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1. INTRODUCTION

The branch of mathematics that studies the properties of integers is called number theory. One concept
often used in number theory is congruence, introduced by Carl Friedrich Gauss in 1801 [1]. Congruence uses
a modular arithmetic calculation system that expresses the remainder of the division of an integer by another
integer [2]. Thue states that Thue’s equation, the Diophantine equation F(x,y) = r, where F(x,y) is an
irreducible homogeneous polynomial function of degree n > 3, and r is a nonzero rational number, has
infinite solutions for x and y [3],[4],[5]. The results show that by using Thue’s equation, researchers can
further find various formulas for solving polynomial equations. With this formula, mathematical models that
often use a system of polynomial equations can be solved more efficiently [6],[7],[8]. A Diophantine equation
is an equation with integer coefficients that has an integer solution [9] (p. 119). Matiyasevich proved that no
formula can generally solve the Diophantine equation [4]. However, research to solve the Diophantine
equation is still being done, such as Grechuk’s research that can determine the solution of a bounded
Diophantine polynomial equation [5]. In addition, Mosunov, through his research, determined the upper
bound of the number of solutions of the Diophantine polynomial equation using the Thue-Mahler equation
[10],[11].

The solution of the congruence ax = ¢ (mod m) is identical to the integer solutions x and y of the
Diophantine equation ax = my + c [9]. Therefore, an infinite number of solutions of the Diophantine
polynomial equation results in an infinite solutions of the polynomial congruence. This statement is supported
by the results of Gherga and Siksek, who stated that the number of polynomial congruence solutions is infinite
[11]. These results are significant in modular arithmetic calculation systems because researchers can further
study ways to solve polynomial congruences. For instance, Chinburg et al. [12], as well as Koppanati and
Kumar [13], demonstrated that extending congruence solving beyond linear and quadratic cases to cubic and
higher-degree polynomial congruences enables secure encryption of multimedia content in the cloud,
showing the practical importance of polynomial congruences in strengthening modern cryptographic systems.
In quantum cryptography, polynomial-based hashing methods have been shown to rely on number-theoretic
properties of polynomial congruences, enabling efficient authentication and strengthening key distribution
protocols [14]. Another relevant research was conducted by Ghosal [15], who said that number theory is one
of the most important areas of Mathematics used in Computer Science and the basis behind the science of
modern Cryptography. The research conducted was to study the development and application of number
theory. The aim was to review the history of number theory and explore its influence on production, everyday
life, and its application in engineering. The research found that number theory and modern computing
technology can provide exciting solutions to real-life problems.

In his research, Chan and Chen [16] used circular argumentation on the proof of Euclid’s theorem
related to the infinity of prime numbers underlying the Fundamental Theorem of Arithmetic. The
argumentation is determined by carefully observing the prime numbers analyzed in the statement. The result
of his research, identifying the Fundamental Theorem of Arithmetic (FTA) as Unique Prime Factorization
over S (UPF-S) for some set S of prime numbers, shows that FTA for natural numbers holds if and only if
the set S is infinite and contains all prime numbers. Ahmad et al. [17] have investigated the parameters that
affect the performance of Chinese Remainder Theorem (CRT) compression. In the investigation, experiments
were conducted on the KODAK data set. The analysis was to correlate the decrease in CRT compression
performance with the number of modules, that is, the size of the compressed block. The analysis showed that
the performance improved at fewer modules, achieving an average compression ratio of 8% on the KODAK
data set.

Alhassan et al. [18] attempted to identify some algebraic properties of the CRT. CRT is an essential
mathematical theorem for solving simultaneous equations related to different moduli. CRT also makes it
possible to reconstruct integers within a specific range from the modulo of their residues to the relative
modulo of pairwise primes and code sets of structures for manipulations on huge integers. The results of his
research identified that the Prime and Ring Ideal Domain statements can be classified as some algebraic
properties of the Chinese Remainder Theorem. According to Weiss [19], constructing real numbers involves
creating an equivalence class of the Cauchy rational number sequence concerning ordinary absolute values.
A completely different set of numbers, better known as p-adic numbers, can be constructed using different
absolute values. So, with this basic description of the finite extension of p-adic numbers, the reader can
explain the algebraic closure of the field of p-adic numbers. This field is incomplete, so a further step is
needed to find a field containing p-adic numbers that is complete and algebraically closed. Furthermore, with
such a field, many options, including the analysis of p-adic numbers, are open to researchers.
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Based on the explanation above, previous research results show that gaps still need to be developed
further, and no one has made a hybrid algorithm, which is a combination of Hensel’s Lemma, the
Fundamental Theorem of Arithmetic, and the Chinese Remainder Theorem. Previous studies have only
examined certain parts of Hensel’s Lemma, the Fundamental Theorem of Arithmetic, and the Chinese
Remainder Theorem, and have not combined them to find a hybrid algorithm. From these studies, new
problems arise related to the form of the recursive formula for the solution of the congruence of polynomials
modulo prime numbers and the general solution algorithm of polynomial congruence modulo arbitrary
positive integers. This result is simpler to find the solution of the congruence of polynomials modulo prime
numbers compared to the previous result. Therefore, in this research, the recursive formula for the solution
of the congruence of polynomials modulo prime numbers using Hensel’s Lemma is determined. In addition,
the solution algorithm of polynomial congruence modulo arbitrary positive integers using Hensel’s Lemma
is determined. A combination of Hensel’s Lemma, the Fundamental Theorem of Arithmetic, and the Chinese
Remainder Theorem is used to construct the solution algorithm of polynomial congruence modulo arbitrary
positive integers.

2. RESEARCH METHODS

This research is classified as theoretical development research in the field of mathematics, aimed at
developing a recursive formula for the solution of the congruence of polynomials modulo prime numbers and
constructing a general solution algorithm of polynomial congruence modulo arbitrary positive integers. The
primary research instruments are a literature review and a theoretical analysis of key mathematical definitions
and theorems, including p-adic integers, polynomial ring, Hensel’s Lemma, the Fundamental Theorem of
Arithmetic, and the Chinese Remainder Theorem. These provide the conceptual framework that supports the
development of the proposed method. Since no empirical data are collected, this research relies on deductive
reasoning through mathematical proof and validation through illustrative polynomial congruence cases that
demonstrate the proposed algorithm.

2.1 p-adic Integers

Definition 1 [20]. If p is prime, then a p-adic integer can be defined as the series

o]

a= zSiPi = k" + Sk + Sppap* 2+, €]
i=k

where0 <k €Zand0 <s; <p,s; €EZ.
Definition 2 [20]. If p is prime, then the p-adic integers can be defined as the sequence
a = (ag (mod p), a; (mod p?), a, (mod p?), as (mod p*), ...) (2
where a;_; = a; (mod p'),i <j.
Definition 3 [20]. The set of all p-adic integers is called Z,,.
Example 1. Suppose p = 3. We want to express the integer 7 in its 3-adic form. First, observe that
7 = 12 (mod 3).
Although 7 # 12 (mod 32), we can replace 1 with 1 + 3, since 1 = (1 + 3) (mod 3). Thus,
7 = (1 + 3)? (mod 32).

Continuing this process, as we lift the solution to higher powers of 3, we obtain:

7 =(1+ 3+ 3%)? (mod 33),

7 = (14 3+ 32%)? (mod 3%),

7=(14+3+3%2+2-3%)? (mod 3°),

7=(1+3+3%+2-3%?2 (mod 3%),

7=(1+3+3%2+2-3%)2(mod3"),
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7=(1+4+3+3%2+2-3*+2-37)? (mod 39),
7=(1+3+324+2-3*+2-37 +3%)2 (mod 39),
7=(1+3+32+4+2-3*+2-37 4+ 3% + 392 (mod 39),
7=(1+3+32+2-3*+2-37+3%8+3%+2-319)2 (mod 3.

If this process is carried out indefinitely, we obtain that 7 can be expressed as the perfect square of a 3-adic
number, namely

7=(01+3+3%24+2-3*+2-37+38+3%°+2-310 +...)2
inZs.
2.2 Polynomial Ring
Definition 4 [21]. Suppose R is a commutative ring. The set R[x] = {a,x™ + ap_1x" 1 + -+ a;x +
agla; € R,0 < n € Z} is a polynomial ring.
Theorem 1. Suppose p is a prime number. If f(x) € Z,[x] and y € Z,, then it holds
fl+y)=f0)+f )y + g y)y? (3)
with g(x,y) € Z,[x, y].
Proof. Given f(x) = XL, aix' € Z,[x] and y € Z,. It will be proved that f(x +y) = f(x) + f'(xX)y +
g(x,y)y? with g(x,y) € Zy[x,y]. Based on what has been known, obtained
d .
fa+y) =X, alcx+y)
=apt+a,(x+y)+ta(x+y)2+az;(x+y)>3+ -
=ag+ ax + ayy + ay(x? + 2xy + y2) + az(x3 + 3x%y + 3xy% + y3) + -
=ag+ a1 x + ary + ayx? + 2a,xy + ayy? + azx® + 3azx?y + 3azxy? + azy3 + -
=ag + (a1x + azx? + azx3) + (a,y + 2a,xy + 3a3x%y) + a,y? + 3azxy? + azy3 + -
d ; d . d
=ao+ X, ax' + X lax Ty + Y aigi(xy)y?
d ; d . i d
= 2 axi+ N iy + T a,g,00y)y
=f(x) + f' )y + g(x, y)y?,
with g(x,y) = Z;Ll a;gi(x,y) € Zy[x,y]. So, it is proven that f(x +y) = f(x) + f'(x)y + g(x, y)y?,
with g(x,y) € Zy[x,y]. m
2.3 Hensel’s Lemma
Lemma 1 [20]. Suppose p is a prime number. If f(x) € Z,[x] and a € Z, satisfy f(a) = 0 (mod p)
and f'(a) # 0 (mod p), then there exists a unique a € Z, such that
f(a) = 0 and a = a (mod p). (4)

Example 2. Suppose p = 2 and f(x) = x3 — 5 € Z,[x]. Suppose a = 1 € Z,. Obtained f(1) = 13 -5 =
—4 =0 (mod2)and f'(1) = 3-1% = 3 = 1 (mod 2). Because it satisfies f(1) = 0 (mod 2) and f'(1) %
0 (mod 2), by Lemma 1, there exists a unique a € Z, such that f(a) = 0 and @ = 1 (mod 2).

For example, a; = a = 1 (mod 2). Find a,, € Z, such that a3 — 5 = 0 (mod 2™) and a,, = 1 (mod 2) for
every n > 1. Obtained,

0=(13-5)(mod2%)and 1 = 1 (mod 2),
0=((1+2%)3-5) (mod2%) and (1 +22) =1 (mod 2),
0=((1+2%+2%3-5)(mod2*)and (1 + 22 +23) =1 (mod 2),
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0=((1+2%2+2%+2%3—-5)(mod 2°) and (1 + 2% + 23 + 2%) = 1(mod 2),

0=((1+2%2+23+2%3—-5)(mod2%) and (1 + 22 + 23 + 2*) = 1(mod 2).
Therefore, it is obtained

a, = 1 (mod 22),

as = (1 + 22) (mod 23),

a, = (1+ 22 +23) (mod 2%),

as = (1 + 22 + 23 + 2%) (mod 2°),

ag = (1 + 22 + 23 + 2%) (mod 29),

SO, @ =1+22+234+2%+ ...,
2.4 Fundamental Theorem of Arithmetic

In this subsection, decomposition of any positive integer into prime numbers, linear congruence, and
Chinese Remainder Theorem, and an algorithm to find a recursive formula are recalled. It started with the
following theorem.

Theorem 2 [22]. Every positive integer can be singularly expressed as a multiplication of prime numbers.

This theorem states that for any integer n > 1, there exists a unique sequence of prime numbers
(p1, P2, ---» i) and corresponding positive integers (ey, ey, ..., e;) such that:

n= pfl .pgz e pl‘;’k_
Example 3. The number 152 can be expressed as 152 = 23 - 19. No other combination of prime numbers
will yield 152.
2.5 Chinese Remainder Theorem
Definition 5 [23]. An equation of the form ax = b (mod n) is a linear congruence.

Theorem 3 [23]. Suppose nq,n,, ..., n, a positive integer with gcd(ni,nj) =1 for i # j. Then the linear
congruence system

a, (mod n,)

a, (mod n,)

X
X

x = a, (mod n,.)
has a unique solution modulo nyn, ...n,.

3. RESULTS AND DISCUSSION

This section contains the research results, which include the recursive formula of the solution of the
congruence of polynomials modulo prime numbers by using Hensel’s Lemma and the algorithm for solving
the congruence of polynomials modulo arbitrary positive integers by using a combination of Hensel’s
Lemma, the Fundamental Theorem of Arithmetic, and the Chinese Remainder Theorem.

The first result obtained in this study is given in Proposition 1, and the second result in this study is
related to the algorithm for solving polynomial congruence modulo arbitrary positive integers using the
combination of Hensel’s Lemma, the Fundamental Theorem of Arithmetic, and the Chinese Remainder
Theorem.
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3.1 Modification of Hensel’s Lemma

The first result in this study is Proposition 1, a modification of Hensel’s Lemma in Lemma 1. The proof
of Proposition 1 is given in detail and is accompanied by an example.

Proposition 1. Suppose p is a prime number. If f(x) € Z,[x] and a € Z,, satisfy f(a) = 0 (mod p)
and f'(a) # 0 (mod p), then for every a,,,_, € Z,, where m € Z with m = 2, holds

am-1 = (am—2 + f(am-2)(=f'(@)~"))(mod p™) (5)
with ag = a (mod p).
Proof. Let p be a prime number and m € Z with m > 0. Suppose f (x) € Z,[x] and a € Z,, satisfy f(a)

0 (mod p) and f'(a) # 0 (mod p). By Lemma 1, there exists a unique a € Z, such that f(a) = 0 and
a (mod p). Since a € Z,, by Definition 1, a can be represented as a p-adic integer according to Eq. (1),

namely a = sz S;pt = Sip* + Sps1p*t + Spiap* 2+, where 0 < k€7Z and 0 <s; <p,s; €L
Suppose k = 0, it is obtained a = Z;O:osipi =Sy + 51+ 5,p% + -, where 0 <s; <p,s; €Z.

Let

m

am :ZSiPi = So + 51P + 5op% + =+ + spp™, (6)
i=0

where a,, € Z,,0 < s5; < p,s; € Z. For illustration, suppose some values of m of Eq. (6) as follows:
Form = 0, obtained ay = s,.
Form = 1, obtained a; = sy + s1p.
Form = 2, obtained a, = sy + s;p + s,p°.
Form = 3, obtained a; = sq + s1p + s,p% + s3p°.
Therefore, for m, which is increasing, the value of a can be written as @ = lim a,,. In addition, based on
Definition 2, a can be represented as a sequence m%o
a = (ay (mod p), a; (mod p?),a, (mod p3), ..., a,,—;(mod p™), ...) (7

Because f(a) = 0 dan a = a (mod p), it means that for every m > 1, holds f(a,,-;) = 0 (mod p™) and
Am-1 = a (mod p).

For m = 1, obtained f(a,) = 0 (mod p) and a, = a (mod p).

Form = 2, suppose

U1 = (@ + Spp_1p™ ") (mod p™) (8)
with s,,,_; € Z,,. Based on Hensel’s Lemma, we get
f(am-1) = f(am_z + spm_1p™"") = 0 (mod p™). 9)
Since f(x) € Z,[x], based on Theorem 1, it is obtained that
f+y) =f)+f Dy +gCxyy?  gxy) € Lylx,y] (10)
By substituting x with a,,,_, and y with s,,,_;p™1 in Eq. (10), then obtained
f(@m—y + Sm-10™ D) = f(@m—2) + ' (@m-2)Sm-1P™ " + z57_1p™ 2p™. 11

where z = g(am—2, Sp—1p™ ) € Z,.
By performing modulo reduction p™ in Eq. (11), we obtain
f@m—2+ sm-1p™ ") = (f(@n—2) + ' (@m-2)Sm-1p™ ') (mod p™). (12)
Next, substituting Eq. (12) into Eq. (9), we get
f(am=2) + f'(am-2)Sm-1p™ " = 0 (mod p™),
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Sm-1P" " = —f(am-2)f " (@m-2)"" (mod p™). (13)
Since f(am—;) € Z,, f(am—2) has an inverse of addition, that is, —f(a,,—,) € Z,. To prove the existence

of f'(am—») ™ as the inverse of multiplication, it will first be shown that £’ (a,,—,) = f'(a). It is known that
am—, = a (mod p). Therefore, it is obtained

Am—2 = a (modp) = f'(ay—2) = f'(a) Z 0 (mod p) (14)
Based on Eq. (14), f'(am-2) # 0 (mod p). This means, f'(am—;) € Zy. Since f'(am—2) € Zy, f'(am-2)
has a multiplication inverse, that is, f'(am—,)~" € Z;,. Therefore, it is proven that —f (an,_,) € Z, and
f'(am-2)"" € L.
Furthermore, by substituting Eq. (14) into Eq. (13), we obtain

Sm-1P™ ' = —f(am—2)f' (@~ (mod p™). (15)
By substituting Eq. (15) into Eq. (8), we obtain
m-1 = (am—z + (_f(am—z))f,(a)_l) (mOd pm) (16)

Since Z,, is a commutative ring, £q. (16) becomes

Am-1 = (am—z + f(am—z)(_f,(a)_l)) (mOd pm)_

So, it is proven that for every m > 2 holds a,,_; = (a2 + f (@m—2)(—f'(@)™1) )(mod p™) with a, =
a(modp). m

Example 4. Suppose p = 3 and f(x) = 2x? + 1 € Z3[x]. Suppose a = 1 € Z3. We obtain f(1) =2-1% +
1=3=0(mod3)and f'(1) =4-1 =4 =1 (mod 3). Since it satisfies f(1) = 0 (mod 3) and f'(1) #
0 (mod 3), by Proposition 1, for every a,,_; € Z,, where m € Z with m = 2, holds
A1 = (@2 + f(@m-2)(—=f'(1D)71) )(mod 3™)
= (@m—z + f(am—2)(=171) )(mod 3™)
= (am-2 + f(am-2) - 2)(mod 3™),
with ay = 1 (mod 3).
For m = 2, obtained
a, = (ag+ f(ag)-2) =1+ f(1) - 2) (mod 3%)
= (1+3-2) (mod 3?)
= 7 (mod 32).
For m = 3, obtained
a, = (a; + f(ay) - 2) = (7 + f(7) - 2) (mod 33)
= (7 + 18- 2) (mod 33)
= 43 (mod 3%)
= 16 (mod 33).

3.2 Polynomial Congruence Solving Algorithm

The second result in this research is related to the algorithm for solving polynomial congruence modulo
arbitrary positive integers using a combination of Hensel’s Lemma, the Fundamental Theorem of Arithmetic,
and the Chinese Remainder Theorem. If given a polynomial congruence modulo arbitrary positive integers,
the solution can be determined using the combination of Hensel’s Lemma, Fundamental Theorem of
Arithmetic, and Chinese Remainder Theorem with the following algorithm:

1. Factorize the modulo of a polynomial congruence using the Fundamental Theorem of Arithmetic.
2. Determine the solution of the polynomial congruence for each modulo prime number.
3. Check whether the solution satisfies the conditions of Hensel’s Lemma.
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4. Apply the recursive formula of Hensel’s Lemma to determine the solution of a polynomial
congruence modulo p™.

5. Apply the Chinese Remainder Theorem to determine the initial modulo polynomial congruence
solution.

The application of the algorithm for solving polynomial congruence using the combination of Hensel’s
Lemma, the Fundamental Theorem of Arithmetic, and the Chinese Remainder Theorem is given in Example
5.

Example 5. Suppose f(x) = 2x3—9x%2+ 17x — 6 = 0 (mod 2601). To solve f(x) using Hensel’s
Lemma, the modulo of the polynomial congruence is factorized using the Fundamental Theorem of
Arithmetic. Therefore, it is obtained:

f(x) =2x3 —9x? + 17x — 6 = 0 (mod 32 - 172) a7

Split the polynomial congruence in Eq. (17) into:
f(x) = 2x3 = 9x2 4+ 17x — 6 = 0 (mod 3?) (18)
F(x) = 2x% — 9x2 + 17x — 6 = 0 (mod 172) (19)

After obtaining the form of a polynomial congruence modulo p™, the next step is to determine the
solution of the polynomial congruence modulo p by substituting each element into Egs. (18) and (19) as
shown in Table 1 and Table 2.

Table 1. Values of x and f(x) (mod 3), with f(x) = 2x3 —9x> +17x— 6

x f(x) (mod 3)

0 f(0) =0 (mod 3)
1 f(1) =1 (mod 3)
2 f(2) =2 (mod 3)

Based on Table 1, the solution of the polynomial congruence f(x) = 2x3 — 9x2 + 17x — 6 = 0 (mod 3) is
a = 0 (mod 3).

Table 2. Values x and f(x) (mod 17), with f(x) = 2x3 —9x* + 17x — 6

x f(x) (mod 17) x f(x) (mod 17)

0 f(0) =11 (mod 17) 9 f(9) =9 (mod 17)
1 £(1) = 4 (mod 17) 10 £(10) = 6 (mod 17)
2 f(2) =8 (mod 17) 11 f(11) = 3 (mod 17)
3 £(3) =1 (mod 17) 12 £12 = 12 (mod 17)
4 £(4) = 12 (mod 17) 13 £(13) = 11 (mod 17)
5 £(5) = 2 (mod 17) 14 £(14) = 12 (mod 17)
6 £(6) = 0 (mod 17) 15 £(15) = 10 (mod 17)
7 £(7) =1 (mod 17) 16 £(16) = 0 (mod 17)
8 f(8) =0 (mod17)

Based on Table 2, the solution of the polynomial congruence f(x) = 2x3 —9x% + 17x — 6 = 0 (mod 17)
isa=6(mod17),b =8 (mod17),and c = 16 (mod 17).

To see whether the solutions of the polynomial congruence modulo p satisfy the condition of Hensel’s
Lemma, the first derivative of the polynomial function of Eq. (17) is determined:

f'(x) = 6x2 —18x + 17 (20)
Substitute the solutions of the polynomial congruence modulo p into (20):
f'(0)=6:02-18-0+17 =2 % 0 (mod 3),
f'(6)=6-62—18-64+17 = 6 % 0 (mod 17),
f'(8)=6-82—-18-8+4+17 =2 % 0 (mod 17),
f'(16) =6-162—18-16+ 17 =7 % 0 (mod 17).

Based on these results, it can be stated that each solution of polynomial congruence modulo p satisfies the
conditions of Hensel’s Lemma.
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The solution of the polynomial congruence f(x) =2x3—9x2+17x—6=0(mod3) is a =
0 (mod 3) and the first derivative of the function f(x) at that point is f'(0) = 2 (mod 3). In addition, the
solution of the polynomial congruence f(x) = 2x3 —9x% + 17x — 6 = 0 (mod 17) is a = 6 (mod 17),
b = 8 (mod 17),and ¢ = 16 (mod 17) and the first derivative of the function f(x) at each of these points
is f'(6) = 6 (mod 17), f'(8) = 2 (mod 17), and f'(16) = 7(mod 17).

Substitute the solution a = 0 (mod 3) into Eq. (5), then the following are obtained:
a, =0 (mod 3),
a; = (ag+ flag)(=f'(0)™)=(0+f(0)-(-271)) = (0 +3-4) (mod 3%)
= 12 = 3 (mod 32).
Based on this calculation, the solution of f(x) = 2x3 — 9x? + 17x — 6 = 0 (mod 32) is a; = 3 (mod 3?).
Substitute the solution a = 6 (mod 17) to Eq. (5), we get
a, =6(mod17),
@, = (a0 +f(a)(—f'(6)™) = (6+£(6) - (=671)) (mod 172)
= (64 204-48) = (6 +9792) = 9798 = 261 (mod 172).
Substitute the solution b = 8 (mod 17) to Eq. (5), we get
b, =8 (mod17),
by = (bo + f(bo)(—f'(8)™) = (8 + £(8) - (=271)) (mod 172)
= (8+0-144) = 8 (mod 172).
Substitute the solution ¢ = 16 (mod 17) to Eq. (5), we get
¢ =16 (mod17),
¢ =(co+ fle)(—f'16)™) = (16 4+ f(16) - (=771)) (mod 17?)
= (16 + 85-165) = (16 + 14025) = 14041 = 169 (mod 172).

Based on this calculation, the solution of f(x) =2x3—9x%+17x—6=0 (mod 172) is a; =
261 (mod 172),b; = 8 (mod 17%)and ¢; = 169 (mod 172).

To determine the solution modulo 2601, three linear congruence systems are formed as given in Table 3.

Table 3. List of Linear Congruence Systems to Solve f(x) = 0 (mod 2601)

System Linear Congruences
1 x = 3 (mod 3?),
x = 261 (mod 172)
’ x = 3 (mod 32),
x = 8 (mod 17?)
3 x = 3 (mod 32),

x = 169 (mod 17?)

Since 32 and 172 are relatively prime, each linear congruence system in Table 3 has a unique solution modulo
2601 = 32172 by Theorem 3.

Let
2601 2601 2601 2601
M= =79 =28 MN=7m =% =
Obtained the linear congruences
Nyx; = 289x; = x; =1 (mod9),

N,x, = 9x, = 1 (mod 289).

The solutions are x; = 1 (mod 9) and x, = 257 (mod 289). Hence, the unique solutions of each linear
congruence system are:
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e Solution of linear congruence system 1
x =3N;x; +261N,x, =3-289-1+261-9-257 (mod 2601)
=867 + 603693 = 604560 = 1128 (mod 2601).
e Solution of linear congruence system 2
x =3N;x; +8N,x, =3-289-1+8-9-257 (mod 2601)
x =867+ 18504 = 19371 = 1164 (mod 2601).
e Solution of linear congruence system 3
x =3N;x; +169N,x, =3-289-1+ 1699257 (mod 2601)
=867 4+ 390897 = 391764 = 1614 (mod 2601).

So, the solutions of the polynomial congruence f(x) = 2x3 —9x2 + 17x — 6 = 0 (mod 2601) are x =
1128 (mod 2601), x = 1164 (mod 2601), and x = 1614 (mod 2601).

4. CONCLUSION

Based on the research results obtained in the previous section, the conclusions of this study are as
follows: first, the solution of a polynomial congruence modulo prime numbers can be determined using the
recursive formula of Hensel’s Lemma; second, a polynomial congruence modulo an arbitrary positive integer
can be solved using Hensel’s Lemma with the following steps:

1. Factorize the modulo of the polynomial congruence using the Fundamental Theorem of

Arithmetic.

2. Determine the solution of the polynomial congruence for each modulo prime number.

3. Check whether the solution satisfies the conditions of Hensel’s Lemma.

4. Perform the iteration process using the recursive formula of Hensel’s Lemma to obtain the solution
of the polynomial congruence modulo prime power.

5. Use the Chinese Remainder Theorem to combine all solutions obtained into the initial modulo
solution.

Beyond these procedural steps, this hybrid algorithm offers several theoretical advantages compared
to classical methods. Traditional approaches often rely on direct computation or exhaustive search, which
quickly become infeasible for large moduli. In contrast, the recursive formula using Hensel’s Lemma allows
solutions to be built iteratively from simpler cases modulo p, avoiding recomputation at higher powers and
significantly reducing computational complexity. The use of the Chinese Remainder Theorem ensures that
these local solutions can be combined into a global solution efficiently. This hybrid algorithm highlights the
novelty of the method. It unifies prime power lifting and modulus factorization into a systematic algorithm
that scales better for large moduli.

The potential applications of this approach are promising. Recursive formula and modular solution
techniques are central in computational number theory and widely used in cryptography, coding theory, and
factorization problems. Future work could investigate the efficiency of the hybrid algorithm in practice,
compare its complexity with other algorithms, and develop computer implementations to handle very large
numbers. In addition, further theoretical exploration could address cases where the derivative condition in
Hensel’s Lemma fails, broadening the scope of applicability.
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