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Article Info ABSTRACT 

Article History: 
Polynomial congruence can be solved by applying Hensel’s Lemma. However, Hensel’s 

Lemma itself does not apply to solving generalized polynomial congruences. The purpose 

of this research is to determine the recursive formula for the solution of polynomial 

congruence modulo prime numbers and to construct a general solution algorithm of 

polynomial congruence modulo arbitrary positive integers. Unlike previous studies, this 

research proposes the recursive hybrid algorithm combining Hensel’s Lemma, the 

Fundamental Theorem of Arithmetic, and the Chinese Remainder Theorem, highlighting 

the originality of the approach in extending its application beyond prime power moduli. 

The result of this research is the form of a recursive formula for the solution of polynomial 

congruence modulo prime numbers and the algorithm for solving polynomial congruence 

modulo arbitrary positive integers using the combination of Hensel’s Lemma, 

Fundamental Theorem of Arithmetic, and Chinese Remainder Theorem. The results of 

this research contribute to the development of mathematical methods, especially in the 

field of number theory. However, the applicability of the recursive formula is limited to 

cases where the conditions of Hensel’s Lemma are satisfied, that is, when a solution of 

the polynomial modulo a prime is such that the polynomial equals zero while its derivative 

does not equal zero modulo the same prime. Extending the method to situations where 

this condition fails remains a subject for future research. 
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1. INTRODUCTION 

The branch of mathematics that studies the properties of integers is called number theory. One concept 

often used in number theory is congruence, introduced by Carl Friedrich Gauss in 1801 [1]. Congruence uses 

a modular arithmetic calculation system that expresses the remainder of the division of an integer by another 

integer [2]. Thue states that Thue’s equation, the Diophantine equation 𝐹(𝑥, 𝑦) = 𝑟, where 𝐹(𝑥, 𝑦) is an 

irreducible homogeneous polynomial function of degree 𝑛 ≥ 3 , and 𝑟 is a nonzero rational number, has 

infinite solutions for 𝑥 and 𝑦 [3],[4],[5]. The results show that by using Thue’s equation, researchers can 

further find various formulas for solving polynomial equations. With this formula, mathematical models that 

often use a system of polynomial equations can be solved more efficiently [6],[7],[8]. A Diophantine equation 

is an equation with integer coefficients that has an integer solution [9] (p. 119). Matiyasevich proved that no 

formula can generally solve the Diophantine equation [4]. However, research to solve the Diophantine 

equation is still being done, such as Grechuk’s research that can determine the solution of a bounded 

Diophantine polynomial equation [5]. In addition, Mosunov, through his research, determined the upper 

bound of the number of solutions of the Diophantine polynomial equation using the Thue-Mahler equation 

[10],[11]. 

The solution of the congruence 𝑎𝑥 ≡ 𝑐 (mod 𝑚) is identical to the integer solutions 𝑥 and 𝑦 of the 

Diophantine equation 𝑎𝑥 = 𝑚𝑦 + 𝑐 [9]. Therefore, an infinite number of solutions of the Diophantine 

polynomial equation results in an infinite solutions of the polynomial congruence. This statement is supported 

by the results of Gherga and Siksek, who stated that the number of polynomial congruence solutions is infinite 

[11]. These results are significant in modular arithmetic calculation systems because researchers can further 

study ways to solve polynomial congruences. For instance, Chinburg et al. [12], as well as Koppanati and 

Kumar [13], demonstrated that extending congruence solving beyond linear and quadratic cases to cubic and 

higher-degree polynomial congruences enables secure encryption of multimedia content in the cloud, 

showing the practical importance of polynomial congruences in strengthening modern cryptographic systems. 

In quantum cryptography, polynomial-based hashing methods have been shown to rely on number-theoretic 

properties of polynomial congruences, enabling efficient authentication and strengthening key distribution 

protocols [14]. Another relevant research was conducted by Ghosal [15], who said that number theory is one 

of the most important areas of Mathematics used in Computer Science and the basis behind the science of 

modern Cryptography. The research conducted was to study the development and application of number 

theory. The aim was to review the history of number theory and explore its influence on production, everyday 

life, and its application in engineering. The research found that number theory and modern computing 

technology can provide exciting solutions to real-life problems. 

In his research, Chan and Chen [16] used circular argumentation on the proof of Euclid’s theorem 

related to the infinity of prime numbers underlying the Fundamental Theorem of Arithmetic. The 

argumentation is determined by carefully observing the prime numbers analyzed in the statement. The result 

of his research, identifying the Fundamental Theorem of Arithmetic (FTA) as Unique Prime Factorization 

over S (UPF-S) for some set S of prime numbers, shows that FTA for natural numbers holds if and only if 

the set S is infinite and contains all prime numbers. Ahmad et al. [17] have investigated the parameters that 

affect the performance of Chinese Remainder Theorem (CRT) compression. In the investigation, experiments 

were conducted on the KODAK data set. The analysis was to correlate the decrease in CRT compression 

performance with the number of modules, that is, the size of the compressed block. The analysis showed that 

the performance improved at fewer modules, achieving an average compression ratio of 8% on the KODAK 

data set. 

Alhassan et al. [18] attempted to identify some algebraic properties of the CRT. CRT is an essential 

mathematical theorem for solving simultaneous equations related to different moduli. CRT also makes it 

possible to reconstruct integers within a specific range from the modulo of their residues to the relative 

modulo of pairwise primes and code sets of structures for manipulations on huge integers. The results of his 

research identified that the Prime and Ring Ideal Domain statements can be classified as some algebraic 

properties of the Chinese Remainder Theorem. According to Weiss [19], constructing real numbers involves 

creating an equivalence class of the Cauchy rational number sequence concerning ordinary absolute values. 

A completely different set of numbers, better known as p-adic numbers, can be constructed using different 

absolute values. So, with this basic description of the finite extension of p-adic numbers, the reader can 

explain the algebraic closure of the field of p-adic numbers. This field is incomplete, so a further step is 

needed to find a field containing p-adic numbers that is complete and algebraically closed. Furthermore, with 

such a field, many options, including the analysis of p-adic numbers, are open to researchers. 
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Based on the explanation above, previous research results show that gaps still need to be developed 

further, and no one has made a hybrid algorithm, which is a combination of Hensel’s Lemma, the 

Fundamental Theorem of Arithmetic, and the Chinese Remainder Theorem. Previous studies have only 

examined certain parts of Hensel’s Lemma, the Fundamental Theorem of Arithmetic, and the Chinese 

Remainder Theorem, and have not combined them to find a hybrid algorithm. From these studies, new 

problems arise related to the form of the recursive formula for the solution of the congruence of polynomials 

modulo prime numbers and the general solution algorithm of polynomial congruence modulo arbitrary 

positive integers. This result is simpler to find the solution of the congruence of polynomials modulo prime 

numbers compared to the previous result.  Therefore, in this research, the recursive formula for the solution 

of the congruence of polynomials modulo prime numbers using Hensel’s Lemma is determined. In addition, 

the solution algorithm of polynomial congruence modulo arbitrary positive integers using Hensel’s Lemma 

is determined. A combination of Hensel’s Lemma, the Fundamental Theorem of Arithmetic, and the Chinese 

Remainder Theorem is used to construct the solution algorithm of polynomial congruence modulo arbitrary 

positive integers. 

2. RESEARCH METHODS 

This research is classified as theoretical development research in the field of mathematics, aimed at 

developing a recursive formula for the solution of the congruence of polynomials modulo prime numbers and 

constructing a general solution algorithm of polynomial congruence modulo arbitrary positive integers. The 

primary research instruments are a literature review and a theoretical analysis of key mathematical definitions 

and theorems, including p-adic integers, polynomial ring, Hensel’s Lemma, the Fundamental Theorem of 

Arithmetic, and the Chinese Remainder Theorem. These provide the conceptual framework that supports the 

development of the proposed method. Since no empirical data are collected, this research relies on deductive 

reasoning through mathematical proof and validation through illustrative polynomial congruence cases that 

demonstrate the proposed algorithm. 

2.1 p-adic Integers 

Definition 1  [20]. If p is prime, then a p-adic integer can be defined as the series 

𝑎 = ∑ 𝑠𝑖𝑝𝑖 = 𝑠𝑘𝑝𝑘 + 𝑠𝑘+1𝑝𝑘+1 + 𝑠𝑘+2𝑝𝑘+2 + ⋯

∞

𝑖=𝑘

, (1) 

where 0 ≤ 𝑘 ∈ ℤ and 0 ≤ 𝑠𝑖 < 𝑝, 𝑠𝑖 ∈ ℤ. 

Definition 2 [20]. If 𝑝 is prime, then the p-adic integers can be defined as the sequence 

𝑎 = (𝑎0 (𝑚𝑜𝑑 𝑝), 𝑎1 (𝑚𝑜𝑑 𝑝2), 𝑎2 (𝑚𝑜𝑑 𝑝3), 𝑎3 (𝑚𝑜𝑑 𝑝4), … ) (2) 

where 𝑎𝑖−1 ≡ 𝑎𝑗 (𝑚𝑜𝑑 𝑝𝑖), 𝑖 ≤ 𝑗. 

Definition 3 [20]. The set of all p-adic integers is called ℤ𝑝. 

Example 1. Suppose 𝑝 = 3. We want to express the integer 7 in its 3-adic form. First, observe that  

7 ≡ 12 (mod 3). 

Although 7 ≢ 12 (mod 32), we can replace 1 with 1 + 3, since 1 ≡ (1 + 3) (mod 3). Thus, 

7 ≡ (1 + 3)2 (mod 32). 

Continuing this process, as we lift the solution to higher powers of 3, we obtain:  

 7 ≡ (1 + 3 + 32)2 (mod 33), 

 7 ≡ (1 + 3 + 32)2 (mod 34), 

 7 ≡ (1 + 3 + 32 + 2 ∙ 34)2 (mod 35), 

 7 ≡ (1 + 3 + 32 + 2 ∙ 34)2 (mod 35), 

 7 ≡ (1 + 3 + 32 + 2 ∙ 34)2 (mod 37), 
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 7 ≡ (1 + 3 + 32 + 2 ∙ 34 + 2 ∙ 37)2 (mod 38), 

 7 ≡ (1 + 3 + 32 + 2 ∙ 34 + 2 ∙ 37 + 38)2 (mod 39), 

 7 ≡ (1 + 3 + 32 + 2 ∙ 34 + 2 ∙ 37 + 38 + 39)2 (mod 310), 

 7 ≡ (1 + 3 + 32 + 2 ∙ 34 + 2 ∙ 37 + 38 + 39 + 2 ∙ 310)2 (mod 311). 

If this process is carried out indefinitely, we obtain that 7 can be expressed as the perfect square of a 3-adic 

number, namely  

7 = (1 + 3 + 32 + 2 ∙ 34 + 2 ∙ 37 + 38 + 39 + 2 ∙ 310 + ⋯ )2 

in ℤ3. 

2.2 Polynomial Ring 

Definition 4 [21]. Suppose R is a commutative ring. The set 𝑅[𝑥] = {𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 +
𝑎0|𝑎𝑖 ∈ 𝑅, 0 ≤ 𝑛 ∈ ℤ} is a polynomial ring. 

Theorem 1. Suppose p is a prime number. If 𝑓(𝑥) ∈ ℤ𝑝[𝑥] and 𝑦 ∈ ℤ𝑝, then it holds 

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓′(𝑥)𝑦 + 𝑔(𝑥, 𝑦)𝑦2 (3) 

with 𝑔(𝑥, 𝑦) ∈ ℤ𝑝[𝑥, 𝑦]. 

Proof. Given 𝑓(𝑥) = ∑ 𝑎𝑖𝑥𝑖𝑑
𝑖=0 ∈ ℤ𝑝[𝑥] and 𝑦 ∈ ℤ𝑝. It will be proved that 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓′(𝑥)𝑦 +

𝑔(𝑥, 𝑦)𝑦2 with 𝑔(𝑥, 𝑦) ∈ ℤ𝑝[𝑥, 𝑦]. Based on what has been known, obtained 

𝑓(𝑥 + 𝑦) = ∑ 𝑎𝑖(𝑥 + 𝑦)𝑖𝑑

𝑖=0
 

  = 𝑎0 + 𝑎1(𝑥 + 𝑦) + 𝑎2(𝑥 + 𝑦)2 + 𝑎3(𝑥 + 𝑦)3 + ⋯ 

  = 𝑎0 + 𝑎1𝑥 + 𝑎1𝑦 + 𝑎2(𝑥2 + 2𝑥𝑦 + 𝑦2) + 𝑎3(𝑥3 + 3𝑥2𝑦 + 3𝑥𝑦2 + 𝑦3) + ⋯ 

  = 𝑎0 + 𝑎1𝑥 + 𝑎1𝑦 + 𝑎2𝑥2 + 2𝑎2𝑥𝑦 + 𝑎2𝑦2 + 𝑎3𝑥3 + 3𝑎3𝑥2𝑦 + 3𝑎3𝑥𝑦2 + 𝑎3𝑦3 + ⋯ 

  = 𝑎0 + (𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3) + (𝑎1𝑦 + 2𝑎2𝑥𝑦 + 3𝑎3𝑥2𝑦) + 𝑎2𝑦2 + 3𝑎3𝑥𝑦2 + 𝑎3𝑦3 + ⋯ 

  = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖𝑑

𝑖=1
+ ∑ 𝑖𝑎𝑖𝑥𝑖−1𝑦

𝑑

𝑖=1
+ ∑ 𝑎𝑖𝑔𝑖(𝑥, 𝑦)𝑦2𝑑

𝑖=1
 

  = ∑ 𝑎𝑖𝑥𝑖𝑑

𝑖=0
+ ∑ 𝑖𝑎𝑖𝑥𝑖−1𝑦

𝑑

𝑖=1
+ ∑ 𝑎𝑖𝑔𝑖(𝑥, 𝑦)𝑦2𝑑

𝑖=1
 

  = 𝑓(𝑥) + 𝑓′(𝑥)𝑦 + 𝑔(𝑥, 𝑦)𝑦2, 

with 𝑔(𝑥, 𝑦) = ∑ 𝑎𝑖𝑔𝑖(𝑥, 𝑦)𝑑
𝑖=1 ∈ ℤ𝑝[𝑥, 𝑦]. So, it is proven that 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓′(𝑥)𝑦 + 𝑔(𝑥, 𝑦)𝑦2, 

with 𝑔(𝑥, 𝑦) ∈ ℤ𝑝[𝑥, 𝑦]. ∎ 

2.3 Hensel’s Lemma 

Lemma 1 [20]. Suppose 𝑝 is a prime number. If 𝑓(𝑥) ∈ ℤ𝑝[𝑥] and 𝑎 ∈ ℤ𝑝 satisfy 𝑓(𝑎) ≡ 0 (𝑚𝑜𝑑 𝑝) 

and 𝑓′(𝑎) ≢ 0 (𝑚𝑜𝑑 𝑝), then there exists a unique 𝛼 ∈ ℤ𝑝 such that 

𝑓(𝛼) = 0 𝑎𝑛𝑑 𝛼 ≡ 𝑎 (𝑚𝑜𝑑 𝑝). (4) 

Example 2. Suppose 𝑝 = 2 and 𝑓(𝑥) = 𝑥3 − 5 ∈ ℤ2[𝑥]. Suppose 𝑎 = 1 ∈ ℤ2. Obtained 𝑓(1) = 13 − 5 =
−4 ≡ 0 (mod 2) and 𝑓′(1) = 3 ∙ 12 = 3 ≡ 1 (mod 2). Because it satisfies 𝑓(1) ≡ 0 (mod 2) and 𝑓′(1) ≢
0 (mod 2), by Lemma 1, there exists a unique α ∈ ℤ2 such that 𝑓(𝛼) = 0 and 𝛼 ≡ 1 (mod 2). 

For example, 𝑎1 ≡ 𝑎 ≡ 1 (mod 2). Find 𝑎𝑛 ∈ ℤ2 such that 𝑎𝑛
3 − 5 ≡ 0 (mod 2𝑛) and 𝑎𝑛 ≡ 1 (mod 2) for 

every 𝑛 > 1. Obtained, 

 0 ≡ (13 − 5) (mod 22) and 1 ≡ 1 (mod 2), 

 0 ≡ ((1 + 22)3 − 5) (mod 23) and (1 + 22) ≡ 1 (mod 2), 

 0 ≡ ((1 + 22 + 23)3 − 5) (mod 24) and (1 + 22 + 23) ≡ 1 (mod 2), 
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 0 ≡ ((1 + 22 + 23 + 24)3 − 5)(mod 25) and (1 + 22 + 23 + 24) ≡ 1(mod 2), 

 0 ≡ ((1 + 22 + 23 + 24)3 − 5)(mod 26) and (1 + 22 + 23 + 24) ≡ 1(mod 2). 

Therefore, it is obtained 

 𝑎2 ≡ 1 (mod 22), 

 𝑎3 ≡ (1 + 22) (mod 23), 

 𝑎4 ≡ (1 + 22 + 23) (mod 24), 

 𝑎5 ≡ (1 + 22 + 23 + 24) (mod 25), 

 𝑎6 ≡ (1 + 22 + 23 + 24) (mod 26), 

 ⋮ 

So, 𝛼 = 1 + 22 + 23 + 24 + ⋯. 

2.4 Fundamental Theorem of Arithmetic 

In this subsection, decomposition of any positive integer into prime numbers, linear congruence, and 

Chinese Remainder Theorem, and an algorithm to find a recursive formula are recalled. It started with the 

following theorem.  

Theorem 2  [22]. Every positive integer can be singularly expressed as a multiplication of prime numbers. 

This theorem states that for any integer 𝑛 > 1, there exists a unique sequence of prime numbers 

(𝑝1, 𝑝2, … , 𝑝𝑘) and corresponding positive integers (𝑒1, 𝑒2, … , 𝑒𝑘) such that: 

𝑛 = 𝑝1
𝑒1 ∙ 𝑝2

𝑒2 ∙ ⋯ ∙ 𝑝𝑘
𝑒𝑘 . 

Example 3. The number 152 can be expressed as 152 = 23 ∙ 19. No other combination of prime numbers 

will yield 152. 

2.5 Chinese Remainder Theorem 

Definition 5  [23]. An equation of the form 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) is a linear congruence. 

Theorem 3  [23]. Suppose 𝑛1, 𝑛2, … , 𝑛𝑟 a positive integer with 𝑔𝑐𝑑(𝑛𝑖, 𝑛𝑗) = 1 for 𝑖 ≠ 𝑗. Then the linear 

congruence system 

𝑥 ≡ 𝑎1 (𝑚𝑜𝑑 𝑛1) 

𝑥 ≡ 𝑎2 (𝑚𝑜𝑑 𝑛2) 

⋮ 
𝑥 ≡ 𝑎𝑟 (𝑚𝑜𝑑 𝑛𝑟) 

has a unique solution modulo 𝑛1𝑛2 … 𝑛𝑟. 

3. RESULTS AND DISCUSSION 

 This section contains the research results, which include the recursive formula of the solution of the 

congruence of polynomials modulo prime numbers by using Hensel’s Lemma and the algorithm for solving 

the congruence of polynomials modulo arbitrary positive integers by using a combination of Hensel’s 

Lemma, the Fundamental Theorem of Arithmetic, and the Chinese Remainder Theorem. 

The first result obtained in this study is given in Proposition 1, and the second result in this study is 

related to the algorithm for solving polynomial congruence modulo arbitrary positive integers using the 

combination of Hensel’s Lemma, the Fundamental Theorem of Arithmetic, and the Chinese Remainder 

Theorem. 
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3.1 Modification of Hensel’s Lemma 

The first result in this study is Proposition 1, a modification of Hensel’s Lemma in Lemma 1. The proof 

of Proposition 1 is given in detail and is accompanied by an example. 

Proposition 1. Suppose 𝑝 is a prime number. If 𝑓(𝑥) ∈ ℤ𝑝[𝑥] and 𝑎 ∈ ℤ𝑝 satisfy 𝑓(𝑎) ≡ 0 (𝑚𝑜𝑑 𝑝) 

and 𝑓′(𝑎) ≢ 0 (𝑚𝑜𝑑 𝑝), then for every 𝑎𝑚−1 ∈ ℤ𝑝, where 𝑚 ∈ ℤ with 𝑚 ≥ 2, holds 

𝑎𝑚−1 ≡ (𝑎𝑚−2 + 𝑓(𝑎𝑚−2)(−𝑓′(𝑎)−1))(mod 𝑝𝑚) (5) 

with 𝑎0 ≡ 𝑎 (mod 𝑝). 

Proof. Let p be a prime number and 𝑚 ∈ ℤ with 𝑚 ≥ 0. Suppose 𝑓(𝑥) ∈ ℤ𝑝[𝑥] and 𝑎 ∈ ℤ𝑝 satisfy 𝑓(𝑎) ≡

0 (mod 𝑝) and 𝑓′(𝑎) ≢ 0 (mod 𝑝). By Lemma 1, there exists a unique 𝛼 ∈ ℤ𝑝 such that 𝑓(𝛼) = 0 and 𝛼 ≡

𝑎 (mod 𝑝). Since 𝛼 ∈ ℤ𝑝, by Definition 1, 𝛼 can be represented as a p-adic integer according to Eq. (1), 

namely 𝛼 = ∑ 𝑠𝑖𝑝𝑖 = 𝑠𝑘𝑝𝑘 + 𝑠𝑘+1𝑝𝑘+1 + 𝑠𝑘+2𝑝𝑘+2 + ⋯
∞

𝑖=𝑘
, where 0 ≤ 𝑘 ∈ ℤ and 0 ≤ 𝑠𝑖 < 𝑝, 𝑠𝑖 ∈ ℤ. 

Suppose 𝑘 = 0, it is obtained 𝛼 = ∑ 𝑠𝑖𝑝𝑖 = 𝑠0 + 𝑠1𝑝 + 𝑠2𝑝2 + ⋯
∞

𝑖=0
, where 0 ≤ 𝑠𝑖 < 𝑝, 𝑠𝑖 ∈ ℤ. 

Let 

𝑎𝑚 = ∑ 𝑠𝑖𝑝𝑖 = 𝑠0 + 𝑠1𝑝 + 𝑠2𝑝2 + ⋯ + 𝑠𝑚𝑝𝑚

𝑚

𝑖=0

, (6) 

where 𝑎𝑚 ∈ ℤ𝑝, 0 ≤ 𝑠𝑖 < 𝑝, 𝑠𝑖 ∈ ℤ. For illustration, suppose some values of 𝑚 of Eq. (6) as follows: 

For 𝑚 = 0, obtained 𝑎0 = 𝑠0. 

For 𝑚 = 1, obtained 𝑎1 = 𝑠0 + 𝑠1𝑝. 

For 𝑚 = 2, obtained 𝑎2 = 𝑠0 + 𝑠1𝑝 + 𝑠2𝑝2. 

For 𝑚 = 3, obtained 𝑎3 = 𝑠0 + 𝑠1𝑝 + 𝑠2𝑝2 + 𝑠3𝑝3. 

Therefore, for 𝑚, which is increasing, the value of 𝛼 can be written as 𝛼 = lim
𝑚→∞

𝑎𝑚. In addition, based on 

Definition 2, 𝛼 can be represented as a sequence 

𝛼 = (𝑎0 (mod 𝑝), 𝑎1 (mod 𝑝2), 𝑎2 (mod 𝑝3), … , 𝑎𝑚−1(mod 𝑝𝑚), … ) (7) 

Because 𝑓(𝛼) = 0 dan α ≡ 𝑎 (mod 𝑝), it means that for every 𝑚 ≥ 1, holds 𝑓(𝑎𝑚−1) ≡ 0 (mod 𝑝𝑚) and 

𝑎𝑚−1 ≡ 𝑎 (mod 𝑝). 

For 𝑚 = 1, obtained 𝑓(𝑎0) ≡ 0 (mod 𝑝) and 𝑎0 ≡ 𝑎 (mod 𝑝). 

For 𝑚 ≥ 2, suppose 

𝑎𝑚−1 ≡ (𝑎𝑚−2 + 𝑠𝑚−1𝑝𝑚−1) (mod 𝑝𝑚) (8) 

with 𝑠𝑚−1 ∈ ℤ𝑝. Based on Hensel’s Lemma, we get 

𝑓(𝑎𝑚−1) ≡ 𝑓(𝑎𝑚−2 + 𝑠𝑚−1𝑝𝑚−1) ≡ 0 (mod 𝑝𝑚). (9) 

Since 𝑓(𝑥) ∈ ℤ𝑝[𝑥], based on Theorem 1, it is obtained that 

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓′(𝑥)𝑦 + 𝑔(𝑥, 𝑦)𝑦2, 𝑔(𝑥, 𝑦) ∈ ℤ𝑝[𝑥, 𝑦] (10) 

By substituting x with 𝑎𝑚−2 and y with 𝑠𝑚−1𝑝𝑚−1 in Eq. (10), then obtained 

𝑓(𝑎𝑚−2 + 𝑠𝑚−1𝑝𝑚−1) = 𝑓(𝑎𝑚−2) + 𝑓′(𝑎𝑚−2)𝑠𝑚−1𝑝𝑚−1 + 𝑧𝑠𝑚−1
2 𝑝𝑚−2𝑝𝑚. (11) 

where 𝑧 = 𝑔(𝑎𝑚−2, 𝑠𝑚−1𝑝𝑚−1) ∈ ℤ𝑝. 

By performing modulo reduction 𝑝𝑚 in Eq. (11), we obtain 

𝑓(𝑎𝑚−2 + 𝑠𝑚−1𝑝𝑚−1) ≡ (𝑓(𝑎𝑚−2) + 𝑓′(𝑎𝑚−2)𝑠𝑚−1𝑝𝑚−1) (mod 𝑝𝑚). (12) 

Next, substituting Eq. (12) into Eq. (9), we get 

𝑓(𝑎𝑚−2) + 𝑓′(𝑎𝑚−2)𝑠𝑚−1𝑝𝑚−1 ≡ 0 (mod 𝑝𝑚), 
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𝑠𝑚−1𝑝𝑚−1 ≡ −𝑓(𝑎𝑚−2)𝑓′(𝑎𝑚−2)−1 (mod 𝑝𝑚). (13) 

Since 𝑓(𝑎𝑚−2) ∈ ℤ𝑝, 𝑓(𝑎𝑚−2) has an inverse of addition, that is, −𝑓(𝑎𝑚−2) ∈ ℤ𝑝. To prove the existence 

of 𝑓′(𝑎𝑚−2)−1 as the inverse of multiplication, it will first be shown that 𝑓′(𝑎𝑚−2) ≡ 𝑓′(𝑎). It is known that 

𝑎𝑚−2 ≡ 𝑎 (mod 𝑝). Therefore, it is obtained 

𝑎𝑚−2 ≡ 𝑎 (mod 𝑝) ⇒ 𝑓′(𝑎𝑚−2) ≡ 𝑓′(𝑎) ≢ 0 (mod 𝑝) (14) 

Based on Eq. (14), 𝑓′(𝑎𝑚−2) ≢ 0 (mod 𝑝). This means, 𝑓′(𝑎𝑚−2) ∈ ℤ𝑝
∗ . Since 𝑓′(𝑎𝑚−2) ∈ ℤ𝑝

∗ , 𝑓′(𝑎𝑚−2) 

has a multiplication inverse, that is, 𝑓′(𝑎𝑚−2)−1 ∈ ℤ𝑝
∗ . Therefore, it is proven that −𝑓(𝑎𝑚−2) ∈ ℤ𝑝 and 

𝑓′(𝑎𝑚−2)−1 ∈ ℤ𝑝
∗ . 

Furthermore, by substituting Eq. (14) into Eq. (13), we obtain 

𝑠𝑚−1𝑝𝑚−1 ≡ −𝑓(𝑎𝑚−2)𝑓′(𝑎)−1 (mod 𝑝𝑚). (15) 

By substituting Eq. (15) into Eq. (8), we obtain 

𝑎𝑚−1 ≡ (𝑎𝑚−2 + (−𝑓(𝑎𝑚−2))𝑓′(𝑎)−1) (mod 𝑝𝑚) (16) 

Since ℤ𝑝 is a commutative ring, Eq. (16) becomes 

𝑎𝑚−1 ≡ (𝑎𝑚−2 + 𝑓(𝑎𝑚−2)(−𝑓′(𝑎)−1)) (mod 𝑝𝑚). 

So, it is proven that for every 𝑚 ≥ 2 holds 𝑎𝑚−1 ≡ (𝑎𝑚−2 + 𝑓(𝑎𝑚−2)(−𝑓′(𝑎)−1) )(mod 𝑝𝑚) with 𝑎0 ≡
𝑎 (mod 𝑝). ∎ 

Example 4. Suppose 𝑝 = 3 and 𝑓(𝑥) = 2𝑥2 + 1 ∈ ℤ3[𝑥]. Suppose 𝑎 = 1 ∈ ℤ3. We obtain 𝑓(1) = 2 ∙ 12 +
1 = 3 ≡ 0 (mod 3) and 𝑓′(1) = 4 ∙ 1 = 4 ≡ 1 (mod 3). Since it satisfies 𝑓(1) ≡ 0 (mod 3) and 𝑓′(1) ≢
0 (mod 3), by Proposition 1, for every 𝑎𝑚−1 ∈ ℤ𝑝, where 𝑚 ∈ ℤ with 𝑚 ≥ 2, holds 

 𝑎𝑚−1 ≡ (𝑎𝑚−2 + 𝑓(𝑎𝑚−2)(−𝑓′(1)−1) )(mod 3𝑚) 

  ≡ (𝑎𝑚−2 + 𝑓(𝑎𝑚−2)(−1−1) )(mod 3𝑚) 

  ≡ (𝑎𝑚−2 + 𝑓(𝑎𝑚−2) ∙ 2 )(mod 3𝑚), 

with 𝑎0 ≡ 1 (mod 3). 

For 𝑚 = 2, obtained 

𝑎1 ≡ (𝑎0 + 𝑓(𝑎0) ∙ 2) ≡ (1 + 𝑓(1) ∙ 2) (mod 32) 

 ≡ (1 + 3 ∙ 2) (mod 32) 

 ≡ 7 (mod 32). 

For 𝑚 = 3, obtained 

𝑎2 ≡ (𝑎1 + 𝑓(𝑎1) ∙ 2) ≡ (7 + 𝑓(7) ∙ 2) (mod 33) 

 ≡ (7 + 18 ∙ 2) (mod 33) 

 ≡ 43 (mod 33) 

 ≡ 16 (mod 33).  

3.2 Polynomial Congruence Solving Algorithm 

The second result in this research is related to the algorithm for solving polynomial congruence modulo 

arbitrary positive integers using a combination of Hensel’s Lemma, the Fundamental Theorem of Arithmetic, 

and the Chinese Remainder Theorem. If given a polynomial congruence modulo arbitrary positive integers, 

the solution can be determined using the combination of Hensel’s Lemma, Fundamental Theorem of 

Arithmetic, and Chinese Remainder Theorem with the following algorithm: 

1. Factorize the modulo of a polynomial congruence using the Fundamental Theorem of Arithmetic. 

2. Determine the solution of the polynomial congruence for each modulo prime number. 

3. Check whether the solution satisfies the conditions of Hensel’s Lemma. 
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4. Apply the recursive formula of Hensel’s Lemma to determine the solution of a polynomial 

congruence modulo 𝑝𝑚. 

5. Apply the Chinese Remainder Theorem to determine the initial modulo polynomial congruence 

solution. 

The application of the algorithm for solving polynomial congruence using the combination of Hensel’s 

Lemma, the Fundamental Theorem of Arithmetic, and the Chinese Remainder Theorem is given in Example 

5. 

Example 5. Suppose 𝑓(𝑥) = 2𝑥3 − 9𝑥2 + 17𝑥 − 6 ≡ 0 (mod 2601). To solve 𝑓(𝑥) using Hensel’s 

Lemma, the modulo of the polynomial congruence is factorized using the Fundamental Theorem of 

Arithmetic. Therefore, it is obtained: 

𝑓(𝑥) = 2𝑥3 − 9𝑥2 + 17𝑥 − 6 ≡ 0 (mod 32 ∙ 172) (17) 

Split the polynomial congruence in Eq. (17) into: 

𝑓(𝑥) = 2𝑥3 − 9𝑥2 + 17𝑥 − 6 ≡ 0 (mod 32) (18) 

𝑓(𝑥) = 2𝑥3 − 9𝑥2 + 17𝑥 − 6 ≡ 0 (mod 172) (19) 

After obtaining the form of a polynomial congruence modulo 𝑝𝑚, the next step is to determine the 

solution of the polynomial congruence modulo p by substituting each element into Eqs. (18) and (19) as 

shown in Table 1 and Table 2. 

Table 1. Values of 𝒙 and 𝒇(𝒙) (𝐦𝐨𝐝 𝟑), with 𝒇(𝒙) = 𝟐𝒙𝟑 − 𝟗𝒙𝟐 + 𝟏𝟕𝒙 − 𝟔 

𝒙 𝒇(𝒙) (𝐦𝐨𝐝 𝟑) 

0 𝑓(0) ≡ 0 (mod 3) 
1 𝑓(1) ≡ 1 (mod 3) 
2 𝑓(2) ≡ 2 (mod 3) 

Based on Table 1, the solution of the polynomial congruence 𝑓(𝑥) = 2𝑥3 − 9𝑥2 + 17𝑥 − 6 ≡ 0 (mod 3) is 

𝑎 ≡ 0 (mod 3). 

Table 2. Values 𝒙 and 𝒇(𝒙) (𝐦𝐨𝐝 𝟏𝟕), with 𝒇(𝒙) = 𝟐𝒙𝟑 − 𝟗𝒙𝟐 + 𝟏𝟕𝒙 − 𝟔 

𝒙 𝒇(𝒙) (𝐦𝐨𝐝 𝟏𝟕) 𝒙 𝒇(𝒙) (𝐦𝐨𝐝 𝟏𝟕) 

0 𝑓(0) ≡ 11 (mod 17) 9 𝑓(9) ≡ 9 (mod 17) 

1 𝑓(1) ≡ 4 (mod 17) 10 𝑓(10) ≡ 6 (mod 17) 

2 𝑓(2) ≡ 8 (mod 17) 11 𝑓(11) ≡ 3 (mod 17) 

3 𝑓(3) ≡ 1 (mod 17) 12 𝑓12 ≡ 12 (mod 17) 

4 𝑓(4) ≡ 12 (mod 17) 13 𝑓(13) ≡ 11 (mod 17) 

5 𝑓(5) ≡ 2 (mod 17) 14 𝑓(14) ≡ 12 (mod 17) 

6 𝑓(6) ≡ 0 (mod 17) 15 𝑓(15) ≡ 10 (mod 17) 

7 𝑓(7) ≡ 1 (mod 17) 16 𝑓(16) ≡ 0 (mod 17) 

8 𝑓(8) ≡ 0 (mod 17)   

Based on Table 2, the solution of the polynomial congruence 𝑓(𝑥) = 2𝑥3 − 9𝑥2 + 17𝑥 − 6 ≡ 0 (mod 17) 

is 𝑎 ≡ 6 (mod 17), 𝑏 ≡ 8 (mod 17), and 𝑐 ≡ 16 (mod 17). 

To see whether the solutions of the polynomial congruence modulo p satisfy the condition of Hensel’s 

Lemma, the first derivative of the polynomial function of Eq. (17) is determined: 

𝑓′(𝑥) = 6𝑥2 − 18𝑥 + 17 (20) 

Substitute the solutions of the polynomial congruence modulo p into (20): 

𝑓′(0) = 6 ∙ 02 − 18 ∙ 0 + 17 ≡ 2 ≢ 0 (mod 3), 

𝑓′(6) = 6 ∙ 62 − 18 ∙ 6 + 17 ≡ 6 ≢ 0 (mod 17), 

𝑓′(8) = 6 ∙ 82 − 18 ∙ 8 + 17 ≡ 2 ≢ 0 (mod 17), 

𝑓′(16) = 6 ∙ 162 − 18 ∙ 16 + 17 ≡ 7 ≢ 0 (mod 17). 

Based on these results, it can be stated that each solution of polynomial congruence modulo p satisfies the 

conditions of Hensel’s Lemma. 
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The solution of the polynomial congruence 𝑓(𝑥) = 2𝑥3 − 9𝑥2 + 17𝑥 − 6 ≡ 0 (mod 3) is 𝑎 ≡
0 (mod 3) and the first derivative of the function 𝑓(𝑥) at that point is 𝑓′(0) ≡ 2 (mod 3). In addition, the 

solution of the polynomial congruence 𝑓(𝑥) = 2𝑥3 − 9𝑥2 + 17𝑥 − 6 ≡ 0 (mod 17) is 𝑎 ≡ 6 (mod 17), 
 𝑏 ≡ 8 (mod 17), and 𝑐 ≡ 16 (mod 17) and the first derivative of the function 𝑓(𝑥) at each of these points 

is 𝑓′(6) ≡ 6 (mod 17), 𝑓′(8) ≡ 2 (mod 17), and 𝑓′(16) ≡ 7(mod 17).  

Substitute the solution 𝑎 ≡ 0 (mod 3) into Eq. (5), then the following are obtained:  

𝑎0 ≡ 0 (mod 3), 

𝑎1 ≡ (𝑎0 + 𝑓(𝑎0)(−𝑓′(0)−1)) ≡ (0 + 𝑓(0) ∙ (−2−1)) ≡ (0 + 3 ∙ 4) (mod 32) 

 ≡ 12 ≡ 3 (mod 32). 

Based on this calculation, the solution of 𝑓(𝑥) = 2𝑥3 − 9𝑥2 + 17𝑥 − 6 ≡ 0 (mod 32) is 𝑎1 ≡ 3 (mod 32). 

Substitute the solution 𝑎 ≡ 6 (mod 17) to Eq. (5), we get 

𝑎0 ≡ 6 (mod 17), 

𝑎1 ≡ (𝑎0 + 𝑓(𝑎0)(−𝑓′(6)−1)) ≡ (6 + 𝑓(6) ∙ (−6−1)) (mod 172) 

 ≡ (6 + 204 ∙ 48) ≡ (6 + 9792) ≡ 9798 ≡ 261 (mod 172). 

Substitute the solution 𝑏 ≡ 8 (mod 17) to Eq. (5), we get 

𝑏0 ≡ 8 (mod 17), 

𝑏1 ≡ (𝑏0 + 𝑓(𝑏0)(−𝑓′(8)−1)) ≡ (8 + 𝑓(8) ∙ (−2−1)) (mod 172) 

 ≡ (8 + 0 ∙ 144) ≡ 8 (mod 172). 

Substitute the solution 𝑐 ≡ 16 (mod 17) to Eq. (5), we get 

𝑐0 ≡ 16 (mod 17), 

𝑐1 ≡ (𝑐0 + 𝑓(𝑐0)(−𝑓′(16)−1)) ≡ (16 + 𝑓(16) ∙ (−7−1)) (mod 172) 

 ≡ (16 + 85 ∙ 165) ≡ (16 + 14025) ≡ 14041 ≡ 169 (mod 172). 

Based on this calculation, the solution of 𝑓(𝑥) = 2𝑥3 − 9𝑥2 + 17𝑥 − 6 ≡ 0 (mod 172) is 𝑎1 ≡
261 (mod 172),𝑏1 ≡ 8 (mod 172)and 𝑐1 ≡ 169 (mod 172). 

To determine the solution modulo 2601, three linear congruence systems are formed as given in Table 3. 

Table 3. List of Linear Congruence Systems to Solve 𝒇(𝒙) ≡ 𝟎 (𝐦𝐨𝐝 𝟐𝟔𝟎𝟏) 

System Linear Congruences 

1 
𝑥 ≡ 3 (mod 32), 

𝑥 ≡ 261 (mod 172) 

2 
𝑥 ≡ 3 (mod 32), 

𝑥 ≡ 8 (mod 172) 

3 
𝑥 ≡ 3 (mod 32), 

𝑥 ≡ 169 (mod 172) 

Since 32 and 172 are relatively prime, each linear congruence system in Table 3 has a unique solution modulo 

2601 = 32 ∙ 172 by Theorem 3. 

Let  

𝑁1 =
2601

32
=

2601

9
= 289, 𝑁2 =

2601

172
=

2601

289
= 9. 

Obtained the linear congruences 

 𝑁1𝑥1 = 289𝑥1 ≡ 𝑥1 ≡ 1 (mod 9), 

 𝑁2𝑥2 = 9𝑥2 ≡ 1 (mod 289). 

The solutions are 𝑥1 ≡ 1 (mod 9) and 𝑥2 ≡ 257 (mod 289). Hence, the unique solutions of each linear 

congruence system are: 
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• Solution of linear congruence system 1 

𝑥 ≡ 3𝑁1𝑥1 + 261𝑁2𝑥2 ≡ 3 ∙ 289 ∙ 1 + 261 ∙ 9 ∙ 257 (mod 2601) 

  ≡ 867 + 603693 ≡ 604560 ≡ 1128 (mod 2601). 

• Solution of linear congruence system 2 

𝑥 ≡ 3𝑁1𝑥1 + 8𝑁2𝑥2 ≡ 3 ∙ 289 ∙ 1 + 8 ∙ 9 ∙ 257 (mod 2601) 

𝑥 ≡ 867 + 18504 ≡ 19371 ≡ 1164 (mod 2601). 

• Solution of linear congruence system 3 

𝑥 ≡ 3𝑁1𝑥1 + 169𝑁2𝑥2 ≡ 3 ∙ 289 ∙ 1 + 169 ∙ 9 ∙ 257 (mod 2601) 

  ≡ 867 + 390897 ≡ 391764 ≡ 1614 (mod 2601). 

So, the solutions of the polynomial congruence 𝑓(𝑥) = 2𝑥3 − 9𝑥2 + 17𝑥 − 6 ≡ 0 (mod 2601) are 𝑥 ≡
1128 (mod 2601), 𝑥 ≡ 1164 (mod 2601), and 𝑥 ≡ 1614 (mod 2601). 

4. CONCLUSION 

Based on the research results obtained in the previous section, the conclusions of this study are as 

follows: first, the solution of a polynomial congruence modulo prime numbers can be determined using the 

recursive formula of Hensel’s Lemma; second, a polynomial congruence modulo an arbitrary positive integer 

can be solved using Hensel’s Lemma with the following steps: 

1. Factorize the modulo of the polynomial congruence using the Fundamental Theorem of 

Arithmetic. 

2. Determine the solution of the polynomial congruence for each modulo prime number. 

3. Check whether the solution satisfies the conditions of Hensel’s Lemma. 

4. Perform the iteration process using the recursive formula of Hensel’s Lemma to obtain the solution 

of the polynomial congruence modulo prime power. 

5. Use the Chinese Remainder Theorem to combine all solutions obtained into the initial modulo 

solution. 

Beyond these procedural steps, this hybrid algorithm offers several theoretical advantages compared 

to classical methods. Traditional approaches often rely on direct computation or exhaustive search, which 

quickly become infeasible for large moduli. In contrast, the recursive formula using Hensel’s Lemma allows 

solutions to be built iteratively from simpler cases modulo 𝑝, avoiding recomputation at higher powers and 

significantly reducing computational complexity. The use of the Chinese Remainder Theorem ensures that 

these local solutions can be combined into a global solution efficiently. This hybrid algorithm highlights the 

novelty of the method. It unifies prime power lifting and modulus factorization into a systematic algorithm 

that scales better for large moduli. 

The potential applications of this approach are promising. Recursive formula and modular solution 

techniques are central in computational number theory and widely used in cryptography, coding theory, and 

factorization problems. Future work could investigate the efficiency of the hybrid algorithm in practice, 

compare its complexity with other algorithms, and develop computer implementations to handle very large 

numbers. In addition, further theoretical exploration could address cases where the derivative condition in 

Hensel’s Lemma fails, broadening the scope of applicability. 

Author Contributions 

Eka Oktaviansyah: Conceptualization, formal analysis, validation, writing - original draft. Edi Kurniadi: 

Conceptualization, funding acquisition, resources, supervision, validation, writing - review & editing. Dianne 

Amor Kusuma: Conceptualization, data curation, project administration, validation. All authors discussed the 

results and contributed to the final manuscript. 



BAREKENG: J. Math. & App., vol. 20(1), pp. 0853- 0864, Mar, 2026.     863 

 

 

Funding Statement   

This work was supported by the Directorate of Research and Community Service (DRPM) of Universitas 

Padjadjaran through the Riset Kompetensi Dosen Unpad scheme (Grant No. 4581/UN6.D/PT.00/2025). 

Acknowledgment  

The Authors would like to thank the reviewers for their valuable advice to improve this paper. The authors 

would also like to acknowledge the support received by Riset Kompetensi Dosen Unpad, the Directorate of 

Research and Community Service (DRPM), and the Faculty of Mathematics and Natural Sciences of 

Universitas Padjadjaran, Sumedang, Indonesia. 

Declarations 

The authors declare that there are no conflicts of interest. 

REFERENCES 

[1] P. S. Rudman, HOW MATHEMATICS HAPPENED: THE FIRST 50,000 YEARS. New York: Prometheus Books, 2007. 

[2] M. Lemma and D. Allard, “APPLICATIONS OF CONGRUENCE TO DIVISIBILITY THEORY,” IJRDO-Journal Math., 

vol. 3, no. 11, pp. 32–42, 2017. 

[3] G. Knapp, “POLYNOMIAL ROOT DISTRIBUTION AND ITS IMPACT ON SOLUTIONS TO THUE EQUATIONS,” 

Ph.D. dissertation, University of Oregon, 2023. 

[4] J. Bayer, M. David, B. Stock, A. Pal, Y. Matiyasevich, and D. Schleicher, “DIOPHANTINE EQUATIONS AND THE 

DPRM THEOREM,” Arch. Form. Proofs, 2022. 

[5] B. Grechuk, “DIOPHANTINE EQUATIONS: A SYSTEMATIC APPROACH,” 2021, [Online]. Available: 

https://arxiv.org/abs/2108.08705 

[6] O. Ikponmwosa-Eweka and A. Ozigagun, “APPLICATION OF RESPONSE SURFACE METHODOLOGY (RSM) TO 

PREDICT PENETRATION AREA DURING TIG WELDING AT STEADY STATE CONDITION,” NIPES - J. Sci. 

Technol. Res., vol. 5, no. 3, pp. 94 – 100, 2023. 

[7] A. A. Kostoglotov, I. V Kalienko, A. S. Kornev, and S. V Lazarenko, “SYNTHESIS OF ALGORITHMS FOR 

COMPENSATING SYSTEMATIC ERRORS BASED ON THE CONSTRUCTION OF POLYNOMIAL 

MATHEMATICAL MODELS OF RADAR MEASUREMENTS,” Meas. Tech., vol. 65, no. 4, pp. 290 – 296, 2022. doi: 

https://doi.org/10.1007/s11018-022-02081-w 

[8] M. Pagano, I. Tananko, and E. Stankevich, “ON THE OPTIMAL INPUT RATE IN QUEUES WITH BATCH SERVICE,” 

Axioms, vol. 12, no. 7, 2023.doi: https://doi.org/10.3390/axioms12070656 

[9] M. Schroeder, NUMBER THEORY IN SCIENCE AND COMMUNICATION: WITH APPLICATIONS IN CRYPTOGRAPHY, 

PHYSICS, DIGITAL INFORMATION, COMPUTING, AND SELF-SIMILARITY, 5th ed. Berlin: Springer-Verlag, 2009. 

[10] A. Mosunov, “ABSOLUTE BOUND ON THE NUMBER OF SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS 

OF THUE AND THUE-MAHLER TYPE,” 2022, [Online]. Available: https://arxiv.org/abs/2206.13653 

[11] A. Gherga and S. Siksek, “EFFICIENT RESOLUTION OF THUE-MAHLER EQUATIONS,” 2022, [Online]. Available: 

https://arxiv.org/abs/2207.14492 

[12] T. Chinburg, B. Hemenway, N. Heninger, and Z. Scherr, “CRYPTOGRAPHIC APPLICATIONS OF CAPACITY 

THEORY: ON THE OPTIMALITY OF COPPERSMITH’S METHOD FOR UNIVARIATE POLYNOMIALS,” Lect. 

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10031 LNCS, pp. 759 – 788, 

2016.  doi: https://doi.org/10.1007/978-3-662-53887-6_28 

[13] R. K. Koppanati and K. Kumar, “P-MEC: POLYNOMIAL CONGRUENCE-BASED MULTIMEDIA ENCRYPTION 

TECHNIQUE OVER CLOUD,” IEEE Consum. Electron. Mag., vol. 10, no. 5, pp. 41 – 46, 2021. doi: 

https://doi.org/10.1109/MCE.2020.3003127 

[14] K. Bibak, B. M. Kapron, and V. Srinivasan, “AUTHENTICATION OF VARIABLE LENGTH MESSAGES IN 

QUANTUM KEY DISTRIBUTION,” EPJ Quantum Technol., vol. 9, no. 1, 2022. doi: https://doi.org/10.1140/epjqt/s40507-

022-00127-0 

[15] G. Ghosal, “A STUDY ON THE DEVELOPMENT AND APPLICATION OF NUMBER THEORY IN ENGINEERING 

FIELD,” Int. J. Inf. Sci. Comput., vol. 7, pp. 109–114, 2020. doi: https://doi.org/10.30954/2348-7437.2.2020.5 

[16] H. H. Chan and K. Chen, “THE FUNDAMENTAL THEOREM OF ARITHMETIC AND Q-SERIES,” Math. Mag., vol. 97, 

pp. 187–193, 2024. doi: https://doi.org/10.1080/0025570X.2024.2312094 

[17] I. Ahmad, B. Lee, and S. Shin, “ANALYSIS OF CHINESE REMAINDER THEOREM FOR DATA COMPRESSION,” in 

Proc. Int. Conf. Inf. Netw., Barcelona, 2020. doi: https://doi.org/10.1109/ICOIN48656.2020.9016442 

[18] E. A. Alhassan et al., “ON SOME ALGEBRAIC PROPERTIES OF THE CHINESE REMAINDER THEOREM WITH 

APPLICATIONS TO REAL LIFE,” J. Appl. Math. Comput., vol. 5, pp. 219–224, 2021. doi: 

https://doi.org/10.26855/jamc.2021.09.008 

[19] I. Weiss, “SURVEY ARTICLE: THE REAL NUMBERS–A SURVEY OF CONSTRUCTIONS,” Rocky Mt. J. Math., vol. 

45, pp. 737–762, 2015. doi: https://doi.org/10.1216/RMJ-2015-45-3-737 

[20] F. Q. Gouvêa, P-ADIC NUMBERS: AN INTRODUCTION. Berlin: Springer, 2020. doi: https://doi.org/10.1007/978-3-030-

47295-5 

https://doi.org/10.1007/s11018-022-02081-w
https://doi.org/10.3390/axioms12070656
https://doi.org/10.1007/978-3-662-53887-6_28
https://doi.org/10.1109/MCE.2020.3003127
https://doi.org/10.1140/epjqt/s40507-022-00127-0
https://doi.org/10.1140/epjqt/s40507-022-00127-0
https://doi.org/10.30954/2348-7437.2.2020.5
https://doi.org/10.1080/0025570X.2024.2312094
https://doi.org/10.1109/ICOIN48656.2020.9016442
https://doi.org/10.26855/jamc.2021.09.008
https://doi.org/10.1216/RMJ-2015-45-3-737
https://doi.org/10.1007/978-3-030-47295-5
https://doi.org/10.1007/978-3-030-47295-5


864 Oktaviansyah, et al.    HYBRIDIZING HENSEL'S LEMMA, FUNDAMENTAL THEOREM OF ARITHMETIC, AND CHINESE …  

 

[21] J. Gallian, Contemporary abstract algebra, 10th ed. London: Chapman and Hall/CRC, 2021. doi: 

https://doi.org/10.1201/9781003142331 

[22] K. H. Rosen, ELEMENTARY NUMBER THEORY AND ITS APPLICATIONS, 7th ed. London: Pearson, 2023. 

[23] D. M. Burton, ELEMENTARY NUMBER THEORY, 7th ed. New York: McGraw-Hill, 2010. 

 

 

https://doi.org/10.1201/9781003142331

	HYBRIDIZING HENSEL’S LEMMA, FUNDAMENTAL THEOREM OF ARITHMETIC, AND CHINESE REMAINDER THEOREM FOR SOLVING POLYNOMIAL CONGRUENCES
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 p-adic Integers
	2.2 Polynomial Ring
	2.3 Hensel’s Lemma
	2.4 Fundamental Theorem of Arithmetic
	2.5 Chinese Remainder Theorem

	3. RESULTS AND DISCUSSION
	3.1 Modification of Hensel’s Lemma
	3.2 Polynomial Congruence Solving Algorithm

	4. CONCLUSION
	Author Contributions
	Funding Statement
	Acknowledgment
	Declarations
	REFERENCES

