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1. INTRODUCTION

Optimization plays a crucial role in various scientific and engineering applications by seeking the
minimum or maximum of an objective function. Among the many branches of optimization, unconstrained
optimization is particularly important as it deals with the minimization of real-valued functions without any
imposed constraints. This process typically takes place in a metric space, which provides a mathematical
structure for measuring distances and ensuring convergence of iterative algorithms [1], [2]. Over the years, a
wide range of numerical methods have been developed to solve such problems efficiently, including the
Steepest Descent (SD), Newton’s method, Conjugate Gradient (CG) methods, and Quasi-Newton (QN)
methods.

Among these techniques, conjugate gradient methods have gained prominence due to their efficiency
and low memory requirements, especially for problems of large-scale. These algorithms have been
extensively applied in various domains. In engineering, for instance, CG methods are employed to address
challenges in structural design, fluid dynamics, and control systems [3]. In data science and machine learning,
they are instrumental in optimizing loss functions in regression, classification tasks, and neural network
training [4], [5], [6], [7], [8]. Signal and image processing also benefit from CG techniques, which are used
for signal recovery, image de-noising, and reconstruction [9], [10], [11]. Moreover, scientific computing
relies on CG algorithms to solve large sparse linear systems, which are commonly encountered in
computational physics and finite element analysis.

The classical CG formulas, including the pioneering works by Hestenes and Stiefel (HS) [12] and
Fletcher and Reeves (FR) [13], laid the foundation for iterative optimization using gradient-based updates.
Since then, numerous enhancements and modifications have been proposed in the literature to improve their
convergence rate, robustness, and applicability to real-world problems [14], [15], [16]. Despite their
advantages, traditional CG algorithms may still face limitations when faster convergence is required or when
applied to ill-conditioned problems. Therefore, ongoing research has focused on developing new variants that
maintain the numerical efficiency and theoretical strengths of CG methods while addressing practical
performance bottlenecks.

This study aims to contribute to this ongoing effort by introducing some novel conjugate gradient
methods tailored for large-scale unconstrained optimization. The new algorithms seek to improve
computational efficiency and convergence speed by incorporating a Newton-inspired update strategy. The
primary objective of this research is to develop algorithms that not only ensure global convergence under
standard conditions but also outperform existing CG methods on practical benchmark problems.

The structure of this paper is as follows: Section 2 introduces the new conjugate gradient algorithms
and describes their corresponding formulation. Section 3 establishes the sufficient descent condition and
analyzes the convergence properties of the proposed methods, presenting further numerical experiments that
compare our methods with the Hestenes-Stiefel method based on the number of iterations, function
evaluations, and computation time using well-known benchmark problems. Finally, Section 4 provides a brief
conclusion.

2. RESEARCH METHODS

The general form of an unconstrained optimization problem can be written as:
Min{f(x):x € R"} (D

where is f(x) a smooth function with an available gradient Vf (x) [17], [18]. The fundamental principle of
all CG methods is the iterative generation of a sequence {x;} from an initial estimate x, € R", following the
recurrence relation:

Xk+1 = Xp + Qpdy 2)

where «a, is the step size, determined through a one-dimensional search known as a line search [19]. Line
searches can be classified as either exact or inexact, with the latter being generally preferred due to the high
computational cost of exact line searches in terms of both time and memory [20], [21], [22]. In our research,
we employ a strong Wolfe line search, which is defined by the following conditions [23], [24]:
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floe+ ardy) — f(xi) < Sargidy, 3)
|gk+1d| < —ogidx.
where 0 < § < o < 1. The step size a;, is chosen to minimize the function f, along x;, + ad,, and it is given
by:

T
Jicdi
(247 d]ZGdk ( )

The search direction d, is updated using the formula:

dis1 = —Gk+1 T+ Brdk. (5)

where g, represents the gradient of the function f at the point x,, and By is a scalar known as the CG
parameter. The choice of g, defines the specific CG variant being used. One well-known formulation is the
Hestenes-Stiefel CG method [12] with its formula defined as:

HS _ 91€+13’k (6)
“ dlyk

This HS algorithm is one of the foundational approaches for unconstrained optimization. It updates the
search direction by combining the negative gradient with the previous direction, using a parameter designed
to maintain conjugacy. However, despite its effectiveness, the HS algorithm has some notable drawbacks.
One key limitation is its sensitivity to line search accuracy; poor line search conditions can lead to a loss of
descent direction, causing the method to stall or converge slowly. Additionally, in practical implementations,
the method may occasionally suffer from numerical instabilities or fail to maintain sufficient descent,
especially for ill-conditioned or non-quadratic problems. These limitations have motivated the development
of modified CG algorithms that improve robustness and convergence behavior.

2.1 Method Derivation

In this section, we construct the proposed CG method that integrates Newton updates to enhance
convergence properties and computational efficiency. The study begins by examining the fundamental
principles of Newton’s method and then derives key formulations that lead to the improved CG method.

If the current point is sufficiently close to a local minimizer, the pure Newton method relies on the
direction of the search, given by:
dg+1 = _leilgk+1-
Nazareth [25] reformulated this equation as:
—Qi+19k+1 = —Gk+1 + BicSk (7)

where s, = a;dj. Building on this principle, this study integrates Newton updates to develop an improved
CG method with enhanced convergence properties and computational efficiency. Using Taylor series
expansion, we derive all secant equations and establish a unified QN equation [26]:

Sk Q15K = Sk Vi + 0k[2(fie — fier1) + Gk + Grew 1) skl (8)

where w, € [0,1,2,3]. This equation utilizes a class of modified quasi-Newton updates to improve accuracy
in approximating the second-order curvature of the objective function. By manipulating Eg. (8), we obtain:

[S£gk]2 (9)
StVk+0k[2(f k= Fia1) +( G+ ra1)T skl

Sk Qs15k =
which yields the matrix Q (x;,) as:

[Slfgk]z

_ Sp vk + 0k[2(fi = fiar) + (i + Grer1) TSk
Qk+1 - STS
k Sk

Ligsg- (10)

Substituting Eq. (10) in Eq. (7) we get:
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sTs T
B, = (1 _ k Sk \ng+1yk (11)

[Slz;gk]z S;Yk
SuVie + 0k[2(fi = fier1) + (G + Grer1)7 Sk

where w;, € [0,1,2,3]. To ensure sufficient descent condition, we perform additional algebraic manipulations
to obtain:

k= Ty \ Yk STy Sk k+1
where:
. (Sl’{y}c) 517;3’k 517;51(
= 2 |t * T 12 (13)
lyill? | s sk [Si gl

seVk + Wr[2(fie = firr) + Gk + Grr1) TSk

The proposed method is denoted as New, where:

New1l applies when w;, = 0.
New?2 applies when w;, = 1.
News3 applies when w;, = 2.
New4 applies when w;, = 3.

The implementation steps of the proposed method are outlined in the following algorithm:
Algorithm:

Step 1: (Initialization) Given an initial point x, € R™, parameters0 < § <o < 1,and € > 0. Setd, =
—go,and k = 0. If ||gx || < € then stop. Compute the step size a;, by the weak Wolfe line search

Step 2 : Determine the next iteration by Eq. (2).

Step 3: Compute dy,4 by Eq. (5) and choose an appropriate conjugate parameter 8, by Egs. (12) and
(13).

Step4: Setk:=k+ 1andgoto Step 1.

3. RESULTS AND DISCUSSION
3.1. Global Convergence

This section presents the main properties of the proposed algorithm, focusing on the condition of sufficient
descent and global convergence

llyxll®
T
SkYk

T
Theorem 1. Let SiwVi9k+1 € Rn,ﬂk € R and Bk = TL()’k —p Sk) Ir+1 - If Siyk * 0, then

SKYk

1
dh19i01 <~ 1= | lgusall®

Proof. Using induction. Since d, = —go, We have gid, = —|lgoll>. Assuming df gx < —cllgkll? holds,
then by multiplying Eq. (5) by gj41, we have:
T 2
Ik+1YVk Iyl

dic19k+1 = —lGreslI? +< Tye P GIy? Fk+15k | Sk re+1- (14)
which simplifies to:

d£+1gk+1 _ (9£+1YR)(5}€91<+1)(51€YR)—|!f]lf;11(|)|22(5£}’k)2—l)”)’k||2(gl7;+15k)2. (15)

k

By applying:
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1
w=—(styk)gk+1 and v = Jz_p(g£+1sk)yk (16)

NeT]

to the inequality:

1
wlv < E(”WHZ + [[v]1%) 17)
we obtain:
T T T Tl o 2 T 2 2
(9k+13’k)(5kgk+1)(5k3’k) < > E(Skyk) lgr+1ll” + 2p(Sk Gre+1) NVl #] - (18)

Thus, by Egs. (15) and (18), we get:

1
15~ Y 6EI02 g ka1 12+ [p=p) (st grer)* il

(sfyK)?

(19)

d;f+1gk+1 <

which leads to:

1
A L (20)

Thus, completes our proof. m

Now, we study the global convergence properties of the proposed conjugate gradient method by making
specific assumptions and presenting the main lemmas.

Assumption 1. The level set § = {x € R" : f(x) < f(x)} is bounded, i.e., there exists a constant B > 0
such that
Il xI<B, forallx €S. (21)

Assumption 2. The level set S = {x € R™ : f(x) < f(x,)} is bounded, i.e., there exists a constant B > 0
such that

IVFx) =V I<Llx—yl,forallx,y € N. (22)
Under Assumptions 1 and 2 on f, there exists a constant I' > 0, such that
I VF(x) IS T. (23)

Lemma 1. The level set S = {x € R™ : f(x) < f(xo)} is bounded, i.e., there exists a constant B > 0 such
that

1
—_— 00’ 24
2 TP @
Then
lgl_)"; infllgi+1ll = 0. (25)

The proof of this lemma can be found in [25].

Theorem 2. Suppose all assumptions hold. Let the sequences {x;} and {d}} be generated by the new method.
If step size a,, satisfies Wolfe conditions, then the following holds:

Lim infllgill = 0. (26)
Proof. From the search direction in Eq. (5) and the definition of 8 in Eq. (12), we obtain the following:
ldks1ll = ||_gk+1 + ﬁllc\]ewdk”

< N graall + | B[l

lyell®
< g1l + H()’k — P Sk
Sk Yk

gkl
syl

Il il (27)




486 Hassan, etal. NEW CONJUGATE GRADIENT METHOD FOR ACCELERATED CONVERGENCE AND ...

2
9 y S
||3’k||||gk+1||+P” k+1”| k” ” k”

lIsklllyl
< + d
g+l eyl il
il grerll+pll G il
< + d
lgr+all aglldilllyll el
1 p]
< 1.,.r
< [1 + . + ak lgr+1l
ap+l+w
<[22 [ gl
k
Therefore, we have:
1 ag 1
> _ =
St s (ak+1+p)1" Yis11 = oo, (28)

Using Lemma 1, implies that Igim infllgell =0. m

3.2. Numerical Computation

In this section, we present the results of humerical experiments conducted to assess the performance
of the proposed algorithm, compared to the well-established HS algorithm, using several benchmark
optimization problems. All tests were implemented in MATLAB R2013a and executed on a laptop with the
following specifications: Windows 10 operating system, HP computer (Intel(R) Core (TM) i7-6600U CPU
@ 2.60GHz, 2.81 GHz) with 8 GB of RAM.

The experiments evaluate the performance of the proposed algorithm under typical conditions.
Specifically, the parameters used in the implementation are § = 0.01and ¢ = 0.3. Instances where
algorithms fail to converge are marked with the symbol “NaN’. The stopping criterion for convergence is set
to llgys1ll < 1076 .

The test problems used in these experiments are sourced from the CUTE library [27], as well as
additional unconstrained problem sets from [28] and [29]. These problems vary in their dimensionality,
ensuring a robust evaluation across different types of optimization challenges.

For each method, the performance is evaluated based on several key metrics, including the number of
iterations (NOI), the number of function evaluations (NOF), and the CPU time (CPUT) required to reach
convergence. A summary of these results is presented in Table 1. To facilitate a more comprehensive
comparison, we also utilize performance profiles, as proposed by Dolan and Moré [30], to visually represent
the performance of each algorithm in terms of CPUT, NOI, and NOF. In these profiles, the curve that is
highest indicates the superior performance of the corresponding method, [31], [32].

The graphical results, displayed in Figs. 1, 2, and 3 clearly illustrate the effectiveness of the proposed
algorithm. These figures highlight the performance improvements achieved by our method compared to the
HS algorithm, showcasing its efficiency in both computational time and convergence speed across the various
test problems.

Table 1. Summary of Numerical Results Comparing the Proposed Algorithm with the Hestenes-Stiefel (HS)
Method. The Table Includes the NOI, NOF and CPUT for Each Method Across the Test Problems

Test - N HS Newl New2 New3 New4
Function NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT
‘cosine’ 500 342 938 0190 24 89 0017 24 115 0020 24 99 0018 28 110  0.020
‘cosine’ 1000 NaN NaN NaN 31 122 0034 32 129 0037 31 93 0027 33 103  0.028
‘cosine’ 5000 NaN NaN NaN 27 91 0121 25 89 0121 29 103 0139 31 110 0.146
‘cosine’ 10000 NaN NaN NaN 25 99 0245 24 88 0214 26 90 0218 31 112 0.266
‘dixmaanc’ 3000 31 170 0772 25 116 0554 32 115 0485 27 98 0407 38 134  0.602
‘dixmaanc’ 15000 31 169 3293 26 109 2066 36 157 3093 29 117 2333 35 162  3.009
‘dixmaanf' 15000 717 1062 217 613 893 17547 506 769 15487 553 829 16604 685 1038  20.375

‘dixmaanh’ 300 110 211 0.176 110 189 0.106 98 171 0.113 110 188 0.107 107 197 0.082

‘dixmaanh’ 1500 220 359 1.004 193 291 0.763 228 364 0.986 219 364 0.731 237 382 0.939
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Test . N HS Newl New2 New3 New4
Function NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT
‘dixmaani’ 300 283 2688  1.891 130 1851  1.303 116 1704 1.262 éZl 1807  1.396 ;33 1905  1.508
‘dixmaanj 300 ézo 1778 1521 891 1304 0.793 é” 1620  1.240 é“ 1637 1258 627 922 0722
dixmaank’ 1500 709 1039 3.846 355 527  1.839 200 435 1715 354 521 1953 295 456 1627
dixmaank’ 30000 523 770 iz"” 521 780 72172 501 738 51245 515 780 57181 522 828  54.950
‘dixmaanl’ 1500 361 542 2000 279 432 1405 397 588 2377 272 396 1746 292 450  2.141
‘dixmaanl’ 3000 324 503 4332 307 471 4538 286 442 3.681 282 437 3443 294 476 3.940
‘dixon3dg’ 4 3% 84 0017 34 8 0008 34 85 0009 34 8 0009 34 8 0.009
‘dixon3dg’ 10 95 173 0016 74 146 0019 74 146 0019 74 146 0016 74 146  0.018
‘dixon3dg’ 50 500 742 0071 434 612 0080 466 665 0082 482 674 0085 435 612  0.072
‘dixon3dg’ 150 NaN  NaN  NaN 198 2810 0438 984 1408  0.207 (1)99 2804 0.427 }134 1898  0.314
‘dqdrtic’ 500 63 215 0034 8 217 0032 71 195 0031 81 204 0113 66 205  0.037
‘dqdrtic’ 1000 57 200 0036 52 158 0032 65 214 0042 67 193 0043 60 167 0034
‘dqdrtic’ 5000 87 225 0167 74 229 0182 67 226 0177 74 215 0177 70 213  0.161
‘dqdrtic’ 10000 80 276 039% 71 208 0315 74 209 0330 66 197 0316 61 199  0.388
‘edensch’ 500 41 120 0052 35 95 0053 37 109 0062 30 89 0051 40 102  0.059
‘edensch’ 1000 38 129 0125 35 96 0060 37 89 0048 37 9 0055 36 105  0.066
‘edensch’ 5000 59 209 0663 35 107 0357 37 108 0347 37 103 0325 42 133 0434
‘edensch’ 10000 66 366 2211 66 322 193 42 114 0709 40 113 0823 34 103 0615
‘eg2! 4 62 269 0019 33 105 0005 34 86 0004 26 92 0005 29 108  0.005
'eg2’ 10 170 527 0019 42 125 0007 55 187 0008 41 135 0005 48 166  0.008
eg2" 100 76 340 0032 153 543 0054 84 306 0028 127 431 0035 168 610  0.063
‘freuroth’ 4 118 332 0047 94 277 0016 92 269 0016 105 262 0017 69 220  0.015
‘freuroth’ 10 143 581 0032 78 233 0014 148 319 0021 115 516 0026 106 245  0.017
‘genrose’ 5 136 301 0046 113 268 0024 133 279 0027 141 314 0034 138 274  0.025
‘genrose’ 10 231 396 0028 179 345 0024 255 432 0032 152 311 0032 180 343  0.033
‘genrose’ 100 304 1532 0137 ,_1302 1518 0.197 éoz 1497 0177 959 143 0119 921 1351  0.160
‘himmelbg' 500 2 9 0035 2 9 0002 2 9 0002 2 9 0003 2 9 0.002
himmelbg 1000 2 9 0004 2 9 0.004 2 9 0004 2 9 0004 2 9 0.004
‘himmelbg' 5000 4 24 0039 3 21 0019 3 21 0021 3 21 0024 3 21 0.020
himmelbg' 10000 2 11 0027 2 11 0025 2 11 0028 2 11 0027 2 11 0.025
‘tridial 100 399 601 0034 316 472 0030 363 519 0032 305 453 0027 352 523  0.034
‘woods' 500 143 373 0038 116 325 0028 144 418 0033 129 329 0026 134 398  0.031
‘woods' 1000 145 340 0041 94 204 0037 119 293 0039 127 354 0045 156 373  0.045
‘woods' 5000 185 436 0224 171 430 0216 208 463 0252 160 448 0227 193 506  0.263
‘woods' 10000 180 485 0451 145 326 0320 175 506 0471 168 504 0476 156 422  0.406
‘bdexp’ 500 NaN  NaN NaN 2 7 0002 2 7 0002 2 7 0002 2 7 0.002
‘bdexp’ 1000 NaN NaN NaN 3 18 0.005 3 18 0.005 3 18 0005 3 18 0.005
‘bdexp’ 5000 NaN NaN NaN 3 19 0031 3 19 0029 3 19 0028 3 19 0.030
‘bdexp’ 10000 NaN NaN NaN 2 9 0038 2 9 0041 2 9 0044 2 9 0.039
‘exdenschnf 500 3 140 0020 31 147 0017 35 118 0014 39 153 0018 36 151  0.018
‘exdenschnf 1000 33 171 0032 38 124 0026 43 152 0029 40 189 0033 35 160  0.028
'exdenschnf 5000 37 156 0124 37 170 0146 33 165 0137 35 128 0108 30 181  0.148
'exdenschnf 10000 32 143 0226 38 172 0277 52 171 0277 29 156 0248 40 155  0.247
‘exdenschnb’ 500 19 81 0011 27 124 0007 23 95 0006 26 124 0009 26 82 0.006
‘exdenschnb’ 1000 30 128 0013 28 89 0010 34 124 0012 24 88 0009 32 108 0011
'exdenschnb’ 5000 30 144 0053 27 103 0040 25 123 0047 25 110 0041 27 93 0.038
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Test . N HS Newl New2 New3 New4
Function NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT
‘exdenschnb’ 10000 24 116 0078 27 110 0075 34 126 0092 31 151 0106 44 141  0.099
‘genquartic’ 500 22 103 0010 24 85 0006 33 97 0007 27 109 0008 22 74 0.006
‘genquartic’ 1000 34 106 0012 22 72 0008 26 108 0014 25 9 0011 23 104 0012
‘genquartic’ 5000 83 296 0128 25 84 0038 23 114 0051 26 91 0041 24 98 0.044
‘genquartic’ 10000 80 344 0274 31 125 0103 30 114 0097 26 116 0095 27 126  0.099
biggsh1’ 4 12 40 0006 22 85 0002 22 85 0003 22 85 0002 22 85 0.002
biggsh1’ 10 0 9 0002 49 104 0007 49 104 0005 49 104 0004 49 104  0.006
‘sing' 500 NaN. NaN NaN 38 136 0016 29 113 0013 39 133 0016 37 159  0.018
‘sing' 1000 NaN  NaN  NaN 32 105 0021 38 98 0020 29 100 0020 28 106  0.021
‘sine’ 3000 NaN NaN NaN 31 124 0076 36 126 0075 39 115 0071 37 148  0.088
‘sing' 4000 NaN  NaN NaN 33 116 0093 29 105 0083 28 117 0095 33 99 0.082
‘raydan?’ 500 13 104 0011 9 51 0004 9 51 0004 9 51 0004 9 51 0.005
‘raydan2’ 1000 14 109 0012 15 69 0009 15 69 0010 15 69 0009 15 69 0.008
‘raydan2’ 5000 13 113 0057 10 71 0036 10 71 0035 11 72 0037 10 71 0.038
‘raydan?’ 10000 18 119 0118 13 66 0070 13 66 0066 16 83 0083 14 67 0.069
‘diagonall’ 4 28 8 0007 20 76 0003 21 65 0002 18 74 0002 20 68 0.002
diagonall’ 10 3% 96 0004 30 76 0003 34 85 0004 33 91 0005 28 75 0.004
‘diagonal2’ 500 135 249 0032 133 243 0031 136 231 0027 162 282 0030 141 242  0.026
‘diagonal2 1000 192 331 0054 176 310 0053 215 362 0065 196 333 0061 199 365  0.072
diagonal2 5000 486 930 0771 410 682 0670 429 711 0601 430 704 0724 493 833  0.841
‘diagonal2 10000 NaN NaN NaN 705 1162 2030 775 1316 2140 776 1262 2.043 612 1038 1661
‘diagonal3’ 4 2479 0007 25 71 0002 30 69 0003 30 79 0003 27 78 0.003
diagonal3’ 10 44 100 0005 35 92 0004 40 109 0004 39 79 0003 42 106  0.005
diagonal3’ 50 64 123 0007 59 112 0006 66 140 0008 66 124 0007 65 116  0.007
'singx’ 10 138 423 0027 97 282 0015 159 455 0028 146 439 0023 150 394  0.019
'singx’ 100 163 482 0037 77 304 0030 159 485 0041 128 450 0041 81 255  0.020
'singx’ 500 176 495 0847 119 410 0682 157 547 0971 157 513  0.898 145 559 1015
'singx’ 1000 327 1034 6424 162 516  3.348 224 683 4269 309 992 6009 326 1016 6543
lin' 10 20 100 0288 13 79 0214 16 96 0291 16 96 0283 13 79 0.247
lin' 100 22 105 0687 27 173 1117 18 66 0437 18 65 0449 21 69 0.457
lin' 500 19 88 1062 17 101 1177 19 110 1340 18 103 1353 18 91 1171
lin' 1000 25 145 #1684 61003 16 80 60320 21 85 63368 19 84 57.936
‘pent’ 5 NaN  NaN NaN 113 519 0035 109 490 0032 105 540 0034 114 526  0.036
‘pent’ 10 NaN  NaN NaN 99 409 0035 125 560 0047 123 541 0051 256 2165 0.176
‘pen2 5 25 104 0029 22 76 0010 22 116 0013 22 81 0015 24 111 0013
‘pen2 10 150 561  0.069 356 1230 027 251 1047 0076 341 1314 0441 434 1653 0.128
‘pen2’ 100 96 271 0045 144 356 0071 111 227 0058 113 295 0079 127 344  0.068
‘rosex’ 50 39 187 0019 36 153 0009 47 213 0010 43 188 0010 45 182  0.008
‘rosex’ 100 55 271 0017 41 156 0012 49 199 0015 46 140 0011 39 151  0.010
‘rosex’ 500 44 195 0339 46 194 0369 44 235 0351 49 174 0269 40 161  0.279
‘rosex’ 1000 45 232 1547 45 207 1241 51 196 1386 50 184 1016 55 198  1.064
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Figure 1. Performance Profile Comparing the Proposed Algorithms and the HS Method in Terms of Number of
Iterations
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Figure 2. Performance Profile Comparing the Proposed Algorithm and the HS Method in Terms of Number of
Function Evaluations
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Figure 3. Performance Profile Comparing the Proposed Algorithm and the HS Method in Terms of CPU Time

4. CONCLUSION

In this study, we introduced a new CG method that integrates Newton-type updates to improve
convergence properties and computational efficiency. The proposed method satisfies the sufficient descent
condition, ensuring that each iteration leads to a reduction in the objective function value, and it demonstrates
strong global convergence characteristics. These theoretical guarantees establish the method as a reliable and
effective tool for solving unconstrained optimization problems. The numerical results show that the proposed
methods (Newl, New2, New3, and New4) offer significant improvements over the classical Hestenes-Stiefel
(HS) method in terms of key performance metrics: NOI, NOF, and CPUT. Specifically, the proposed methods
achieved faster convergence and reduced computational costs, demonstrating their enhanced efficiency.
Among the variants, New3 yielded the best performance, with the lowest NOI (26.68), NOF (25.82), and a
competitive CPUT (23.51 seconds), highlighting its superior efficiency across a range of test problems. These
improvements indicate that the integration of Newton-type updates into the CG framework provides a
powerful method for large-scale optimization problems, especially in applications where computational
resources are limited and fast convergence is crucial. In conclusion, the newly proposed conjugate gradient
method not only satisfies the theoretical convergence conditions but also outperforms existing methods,
offering a promising approach for solving complex optimization problems. Future work could focus on
further refinement of the method, extending its applicability to constrained optimization problems, and
exploring its performance in more specialized domains.
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