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Article Info ABSTRACT 

Article History: 
Bivariate Poisson regression is a method for modeling two correlated count response 

variables. However, standard Poisson models often assume equidispersion, which is 

frequently violated in real-world data due to overdispersion. To address this issue, the 

Bivariate Poisson Log-Normal Regression (BPLNR) model is employed, which 

incorporates random effects to account for variability beyond that captured by the 

Poisson distribution. This study applies the BPLNR model to analyze the number of 

leprosy cases in Indonesia in 2021, categorized by the World Health Organization (WHO) 

into Paucibacillary (PB) and Multibacillary (MB). These two types are known to be 

correlated and exhibit overdispersion, rendering standard Bivariate Poisson models 

inadequate. This research contributes by applying BPLNR to leprosy data in Indonesia—

an area that has been underexplored in prior studies, which largely employed univariate 

or standard Poisson approaches and ignored the correlation and overdispersion 

structure. Data were obtained from the 2021 Indonesian Health Profile and the Central 

Statistics Agency. Parameter estimation was conducted using Maximum Likelihood 

Estimation (MLE) with the Newton-Raphson algorithm, and hypothesis testing was 

performed using the Maximum Likelihood Ratio Test (MLRT). The results confirm that 

BPLNR effectively models the joint distribution of PB and MB cases while accounting for 

overdispersion. Key factors influencing both types of leprosy include population density, 

poverty rate, access to proper sanitation and drinking water, and availability of medical 

personnel and health facilities. A limitation of this study is the use of aggregate 

provincial-level data, which may obscure local variation and spatial effects. Future 

research could integrate spatial modeling techniques or individual-level data to enhance 

inference. 
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1. INTRODUCTION 

Poisson regression is a method that aims to model response variables in the form of discrete data and 

the Poisson distribution. Data that is distributed Poisson is data that has a small probability and depends on a 

certain time interval or area, with observations in the form of discrete variables, and between variables are 

mutually independent [1]. Discrete response variables distributed Poisson can be modeled using the Poisson 

regression approach, while two discrete data that are distributed Poisson and correlated can be modeled using 

Bivariate Poisson regression. In Poisson regression, there is an assumption that must be met, namely 

equidispersion.  

Equidispersion is a condition of data that has the same mean and variance values. However, in many 

cases, the equidispersion assumption is not met. Some cases that are often encountered have data conditions 

where the variance value is greater than the mean value, or referred to as overdispersion [2]. The problem of 

overdispersion can cause an underestimation of the standard error of parameter estimates, which results in 

errors in concluding [3]. A method to get around the overdispersion issue is to utilize a mixed Poisson 

distribution, which combines a continuous distribution and the Poisson distribution. A combination of the 

Poisson and Log-Normal distributions, the Poisson Log-Normal distribution is one of the mixed Poisson 

distributions. When a distribution is converted to a normal distribution using the natural logarithm, it is known 

as the Log-Normal distribution [4]. 

One of the data assumed to be distributed Poisson is data on the number of leprosy cases, which is a 

chronic disease caused by infection with the bacteria Mycobacterium Leprae. There are two types of leprosy, 

namely Paucibacillary (PB), which is characterized by the presence of five or fewer skin lesions without 

bacteria visible on microscopic examination, and Multibacillary (MB), which is characterized by more than 

five skin lesions and the presence of bacteria that can be seen on microscopic examination. However, 

classifying leprosy solely based on the number of skin lesions is inadequate, as it can result in misidentifying 

many multibacillary (MB) cases as paucibacillary (PB), leading to incorrect treatment approaches. Hence, a 

thorough clinicobacteriological evaluation of each leprosy case is essential to accurately determine the 

bacillary status, ensure appropriate treatment, and help prevent under-treatment and the development of drug 

resistance [5].  Based on a report from the World Health Organization (WHO) in the Weekly Epidemiological 

Record (WER) in 2021, Indonesia is in third place as the country with the highest number of leprosy cases in 

the world, after India and Brazil [6]. In 2021, Indonesia reported 10,876 new cases of leprosy. Leprosy is 

influenced by several socio-economic aspects, environmental aspects, demographic aspects, and behavioral 

aspects [7]. In addition, aspects of health facilities also affect the occurrence of leprosy [8]. The socio-

economic aspect includes the poor and households with dirt floors. Environmental aspects include healthy 

houses and healthy toilets. Demographic aspects include population density,  behavioral aspects include 

PHBS households, and clean water facilities. While health facility aspects include many public health aspects 

and the number of medical personnel. 

Data on the number of leprosy cases in Indonesia in 2021 is discrete data that has a small probability 

of occurrence, so the data is distributed Poisson. PB and MB leprosy data have dependent variables that are 

correlated with each other, so the Bivariate Poisson model can be applied. In addition, the 2021 leprosy data 

experienced overdispersion, which could result in invalid conclusions. To overcome this problem, the Poisson 

method was used. Log-Normal by introducing the Log-Normal distribution on the model parameters. By 

combining these approaches, the Bivariate Poisson Log-Normal Regression method was developed in the 

analysis of PB and MB leprosy data in Indonesia in 2021. 

2. RESEARCH METHODS 

2.1 Data 

The data in this research is a case study in Indonesia with research units throughout the provinces. 

Thus, the total number of observations in this study consists of 34 provinces across Indonesia. The research 

utilizes secondary data sourced from the Indonesian Health Profile Report published by the Ministry of Health 

of the Republic of Indonesia. (Kemenkes RI) which can be accessed on the kemkes.go.id website and the 

Central Statistics Agency (BPS) publication, which can be accessed on the bps.go.id website in Indonesia for 

the 2021 period. 



BAREKENG: J. Math. & App., vol. 20(1), pp. 0493- 0508, Mar, 2026.     495 

 

 

2.2 Leprosy 

Leprosy is a long-term infectious illness brought on by the bacterium Mycobacterium leprae. This 

disease mainly attacks the skin, peripheral nerves, and mucosa of the upper respiratory tract, which, in the 

long term, causes some of the sufferer’s body parts to not function properly. Leprosy consists of two types, 

namely Paucibacillary (PB) and Multibacillary (MB). PB type leprosy is a type of leprosy that is not 

contagious and is also called dry leprosy, while MB leprosy, or wet leprosy, is a very contagious leprosy. 

Based on the number of skin lesions and the results of bacteriological examination, PB leprosy is 

characterized by the presence of five or fewer skin lesions without bacteria visible on microscopic 

examination, while MB leprosy is characterized by more than five skin lesions and the presence of bacteria 

that can be seen on microscopic examination [9]. The main signs of leprosy are skin abnormalities such as 

white spots, reddish spots spread on the skin, there are parts of the body that do not sweat and are numb, and 

experience changes in skin color to lighter or darker [10] Leprosy is spread through prolonged direct contact 

with the skin and respiratory tract. Effective multidrug therapy is available, and with early detection and 

treatment, leprosy can be cured, but treatment of the disease can be complicated by immune-mediated 

reactions, which can cause permanent nerve damage and lead to lifelong disability associated with stigma 

and discrimination [11]. Other poor leprosy management can result in disability in the eyes, hands, and feet 

[5]. Risk factors for leprosy include household contact with leprosy sufferers, the presence of leprosy 

sufferers in the neighborhood, and poor personal hygiene conditions [12]. Other factors suspected of 

triggering leprosy are family economic conditions, personal hygiene, the physical environment of the 

residence, and the density of residents [13]. 

2.2 Risk Factors for Leprosy 

2.2.1 Cleanliness Aspect 

Clean and healthy living behaviors are essential for maintaining and improving health. Leprosy can be 

transmitted through the respiratory tract and skin. To prevent leprosy, it is important to adopt a clean and 

healthy lifestyle in the home environment, so that the number of disease-causing microorganisms can be 

minimized, which can enter through the skin and respiratory tract. Some preventive measures that can be 

taken are wearing long clothes, not sharing towels, bathing at least twice a day, and early detection and 

treatment with MDT (Multi Drug Therapy) if diagnosed with leprosy. It is also important to improve the 

home environment, such as cleaning the floor, opening windows every day, and maintaining personal hygiene 

by not sharing towels and using clean water for bathing, to reduce the potential growth of bacteria that cause 

leprosy [14]. 

2.2.2 Residential Density Aspect 

A person who has a densely populated category in the home environment can be at risk the hazard of 

their associated household contacts developing leprosy increases by 3.14 times (𝑝 < 0.001) than someone 

who has a non-densely populated home category. This happens because the condition of a densely populated 

home environment will facilitate the transmission of leprosy to others through direct or indirect interaction. 

The main risk factor for leprosy growth within a household is the index case’s slit skin smear positivity. 

Household contact examinations and case detection are essential to leprosy control [15]. 

2.2.3 Poverty Aspects 

The rising incidence of leprosy among the poor can be attributed to several factors. Limited access to 

clean water, proper sanitation, and adequate nutrition makes them more susceptible to the disease. 

Additionally, despite needing medical care, many are hesitant to seek treatment due to a significant disconnect 

with healthcare providers, scarce resources to cover basic necessities, and a lack of knowledge about how to 

manage and respond to illness [6]. 

2.2.4 Health Facilities and Services Aspects 

In order to stop the spread of leprosy and avoid long-term impairments, early identification and 

treatment are essential. The availability and skills of healthcare professionals at all levels are critical to the 

success of early detection and treatment. However, even though they could administer multidrug therapy 
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(MDT) at no cost, many healthcare facilities are unable to provide leprosy services, even though they are 

accessible to patients and have willing staff [16]. 

 

2.3 Log-Normal Poisson Regression 

An approach to modeling overdispersed discrete data sets. The equidispersion assumption, a 

fundamental tenet of Poisson regression, states that the response variable’s mean and variance must be equal. 

However, in many cases, this assumption is often not met. If the variance of the data is greater than the mean 

value in the Poisson model (𝑉𝑎𝑟(𝑌) > 𝐸(𝑌)), then this case can be overcome by Poisson Log-Normal 

regression from the Poisson Log-Normal distribution [2]. An alternative to the mixed Poisson distribution is 

the Poisson Log-Normal distribution, which combines the Poisson and Log-Normal distributions. Two 

British mathematicians, Donald McAlister and Franics Galton, first proposed the Log-Normal distribution in 

1879. When a distribution is converted to a normal distribution using the natural logarithm, it is known as the 

Log-Normal distribution [6]. The characteristics of the Log-Normal distribution are positive non-zero values, 

positive skewness, and inconsistent variance (heteroscedasticity) [17]. A random variable with a 𝑉 Log-

Normal distribution is denoted by 𝑉~𝐿𝑁(𝜆, 𝜏2), and has a probability density function in Eq. (1). 

𝑔(𝑣|𝜆, 𝜏2) =
1

√2𝜋𝜏𝑣
exp (

(ln(𝑣) − 𝜆)2

2𝜏2
) , 𝑣 > 0; −∞ ≤ 𝜆 ≤ ∞, 𝜏2 > 0, (1) 

with 𝜆 is a scale parameter and 𝜏2 is a location parameter. The mean and variance of the distribution are 

𝐸(𝑉) = exp (𝜆 +
𝜏2

2
) and 𝑉𝑎𝑟(𝑉) = exp(2𝜆 + 𝜏2)[exp(𝜏2) − 1]. If given a random variable 𝑌 that follows 

the Poisson Log-Normal distribution (𝜇, 𝜏) then the probability density function 𝑌 can be expressed in 

integral form in Eq. (2) [18]. 

𝑓(𝑦; 𝜇, 𝜏) = ∫
𝑒−𝜇𝑣(𝜇𝑣)𝑦

𝑦!
𝑔(𝑣)𝑑𝑣

∞

0

, (2) 

with 𝑔(𝑣) is the probability density function for 𝑉~𝐿𝑁(𝜆, 𝜏2) Eq. (1). 

If the probability density function of a random variable with a Log-Normal distribution in Eq. (1) is 

substituted into Eq. (2), then the Poisson Log-Normal probability density function is obtained in Eq. (3). 

𝑓(𝑦; 𝜇, 𝜏) = ∫
𝑒−𝜇𝑣(𝜇𝑣)𝑦

𝑦!

1

√2𝜋𝜏𝑣
exp(−

(ln(𝑣) − 𝜆)2

2𝜏2
)𝑑𝑣

∞

0

; 𝑦 ≥ 0. (3) 

Poisson Log-Normal regression model with parameters 𝜇 connected to predictor variables using a link 

function ln(∙) is in Eq. (4) [19]. 

ln(𝜇𝑖) = (𝒙𝑖
𝑇𝜷) 

𝜇𝑖 = exp(𝒙𝑖
𝑇𝜷) (4) 

With 𝜇𝑖 is the mean of the Poisson-distributed response variable, 𝒙𝑖
𝑇 = [1 𝑥𝑖1 𝑥𝑖2 … 𝑥𝑖𝑘] denotes a 

vector 1 × (𝑘 + 1) of the predictor variables, and 𝜷 = [𝛽0 𝛽1 𝛽2 … 𝛽𝑘  ] 
𝑇
 denotes a vector 

(𝑘 + 1) × 1 of the regression parameters. 

2.4 Bivariate Poisson Log-Normal Regression 

Bivariate Poisson Log-Normal (BPLN) regression is used to determine the relationship between two 

responses in the form of discrete data. These are correlated with several predictor variables that are suspected 

of having an influence on the two response variables. The conditions for BPLN regression to be used are that 

both response variables experience overdispersion and are positively correlated. The two random variables 

(𝑌1, 𝑌2) are distributed Poisson and are independent, with mean 𝐸(𝑌𝑗) = 𝑣𝜇𝑗 and variance 𝑉𝑎𝑟 (𝑌𝑗) = 𝜇𝑗 +

𝜇𝑗
2, 𝜏; 𝑗 = 1,2. If the random variable V is distributed Log-Normal, then the joint probability density function 

𝑌1 and 𝑌2 are shown in Eq. (5) [20]. 
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𝑓(𝑦𝑗; 𝜇𝑗 , 𝜏) = ∫∏
exp(−𝜇𝑗𝑣) (𝜇𝑗𝑣)

𝑦

𝑦𝑗!
𝑔(𝑣)

2

𝑗=1

𝑑𝑣;  𝑦𝑗 ≥ 0

∞

0

, (5) 

with 𝑔(𝑣) is the probability density function for 𝑉~𝐿𝑁(𝜆, 𝜏2) in Eq. (2). If the probability density function 

of the random variable with a Log-Normal distribution in Eq. (1) is substituted into Eq. (5), then the 

probability density function of BPLN is obtained in Eq. (6). 

𝑓(𝑦𝑗; 𝜇𝑗 , 𝜏; 𝑗 = 1,2) = ∫∏
exp(−𝑣𝜇𝑗) (𝑣𝜇𝑗)

𝑦𝑗  

𝑦𝑗!

1

√2𝜋𝜏𝑣
exp

(

 
 
−
(ln(𝑣) +

𝜏2

2 )
2

2𝜏2

)

 
 
𝑑𝑣

2

𝑗=1

∞

0

. (6) 

The parameters 𝜇𝑗 are connected to the predictor variables using a link function so that the ln(∙). The BPLN 

regression model is as in Eq. (7) [21]. 

ln(𝜇𝑖𝑗) = (𝒙𝑖
𝑇𝜷𝑗) 

𝜇𝑖𝑗 = exp(𝒙𝑖
𝑇𝜷𝑗) ;  𝑗 = 1,2 (7) 

With 𝜇𝑖 is the mean of the 𝑗-th response variable, which is distributed Poisson, 𝒙𝑖
𝑇 = [1 𝑥𝑖1 𝑥𝑖2 … 𝑥𝑖𝑘] 

which denotes a vector of sizes 1 × (𝑘 + 1) of the predictor variables, and which 𝜷𝑗 =

[𝛽0𝑗 𝛽1𝑗 𝛽2𝑗 … 𝛽𝑘𝑗 ] 
𝑇

denotes a vector of the sizes (𝑘 + 1) × 1 of the regression parameters. 

2.5 Model Evaluation 

Testing the significance of the BPLNR model parameters is carried out with two tests, namely 

simultaneous and partial testing. Simultaneous significance testing of the BPLN regression model parameters 

uses the Maximum Likelihood Ratio Test (MLRT) method. With the hypothesis: 

𝐻0: 𝛽𝑗1 = 𝛽𝑗2 = ⋯ = 𝛽𝑗𝑘 = 0, 𝑗 = 1,2 and 𝜏 = 0 (the predictor variables together do not influence the 

response variable). 

𝐻1: At least there are 𝛽𝑗𝑘 ≠ 0, 𝑗 = 1,2 ; 𝑘 = 1,2, … , 𝑝 and 𝜏 ≠ 0 (the predictor variables together 

influence the response variable).  

The test statistics used are formulated in Eq. 8 as follows: 

𝐺𝐵𝑃𝐿𝑁𝑅
2 = −2 ln(

𝐿(𝜔̂𝐵𝑃𝐿𝑁𝑅)

𝐿(𝛺̂𝐵𝑃𝐿𝑁𝑅)
) 

= 2 (ln 𝐿(𝛺̂𝐵𝑃𝐿𝑁𝑅) − ln 𝐿(𝜔̂𝐵𝑃𝐿𝑁𝑅)  ), (8) 

With 𝐿(𝛺̂) is the maximum likelihood function for the model involving predictor variables, and 𝐿(𝜔) is the 

maximum likelihood function for the model without involving predictor variables, with the test criterion of 

𝐻0 rejecting if 𝐺𝐵𝑃𝐿𝑁𝑅
2 > 𝑋(𝛼,𝑑𝑏)

2  with 𝑑𝑏 is the degree of freedom obtained from 𝑛(𝛺𝐵𝑃𝐿𝑁𝑅) − 𝑛(𝜔𝐵𝑃𝐿𝑁𝑅), 

meaning that the predictor variables together influence the response variable [22]. Partial testing of the BPLN 

regression model with covariance as a function of the predictor variables is used to test whether the parameters 

𝛽𝑘𝑗 and 𝜏 affect the model. Significance testing is carried out using the hypothesis:  

𝐻0: 𝛽𝑘𝑗 = 0; 𝑘 = 1,2, … , 𝑝; 𝑗 = 1,2 (no significant effect) 

𝐻1: 𝛽𝑘𝑗 ≠ 0 (There is a significant effect).  

The test statistics using the Wald test are formulated in Eq. 9  as follows. 

𝑍𝐵𝑃𝐿𝑁𝑅 =
𝛽̂𝑘𝑗

√𝑉𝑎𝑟(𝛽̂𝑘𝑗)

, (9)
 

with 𝑉𝑎𝑟(𝛽̂𝑘𝑗): the main diagonal elements of the variance-covariance matrix,  

𝐶𝑜𝑣(𝜽̂𝜴𝐵𝑃𝐿𝑁𝑅): the variance-covariance matrix with 𝐶𝑜𝑣(𝜽̂𝜴𝐵𝑃𝐿𝑁𝑅) = −𝐸̂ (𝑯
−1 ((𝜽̂𝜴𝐵𝑃𝐿𝑁𝑅))) =
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−𝑯−1 ((𝜽̂𝜴𝐵𝑃𝐿𝑁𝑅)) corresponds to 𝜽̂𝜴𝐵𝑃𝐿𝑁𝑅 = [𝜷̂1𝜴𝐵𝑃𝐿𝑁𝑅 𝜷̂2𝜴𝐵𝑃𝐿𝑁𝑅 𝝉̂
𝜴𝐵𝑃𝐿𝑁𝑅

]
𝑻
. With the test criterion 

rejecting 𝐻0 if |𝑧𝐵𝑃𝐿𝑁𝑅| > 𝑧𝛼/2 with 𝛼 is the level of significance. 

2.6 Analysis Steps 

The data analysis procedure conducted in this study is outlined as follows: 

2.6.1 Parameter Estimation of Bivariate Poisson Log-Normal Regression Model. 

The stages of analysis to estimate the parameters of the Bivariate Poisson Log-Normal Regression model are 

as follows: 

1. Form a likelihood function for the i-th observation based on the Bivariate Poisson Log-Normal 

regression probability mass function in Eq. (6). 

2. Determine the natural logarithm likelihood function for the i-th observation in Step 1. 

3. Determine each estimated parameter’s first derivative of the ln likelihood function, then set it 

equal to zero. The maximum value of 𝐿(𝜽𝐵𝑃𝐿𝑁𝑅) will be obtained if  
𝜕𝑙(𝜽𝐵𝑃𝐿𝑁𝑅)

𝜕𝜽𝐵𝑃𝐿𝑁𝑅
= 0, If the first 

derivative of each parameter leads to an implicit form, parameter estimation is carried out using 

the Newton-Raphson algorithm. 

2.6.2 Factors Affecting the Number of Leprosy Cases in Indonesia Using the Bivariate Poisson Log-

Normal Regression Model 

Developing a Bivariate Poisson Log-Normal Regression model to determine the variables influencing the 

number of leprosy cases in Indonesia involves the following analytical steps: 

1. Describe the response and predictor variables using descriptive statistics. 

2. Test the Bivariate Poisson distribution on the response variables 𝑌1 and 𝑌2 using the index of 

dispersion test. 

3. Testing the correlation between the response variables 𝑌1 and 𝑌2  using the Pearson correlation 

test. 

4. Testing the assumption of non-multicollinearity in the predictor variables using the VIF value. 

5. Checking overdispersion with the Deviance test. 

6. Estimating the BPLN regression model parameters with the MLE method. 

7. Interpret the model obtained and draw conclusions. 

3. RESULTS AND DISCUSSION 

3.1 Parameter Estimation of Bivariate Poisson Log-Normal Regression Model 

Model parameter estimation BPLNR is performed using the MLE method. The estimated parameters 

are 𝜷1, 𝜷2 and 𝜏. The MLE method is performed by maximizing the likelihood function of the probability 

density function 𝑌𝑖1, 𝑌𝑖2~𝐵𝑃𝐿𝑁(𝜇𝑖1, 𝜇𝑖2, 𝜏). The likelihood function formed from Eq. (10) is as follows. 

𝐿(𝜷1, 𝜷2, 𝜏) =∏(𝑓(𝑦1, 𝑦2; 𝜇𝑖1, 𝜇𝑖2, 𝜏))

𝑛

𝑖=1

 

         =∏

(

 
 
 ∫∏

exp(−𝑣𝑖𝜇𝑗) (𝑣𝑖𝜇𝑗)
𝑦𝑖𝑗  

𝑦𝑖𝑗!

1

√2𝜋𝜏𝑣𝑖
exp

(

 
 
−
(ln(𝑣𝑖) +

𝜏2

2 )
2

2𝜏2

)

 
 
𝑑𝑣𝑖

2

𝑗=1

∞

0

)

 
 

𝑛

𝑖=1

. (10) 

The likelihood function is then transformed into a natural logarithm, and the ln likelihood function is obtained 

as follows. 
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Because 𝜇𝑗 = exp(𝒙𝑖
𝑇𝜷𝑗) then, 
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ln 𝐿(𝜷𝟏, 𝜷𝟐, 𝜏) =∑[(−𝑣𝑖exp(𝒙𝑖
𝑇𝜷1) + 𝑦𝑖1 ln(𝑣𝑖exp(𝒙𝑖

𝑇𝜷1) ) − ln(𝑦𝑖1!))
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The ln likelihood function in the equation above is derived from 𝜷1, 𝜷2, and 𝜏, and equated to zero to obtain 

the parameter estimates of the BPLNR model. The first derivative of the function ln 𝐿(𝜷1, 𝜷2, 𝜏) with respect 

to 𝜷1 is as follows. 
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The first derivative of the function ln 𝐿(𝜷𝟏, 𝜷𝟐, 𝜏) with respect to 𝜷2 is as follows. 

𝜕 ln 𝐿(𝜷𝟏, 𝜷𝟐, 𝜏)

𝜕𝜷2

=
𝜕

𝜕𝜷2
∑[(−𝑣𝑖exp(𝒙𝑖

𝑇𝜷1)  + 𝑦𝑖1 ln(𝑣𝑖exp(𝒙𝑖
𝑇𝜷1) ) − ln(𝑦𝑖1!))
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𝑖=1
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𝑇) 

The first derivative of the function ln 𝐿(𝜷𝟏, 𝜷𝟐, 𝜏) with respect to 𝜏 is as follows. 
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𝜕 ln 𝐿(𝜷𝟏, 𝜷𝟐, 𝜏)
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When equated to zero, the first derivative of the ln likelihood function with respect to the parameters 

𝜷𝟏, 𝜷𝟐, and 𝜏 yields an implicit equation. The Newton-Raphson algorithm is then used to estimate the 

parameters, yielding the following Eqs. (11), (12), and (13). 

𝜷1
(𝑠+1)

= 𝜷1
(𝑠)
−𝑯1 (𝜷1

(𝑠)
)
−1
𝒈(𝜷1

(𝑠)
) (11) 

𝜷2
(𝑠+1)

= 𝜷2
(𝑠)
−𝑯2 (𝜷2

(𝑠)
)
−1
𝒈(𝜷2

(𝑠)
) (12) 

𝜏(𝑠+1) = 𝜏(𝑠) −𝑯3(𝜏
(𝑠))

−1
𝒈(𝜏(𝑠)) (13) 

With: 

𝑠 = 0,1,2,…𝑞  

𝒈(𝜷1
(𝑠)) =

𝜕 ln 𝐿(𝜷1,𝜷2,𝜏)

𝜕𝜷1
  

𝒈(𝜷2
(𝑠)
) =

𝜕 ln 𝐿(𝜷1,𝜷2,𝜏)

𝜕𝜷2
  

𝒈(𝜏(𝑠))   =
𝜕 ln 𝐿(𝜷1,𝜷2,𝜏)
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𝜕𝜷1𝜕𝜷1
𝑇   

                   = −∑ (𝑣𝑖𝒙
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+
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𝜏2
−
3

4
)𝑛

𝑖=1   

3.2 Factors Influencing Indonesia’s Leprosy Case Count Using the Bivariate Poisson Log-Normal 

Regression Model 

1. Descriptive Analysis. The number of MB and PB leprosy cases in Indonesia in 2021 served as the 
study’s response variables. Table 1 displays descriptive statistics for leprosy case data. 
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Table 1. Descriptive Statistics of Leprosy Data 

Variables N Minimum Maximum Mean Standard Deviation 

PB Leprosy (Y1) 34 1 250 36.15 56.43 

MB Leprosy (Y2) 34 13 1606 283.74 354.82 

Population density (X1) 34 9 15978 744.26 2721.06 

Percentage of Poor Population 

(X2) 
34 4.56 27.38 10.43 5.41 

Percentage of Households 

Having Access to Adequate 

Sanitation Services (X3) 
34 40.81 97.12 80.97 9.93 

Number of Health Facilities 

(X4) 
34 67 1474 393.29 346.15 

Number of Medical Personnel 

(X5) 
34 385 14784 3126.94 4011.11 

Percentage of Households 

Having Access to Clean 

Drinking Water Source 

Services (X6) 

34 64.92 99.860 86.67 8.46 

In Table 1, data are presented for two types of response variables, namely PB leprosy (Y1) and MB 

leprosy (Y2), each based on 34 observations. The average number of PB leprosy cases in Indonesia is 36 

cases. The highest number of PB leprosy cases in Indonesia is 250 cases in Papua Province. The main factor 

causing the high number of PB leprosy cases in Papua Province is the lack of public understanding about the 

prevention and treatment of this disease. Many Papuans consider leprosy to be a mild skin problem, especially 

when the symptoms first appear as spots, which are often mistaken for tinea versicolor. As a result, they tend 

to postpone visits to health facilities until the disease reaches a severe stage, such as nerve paralysis, ulcers, 

or even amputation. In addition, the negative stigma against leprosy means that only a few sufferers 

voluntarily seek treatment, while most others must be visited to ensure they get the necessary care. 

2. Assumption Test. Before carrying out the model formation process, there are assumptions that must be 

met, namely, the response variable is distributed Bivariate Poisson, the correlation test between 

response variables, the multicollinearity test, and the overdispersion detection test. 

Before modeling the data, it is necessary to conduct a test to identify whether the response variables 𝑌1 

and 𝑌2 follow the Bivariate Poisson distribution or not. Table 2 is a Bivariate Poisson distribution test using 

the index of dispersion test approach. 

Table 2. Index Of Dispersion Test 

𝑰𝑩 𝝌𝟐 

66.838 84.820 

 

a. Hypothesis 

𝐻0 : 𝐹(𝑥) = 𝐹0(𝑥) for 𝑌1 and 𝑌2 (response variables 𝑌1 and 𝑌2 follow a bivariate Poisson 

distribution). 

𝐻1 : 𝐹(𝑥) ≠ 𝐹0(𝑥) for 𝑌1 and 𝑌2 (response variables 𝑌1 and 𝑌2 do not follow a bivariate Poisson 

distribution). 

b. Test statistics 

Based on the results obtained in Table 2, the known value of 𝐼𝐵 = 66.838 and 𝜒2 = 84.82. 

c. Test criteria 

Reject 𝐻0 if |𝐼𝐵| > 𝜒(0.05;65)
2  at the level of significance 𝛼. 

d. Decision 

Based on the results obtained in Table 2, the known value of 𝐼𝐵 = 66.838 and 𝜒2 = 84.820, 

which means the value |𝐼𝐵| < 𝜒(0.05;65)
2 . Therefore, it is decided that 𝐻0 it is accepted and 𝐻1 

rejected. 

e. Conclusion 

Thus, it is concluded that the data on the number of PB and MB leprosy in 2021 follows the 

Bivariate Poisson distribution. 
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The Bivariate Poisson Log-Normal Regression (BPLNR) model is a development of the univariate 

PLNR model with two response variables in the form of discrete data that are correlated with each other. 

Correlation testing of the response variables needs to be done as a requirement in the BPLNR model. Table 

3 shows the Pearson Correlation test value. 

Table 3. Pearson Correlation Test 

𝐭𝐜𝐨𝐮𝐧𝐭 𝐭𝐭𝐚𝐛𝐥𝐞 

4.701 2.037 

a. Hypothesis 

𝐻0 : There is no correlation between 𝑌1 and 𝑌2. 

𝐻1 : There is a correlation between 𝑌1 and 𝑌2. 

b. Test statistics 

Based on the results obtained in Table 3, the value is known 𝑡𝑐𝑜𝑢𝑛𝑡 = 4.7009 and 𝑡(0.025;32) =

2.0370. 

c. Test criteria 

Reject 𝐻0 if |𝑡𝑐𝑜𝑢𝑛𝑡| > 𝑡(0.025;32) at the level of significance 𝛼 = 0.05. 

d. Decision 

Based on the results obtained in Table 3, the value is known 𝑡𝑐𝑜𝑢𝑛𝑡 = 4.7009 and 𝑡(0.025;32) =

2.0370, which means value |𝑡𝑐𝑜𝑢𝑛𝑡| > 𝑡(0.025;32) That is, it was decided that 𝐻0 it was rejected 

and accepted.  

e. Conclusion 

Thus 𝐻1, the number of MB and PB leprosy cases in Indonesia in 2021 is found to be correlated. 

Multicollinearity detection is carried out to determine whether there is a correlation between predictor 

variables. In this study, the VIF value criteria are used to detect multicollinearity cases, and the results of the 

multicollinearity test can be seen in Table 4. 

Table 4. VIF Values 

Variables X1 X2 X3 X4 X5 X6 

VIF Value 1.428 1.999 2.569 6.897 8.538 1.781 

a. Hypothesis 

𝐻0 : 𝑉𝐼𝐹 < 10 (There are no symptoms of multicollinearity in the predictor variables). 

𝐻1 : 𝑉𝐼𝐹 ≥ 10 (There are symptoms of multicollinearity in the predictor variables). 

b. Test statistics 

Based on the results obtained in Table 4, the known value VIF on all predictor variables is less 

than 10. 

c. Test criteria 

Reject 𝐻0 if VIF ≥10 at the significance level 𝛼. 

d. Decision 

Based on the results obtained in Table 4, the known value VIF on all predictor variables is less 

than 10. which means the VIF value is <10. This means that it is decided to 𝐻0 be accepted and 

𝐻1 rejected. 

e. Conclusion 

Consequently, it is determined that there are no signs of multicollinearity among the predictor 

variables. 

Before modeling data with the BPLNR model, it is necessary to detect and test for overdispersion. 

Overdispersion occurs when the variance value of the response variable is greater than the mean value. 

Overdispersion testing is carried out using the deviance test. The results of the overdispersion test can be seen 

in Table 5. 
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Table 5. Overdispersion Test 

Variables 𝐃/𝐝𝐛 

PB Leprosy (𝑌1) 73.76 

MB Leprosy (𝑌2) 421.23 

a. Hypothesis 

𝐻0 : There is no overdispersion in the Poisson regression model. 

𝐻1 : There is overdispersion in the Poisson regression model. 

b. Test statistics 

According to the results obtained in Table 5, the known value for (𝑌1), 𝐷 = 73.76 and for (𝑌2), 
𝐷 = 421.23. 

c. Test criteria 

Reject 𝐻0 if 𝐷/(28) > 1 at the level of significance 𝛼 = 0.05 

d. Decision 

According to the results obtained in Table 5, the known value for (𝑌1), 𝐷 = 73.76 and for (𝑌2), 
𝐷 = 421.23, which means the value of. That is, 𝐷/(28) > 1 it is decided that 𝐻0 rejected and 

𝐻1 accepted.  

e. Conclusion 

Thus, it is concluded that there is a case of overdispersion in the response variable. Therefore, 

the data on the number of PB leprosy and MB leprosy in 2021 can be modeled using BPLN 

regression. 

Parameter Estimation of Bivariate Poisson Log-Normal Regression Model. BPLNR modeling on the 

number of PB leprosy and MB leprosy cases in Indonesia produces global parameter estimates, meaning that 

the influencing factors are considered the same in each province. The parameter estimation results can be 

seen in Table 6. 

Table 6. Overdispersion Test 

Parameters Estimation Standard Error Z 𝒑-value 

𝛽01 1.483486 0.000006 260982.290263 0.000000* 

𝛽11 0.000016 0.000004 4.035241 0.000055* 

𝛽21 0.105809 0.001148 92.182021 0.000000* 

𝛽31 -0.022786 0.000625 -36.437231 0.000000* 

𝛽41 0.000151 0.000055 2.746945 0.006015* 

𝛽51 0.000086 0.000006 14.903874 0.000000* 

𝛽61 0.015534 0.000666 23.331793 0.000000* 

𝛽02 1.076462 0.000001 725860.188300 0.000000* 

𝛽12 0.000117 0.000001 112.411500 0.000000* 

𝛽22 0.044410 0.000299 148.295700 0.000000* 

𝛽32 -0.033763 0.000163 -206.943500 0.000000* 

𝛽42 0.002878 0.000014 200.055400 0.000000* 

𝛽52 -0.000152 0.000002 -100.644100 0.000000* 

𝛽62 0.062651 0.000174 360.680600 0.000000* 

𝜏 0.001647 0.000001 1715.348000 0.000000* 

*) Significant in 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 

According to Table 6, every predictor variable including population density, the proportion of the 

population living in poverty, the proportion of households with access to adequate sanitation, the number of 

health facilities, the number of medical personnel, and the proportion of households with access to clean 

drinking water—has a significant impact on the number of PB and MB leprosy cases in Indonesia in 2021. 

Furthermore, partial hypothesis testing of the dispersion parameter (𝜏). Based on Table 6, the estimated 

value of the dispersion parameter is exp(0.001647) = 1.001648 with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.000000 < 𝛼 = 0.05. 

This shows that the BPLNR model accommodates overdispersion in the data on the number of PB and MB 

leprosy cases in Indonesia in 2021. 
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Figure 1. Plot of Actual VS Predicted Y1 on PB Leprosy in Indonesia in 2021 

The plot comparing the predicted and actual values for PB leprosy cases, which are closely aligned, is 

shown in Fig. 1. This indicates that the BPLNR model performs well in modeling and predicting PB leprosy 

cases in Indonesia in 2021. 

 

Figure 2. Plot of Actual VS Predicted Y2 on MB Leprosy in Indonesia in 2021 

The plot comparing the predicted and actual values for MB leprosy cases, which are closely aligned, 

is presented in Fig. 2. This indicates that the BPLNR model performs well in modeling and predicting MB 

leprosy cases in Indonesia in 2021. 

Table 7. BPLNR Model 

Response BPLNR Model 

𝑌1 
𝜇̂𝑖1 = exp(1.483486 + 0.000016𝑥11 + 0,105809𝑥21 − 0.022786𝑥31 + 0.000151𝑥41

+ 0.000086𝑥51 + 0.015534𝑥61) 

𝑌2 
𝜇̂𝑖2 = exp(1.076462 + 0.000117𝑥12 + 0.044410𝑥22 − 0.033763𝑥32 + 0.002878𝑥42

− 0.000152𝑥52 + 0.062651𝑥62 

Based on Table 7, it is obtained that all variables that have a significant effect on the number of PB 

and MB leprosy cases, with the interpretation, every increase in population density of 1 person/km2, the 

number of PB leprosy cases increases by exp(0.000016) = 1.000016 times and the number of MB leprosy 
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cases increases by exp(0.000117) = 1.000117 times, assuming other variables are constant. A person who 

has a densely populated category in the home environment can be at risk the hazard of their associated 

household contacts developing leprosy increases by 3.14 times (𝑝 < 0.001) than someone who has a non-

densely populated home category. This happens because the condition of a densely populated home 

environment will facilitate the transmission of leprosy to others through direct or indirect interaction. 

Household contact examinations and case detection are critical aspects of control. 

For every 1% increase in the percentage of poor people, the number of PB leprosy cases increases by 

exp(0.105809) = 1.111609 times and the number of MB leprosy cases increases by exp(0.044410) =
1.045410 times, assuming other variables are constant. Leprosy is becoming increasingly common among 

the impoverished, in part because they have less access to sanitary facilities, clean water, and a healthy diet, 

making them more susceptible to the illness. Due to a lack of health personnel, a lack of money to address 

basic requirements, and a lack of understanding about how to handle illness outbreaks, the impoverished 

often hesitate to seek care, even when they truly need it. 

For every 1% increase in the percentage of households with access to proper sanitation, the number of 

PB leprosy cases will decrease by exp(−0.022786) = 0.977472 times and the number of MB leprosy cases 

will decrease by exp(−0.033763) = 0.966801 times, assuming other variables are constant. Clean behavior 

is behavior related to efforts to maintain and improve health. Transmission of leprosy is closely related to the 

respiratory tract and skin. Efforts to prevent leprosy can be done by implementing clean and healthy living 

behavior in households, so as to minimize the number of microorganisms that cause leprosy that can easily 

enter through the skin and respiratory tract. 

For every increase in the number of health facilities by 1 unit, the number of PB leprosy cases increases 

by exp(0.000151) = 1.000152 times and the number of MB leprosy cases increases by exp(0.002878) =
1.002882 times, assuming other variables are constant. The increase in the number of leprosy even though 

there is an increase in the number of health facilities is due to the number of health facilities whose distribution 

is not evenly distributed. The phenomenon that occurs in several regions in Indonesia, the detection of 

Mycobacterium leprae bacteria, the cause of leprosy, is relatively slow due to limited facilities in several 

health facilities in remote areas of Indonesia. 

For every increase in the number of medical personnel by 1 individual, the number of PB leprosy cases 

increases by exp(0.00086) = 1.00086 times and the number of MB leprosy cases decreases by 

exp(−0.000152) = 0.999848 times, assuming other variables are constant. In Indonesia, the number of 

medical personnel shows an increase. The difference in the increase in the number of cases between PB and 

MB leprosy is due to the quality and distribution of medical personnel, which are not optimal. The 

phenomenon that occurs in several regions in Indonesia, where medical personnel are not evenly distributed 

based on the phenomenon of several health centers lacking medical personnel, is one of the reasons why there 

is a difference in the increase in the number of leprosy cases. 

For every 1% increase in the percentage of households with access to clean drinking water, the number 

of PB leprosy cases will increase by exp(0.015534) = 1.015655 times and the number of MB leprosy cases 

will increase by exp(0.062651) = 1.064656 times, assuming other variables are constant. The clean water 

supply system is a complex network involving various professionals, including policy makers, city planners, 

engineers, chemists, and regulators, who work together to ensure that clean water is available on time to 

people who need it. This system is supported by financial resources, data, and moral responsibility, with 

monitoring and demand from users to ensure that the government and service providers are responsible for 

meeting clean water needs. An increase in leprosy, in this case, means that there is an inability by the people 

involved in carrying out these responsibilities. 

4. CONCLUSION 

The modeling analysis of PB and MB leprosy cases in Indonesia in 2021 using the BPLNR model 

successfully achieved the objectives of this study. This research offers a novel application of the BPLNR 

model to leprosy case modeling, which has not been widely explored in the context of Indonesia. The 

estimation of model parameters using the Maximum Likelihood Estimation (MLE) method leads to implicit 

equations that require numerical iteration, for which the Newton-Raphson method was employed. The 

BPLNR model effectively identifies key influencing factors, including population density, poverty rate, 
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access to sanitation, number of health facilities, number of medical personnel, and access to clean drinking 

water, that affect the incidence of PB and MB leprosy. 

However, this study is limited by the assumption of spatial independence and the potential sensitivity 

of the Newton-Raphson method to initial values. For future research, incorporating spatial modeling 

approaches, such as spatial autoregressive models or geographically weighted regression, may offer more 

comprehensive insights into the geographic distribution and spatial dependency of leprosy cases across 

regions in Indonesia. 

However, this study is limited by the assumption of spatial independence and the potential sensitivity 

of the Newton-Raphson method to initial values. For future research, incorporating spatial modeling 

approaches, such as spatial autoregressive models or geographically weighted regression, may offer more 

comprehensive insights into the geographic distribution and spatial dependency of leprosy cases across 

regions in Indonesia. 

Author Contributions 

Nasrah Sirajang: Funding acquisition, Supervision, Writing - original draft; Salsabila Rahmadhani S: Data 

curation, Resources, Software, Visualization; Siswanto Siswanto: Formal analysis, Methodology, Validation, 

Writing - review & editing.  All authors discussed the results and contributed to the final manuscript.  

Funding Statement 

This research received no funding from any public agency. 

Acknowledgment 

The authors would like to express their sincere gratitude to the Department of Statistics, Universitas 

Hasanuddin, for the guidance and support provided throughout the completion of this research. 

Declarations 

The authors declare no conflicts of interest to report study. 

REFERENCES 

 

[1]  A. Prahutama, S. Suparti, D. A. Munawaroh, and T. W. Utami, "MODELING BIVARIATE POISSON REGRESSION FOR 

MATERNAL AND INFANT MORTALITY IN CENTRAL JAVA," AIP Conf. Proc., vol. 2329, no. 1, 2021. doi: 

https://doi.org/10.1063/5.0042142 

[2]  P. McCullagh and J. Nelder, GENERALIZED LINEAR MODELS, Routledge, 2019. doi: 

https://doi.org/10.1201/9780203753736  

[3]  J. M. Hilbe, MODEL COUNT DATA, Cambridge University Press, 2014. 

[4]  R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, PROBABILITY AND STATISTICS FOR ENGINEERS AND 

SCIENTISTS, Prentice Hall, Macmillan, New York, 2016. 

[5]  A. S. Ansari et al., "CLINICOBACTERIOLOGICAL EVALUATION OF LEPROSY PATIENTS WITH 1–5 SKIN 

LESIONS," Int. J. Mycobacteriology, vol. 9, no. 2, pp. 209–211, 2020. 

[6]  World Health Organization, "GLOBAL LEPROSY (HANSEN DISEASE) UPDATE, 2021: MOVING TOWARDS 

INTERRUPTION OF TRANSMISSION," 2021. doi: https://doi.org/10.4103/ijmy.ijmy_7_20 

[7]  S. C. Kurane and P. Dani, "CLINICAL AND SOCIODEMOGRAPHIC CHARACTERISTICS OF RECENTLY 

IDENTIFIED LEPROSY PATIENTS IN SANGLI DISTRICT OF MAHARASHTRA," Journal of Neonatal Surgery, vol. 

14, no. 21s, 2025. 

[8]  V. E. M. de Araújo, G. A. Veloso, L. R. F. S. Kerr, J. M. Pescarini, L. D. M. Cardoso, M. Naghavi, and D. C. Malta, 

"LEPROSY IN BRAZIL: AN ANALYSIS OF THE GLOBAL BURDEN OF DISEASE ESTIMATES BETWEEN 1990 

AND 2019," Public Health, vol. 236, pp. 307–314, 2024. doi: https://doi.org/10.1016/j.puhe.2024.07.035 

[9]  C. S. Smith et al., "MULTIDRUG THERAPY FOR LEPROSY: A GAME CHANGER ON THE PATH TO 

ELIMINATION," Lancet Infect. Dis., vol. 17, no. 9, pp. e293–e297, 2017. doi: https://doi.org/10.1016/S1473-

3099(17)30418-8 

[10]  I. Karunarathna, S. Rajapaksha, U. Ekanayake, and K. De Alvis, "FROM CLINICAL SYMPTOMS TO DIAGNOSIS: A 

GUIDE TO IDENTIFYING LEPROSY," 2024. 

[11]  Y. Pieter and M. L. Grijsen, "PICTURING HEALTH: THE BURDEN OF LEPROSY IN EASTERN INDONESIA," Lancet, 

vol. 399, no. 10335, pp. 1588–1599, 2022. doi: https://doi.org/10.1016/S0140-6736(22)00699-7 

https://doi.org/10.1201/9780203753736
https://doi.org/10.4103/ijmy.ijmy_7_20
https://doi.org/10.1016/j.puhe.2024.07.035
https://doi.org/10.1016/S1473-3099(17)30418-8
https://doi.org/10.1016/S1473-3099(17)30418-8
https://doi.org/10.1016/S0140-6736(22)00699-7


508 Sirajang, et al.    BIVARIATE POISSON LOG-NORMAL REGRESSION MODELING ON THE NUMBER OF…  

 

[12]  S. Siswanti and Y. Wijayanti, "ENVIRONMENTAL RISK FACTORS FOR LEPROSY INCIDENCE," HIGEIA (J. Public 

Health Res. Dev.), vol. 2, no. 3, pp. 352–362, 2018. 

[13]  I. Aisyah, A. V. W. Taufiq, and D. H. Apriliana, "DESCRIPTIVE EPIDEMIOLOGY OF HOUSEHOLD CONTACTS 

WITH LEPROSY PATIENTS IN LOMBOK BARAT AND LOMBOK TENGAH DISTRICTS, NUSA TENGGARA 

BARAT," in Proc. Int. Conf. Public Health, vol. 8, no. 1, pp. 152–166, Sep. 2023. 

[14]  J. L. S. Siagian, S. Pangaribuan, and A. S. Ulimpa, "RISK FACTORS FOR LEPROSY AT BAINGKETE MAKBON 

DISTRICT SORONG REGENCY," Science Midwifery, vol. 10, no. 5, pp. 4211–4218, 2022. doi: 

https://doi.org/10.35335/midwifery.v10i5.985 

[15]  E. E. Quilter et al., "PATIENTS WITH SKIN SMEAR POSITIVE LEPROSY IN BANGLADESH ARE THE MAIN RISK 

FACTOR FOR LEPROSY DEVELOPMENT: 21-YEAR FOLLOW-UP IN THE HOUSEHOLD CONTACT STUDY 

(COCOA)," PLoS Negl. Trop. Dis., vol. 14, no. 10, 2020. doi: https://doi.org/10.1371/journal.pntd.0008687 

[16]  T. Dahiru et al., "LEPROSY CAPACITY IN HEALTH FACILITIES AND AMONG HEALTH WORKERS: A BASELINE 

SURVEY IN NIGERIA," Leprosy Rev., vol. 94, no. 4, pp. 317–331, 2023. doi: https://doi.org/10.47276/lr.94.4.317 

[17]  S. Gustavsson, EVALUATION OF REGRESSION METHODS FOR LOG-NORMAL DATA, University of Gothenburg, 

Gothenburg, 2015. 

[18]  S. H. Ong, W. J. Lee, and Y. C. Low, "A GENERAL METHOD OF COMPUTING MIXED POISSON PROBABILITIES 

BY MONTE CARLO SAMPLING," Math. Comput. Simul., vol. 170, pp. 98–106, 2020. doi: 

https://doi.org/10.1016/j.matcom.2019.09.003 

[19]  M. L. Hazelton and L. Najim, "USING TRAFFIC ASSIGNMENT MODELS TO ASSIST BAYESIAN INFERENCE FOR 

ORIGIN–DESTINATION MATRICES," Transp. Res. Part B: Methodol., vol. 186, p. 103019, 2024. doi: 

https://doi.org/10.1016/j.trb.2024.103019 

[20]  S. Nadarajah and J. Lyu, "NEW BIVARIATE AND MULTIVARIATE LOG-NORMAL DISTRIBUTIONS AS MODELS 

FOR INSURANCE DATA," Results Appl. Math., vol. 14, 2022. doi: https://doi.org/10.1016/j.rinam.2022.100246 

[21]  G. Tzougas and A. P. di Cerchiara, "BIVARIATE MIXED POISSON REGRESSION MODELS WITH VARYING 

DISPERSION," North Am. Actuar. J., vol. 27, no. 2, pp. 211–241, 2023. doi: 

https://doi.org/10.1080/10920277.2021.1978850 

[22]  S. Mardalena, J. T. D. Purnomo, and D. D. Prastyo, "BIVARIATE POISSON INVERSE GAUSSIAN REGRESSION 

MODEL WITH EXPOSURE VARIABLE: INFANT AND MATERNAL DEATH CASE STUDY," J. Phys.: Conf. Ser., 

vol. 1752, no. 1, 012016, 2021. doi: https://doi.org/10.1088/1742-6596/1752/1/012016 

 

 

https://doi.org/10.35335/midwifery.v10i5.985
https://doi.org/10.1371/journal.pntd.0008687
https://doi.org/10.47276/lr.94.4.317
https://doi.org/10.1016/j.matcom.2019.09.003
https://doi.org/10.1016/j.trb.2024.103019
https://doi.org/10.1016/j.rinam.2022.100246
https://doi.org/10.1080/10920277.2021.1978850
https://doi.org/10.1088/1742-6596/1752/1/012016

	BIVARIATE POISSON LOG-NORMAL REGRESSION MODELING ON THE NUMBER OF LEPROSY CASES IN INDONESIA
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Data
	2.2 Leprosy
	2.2.1 Cleanliness Aspect
	2.2.2 Residential Density Aspect
	2.2.3 Poverty Aspects
	2.2.4 Health Facilities and Services Aspects

	2.3 Log-Normal Poisson Regression
	2.4 Bivariate Poisson Log-Normal Regression
	2.5 Model Evaluation
	2.6 Analysis Steps
	2.6.1 Parameter Estimation of Bivariate Poisson Log-Normal Regression Model.
	2.6.2 Factors Affecting the Number of Leprosy Cases in Indonesia Using the Bivariate Poisson Log-Normal Regression Model


	3. RESULTS AND DISCUSSION
	3.1 Parameter Estimation of Bivariate Poisson Log-Normal Regression Model
	3.2 Factors Influencing Indonesia’s Leprosy Case Count Using the Bivariate Poisson Log-Normal Regression Model

	4. CONCLUSION
	Author Contributions
	Funding Statement
	Acknowledgment
	Declarations
	REFERENCES

