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Article Info ABSTRACT 

Article History: 
A stochastic process has an important role in modeling various real phenomena. One 

special form of the stochastic process is a compound Poisson process. A compound 

Poisson process model can be extended by generalizing the corresponding Poisson 

process. One of them is using a cyclic Poisson process. Our goals in this research are to 

determine the asymptotic distribution of the estimator for the mean and the variance of 

this process. In this paper, the problems of estimating the mean function and the variance 

function of a compound cyclic Poisson process are considered. We do not assume any 

parametric form for the intensity function except that it is periodic. We also consider the 

case when only a single realization of the cyclic Poisson process is observed in a bounded 

interval. Consistent estimators for the mean and variance functions of this process have 

been proposed in respectively. This paper introduces a set of novel theorems that, to the 

best of our knowledge, are not available in the existing literature and contribute original 

results to the field. Asymptotic distributions of these estimators are established when the 

size of the observation interval indefinitely expands. Asymptotic distributions of 𝜓̂𝑛(𝑡) 

and 𝑉̂𝑛(𝑡) are, respectively √𝑛   (𝜓̂𝑛(𝑡) −  𝜓(𝑡)) 

𝑁 (0, (1 + 𝑘𝑡,𝜏)
2

𝛬(𝑡𝑟)𝜏𝜇2  + 𝑘𝑡,𝜏
2𝛬𝑐(𝑡𝑟)𝜏𝜇2  +   

𝜎2𝛬(𝑡)2

𝜃
) and √𝑛 (𝑉̂𝑛(𝑡) − 𝑉(𝑡))

𝑑
→ 

𝑁 (0, (1 + 𝑘𝑡,𝜏)
2

𝛬(𝑡𝑟)𝜏𝜇2
2 + 𝑘𝑡,𝜏

2𝛬𝑐(𝑡𝑟)𝜏𝜇2
2 +

𝜎2
2𝛬(𝑡)2

𝜃
) as 𝑛 → ∞. 
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1. INTRODUCTION 

The Poisson process is one of the fundamental stochastic models widely used to describe random 

events occurring over a given period [1]. In its basic form, the homogeneous Poisson process assumes that 

the average number of events per unit time (intensity) remains constant throughout the observation period. 

This model has been extensively applied across various fields due to its simplicity and analytical 

tractability, such as in the health sector [2]. The mathematical development of this model has also been 

studied [3], [4], [5].  

Nevertheless, despite its practicality, the assumption of constant intensity becomes a significant 

limitation when modeling phenomena where the event rate fluctuates over time. In situations where the 

intensity is influenced by seasonal factors or other temporal trends, the homogeneous Poisson process fails 

to adequately capture the underlying dynamics [6], [7]. Other studies also emphasize that the inability of 

this model to represent time-varying behaviors has a substantial impact on the accuracy of estimation and 

prediction in various real-world applications [8]. This limitation becomes even more critical when dealing 

with phenomena characterized by strong periodic or seasonal patterns, such as network traffic, financial 

market cycles, or the spread of infectious diseases [9]. 

To address this limitation, researchers have developed the non-homogeneous Poisson process, in 

which the event intensity is allowed to vary as a function of time. This model offers greater flexibility and 

can accommodate temporal variations in data. Several studies have applied this model, such as device 

reliability [6], automotive warranty [10], health diseases [11], and road accidents [12]. In addition, the 

extension of the Poisson framework to phase-type mixed Poisson processes can further overcome some 

limitations of the classical Poisson model, particularly in the context of shock modeling and reliability 

engineering [13]. Despite its flexibility, the non-homogeneous Poisson process often requires more 

complex parameter estimation procedures and sufficient historical data to accurately model the intensity 

function [14]. Furthermore, if the chosen time-dependent intensity function does not effectively capture the 

real patterns of fluctuation, the model may yield poor estimators. 

Motivated by these considerations, the present research focuses on the asymptotic distributional 

properties of a more generalized and flexible model known as the compound cyclic Poisson process. This 

process is designed to capture periodic fluctuations in event intensity while accommodating random event 

magnitudes through the compound structure. The model not only accounts for the cyclic behavior in event 

counts but also incorporates the randomness in the magnitude of each event. Integrating periodicity with a 

compound structure provides a more realistic representation of real-world phenomena with inherent cycles, 

while also handling dependency structures that traditional Poisson models cannot explain [15]. This makes 

the model highly relevant for applications in fields characterized by seasonal or cyclical trends, such as 

financial transaction volumes, pollution spikes, or insurance claim frequencies during peak seasons. 

The main objective of this study is to derive and analyze the asymptotic behavior of the mean and 

variance function with a compound cyclic Poisson process, thereby contributing to the theoretical 

foundation for modeling periodic random phenomena. Such an analysis is crucial for understanding the 

limiting distributions and long-term statistical properties of this class of stochastic processes. These insights 

have significant practical value in applied fields where seasonality and cyclic trends are prominent. For 

instance, in finance, this model can help in better forecasting of transaction volumes or risk factors that 

follow market cycles. In environmental sciences, it can model recurring natural events as rainfall patterns 

or pollution spikes. Similarly, in telecommunications or healthcare analytics, where traffic or patient 

arrivals follow periodic patterns, this research provides more accurate tools for prediction and resource 

allocation. By offering a robust framework to handle both the cyclic nature and the random systems with 

inherent periodicity. 

Additionally, this research aims to bridge gaps in the existing literature, which has predominantly 

focused on homogeneous and non-homogeneous Poisson processes but has not explicitly integrated both 

periodic fluctuations and random magnitudes within a unified framework. The theoretical contributions of 

this work are expected to enrich the development of stochastic process theory while offering significant 

practical implications for fields such as actuarial science, risk management, financial modeling, and 

environmental science. 
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2. RESEARCH METHODS 

2.1 Conceptual Framework 

To guide the theoretical investigation of compound cyclic Poisson process, this study focusses in two 

primary statistical characteristics, which are the expected value function and the variance function. For each 

characteristic, corresponding estimators are constructed based on the compound structure and periodic nature 

of the process. The asymptotic distribution of these estimators remains an open problem and is central to the 

ongoing theoretical exploration. This dual pathway centered on expectation and variance highlights the 

complexity and novelty of the model under study. The conceptual framework of this study is illustrated in 

Fig. 1.  

 

Figure 1. Conceptual Framework of The Study 

The focus of this research lies in the development of stochastic process theory. The methodological approach 

consists of the following stages. 

2.2 Preliminary Study 

1. A comprehensive review and understanding of the compound cyclic Poisson process, including 

its structure, behavior, and relevance in real-world applications. 

This study begins with a thorough examination of the compound cyclic Poisson process, a 

stochastic model that captures both the cyclic or seasonal nature of event arrivals and the 

randomness in event magnitudes. The compound cyclic Poisson process generalizes the classical 

Poisson [1] and compound Poisson processes in [16] by introducing time time-periodic intensity 

function and integrating random valued, making it highly suitable for modeling aggregated 

phenomena such as insurance claims, financial transactions, and environmental occurrences with 

seasonal behavior. By analyzing its structural components, namely the periodic intensity function 

and the compounding random variables, the study contextualizes the model within existing 

literature and highlights its practical advantages in capturing real-world cyclic randomness. This 

foundational understanding sets the stage for addressing theoretical properties, especially in the 

context of long-term statistical behavior. 

2. An in-depth mathematical investigation aimed at exploring the theoretical foundation necessary 

to construct a novel model by extending existing stochastic process theories. 

Building on this structural understanding, the study proceeds to conduct a rigorous mathematical 

analysis focused on deriving the asymptotic distributions of the estimators for the mean and 

variance function associated with the compound cyclic Poisson process. While prior studies have 

considered asymptotic properties of estimators in classical Poisson or compound Poisson 

frameworks, they typically assume stationary or non-periodic intensity structures [17]. In contrast, 
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this work extends existing stochastic process theory by incorporating periodicity into the 

compounding framework and formulating consistent estimators that reflect the dual randomness 

of both frequency and magnitude. The key objective is to investigate the limiting behavior of these 

estimators, denoted as 𝜓̂𝑛(𝑡) for the mean and 𝑉̂𝑛(𝑡) for the variance, as the number of 

observations increases. This asymptotic analysis not only contributes to the theoretical enrichment 

of compound cyclic models but also lays the groundwork for future statistical inference in applied 

domains. 

2.3 Core Research Analysis 

The primary objective of this stage is to derive the asymptotics of estimators for both the mean function 

and the variance function of the compound cyclic Poisson process. The approach involves rigorous analysis 

and limit theorems to evaluate the statistical properties of the proposed estimators.  

Let {𝑁(𝑡), 𝑡 ≥ 0} be a non-homogeneous Poisson process with (unknown) locally integrable intensity 

function 𝜆. The intensity function 𝜆 is assumed to be periodic with (known) period 𝜏 > 0. We do not 

assume any (parametric) form of 𝜆 except that it is periodic, Eq. (1). 

𝜆(𝑠) = 𝜆(𝑠 + 𝑘𝜏), (1) 

holds for all 𝑠 ≥ 0 and 𝑘 ∈ 𝑍, with 𝑍 denotes the set of integers. This condition of the intensity function is 

also considered in [16]. Let {𝑌(𝑡), 𝑡 ≥ 0} be a process with 

𝑌(𝑡) = ∑ 𝑋𝑖

𝑁(𝑡)

𝑖=1

, (2) 

where {𝑋𝑖, 𝑖 ≥ 1} is a sequence of independent and identically distributed random variables with mean 𝜇 < 
∞ and variance 𝜎2 < ∞, which is also independent of the process {𝑁(𝑡), 𝑡 ≥ 0}. The process {𝑌(𝑡), 𝑡 ≥ 0} is 

called a compound cyclic Poisson process. The model presented in Eq. (2) is a generalization of the (well-

known) compound Poisson process, which assumes that {𝑁(𝑡), 𝑡 ≥ 0} is a homogeneous Poisson process. 

Suppose that, for some 𝜔 𝜖 Ω, a single realization 𝑁(𝜔) of the cyclic Poisson process {𝑁(𝑡), 𝑡 ≥ 0} 
defined on a probability space (Ω, ℱ, P) with intensity function 𝜆 is observed, though only within a bounded 

interval [0, 𝑛]. Furthermore, suppose that for each data point in the observed realization 𝑁(𝜔) ∩ [0, 𝑛], say 

𝑖-th data point, 𝑖 = 1,2, …, 𝑁 ([0, 𝑛]), its corresponding random variable 𝑋𝑖 is also observed. 

The mean function (expected value) of 𝑌(𝑡), denoted by 𝜓(𝑡), is given by Eq. (3) 

𝜓(𝑡) = 𝐸(𝑁(𝑡))𝐸(𝑋1) = Λ(𝑡)𝜇, (3) 

with Λ(𝑡) = ∫ λ(𝑠)𝑑𝑠
𝑡

0
. 

Let 𝐸[𝑋12] = 𝜇2. The variance function of 𝑌(𝑡), denoted by 𝑉(𝑡), is given by Eq. (4). 

𝑉(𝑡) = 𝐸(𝑁(𝑡))𝐸(𝑋1
2) = Λ(𝑡)𝜇2. (4) 

Let 𝑡𝑟 = 𝑡 − ⌊
𝑡

𝜏
⌋ 𝜏, where for any real number 𝑥, ⌊𝑥⌋ denotes the largest integer less than or equal to 𝑥, 

and let also 𝑘𝑡,𝜏 = ⌊
𝑡

𝜏
⌋. Then, for any given real number 𝑡 ≥ 0, we can write 𝑡 = 𝑘𝑡,𝜏𝜏 + 𝑡𝑟, with 0 ≤ 𝑡𝑟 ≤ 𝜏. 

Let 𝜃 =
1

𝜏
∫ λ(𝑠)𝑑𝑠

𝜏

0
, that is the global intensity of the cyclic Poisson process {𝑁(𝑡), 𝑡 ≥ 0}. We assume that 

Eq. (5): 

𝜃 > 0. (5) 

Then for any given 𝑡 ≥ 0, we have Eq. (6): 

Λ(𝑡) = 𝑘𝑡,𝜏𝜏𝜃 + Λ(𝑡𝑟). (6) 

By substituting Eq. (6) into  Eqs. (3) and (4), the mean and the variance functions of the compound cyclic 

Poisson process can be written as Eqs. (7) and (8). 

𝜓(𝑡) = (𝑘𝑡,𝜏𝜏𝜃 + Λ(𝑡𝑟)) 𝜇, (7) 
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𝑉(𝑡) = (𝑘𝑡,𝜏𝜏𝜃 + Λ(𝑡𝑟)) 𝜇2. (8) 

Consistent estimators for the mean function 𝜓(𝑡) and the variance 𝑉(𝑡) of the process {𝑌(𝑡), 𝑡 ≥ 0} 

using the observed realization and asymptotic approximation to biases and variances of these estimators have 

been computed in [17]. Our goals in this paper are to establish asymptotic distributions of these estimators 

when the size of the observation interval indefinitely expands. 

The rest of this paper is organized as follows. The estimators, main results, and some technical lemmas, 

which are needed in the proof of our theorems, are presented in Section 3. Some related works of compound 

Poisson process can be found in [16], [18], [19], [20], [21]. 

3. RESULTS AND DISCUSSION 

3.1 The Estimators and Main Results 

Let 𝑘𝑛,𝜏 = ⌊
𝑛

𝜏
⌋. Estimators of the mean function 𝜓(𝑡) and the variance function 𝑉(𝑡) have been 

formulated in [17] as Eqs. (9) and (10). 

𝜓̂𝑛(𝑡) = (𝑘𝑡,𝜏𝜏𝜃𝑛 + Λ̂𝑛(𝑡𝑟)) 𝜇̂𝑛, (9) 

𝑉̂𝑛(𝑡) = (𝑘𝑡,𝜏𝜏𝜃𝑛 + Λ̂𝑛(𝑡𝑟)) 𝜇̂2,𝑛, (10) 

with 𝜓̂𝑛(𝑡) = 0 and 𝑉̂𝑛(𝑡) = 0 when 𝑁([0, 𝑛]) = 0, where 

𝜃𝑛 =
1

𝑘𝑛,𝜏𝜏
∑ 𝑁([𝑘𝜏, 𝑘𝜏 + 𝜏]);

𝑘𝑛,𝜏−1

𝑘=0

Λ̂𝑛(𝑡𝑟) =
1

𝑘𝑛,𝜏
∑ 𝑁([𝑘𝜏, 𝑘𝜏 + 𝑡𝑟])

𝑘𝑛,𝜏−1

𝑘=0

; 𝜇̂𝑛 =
1

𝑁([0, 𝑛])
∑ 𝑋𝑖

𝑁([0,𝑛])

𝑖=1
; and 

𝜇̂2,𝑛 =
1

𝑁([0, 𝑛])
∑ 𝑋𝑖

2
𝑁([0,𝑛])

𝑖=1
. 

Since 𝜃𝑛 and Λ̂𝑛(𝑡𝑟) are not independent, to make it easier to formulate the asymptotic distribution of 𝜓̂𝑛(𝑡) 

and 𝑉̂𝑛(𝑡), it is needed to write 𝑘𝑡,𝜏𝜏𝜃𝑛 + Λ̂𝑛(𝑡𝑟) as a weighted sum of two independent random variables. 

To do this, first note that 𝜃𝜏 = ∫ 𝜆(𝑠)𝑑𝑠
𝜏

0
 can be written as Λ(𝑡𝑟) + Λ𝑐(𝑡𝑟), with Λ(𝑡𝑟) as defined about and 

Λ𝑐(𝑡𝑟) = ∫ 𝜆(𝑠)𝑑𝑠
𝜏

𝑡𝑟
. Then, for any 𝑡 > 0, we can write Eq. (11): 

Λ(𝑡) = (1 + 𝑘𝑡,𝜏)Λ(𝑡𝑟) + 𝑘𝑡,𝜏Λ𝑐(𝑡𝑟). (11) 

Hence, the estimators of Λ(𝑡) can be written as Eq. (12):  

Λ̂𝑛(𝑡) = (1 + 𝑘𝑡,𝜏)Λ̂𝑛(𝑡𝑟) + 𝑘𝑡,𝜏Λ̂𝑛
𝑐
(𝑡𝑟), (12) 

where Λ̂𝑛(𝑡𝑟) is defined as before and Eq. (13) as follows: 

Λ̂𝑛
𝑐
(𝑡𝑟) =

1

𝑘𝑛,𝜏
∑ 𝑁([𝑘𝜏 + 𝑡𝑟, 𝑘𝜏 + 𝜏]).

𝑘𝑛,𝜏−1

𝑘=0

(13) 

Note also that Λ̂𝑛(𝑡𝑟) and Λ̂𝑛
𝑐
(𝑡𝑟) are independent. Finally, our estimators of 𝜓̂𝑛(𝑡) and 𝑉̂𝑛(𝑡) now can be 

written as Eqs. (14) and (15). 

𝜓̂𝑛(𝑡) = ((1 + 𝑘𝑡,𝜏)Λ̂𝑛(𝑡𝑟) + 𝑘𝑡,𝜏Λ̂𝑛
𝑐
(𝑡𝑟)) 𝜇̂𝑛, (14) 

𝑉̂𝑛(𝑡) = ((1 + 𝑘𝑡,𝜏)Λ̂𝑛(𝑡𝑟) + 𝑘𝑡,𝜏Λ̂𝑛
𝑐
(𝑡𝑟)) 𝜇̂2,𝑛. (15) 

3.2 Some Technical Lemmas 

In this section, we present four lemmas that are needed in the proofs of our theorems. 
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Lemma 1. Suppose that the intensity function λ satisfies Eq. (1) and is locally integrable. For all 𝑡 > 0, then 

√
𝑛

𝜏
 (Λ̂𝑛(𝑡) − Λ(𝑡))

𝑑
→ N (0, (𝑘𝑡,𝜏 + 1)

2
Λ(𝑡𝑟) + (𝑘𝑡,𝜏)

2
Λ𝑐(𝑡𝑟)) 

as 𝑛 → ∞. 

Proof. Using Eqs. (11) and (12), the left side of the equation can be written as 

√𝑛 (((1 + 𝑘𝑡,𝜏)Λ̂𝑛(𝑡𝑟) + 𝑘𝑡,𝜏Λ̂𝑛
𝑐
(𝑡𝑟)) − ((1 + 𝑘𝑡,𝜏)Λ(𝑡𝑟) + 𝑘𝑡,𝜏Λ𝑐(𝑡𝑟))) = √𝑛 (1 + 𝑘𝑡,𝜏) 

(Λ̂𝑛(𝑡𝑟) − Λ(𝑡𝑟)) + √𝑛 𝑘𝑡,𝜏 (Λ̂𝑛
𝑐
(𝑡𝑟) − Λ𝑐(𝑡𝑟)).  

Since Λ̂𝑛(𝑡𝑟) and Λ̂𝑛
𝑐
(𝑡𝑟) are two independent random variables. To prove Lemma 1, it suffices to prove 

√𝑛 (1 + 𝑘𝑡,𝜏) (Λ̂𝑛(𝑡𝑟) − Λ(𝑡𝑟)) → N (0, (𝑘𝑡,𝜏 + 1)
2

Λ(𝑡𝑟)𝜏) 

or 

√𝑛 (Λ̂𝑛(𝑡𝑟) − Λ(𝑡𝑟)) → N (0, Λ(𝑡𝑟)𝜏) (16) 

and 

√𝑛 𝑘𝑡,𝜏 (Λ̂𝑛
𝑐
(𝑡𝑟) − Λ𝑐(𝑡𝑟)) → Normal (0, (𝑘𝑡,𝜏)

2
Λ𝑐(𝑡𝑟)𝜏) 

or 

√𝑛 (Λ̂𝑛
𝑐
(𝑡𝑟) − Λ𝑐(𝑡𝑟)) → N (0, Λ𝑐(𝑡𝑟)𝜏) (17) 

as 𝑛 → ∞. 

First, prove Eq. (16). The left side of Eq. (16) can be written as: 

√
𝑛Λ(𝑡𝑟)

𝑘𝑛,𝜏
(

∑ 𝑁([𝑘𝜏, 𝑘𝜏 + 𝑡𝑟])
𝑘𝑛,𝜏−1

𝑘=0 − 𝑘𝑛,𝜏Λ(𝑡𝑟)

√𝑘𝑛,𝜏Λ(𝑡𝑟)
). 

Since ∑ 𝑁([𝑘𝜏, 𝑘𝜏 + 𝑡𝑟])
𝑘𝑛,𝜏−1

𝑘=0  is the accumulation of independent and identically distributed random 

variables with 𝐸(𝑁([𝑘𝜏, 𝑘𝜏 + 𝑡𝑟])) = 𝑉𝑎𝑟(𝑁([𝑘𝜏, 𝑘𝜏 + 𝑡𝑟])) = Λ(𝑡𝑟). Then, based on the Central Limit 

Theorem (
∑ 𝑁([𝑘𝜏,𝑘𝜏+𝑡𝑟])

𝑘𝑛,𝜏−1

𝑘=0 −𝑘𝑛,𝜏Λ(𝑡𝑟)

√𝑘𝑛,𝜏Λ(𝑡𝑟)
)a→ N (0, 1) as 𝑛 → ∞. To prove Eq. (16) just show  

√
𝑛Λ(𝑡𝑟)

𝑘𝑛,𝜏
→ √Λ(𝑡𝑟)𝜏 

as 𝑛 → ∞. The left side of this equation can be written as follows 

√
𝑛Λ(𝑡𝑟)

𝑘𝑛,𝜏
= √𝜏Λ(𝑡𝑟) (

𝑛
𝜏⁄

𝑘𝑛,𝜏
) 

= √𝜏Λ(𝑡𝑟) (
𝑘𝑛,𝜏 − (𝑘𝑛,𝜏 − 𝑛

𝜏⁄ )

𝑘𝑛,𝜏
) 

= √𝜏 Λ(𝑡𝑟) (1 + 𝒪 (
1

𝑛
)) 

= √𝜏 Λ(𝑡𝑟) + 𝜊(1), 

as 𝑛 → ∞. Eq. (16) is proven. By using a similar way to the proof of Eq. (16), Eq. (17) can be proven. The 

proof of Lemma 1 is complete. ∎ 
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Lemma 2. Suppose that the intensity function λ satisfies Eq. (1) and is locally integrable. If in addition, Eq. 

(5) holds, then with probability 1,𝑁([0, 𝑛]) → ∞ as 𝑛 → ∞. 

Proof. Lemma 2 has been proved in [17]. ∎ 

Lemma 3. If 𝑋1, 𝑋2, … are independent and identically distributed random variables, each with means 

𝜇 < ∞ and finite variance 𝜎2 < ∞, we have 

√
𝑛

𝜏
 (𝜇̂1,𝑛 − 𝜇1)

𝑑
→ N (0,

𝜃

𝜎1
2

) 

as 𝑛 → ∞. 

Proof. From the left side, we have Eq. (18) as follows: 

√𝑛 (𝜇̂1,𝑛 − 𝜇1) =
𝜎1√𝑛

√𝑁([0, 𝑛])

√𝑁([0, 𝑛])

𝜎1
(𝜇̂1,𝑛 − 𝜇1), (18) 

where Eq. (19): 

𝜎1√𝑛

√𝑁([0, 𝑛])
=

𝜎1

√𝑁([0, 𝑛])
𝑛

=  
𝜎1

√𝜃 + 𝑜𝑝(1)
=

𝜎1

√𝜃
+ 𝑜𝑝(1), (19)

 

and Eq. (20) : 

√𝑁([0, 𝑛])

𝜎1
(𝜇̂1,𝑛 − 𝜇1) =

√𝑁([0, 𝑛])

𝜎1
(

∑ 𝑋𝑖
𝑁([0,𝑛])
𝑖=1

√𝑁([0, 𝑛])
− 𝜇1) 

=
∑ 𝑋𝑖

𝑁([0,𝑛])
𝑖=1

𝜎1√𝑁([0, 𝑛])
− √𝑁([0, 𝑛])

𝜇1

𝜎1
 

                                                             =
𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁([0,𝑛]) − 𝑁([0, 𝑛])𝜇1

𝜎1√𝑁([0, 𝑛])
. (20) 

Based on Central Limit Theorem and Lemma 2, we have this function 
𝑋1+𝑋2+⋯+𝑋𝑁([0,𝑛])−𝑁([0,𝑛])𝜇1

𝜎1√𝑁([0,𝑛])

𝑑
→ N(0, 1) 

so 
√𝑁([0,𝑛])

𝜎1
(𝜇̂1,𝑛 − 𝜇1)

𝑑
→ N(0, 1). Substituting Eqs. (19) into (20), and elaborating on Eq. (18), we have 

√𝑛 (𝜇̂1,𝑛 − 𝜇1)
𝑑
→

𝜎1

√𝜃
𝑁(0,1), 

√𝑛 (𝜇̂1,𝑛 − 𝜇1)
𝑑
→ 𝑁 (0,

𝜃

𝜎1
2

). 

This completes the proof of Lemma 3. ∎ 

Lemma 4. If 𝑋1, 𝑋2, … are non-negative sequences of independent and identically distributed random 

variables, each with means 𝜇 < ∞ and finite variance 𝜎2 < ∞, we have 

√𝑛 (𝜇̂2,𝑛 − 𝜇2)
𝑑
→ N (0,

𝜃

𝜎2
2

) 

as 𝑛 → ∞. 

Proof. Since X1, X2, … are non-negative sequences, similarly to Lemma 3, Lemma 4 can be obtained. ∎ 

3.3 Some Technical Theorems 

 Our main results are presented in the following two theorems. The first theorem is about the asymptotic 

distribution of 𝜓̂𝑛(𝑡) and the second theorem is about the asymptotic distribution of 𝑉̂𝑛(𝑡). 
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Theorem 1. Suppose that the intensity function λ satisfies Eq. (1) and is locally integrable. If in addition, 

𝑌(𝑡) satisfies the condition in Eq. (2), then 

√
𝑛

𝜏
(𝜓̂𝑛(𝑡) − 𝜓(𝑡))

𝑑
→ N (0, (1 + 𝑘𝑡,𝜏)

2
Λ(𝑡𝑟)𝜇1

2 + 𝑘𝑡,𝜏
2Λ𝑐(𝑡𝑟)𝜇1

2 +
𝜃

𝜏𝜎1
2

) 

as 𝑛 → ∞. 

Proof. To check Theorem 1, using Eqs. (6) and (7), we have Eq. (21) 

√𝑛 (𝜓̂𝑛(𝑡) − 𝜓(𝑡))  = √𝑛 (Λ̂𝑛(𝑡)𝜇̂1,𝑛 −  Λ(𝑡)𝜇1) 

= √𝑛 (Λ̂𝑛(𝑡)𝜇̂1,𝑛 −  Λ(𝑡)𝜇̂1,𝑛 +  Λ(𝑡)𝜇̂1,𝑛 − Λ(𝑡)𝜇1) 

= √𝑛 (𝜇̂1,𝑛 (Λ̂𝑛(𝑡) −  Λ(𝑡)) +  Λ(𝑡)(𝜇̂1,𝑛 − 𝜇1)) 

   = 𝜇̂1,𝑛√𝑛 (Λ̂𝑛(𝑡) −  Λ(𝑡)) +  Λ(𝑡)√𝑛 (𝜇̂1,𝑛 − 𝜇1). (21) 

Based on Lemma 1 and the weak law of large numbers, where 𝜇̂1,𝑛

𝑃
→ 𝜇1 and with the Slutsky characteristics, 

we can obtain Eq. (22). 

𝜇̂1,𝑛√𝑛 (Λ̂𝑛(𝑡) −  Λ(𝑡))
𝑑
→ N (0, (1 + 𝑘𝑡,𝜏)

2
Λ(𝑡𝑟)𝜏𝜇1

2 + 𝑘𝑡,𝜏
2Λ𝑐(𝑡𝑟)𝜏𝜇1

2) . (22) 

Then, based on Lemma 3, we have Eq. (23): 

Λ(𝑡)√𝑛 (𝜇̂1,𝑛 − 𝜇1)
𝑑
→ N (0,

𝜃Λ(𝑡)2

𝜎1
2 ) . (23) 

If 𝜇̂1,𝑛√𝑛 (Λ̂𝑛(𝑡) −  Λ(𝑡)) and Λ(𝑡)√𝑛 (𝜇̂1,𝑛 − 𝜇1) are jointly normally distributed random variables, then 

𝜇̂1,𝑛√𝑛 (Λ̂𝑛(𝑡) −  Λ(𝑡)) +  Λ(𝑡)√𝑛 (𝜇̂1,𝑛 − 𝜇1) = √𝑛 (𝜓̂𝑛(𝑡) − 𝜓(𝑡)) is still normally distributed with Eq. 

(24): 

𝐸 (√𝑛 (𝜓̂𝑛(𝑡) − 𝜓(𝑡))) = 𝐸 (𝜇̂1,𝑛√𝑛 (Λ̂𝑛(𝑡) −  Λ(𝑡))) + 𝐸 (Λ(𝑡)√𝑛 (𝜇̂1,𝑛 − 𝜇1)) = 0 (24) 

and Eq. (25): 

𝑉𝑎𝑟 (√𝑛 (𝜓̂𝑛(𝑡) − 𝜓(𝑡))) = 𝑉𝑎𝑟 (𝜇̂1,𝑛√𝑛 (Λ̂𝑛(𝑡) −  Λ(𝑡)) + Λ(𝑡)√𝑛 (𝜇̂1,𝑛 − 𝜇1)) 

  = 𝑉𝑎𝑟 (𝜇̂1,𝑛√𝑛 (Λ̂𝑛(𝑡) −  Λ(𝑡))) + 𝑉𝑎𝑟 (Λ(𝑡)√𝑛 (𝜇̂1,𝑛 − 𝜇1)) 

                     + 2𝑐𝑜𝑣 (𝜇̂1,𝑛√𝑛 (Λ̂𝑛(𝑡) −  Λ(𝑡)) , Λ(𝑡)√𝑛 (𝜇̂1,𝑛 − 𝜇1)) , (25) 

where Eq. (26): 

𝑐𝑜𝑣 (𝜇̂1,𝑛√𝑛 (Λ̂𝑛(𝑡) −  Λ(𝑡)) , Λ(𝑡)√𝑛 (𝜇̂1,𝑛 − 𝜇1)) 

= 𝑐𝑜𝑣 ((√𝑛𝜇̂1,𝑛 Λ̂𝑛(𝑡) − √𝑛Λ(𝑡)𝜇̂1,𝑛 ), (√𝑛Λ(𝑡)𝜇̂1,𝑛 −  Λ(𝑡)√𝑛 𝜇1)) 

= 𝑛Λ(𝑡) 𝑐𝑜𝑣(𝜇̂1,𝑛 Λ̂𝑛(𝑡), 𝜇̂1,𝑛 ) + 0 − 𝑛Λ2(𝑡) 𝑐𝑜𝑣(𝜇̂1,𝑛 , 𝜇̂1,𝑛 ) + 0 

                 = 𝑛Λ(𝑡) 𝑐𝑜𝑣(𝜇̂1,𝑛 Λ̂𝑛(𝑡), 𝜇̂1,𝑛 ) − 𝑛Λ2(𝑡) 𝑉𝑎𝑟(𝜇̂1,𝑛 ) (26) 

with Eq. (27). 

𝑉𝑎𝑟(𝜇̂1,𝑛) = 𝑉𝑎𝑟(𝜇̂1,𝑛 − 𝜇1) 

= 𝑉𝑎𝑟 (
1

√𝑛
√𝑛(𝜇̂1,𝑛 − 𝜇1)) 
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=
1

𝑛
𝑉𝑎𝑟 (√𝑛(𝜇̂1,𝑛 − 𝜇1)) 

=
1

𝑛
×

𝜃

𝜎1
2
 

=
𝜃

𝜎1
2𝑛

. (27) 

Let 𝑋 = 𝜇̂1,𝑛 and 𝑌 = Λ̂𝑛(𝑡) we have Eq. (28): 

𝑐𝑜𝑣(𝑋𝑌, 𝑋) = 𝐸(𝑋2𝑌) − (𝐸(𝑋𝑌)𝐸(𝑋)) 

= 𝐸(𝑋2)𝐸(𝑌) − (𝐸(𝑋))
2

𝐸(𝑌)) 

= 𝐸(𝑌) (𝐸(𝑋2)−(𝐸(𝑋))
2

) 

= 𝐸(𝑌)𝑉𝑎𝑟(𝑋) 

= 𝐸 (Λ̂𝑛(𝑡)) 𝑉𝑎𝑟(𝜇̂1,𝑛) 

   = Λ(𝑡)
𝜃

𝜎1
2𝑛

. (28) 

Substituting Eqs. (27) and (28) into Eq. (26), we obtain Eq. (29). 

 𝑐𝑜𝑣 (𝜇̂1,𝑛√𝑛 (Λ̂𝑛(𝑡) −  Λ(𝑡)) , Λ(𝑡)√𝑛 (𝜇̂1,𝑛 − 𝜇1)) = 𝑛Λ(𝑡)𝑐𝑜𝑣(𝜇̂1,𝑛Λ̂𝑛(𝑡), 𝜇̂1,𝑛) − 𝑛Λ2(𝑡)𝑉𝑎𝑟(𝜇̂1,𝑛) 

  = 𝑛Λ(𝑡)Λ(𝑡)
𝜃

𝜎1
2𝑛

− 𝑛Λ2(𝑡)
𝜃

𝜎1
2𝑛

 

  = 𝑛Λ2(𝑡)
𝜃

𝜎1
2𝑛

− 𝑛Λ2(𝑡)
𝜃

𝜎1
2𝑛

 

               = 0. (29) 

Substituting  Eqs. (22), (23), and (29) into Eq. (25), we obtain Eq. (30). 

𝑉𝑎𝑟 (√𝑛 (𝜓̂𝑛(𝑡) − 𝜓(𝑡))) = (1 + 𝑘𝑡,𝜏)
2

Λ(𝑡𝑟)𝜏𝜇
1

2 + 𝑘𝑡,𝜏
2Λ𝑐(𝑡𝑟)𝜏𝜇

1
2 +

𝜃

𝜎1
2

. (30) 

Based on Eqs. (24) and (30), we have: 

√𝑛 (𝜓̂𝑛(𝑡) − 𝜓(𝑡))
𝑑
→ N (0, (1 + 𝑘𝑡,𝜏)

2
Λ(𝑡𝑟)𝜏𝜇1

2 + 𝑘𝑡,𝜏
2Λ𝑐(𝑡𝑟)𝜏𝜇1

2 +
𝜃

𝜎1
2

). 

This completes the proof of Theorem 1. ∎ 

Theorem 2. Suppose that the intensity function λ satisfies Eq. (1) and is locally integrable. If in addition, 

𝑌(𝑡) satisfies the condition in Eq. (2) and {𝑋𝑖, 𝑖 ≥ 1} is a non-negative sequence of independent and 

identically distributed random variables, then 

√
𝑛

𝜏
(𝑉̂𝑛(𝑡) − 𝑉(𝑡))

𝑑
→ N (0, (1 + 𝑘𝑡,𝜏)

2
Λ(𝑡𝑟)𝜇2

2 + 𝑘𝑡,𝜏
2Λ𝑐(𝑡𝑟)𝜇2

2 +
𝜃

𝜏𝜎2
2

) 

as 𝑛 → ∞. 

Proof. To check Theorem 2, using Eqs. (6) and (8) we have 

√𝑛 (𝑉̂𝑛(𝑡) − 𝑉(𝑡)) = √𝑛 (Λ̂𝑛(𝑡)𝜇̂2,𝑛 −  Λ(𝑡)𝜇2) 

 = 𝜇̂2,𝑛√𝑛 (Λ̂𝑛(𝑡) −  Λ(𝑡)) + Λ(𝑡)√𝑛(𝜇̂2,𝑛 − 𝜇2). 

Based on Lemma 4, then 
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Λ(𝑡)√𝑛(𝜇̂2,𝑛 − 𝜇2)
𝑑
→ N (0,

𝜃Λ(t)2

𝜎2
2 ). 

Similarly to Theorem 1, Theorem 2 can be obtained. ∎ 

3.4 Implications and Future Work 

 The theoretical findings presented in this article not only contribute to the advancement of stochastic 

process theory, particularly in the context of compound cyclic Poisson processes, but also lay a solid 

foundation for future applied research. The models and asymptotic results derived herein have the potential 

to inspire new methodologies in real case applications, such as seasonal risk modeling in insurance, 

environmental event prediction, and other domains characterized by cyclic stochastic behavior. Therefore, 

this work may serve as a stepping stone for the development of innovative frameworks that bridge 

mathematical theory and practical implementation. 

One of the practical areas where the compound cyclic Poisson process can be applied is in modeling 

seasonal insurance claims. In many types of insurance, such as agricultural insurance or vehicle damage 

insurance, the number of claims exhibits cyclic behavior throughout the year. For instance, agricultural claims 

may peak during certain months affected by climate risks, such as floods during the rainy season or drought 

during dry months, while vehicle claims may increase during holiday seasons when traffic intensity rises. To 

model this, the intensity function of the claim arrivals can be assumed to follow a cyclic structure that repeats 

annually. The claim sizes, which can vary significantly from one claim to another, make the compound 

structure appropriate for each event (claim) contributes a random amount to the total cost. 

The proposed compound cyclic Poisson process allows us to capture both the randomness in the 

number of claims frequency. Using the asymptotic distribution of the estimators for the mean and variance 

functions ensures can make long-term predictions and assess the risk of unusually high total claims during 

peak seasons. This application is not only relevant for actuarial science and risk management, but it also 

provides an example where theoretical developments in stochastic processes offer significant practical value 

in modeling real-life phenomena characterized by cyclic and aggregated random events. 

The results of this study build upon and extend previous models of non-homogeneous and seasonal 

Poisson processes by introducing a compound structure that allows for variability not just in event arrival 

times but also in event magnitudes. While prior works have often focused on cyclic Poisson processes or 

compound processes separately, this study synthesizes both aspects, offering a more robust and flexible 

framework. It complements existing research in applied probability and stochastic modeling by providing 

new insights into the long-term statistical properties of systems affected by both periodic trends and random 

fluctuations. In doing so, it addresses gaps in earlier models that could not simultaneously account for time-

varying intensity and variable event sizes, contributing a novel and theoretically grounded approach to 

modeling complex systems in fields such as insurance, finance, and environmental science. 

4. CONCLUSION 

Each theorem proposed in this paper contributes not only to theoretical novelty but also provides a 

foundation for future applications in modeling periodic stochastic phenomena, which were not addressed in 

prior research. Asymptotic distributions of 𝜓̂𝑛(𝑡) and 𝑉̂𝑛(𝑡) are, respectively  

√𝑛   (𝜓̂𝑛(𝑡)  −  𝜓(𝑡))
𝑑
→ 𝑁 (0, (1 + 𝑘𝑡,𝜏)

2
𝛬(𝑡𝑟)𝜏𝜇2  + 𝑘𝑡,𝜏

2𝛬𝑐(𝑡𝑟)𝜏𝜇2  +   
𝜎2𝛬(𝑡)2

𝜃
) 

and 

√𝑛 (𝑉̂𝑛(𝑡) − 𝑉(𝑡))
𝑑
→ 𝑁 (0, (1 + 𝑘𝑡,𝜏)

2
𝛬(𝑡𝑟)𝜏𝜇2

2 + 𝑘𝑡,𝜏
2𝛬𝑐(𝑡𝑟)𝜏𝜇2

2 +
𝜎2

2𝛬(𝑡)2

𝜃
) 

as n → ∞. 

While this study lays a theoretical foundation for the compound cyclic Poisson process and asymptotic 

properties, several avenues remain open for future investigation. First, future research could explore 

simulation-based or numerical approaches to approximate these distributions in practical settings. Second, 

extending the model to accommodate multivariate or spatially distributed cyclic processes could enhance its 
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applicability in complex systems such as climate modeling, network traffic, or financial contagion. Finally, 

empirical validation using real datasets, particularly from insurance or environmental sectors, would help 

evaluate the model’s predictive performance and refine its assumptions. 
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