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1. INTRODUCTION 

Optimization plays a crucial role in various scientific and engineering applications by seeking the 

minimum or maximum of an objective function. Among the many branches of optimization, unconstrained 

optimization is particularly important as it deals with the minimization of real-valued functions without any 

imposed constraints. This process typically takes place in a metric space, which provides a mathematical 

structure for measuring distances and ensuring convergence of iterative algorithms [1], [2]. Over the years, a 

wide range of numerical methods have been developed to solve such problems efficiently, including the 

Steepest Descent (SD), Newton’s method, Conjugate Gradient (CG) methods, and Quasi-Newton (QN) 

methods. 

Among these techniques, conjugate gradient methods have gained prominence due to their efficiency 

and low memory requirements, especially for problems of large-scale. These algorithms have been 

extensively applied in various domains. In engineering, for instance, CG methods are employed to address 

challenges in structural design, fluid dynamics, and control systems [3]. In data science and machine learning, 

they are instrumental in optimizing loss functions in regression, classification tasks, and neural network 

training [4], [5], [6], [7], [8]. Signal and image processing also benefit from CG techniques, which are used 

for signal recovery, image de-noising, and reconstruction [9], [10], [11]. Moreover, scientific computing 

relies on CG algorithms to solve large sparse linear systems, which are commonly encountered in 

computational physics and finite element analysis. 

The classical CG formulas, including the pioneering works by Hestenes and Stiefel (HS) [12] and 

Fletcher and Reeves (FR) [13], laid the foundation for iterative optimization using gradient-based updates. 

Since then, numerous enhancements and modifications have been proposed in the literature to improve their 

convergence rate, robustness, and applicability to real-world problems [14], [15], [16]. Despite their 

advantages, traditional CG algorithms may still face limitations when faster convergence is required or when 

applied to ill-conditioned problems. Therefore, ongoing research has focused on developing new variants that 

maintain the numerical efficiency and theoretical strengths of CG methods while addressing practical 

performance bottlenecks. 

This study aims to contribute to this ongoing effort by introducing some novel conjugate gradient 

methods tailored for large-scale unconstrained optimization. The new algorithms seek to improve 

computational efficiency and convergence speed by incorporating a Newton-inspired update strategy. The 

primary objective of this research is to develop algorithms that not only ensure global convergence under 

standard conditions but also outperform existing CG methods on practical benchmark problems.  

The structure of this paper is as follows: Section 2 introduces the new conjugate gradient algorithms 

and describes their corresponding formulation. Section 3 establishes the sufficient descent condition and 

analyzes the convergence properties of the proposed methods, presenting further numerical experiments that 

compare our methods with the Hestenes-Stiefel method based on the number of iterations, function 

evaluations, and computation time using well-known benchmark problems. Finally, Section 4 provides a brief 

conclusion. 

2. RESEARCH METHODS 

The general form of an unconstrained optimization problem can be written as: 

𝑀𝑖𝑛{𝑓(𝑥): 𝑥 ∈ 𝑅𝑛} (1) 

where is 𝑓(𝑥) a smooth function with an available gradient ∇𝑓(𝑥) [17], [18]. The fundamental principle of 

all CG methods is the iterative generation of a sequence {𝑥𝑘} from an initial estimate 𝑥0 ∈  𝑅𝑛, following the 

recurrence relation: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (2) 

where 𝛼𝑘  is the step size, determined through a one-dimensional search known as a line search [19]. Line 

searches can be classified as either exact or inexact, with the latter being generally preferred due to the high 

computational cost of exact line searches in terms of both time and memory [20], [21], [22]. In our research, 

we employ a strong Wolfe line search, which is defined by the following conditions [23], [24]: 
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𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑘)  ≤ 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘,

|𝑔𝑘+1
𝑇 𝑑𝑘|  ≤ −𝜎𝑔𝑘

𝑇𝑑𝑘.
  (3)

where 0 < 𝛿 ≤ 𝜎 < 1. The step size 𝛼𝑘 is chosen to minimize the function 𝑓, along 𝑥𝑘 + 𝛼𝑑𝑘 , and it is given 

by: 

𝛼𝑘 = −
𝑔𝑘

𝑇𝑑𝑘

𝑑𝑘
𝑇𝐺𝑑𝑘

. (4) 

The search direction 𝑑𝑘 is updated using the formula: 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘. (5) 

where 𝑔𝑘 represents the gradient of the function 𝑓 at the point 𝑥𝑘, and 𝛽𝑘 is a scalar known as the CG 

parameter. The choice of 𝛽𝑘 defines the specific CG variant being used. One well-known formulation is the 

Hestenes-Stiefel CG method [12] with its formula defined as: 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

. (6) 

This HS algorithm is one of the foundational approaches for unconstrained optimization. It updates the 

search direction by combining the negative gradient with the previous direction, using a parameter designed 

to maintain conjugacy. However, despite its effectiveness, the HS algorithm has some notable drawbacks. 

One key limitation is its sensitivity to line search accuracy; poor line search conditions can lead to a loss of 

descent direction, causing the method to stall or converge slowly. Additionally, in practical implementations, 

the method may occasionally suffer from numerical instabilities or fail to maintain sufficient descent, 

especially for ill-conditioned or non-quadratic problems. These limitations have motivated the development 

of modified CG algorithms that improve robustness and convergence behavior. 

2.1 Method Derivation  

In this section, we construct the proposed CG method that integrates Newton updates to enhance 

convergence properties and computational efficiency. The study begins by examining the fundamental 

principles of Newton’s method and then derives key formulations that lead to the improved CG method. 

    If the current point is sufficiently close to a local minimizer, the pure Newton method relies on the 

direction of the search, given by: 

𝑑𝑘+1 = −𝑄𝑘+1
−1 𝑔𝑘+1. 

Nazareth [25] reformulated this equation as: 

−𝑄𝑘+1
−1 𝑔𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑠𝑘 (7) 

where 𝑠𝑘 = 𝛼𝑘𝑑𝑘 . Building on this principle, this study integrates Newton updates to develop an improved 

CG method with enhanced convergence properties and computational efficiency. Using Taylor series 

expansion, we derive all secant equations and establish a unified QN equation [26]: 

𝑠𝑘
𝑇𝑄𝑘+1𝑠𝑘 = 𝑠𝑘

𝑇𝑦𝑘 + 𝜔𝑘[2(𝑓𝑘 − 𝑓𝑘+1) + (𝑔𝑘 + 𝑔𝑘+1)
𝑇𝑠𝑘] (8) 

where 𝜔𝑘 ∈ [0,1,2,3]. This equation utilizes a class of modified quasi-Newton updates to improve accuracy 

in approximating the second-order curvature of the objective function. By manipulating Eq. (8), we obtain: 

𝑠𝑘
𝑇𝑄𝑘+1𝑠𝑘 =

[𝑠𝑘
𝑇𝑔𝑘]2

𝑠𝑘
𝑇𝑦𝑘+𝜔𝑘[2(𝑓𝑘−𝑓𝑘+1)+(𝑔𝑘+𝑔𝑘+1)𝑇𝑠𝑘]

 (9)

which yields the matrix 𝑄(𝑥𝑘) as: 

𝑄𝑘+1 =

[𝑠𝑘
𝑇𝑔𝑘]2

𝑠𝑘
𝑇𝑦𝑘 + 𝜔𝑘[2(𝑓𝑘 − 𝑓𝑘+1) + (𝑔𝑘 + 𝑔𝑘+1)

𝑇𝑠𝑘]

𝑠𝑘
𝑇𝑠𝑘

𝐼𝑘∗𝑘 . (10)
 

Substituting Eq. (10) in Eq. (7) we get: 
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𝛽𝑘 =

(

 
 

1 −
𝑠𝑘

𝑇𝑠𝑘

[𝑠𝑘
𝑇𝑔𝑘]

2

𝑠𝑘
𝑇𝑦𝑘 + 𝜔𝑘[2(𝑓𝑘 − 𝑓𝑘+1) + (𝑔𝑘 + 𝑔𝑘+1)

𝑇𝑠𝑘])

 
 𝑔𝑘+1

𝑇 𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

(11) 

where 𝜔𝑘 ∈ [0,1,2,3]. To ensure sufficient descent condition, we perform additional algebraic manipulations 

to obtain: 

𝛽𝑘 =
1

𝑠𝑘
𝑇𝑦𝑘

(𝑦𝑘 − 𝜌
‖𝑦𝑘‖2

𝑠𝑘
𝑇𝑦𝑘

𝑠𝑘)
𝑇

𝑔𝑘+1 (12)

where: 

𝜌 =
(𝑠𝑘

𝑇𝑦𝑘)

‖𝑦𝑘‖2

[
 
 
 
 
𝑠𝑘
𝑇𝑦𝑘

𝑠𝑘
𝑇𝑠𝑘

∗
𝑠𝑘
𝑇𝑠𝑘

[𝑠𝑘
𝑇𝑔𝑘]2

𝑠𝑘
𝑇𝑦𝑘 + 𝜔𝑘[2(𝑓𝑘 − 𝑓𝑘+1) + (𝑔𝑘 + 𝑔𝑘+1)

𝑇𝑠𝑘]]
 
 
 
 

 (13) 

 

The proposed method is denoted as New, where: 

New1 applies when 𝜔𝑘 = 0. 

New2 applies when 𝜔𝑘 = 1. 

New3 applies when 𝜔𝑘 = 2. 

New4 applies when 𝜔𝑘 = 3. 

The implementation steps of the proposed method are outlined in the following algorithm: 

Algorithm: 

Step 1 : (Initialization) Given an initial point 𝑥0 ∈ 𝑅𝑛,  parameters 0 < 𝛿 < 𝜎 < 1, and 𝜀 > 0. Set 𝑑0 =
−𝑔0, and 𝑘 = 0. If ‖𝑔𝑘‖ ≤ 𝜀 then stop. Compute the step size 𝛼𝑘 by the weak Wolfe line search  

Step 2 : Determine the next iteration by Eq. (2). 

Step 3 : Compute 𝑑𝑘+1 by Eq. (5) and choose an appropriate conjugate parameter 𝛽𝑘 by Eqs. (12) and 

(13). 

Step 4 : Set 𝑘 ≔ 𝑘 + 1 and go to Step 1. 

3. RESULTS AND DISCUSSION 

3.1. Global Convergence  

This section presents the main properties of the proposed algorithm, focusing on the condition of sufficient 

descent and global convergence  

Theorem 1. Let 𝒔𝒌, 𝒚𝒌, 𝒈𝒌+𝟏 ∈ 𝑹𝒏, 𝜷𝒌 ∈ 𝑹 and 𝜷𝒌 =
𝟏

𝒔𝒌
𝑻𝒚𝒌

(𝒚𝒌 − 𝝆
‖𝒚𝒌‖𝟐

𝒔𝒌
𝑻𝒚𝒌

𝒔𝒌)
𝑻

𝒈𝒌+𝟏 . If 𝒔𝒌
𝑻𝒚𝒌 ≠ 𝟎, then 

𝒅𝒌+𝟏
𝑻 𝒈𝒌+𝟏 ≤ −[𝟏 −

𝟏

𝟒𝝆
] ‖𝒈𝒌+𝟏‖

𝟐. 

Proof. Using induction. Since 𝑑0 = −𝑔0, we have 𝑔0
𝑇𝑑0 = −‖𝑔0‖

2. Assuming 𝑑𝑘
𝑇𝑔𝑘 ≤ −𝑐‖𝑔𝑘‖

2 holds, 

then by multiplying Eq. (5) by 𝑔𝑘+1, we have: 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖

2 + (
𝑔𝑘+1

𝑇 𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

− 𝜌
‖𝑦𝑘‖2

(𝑠𝑘
𝑇𝑦𝑘)2

𝑔𝑘+1
𝑇 𝑠𝑘)𝑠𝑘

𝑇𝑔𝑘+1. (14) 

which simplifies to:  

𝑑𝑘+1
𝑇 𝑔𝑘+1 =

(𝑔𝑘+1
𝑇 𝑦𝑘)(𝑠𝑘

𝑇𝑔𝑘+1)(𝑠𝑘
𝑇𝑦𝑘)−‖𝑔𝑘+1‖2(𝑠𝑘

𝑇𝑦𝑘)2−𝜌‖𝑦𝑘‖2(𝑔𝑘+1
𝑇 𝑠𝑘)2

(𝑠𝑘
𝑇𝑦𝑘)2

. (15)

By applying: 
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𝑤 =
1

√2𝜌
(𝑠𝑘

𝑇𝑦𝑘)𝑔𝑘+1   and  𝑣 = √2𝜌(𝑔𝑘+1
𝑇 𝑠𝑘)𝑦𝑘 (16) 

to the inequality: 

𝑤𝑇𝑣 ≤
1

2
(‖𝑤‖2 + ‖𝑣‖2) (17) 

we obtain: 

(𝑔𝑘+1
𝑇 𝑦𝑘)(𝑠𝑘

𝑇𝑔𝑘+1)(𝑠𝑘
𝑇𝑦𝑘) ≤

1

2
[
1

2𝜌
(𝑠𝑘

𝑇𝑦𝑘)2‖𝑔𝑘+1‖
2 + 2𝜌(𝑠𝑘

𝑇𝑔𝑘+1)
2‖𝑦𝑘‖

2] . (18) 

Thus, by Eqs. (15) and (18), we get: 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤

[
1

4𝜌
−1](𝑠𝑘

𝑇𝑦𝑘)2‖𝑔𝑘+1‖2+[𝜌−𝜌](𝑠𝑘
𝑇𝑔𝑘+1)2‖𝑦𝑘‖2

(𝑠𝑘
𝑇𝑦𝑘)2

(19)

which leads to: 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −[1 −

1

4𝜌
] ‖𝑔𝑘+1‖

2. (20) 

Thus, completes our proof. ∎ 

Now, we study the global convergence properties of the proposed conjugate gradient method by making 

specific assumptions and presenting the main lemmas. 

Assumption 1. The level set 𝑆 = {𝑥 ∈ ℝ𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded, i.e., there exists a constant 𝐵 > 0 

such that 

∥ 𝑥 ∥≤ 𝐵,   for all 𝑥 ∈ 𝑆 . (21) 

Assumption 2. The level set 𝑆 = {𝑥 ∈ ℝ𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded, i.e., there exists a constant 𝐵 > 0 

such that 

∥ ∇𝑓(𝑥) − ∇𝑓(𝑦) ∥ ≤ 𝐿 ∥ 𝑥 − 𝑦 ∥ , for all 𝑥, 𝑦 ∈ 𝒩. (22) 

Under Assumptions 1 and 2 on 𝑓, there exists a constant Γ ≥ 0, such that 

∥ ∇𝑓(𝑥) ∥≤ Γ. (23) 

Lemma 1. The level set 𝑆 = {𝑥 ∈ ℝ𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded, i.e., there exists a constant 𝐵 > 0 such 

that 

∑
1

‖𝑑𝑘+1‖
2

= ∞,

𝑘≥0

 (24) 

Then 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘+1‖ = 0. (25) 

The proof of this lemma can be found in [25]. 

Theorem 2. Suppose all assumptions hold. Let the sequences {𝒙𝒌} and {𝒅𝒌} be generated by the new method. 

If step size 𝜶𝒌 satisfies Wolfe conditions, then the following holds: 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0. (26) 

Proof. From the search direction in Eq. (5) and the definition of 𝛽𝑘 in Eq. (12), we obtain the following: 

‖𝑑𝑘+1‖ = ‖−𝑔𝑘+1 + 𝛽𝑘
New𝑑𝑘‖  

≤ ‖𝑔𝑘+1‖ + |𝛽𝑘
New|‖𝑑𝑘‖                

≤ ‖𝑔𝑘+1‖ + ‖(𝑦𝑘 − 𝜌
‖𝑦𝑘‖2

𝑠𝑘
𝑇𝑦𝑘

𝑠𝑘)‖
‖𝑔𝑘+1‖

‖𝑠𝑘‖‖𝑦𝑘‖
‖𝑑𝑘‖ (27) 
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≤ ‖𝑔𝑘+1‖ +
‖𝑦𝑘‖‖𝑔𝑘+1‖+𝜌

‖𝑔𝑘+1‖‖𝑦𝑘‖
2
‖𝑠𝑘‖

‖𝑠𝑘‖‖𝑦𝑘‖

𝛼𝑘‖𝑑𝑘‖‖𝑦𝑘‖
‖𝑑𝑘‖  

≤ ‖𝑔𝑘+1‖ +
‖𝑦𝑘‖‖𝑔𝑘+1‖+𝜌‖𝑔𝑘+1‖‖𝑦𝑘‖

𝛼𝑘‖𝑑𝑘‖‖𝑦𝑘‖
‖𝑑𝑘‖  

≤ [1 +
1

𝛼𝑘
+

𝜌

𝛼𝑘
] ‖𝑔𝑘+1‖  

≤ [
𝛼𝑘+1+𝜔

𝛼𝑘
] ‖𝑔𝑘+1‖.   

  

Therefore, we have: 

∑
1

‖𝑑𝑘‖2𝑘≥1 ≥ (
𝛼𝑘

𝛼𝑘+1+𝜌
)

1

𝛤
∑ 1𝑘≥1 = ∞. (28)

Using Lemma 1, implies that 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0. ∎ 

3.2. Numerical Computation  

In this section, we present the results of numerical experiments conducted to assess the performance 

of the proposed algorithm, compared to the well-established HS algorithm, using several benchmark 

optimization problems. All tests were implemented in MATLAB R2013a and executed on a laptop with the 

following specifications: Windows 10 operating system, HP computer (Intel(R) Core (TM) i7-6600U CPU 

@ 2.60GHz, 2.81 GHz) with 8 GB of RAM. 

The experiments evaluate the performance of the proposed algorithm under typical conditions. 

Specifically, the parameters used in the implementation are 𝛿 = 0.01 and 𝜎 = 0.3. Instances where 

algorithms fail to converge are marked with the symbol ‘NaN’. The stopping criterion for convergence is set 

to ‖𝑔𝑘+1‖ ≤ 10−6 . 

The test problems used in these experiments are sourced from the CUTE library [27], as well as 

additional unconstrained problem sets from [28] and [29]. These problems vary in their dimensionality, 

ensuring a robust evaluation across different types of optimization challenges. 

For each method, the performance is evaluated based on several key metrics, including the number of 

iterations (NOI), the number of function evaluations (NOF), and the CPU time (CPUT) required to reach 

convergence. A summary of these results is presented in Table 1. To facilitate a more comprehensive 

comparison, we also utilize performance profiles, as proposed by Dolan and Moré [30], to visually represent 

the performance of each algorithm in terms of CPUT, NOI, and NOF. In these profiles, the curve that is 

highest indicates the superior performance of the corresponding method, [31], [32]. 

The graphical results, displayed in Figs. 1, 2, and 3 clearly illustrate the effectiveness of the proposed 

algorithm. These figures highlight the performance improvements achieved by our method compared to the 

HS algorithm, showcasing its efficiency in both computational time and convergence speed across the various 

test problems. 

Table 1. Summary of Numerical Results Comparing the Proposed Algorithm with the Hestenes-Stiefel (HS) 

Method. The Table Includes the NOI, NOF and CPUT for Each Method Across the Test Problems 

Test 

Function 
N 

HS New1 New2 New3 New4 

NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT 

'cosine' 500 342 938 0.190 24 89 0.017 24 115 0.020 24 99 0.018 28 110 0.020 

'cosine' 1000 NaN NaN NaN 31 122 0.034 32 129 0.037 31 93 0.027 33 103 0.028 

'cosine' 5000 NaN NaN NaN 27 91 0.121 25 89 0.121 29 103 0.139 31 110 0.146 

'cosine' 10000 NaN NaN NaN 25 99 0.245 24 88 0.214 26 90 0.218 31 112 0.266 

'dixmaanc' 3000 31 170 0.772 25 116 0.554 32 115 0.485 27 98 0.407 38 134 0.602 

'dixmaanc' 15000 31 169 3.293 26 109 2.066 36 157 3.093 29 117 2.333 35 162 3.009 

'dixmaanf' 15000 717 1062 
21.17

7 
613 893 17.547 506 769 15.487 553 829 16.694 685 1038 20.375 

'dixmaanh' 300 110 211 0.176 110 189 0.106 98 171 0.113 110 188 0.107 107 197 0.082 

'dixmaanh' 1500 220 359 1.004 193 291 0.763 228 364 0.986 219 364 0.731 237 382 0.939 
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Test 

Function 
N 

HS New1 New2 New3 New4 

NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT 

'dixmaani' 300 
183

5 
2688 1.891 

130

1 
1851 1.303 

116

4 
1704 1.262 

121

3 
1807 1.396 

133

2 
1905 1.508 

'dixmaanj' 300 
120

8 
1778 1.521 891 1304 0.793 

113

5 
1620 1.240 

114

5 
1637 1.258 627 922 0.722 

'dixmaank' 1500 709 1039 3.846 355 527 1.839 290 435 1.715 354 521 1.953 295 456 1.627 

'dixmaank' 30000 523 770 
52.47

1 
521 780 72.172 501 738 51.245 515 780 57.181 522 828 54.950 

'dixmaanl' 1500 361 542 2.000 279 432 1.405 397 588 2.377 272 396 1.746 292 450 2.141 

'dixmaanl' 3000 324 503 4.332 307 471 4.538 286 442 3.681 282 437 3.443 294 476 3.940 

'dixon3dq' 4 36 84 0.017 34 85 0.008 34 85 0.009 34 85 0.009 34 85 0.009 

'dixon3dq' 10 95 173 0.016 74 146 0.019 74 146 0.019 74 146 0.016 74 146 0.018 

'dixon3dq' 50 500 742 0.071 434 612 0.080 466 665 0.082 482 674 0.085 435 612 0.072 

'dixon3dq' 150 NaN NaN NaN 
198

4 
2810 0.438 984 1408 0.207 

199

0 
2804 0.427 

134

4 
1898 0.314 

'dqdrtic' 500 63 215 0.034 82 217 0.032 71 195 0.031 81 204 0.113 66 205 0.037 

'dqdrtic' 1000 57 200 0.036 52 158 0.032 65 214 0.042 67 193 0.043 60 167 0.034 

'dqdrtic' 5000 87 225 0.167 74 229 0.182 67 226 0.177 74 215 0.177 70 213 0.161 

'dqdrtic' 10000 80 276 0.396 71 208 0.315 74 209 0.330 66 197 0.316 61 199 0.388 

'edensch' 500 41 120 0.052 35 95 0.053 37 109 0.062 30 89 0.051 40 102 0.059 

'edensch' 1000 38 129 0.125 35 96 0.060 37 89 0.048 37 96 0.055 36 105 0.066 

'edensch' 5000 59 209 0.663 35 107 0.357 37 108 0.347 37 103 0.325 42 133 0.434 

'edensch' 10000 66 366 2.211 66 322 1.936 42 114 0.709 40 113 0.823 34 103 0.615 

'eg2' 4 62 269 0.019 33 105 0.005 34 86 0.004 26 92 0.005 29 108 0.005 

'eg2' 10 170 527 0.019 42 125 0.007 55 187 0.008 41 135 0.005 48 166 0.008 

'eg2' 100 76 340 0.032 153 543 0.054 84 306 0.028 127 431 0.035 168 610 0.063 

'freuroth' 4 118 332 0.047 94 277 0.016 92 269 0.016 105 262 0.017 69 220 0.015 

'freuroth' 10 143 581 0.032 78 233 0.014 148 319 0.021 115 516 0.026 106 245 0.017 

'genrose' 5 136 301 0.046 113 268 0.024 133 279 0.027 141 314 0.034 138 274 0.025 

'genrose' 10 231 396 0.028 179 345 0.024 255 432 0.032 152 311 0.032 180 343 0.033 

'genrose' 100 
104

0 
1532 0.137 

102

9 
1518 0.197 

102

5 
1497 0.177 959 1436 0.119 921 1351 0.160 

'himmelbg' 500 2 9 0.035 2 9 0.002 2 9 0.002 2 9 0.003 2 9 0.002 

'himmelbg' 1000 2 9 0.004 2 9 0.004 2 9 0.004 2 9 0.004 2 9 0.004 

'himmelbg' 5000 4 24 0.039 3 21 0.019 3 21 0.021 3 21 0.024 3 21 0.020 

'himmelbg' 10000 2 11 0.027 2 11 0.025 2 11 0.028 2 11 0.027 2 11 0.025 

'tridia' 100 399 601 0.034 316 472 0.030 363 519 0.032 305 453 0.027 352 523 0.034 

'woods' 500 143 373 0.038 116 325 0.028 144 418 0.033 129 329 0.026 134 398 0.031 

'woods' 1000 145 340 0.041 94 294 0.037 119 293 0.039 127 354 0.045 156 373 0.045 

'woods' 5000 185 436 0.224 171 430 0.216 208 463 0.252 160 448 0.227 193 506 0.263 

'woods' 10000 180 485 0.451 145 326 0.320 175 506 0.471 168 504 0.476 156 422 0.406 

'bdexp' 500 NaN NaN NaN 2 7 0.002 2 7 0.002 2 7 0.002 2 7 0.002 

'bdexp' 1000 NaN NaN NaN 3 18 0.005 3 18 0.005 3 18 0.005 3 18 0.005 

'bdexp' 5000 NaN NaN NaN 3 19 0.031 3 19 0.029 3 19 0.028 3 19 0.030 

'bdexp' 10000 NaN NaN NaN 2 9 0.038 2 9 0.041 2 9 0.044 2 9 0.039 

'exdenschnf' 500 35 140 0.020 31 147 0.017 35 118 0.014 39 153 0.018 36 151 0.018 

'exdenschnf' 1000 33 171 0.032 38 124 0.026 43 152 0.029 40 189 0.033 35 160 0.028 

'exdenschnf' 5000 37 156 0.124 37 170 0.146 33 165 0.137 35 128 0.108 30 181 0.148 

'exdenschnf' 10000 32 143 0.226 38 172 0.277 52 171 0.277 29 156 0.248 40 155 0.247 

'exdenschnb' 500 19 81 0.011 27 124 0.007 23 95 0.006 26 124 0.009 26 82 0.006 

'exdenschnb' 1000 30 128 0.013 28 89 0.010 34 124 0.012 24 88 0.009 32 108 0.011 

'exdenschnb' 5000 30 144 0.053 27 103 0.040 25 123 0.047 25 110 0.041 27 93 0.038 
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Test 

Function 
N 

HS New1 New2 New3 New4 

NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT 

'exdenschnb' 10000 24 116 0.078 27 110 0.075 34 126 0.092 31 151 0.106 44 141 0.099 

'genquartic' 500 22 103 0.010 24 85 0.006 33 97 0.007 27 109 0.008 22 74 0.006 

'genquartic' 1000 34 106 0.012 22 72 0.008 26 108 0.014 25 96 0.011 23 104 0.012 

'genquartic' 5000 83 296 0.128 25 84 0.038 23 114 0.051 26 91 0.041 24 98 0.044 

'genquartic' 10000 80 344 0.274 31 125 0.103 30 114 0.097 26 116 0.095 27 126 0.099 

'biggsb1' 4 12 40 0.006 22 85 0.002 22 85 0.003 22 85 0.002 22 85 0.002 

'biggsb1' 10 40 91 0.002 49 104 0.007 49 104 0.005 49 104 0.004 49 104 0.006 

'sine' 500 NaN NaN NaN 38 136 0.016 29 113 0.013 39 133 0.016 37 159 0.018 

'sine' 1000 NaN NaN NaN 32 105 0.021 38 98 0.020 29 100 0.020 28 106 0.021 

'sine' 3000 NaN NaN NaN 31 124 0.076 36 126 0.075 39 115 0.071 37 148 0.088 

'sine' 4000 NaN NaN NaN 33 116 0.093 29 105 0.083 28 117 0.095 33 99 0.082 

'raydan2' 500 13 104 0.011 9 51 0.004 9 51 0.004 9 51 0.004 9 51 0.005 

'raydan2' 1000 14 109 0.012 15 69 0.009 15 69 0.010 15 69 0.009 15 69 0.008 

'raydan2' 5000 13 113 0.057 10 71 0.036 10 71 0.035 11 72 0.037 10 71 0.038 

'raydan2' 10000 18 119 0.118 13 66 0.070 13 66 0.066 16 83 0.083 14 67 0.069 

'diagonal1' 4 28 85 0.007 20 76 0.003 21 65 0.002 18 74 0.002 20 68 0.002 

'diagonal1' 10 35 96 0.004 30 76 0.003 34 85 0.004 33 91 0.005 28 75 0.004 

'diagonal2' 500 135 249 0.032 133 243 0.031 136 231 0.027 162 282 0.030 141 242 0.026 

'diagonal2' 1000 192 331 0.054 176 310 0.053 215 362 0.065 196 333 0.061 199 365 0.072 

'diagonal2' 5000 486 930 0.771 410 682 0.670 429 711 0.601 430 704 0.724 493 833 0.841 

'diagonal2' 10000 NaN NaN NaN 705 1162 2.030 775 1316 2.140 776 1262 2.043 612 1038 1.661 

'diagonal3' 4 24 79 0.007 25 71 0.002 30 69 0.003 30 79 0.003 27 78 0.003 

'diagonal3' 10 44 100 0.005 35 92 0.004 40 109 0.004 39 79 0.003 42 106 0.005 

'diagonal3' 50 64 123 0.007 59 112 0.006 66 140 0.008 66 124 0.007 65 116 0.007 

'singx' 10 138 423 0.027 97 282 0.015 159 455 0.028 146 439 0.023 150 394 0.019 

'singx' 100 163 482 0.037 77 304 0.030 159 485 0.041 128 450 0.041 81 255 0.020 

'singx' 500 176 495 0.847 119 410 0.682 157 547 0.971 157 513 0.898 145 559 1.015 

'singx' 1000 327 1034 6.424 162 516 3.348 224 683 4.269 309 992 6.009 326 1016 6.543 

'lin' 10 20 100 0.288 13 79 0.214 16 96 0.291 16 96 0.283 13 79 0.247 

'lin' 100 22 105 0.687 27 173 1.117 18 66 0.437 18 65 0.449 21 69 0.457 

'lin' 500 19 88 1.062 17 101 1.177 19 110 1.340 18 103 1.353 18 91 1.171 

'lin' 1000 25 145 #### 16 84 61.003 16 80 60.320 21 85 63.368 19 84 57.936 

'pen1' 5 NaN NaN NaN 113 519 0.035 109 490 0.032 105 540 0.034 114 526 0.036 

'pen1' 10 NaN NaN NaN 99 409 0.035 125 560 0.047 123 541 0.051 256 2165 0.176 

'pen2' 5 25 104 0.029 22 76 0.010 22 116 0.013 22 81 0.015 24 111 0.013 

'pen2' 10 150 561 0.069 356 1230 0.127 251 1047 0.076 341 1314 0.441 434 1653 0.128 

'pen2' 100 96 271 0.045 144 356 0.071 111 227 0.058 113 295 0.079 127 344 0.068 

'rosex' 50 39 187 0.019 36 153 0.009 47 213 0.010 43 188 0.010 45 182 0.008 

'rosex' 100 55 271 0.017 41 156 0.012 49 199 0.015 46 140 0.011 39 151 0.010 

'rosex' 500 44 195 0.339 46 194 0.369 44 235 0.351 49 174 0.269 40 161 0.279 

'rosex' 1000 45 232 1.547 45 207 1.241 51 196 1.386 50 184 1.016 55 198 1.064 
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Figure 1. Performance Profile Comparing the Proposed Algorithms and the HS Method in Terms of Number of 

Iterations 

 

Figure 2. Performance Profile Comparing the Proposed Algorithm and the HS Method in Terms of Number of 

Function Evaluations 
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Figure 3. Performance Profile Comparing the Proposed Algorithm and the HS Method in Terms of CPU Time 

4. CONCLUSION 

In this study, we introduced a new CG method that integrates Newton-type updates to improve 

convergence properties and computational efficiency. The proposed method satisfies the sufficient descent 

condition, ensuring that each iteration leads to a reduction in the objective function value, and it demonstrates 

strong global convergence characteristics. These theoretical guarantees establish the method as a reliable and 

effective tool for solving unconstrained optimization problems. The numerical results show that the proposed 

methods (New1, New2, New3, and New4) offer significant improvements over the classical Hestenes-Stiefel 

(HS) method in terms of key performance metrics: NOI, NOF, and CPUT. Specifically, the proposed methods 

achieved faster convergence and reduced computational costs, demonstrating their enhanced efficiency. 

Among the variants, New3 yielded the best performance, with the lowest NOI (26.68), NOF (25.82), and a 

competitive CPUT (23.51 seconds), highlighting its superior efficiency across a range of test problems. These 

improvements indicate that the integration of Newton-type updates into the CG framework provides a 

powerful method for large-scale optimization problems, especially in applications where computational 

resources are limited and fast convergence is crucial.  In conclusion, the newly proposed conjugate gradient 

method not only satisfies the theoretical convergence conditions but also outperforms existing methods, 

offering a promising approach for solving complex optimization problems. Future work could focus on 

further refinement of the method, extending its applicability to constrained optimization problems, and 

exploring its performance in more specialized domains. 
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