When we entered Equation (18) into Equation (17), we got: 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖2 + [𝐿 − 1]

(𝑠𝑘
𝑇𝑔𝑘+1)2

𝑠𝑘
𝑇𝑦𝑘

 (19) 

From the inequality above, we obtain: 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2 − [1 − 𝐿]

(𝑠𝑘
𝑇𝑔𝑘+1)2

𝑠𝑘
𝑇𝑦𝑘

 

                                      ≤ −‖𝑔𝑘+1‖2 < 0   

(20) 

The proof is ended. ∎ 

Zoutendijk published this conclusion, which is crucial to understanding CG formula [33] . 

Lemma 1. Assume that the direction produced by Equation (4) and is correct. If: 




+

=
0

2

1

,
1

k
kd

 

(21) 

Then: 

0inflim 1 =+
→

k
k

g
 

(22) 

Theorem 2. Let f is uniformly convex on 𝝉, explicitly, there exist a constant 𝜱 > 𝟎 as:  

( ) ( )  )()(      
2

yxyxyfxf
T

−−−  yx, . 
(23) 

If  {xk} is obtained by new Algorithm, then: 

0inflim 1 =+
→

k
k

g
. 

(24) 

Proof.  

From the new 𝛽𝑘
Dai−Liao (BC) 

, we get: 

𝛽𝑘
Dai−Liao (BC) 

≤
|𝑔𝑘+1

𝑇 𝑦𝑘|+|𝑔𝑘+1
𝑇 𝑠𝑘|

|𝑠𝑘
𝑇𝑦𝑘|

. (25) 

By Equation (25) and Equation (23), we obtain: 
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2

BBX

k

kk

k

s

ssL



+


. 

(26) 

Substituting Equation (28) into Equation (4) give: 

‖𝑑𝑘+1‖ = ‖−𝑔𝑘+1 + 𝛽𝑘
Dai−Liao (BC) 

𝑑𝑘‖ 

              ≤ 𝛱 +
𝛱𝐿‖𝑠𝑘‖ + 𝛱‖𝑠𝑘‖

𝛷‖𝑠𝑘‖2
‖𝑠𝑘‖ 

                                    ≤ 𝐶𝛱. 

(27) 

where 𝐶 = 1 + (𝐿 + 1)/𝛷. As a result, we obtain that: 

=


 


+
11

2

1

1
11

kk
k

Cd
   

(28) 

from Lemma 1, implies that 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0. 

3.2. Numerical Results 

This section presents a comprehensive evaluation of the proposed method's computational efficiency 

compared to the classical Hestenes-Stiefel (HS) method as described in [34]. The numerical experiments 

were conducted using a set of standard unconstrained optimization test problems taken from the collection 

proposed by Andrei [34], with problem dimensions varying between 100 and 1000. 

Table 1. Table of problems, Starting Points and Dimensions. 

Problem Dim Function No. starting points 

Freudnstein & Roth 100, 1000 1, 2 𝑥0 = [0.5, −2,0.5, −2, … … ,0.5, −2] 

Trigonometric 100, 1000 3, 4 𝑥0 = [0.2,0.2, … … … … … … . … ,0.2] 

Pertorbed Quadrtic 100, 1000 5, 6 𝑥0 = [0.5,0.5, … … … … … … . … ,0.5] 

Extended Tridiagonl 1 100, 1000 7, 8 𝑥0 = [2, 2, … … … … . … . . … … . … , 2] 

Exteded Three Expo Terms 100, 1000 9, 10 𝑥0 = [0.1,0.1, … … … … … … . … ,0.1] 

Genzralized Tridagonal 2 100, 1000 11, 12 𝑥0 = [−1, −1, … … … … … … . … , −1] 

Exteded PSC1 100, 1000 13, 14    𝑥0 = [3, 1,3, 1 … … … … … … … . ,3, 1] 

Extended-Powell 100, 1000 15, 16    𝑥0 = [3, − 1,0, 1 … … … … … … 1,0, 1] 

Extanded-Cliff 100, 1000 17, 18     𝑥0 = [0, −1,0, −1 … … … . … … ,0. −1] 

Quadrtic Digonal 100, 1000 19, 20   𝑥0 = [0.5 ,0.5 , … … … . … . … . . … ,0.5] 

Extended-Hiebert 100, 1000 21, 22    𝑥0 = [0 , 0 , … … … … … … … … . . … , 0] 

QP2 100, 1000 23, 24  𝑥0 = [0.5 ,0.5 , … … … . … … . . . . … ,0.5] 

.NONDIA (CUTE) 100, 1000 25, 26  𝑥0 = [1.0,1.0 , … … … . … … … . . … 1.0] 

.DIXMAANE (CUTE) 100, 1000 27, 28    𝑥0 = [2 ,2 , … … … … … … … … . . … . , 2] 

Almost Pertubed 100, 1000 29, 30   𝑥0 = [0.5 ,0.5 , … … … . … … … . … ,0.5] 

To assess the performance of both methods, three key performance indicators were used: the number 

of iterations (NI) required for convergence, the number of restarts (NR) triggered during the optimization 

process, and the number of function evaluations (NF) performed. These metrics provide a holistic view of 

the computational cost and robustness of the methods under study. 
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All numerical experiments were executed using the well-established Wolfe line search strategy. The 

parameters for the Wolfe conditions were set to 𝛿 = 0.001 and 𝜎 = 0.9, ensuring a balance between 

sufficient decrease and curvature conditions during the line search process. The stopping criterion for the 

optimization was defined as ‖𝑔𝑘+1‖ ≤ 10−6, where 𝑔𝑘+1 denotes the gradient at the (𝑥𝑘+1)-th iteration. 

Table 2 below summarizes the list of test problems selected for the evaluation and presents the 

corresponding numerical results, highlighting the comparative performance of the proposed method against 

the classical HS algorithm. 

Table 2. Table of Number of Iterations, Number of Restarts and Function Evaluations 

  HS Dai-Liao (BC) 

Problem Dim NI NR NF NI NR NF 

1 

2 

100 102 95 2709 12 7 28 

1000 14 8 32 12 7 28 

3 

4 

100 19 10 35 18 9 34 

1000 39 22 67 35 21 62 

5 

6 

100 102 33 155 84 23 128 

1000 352 100 543 329 86 512 

7 

8 

100 10 5 21 7 4 15 

1000 14 7 27 13 7 26 

9 

10 

100 13 8 23 10 6 16 

1000 52 45 1225 42 38 934 

11 

12 

100 42 17 62 37 14 59 

1000 67 26 102 63 24 98 

13 

14 

100 8 6 17 8 6 17 

1000 26 25 505 7 5 15 

15 

16 

100 79 19 149 73 24 142 

1000 75 20 143 74 22 143 

17 

18 

100 9 7 23 12 9 31 

1000 37 35 844 12 9 28 

19 

20 

100 46 7 82 56 8 101 

1000 182 35 320 156 28 273 

21 

22 

100 83 52 182 79 50 174 

1000 79 50 171 79 50 171 

23 

24 

100 23 12 543 24 13 56 

1000 35 20 85 35 20 85 

25 

26 

100 13 7 26 15 8 30 

1000 15 8 31 15 8 31 

27 

28 

100 81 28 126 70 23 113 

1000 243 70 383 230 71 357 

29 

30 

100 104 33 157 94 27 142 

1000 330 96 516 302 83 470 

Total  2294 906 9304 2003 710 4319 

 

The above results were further analyzed using a performance profile tool introduced by Dolan and 

More [35]. This tool is a cumulative distribution function that represents the probability that a given method 

will solve a problem within a multiple of the best observed performance. The -axis from the plotted curve 

defines the performance ratio, while the -axis denotes the fraction of test problems solved within that ratio. 

Any algorithm whose curve lies on top of other curves is regarded as the better method, indicating the 

algorithm solves a larger proportion of functions more efficient. 

Figure 1 illustrates the proposed algorithm's performance profile curve compared to the classical HS 

algorithm based on NI to show how quickly each algorithm converges. The curve shows that the proposed 

Dai-Liao (BC) method outperformed the classical HS algorithm because it attained a faster cumulative 

performance. This indicates that the proposed algorithm requires fewer iterations to attain convergence on 
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most test functions. The classical HS curve lags, indicating that it generally requires more iterations, which 

can impact computational efficiency. 

 
Figure 1. Performance on the Number of Iterations 

Similarly, by assessing the second performance curve, which evaluated the number of restarts required 

for convergence, the proposed algorithm further shows superior performance, solving a higher proportion of 

problems with fewer restarts. The results implied that the classical HS algorithm takes longer to reach the 

same cumulative fraction of solved functions, suggesting that it may experience more difficulties maintaining 

stable convergence and requires more frequent restarts. 

 

 
Figure 2. Performance on the Number of Restarts 

 
Lastly, the results for function evaluations as displayed in Figure 3 demonstrated that it directly 

impacts the computational cost of an optimization algorithm. However, the curve further confirms the 

efficiency of the proposed algorithm as its curve (the red line) dominates the green line, indicating that 

proposed algorithm consistently requires fewer function evaluations to reach an optimal solution. Since 

function evaluations are often the most expensive part of an optimization process, this result highlights the 

computational advantage of the proposed Dai-Liao (BC) over the classical HS algorithm. 
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Figure 3. Function Evaluations Performance 

These results support the selection of the proposed Dai-Liao (BC) for practical optimization problems 

where efficiency is a priority. 

4. CONCLUSION 

This study proposed a new conjugate gradient formula for unconstrained application optimization 

problems. The study established the proposed method's convergence under suitable conditions and showed 

that the direction is a descent direction. The numerical performance of the proposed methods was compared 

with the classical HS method based on three key metrics: the number of iterations, the number of restarts, and 

function evaluations. Findings from the numerical experiment show that our proposed Dai-Liao (BC) 

approach, designed based on curvature conditions, exhibits competitive performance and offers significant 

improvements in all the metrics, including the number of iterations, the number of restarts, and function 

evaluations, making it a viable alternative for solving unconstrained optimization problems. 
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