

https://doi.org/10.30598/barekengvol19iss4pp3087-3104

3087

December 2025 Volume 19 Issue 4 Page 3087–3104

P-ISSN: 1978-7227 E-ISSN: 2615-3017

BAREKENG: Journal of Mathematics and Its Applications

How to cite this article:

U. S. Mukminin, I. S. Yulianti and B. Surodjo., “TRAVELING SALESMAN PROBLEM INTEGRATED WITH FUZZY LOGIC ON

TOURISM IN D.I. YOGYAKARTA”, BAREKENG: J. Math. & App., vol. 19, iss. 4, pp. 3087-3104, December, 2025.

 TRAVELING SALESMAN PROBLEM INTEGRATED WITH

FUZZY LOGIC ON TOURISM IN D.I. YOGYAKARTA

 Uskar Sabilil Mukminin 1*, Irma Sari Yulianti 2, Budi Surodjo 3

1,2,3Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada

Jln. Geografi, Bulaksumur Sekip Utara, Yogyakarta, 55281, Indonesia

Corresponding author’s e-mail: * sabilmuk@gmail.com

 ABSTRACT

Article History:
The optimization of tourist travel routes has become a crucial factor in enhancing travel

efficiency, reducing costs, and optimizing the overall tourist experience. This study focuses
on the innovative integration of fuzzy logic with the Traveling Salesman Problem (TSP) to

determine the optimal path for visiting several major tourist destinations in the Special

Region of Yogyakarta, a methodological approach not previously explored in existing

literature. Initially, we perform data fuzzification, followed by fuzzy inference, to obtain
fuzzy outputs. These output values are subsequently used to determine the shortest route

using TSP. Several algorithms are utilized, including Minimum Spanning Tree (MST) and

Nearest Neighbor (NN). The results show that the Prim algorithm in MST generates the

most optimal route, with a travel distance of 223.1 km and a travel time of 442 minutes.
Integrating fuzzy logic into the TSP framework effectively addresses uncertainties in

distance and time, offering a solid foundation for improved travel route planning.

Received: 17th April 2025
Revised: 15th May 2025

Accepted: 16th June 2025

Available online: 1st September 2025

Keywords:

Fuzzy logic;

Minimum Spanning Tree;
Nearest Neighbor;

Tourist route optimization;

Traveling salesman problem.

This article is an open access article distributed under the terms and

conditions of the Creative Commons Attribution-ShareAlike 4.0

International License (https://creativecommons.org/licenses/by-sa/4.0/).

Copyright © 2025 Author(s)

Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/

Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id

Research Article ∙ Open Access

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
mailto:sabilmuk@gmail.com
mailto:https://orcid.org/0009-0009-2718-6283
mailto:irmasariyulianti123@gmail.com
mailto:https://orcid.org/0009-0006-4274-7833
mailto:surodjo_b@ugm.ac.id
mailto:https://orcid.org/0000-0001-7302-7720
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id

3088 Mukminin, et al. TRAVELING SALESMAN PROBLEM INTEGRATED WITH FUZZY LOGIC ON …

1. INTRODUCTION

As one of Indonesia's primary tourist destinations, Yogyakarta must address the logistical challenges

posed by its approximately 30 million annual visitors (BPS, 2024). The concentration of travel between major

attractions such as Prambanan Temple and Parangtritis Beach often results in inefficient time management

and increased costs, ultimately degrading the tourist experience. Therefore, well-planned trips considering

both time efficiency and travel distances are essential. Choosing the best route can help save costs and

maximize the travel experience by visiting various tourist attractions. Thus, effective coordination between

tourism development by the government and individual travel planning is key to achieving maximum benefits

for the regional economy and a satisfying travel experience for tourists. This study proposes an optimized

travel route system for Yogyakarta tourist destinations by integrating fuzzy logic with the Traveling Salesman

Problem (TSP).

In graph and optimization theory, determining the best route falls under the shortest path problem,

commonly known as the TSP. The goal is to provide routing solutions that minimize delays in goods delivery

and optimize transportation facilities. The TSP was first introduced in the 1930s by Karl Menger, a

mathematician and economist, who referred to it as the "Messenger Problem," a problem faced by mail

carriers and many travelers. Several studies of TSP, such as Bandara, have applied TSP to an ABC Company

in Sri Lanka, which supplies air conditioners throughout the country [1]. Narwadi and Subiyanto have applied

an improved genetic algorithm for the traveling salesman problem on Android Google Maps [2]. Numerous

studies have also introduced various methods for addressing the TSP that integrate multiple algorithms. For

instance, Hao et al. employed a hybrid approach that merges an advanced ant colony optimization technique

with a significantly refined simulated annealing method, utilizing clustering as part of their strategy [3],

hybrid simulated annealing and tabu search algorithms [4], [5] and [6] using hybrid genetic algorithm in their

research.

Studies on the Traveling Salesman Problem (TSP) have continued to evolve in recent years. Placido et

al. developed a genetic algorithm based on 2-opt and cone programming to solve the Close-Enough Traveling

Salesman Problem (CETSP). They applied it to scheduling solar panel diagnostic missions [7]. Subsequently,

Muren et al. proposed a fast and stable mixed steepest descent algorithm to address the TSP in the context of

air logistics and emergency scenarios [8]. Gharehgozli et al. introduced a polynomial-time algorithm for

solving the high multiplicity asymmetric TSP with a feedback vertex set, which was applied in automated

storage and retrieval systems [9]. Zhang and Yang modified the cuckoo search algorithm in a discrete form

to solve the TSP and applied it to cutting path optimization in the glass manufacturing industry [10]. Bock et

al. conducted a comprehensive survey on various TSP variants in warehouse operations, analyzing their

computational complexity and identifying future research directions in the era of warehouse automation [11].

Generally, selecting the best route is based solely on the distance between one location and another.

However, road conditions involve more than just distance—other aspects, such as travel time, play an

important role. Combining multiple factors, such as distance and travel time, can introduce uncertainties in

determining road weight values.

Fuzzy logic is used to address this uncertainty. Fuzzy logic is employed to model the quantities of input

received. One method within fuzzy logic is the Tsukamoto fuzzy model, which provides fairly good

efficiency values. The output results of fuzzy logic can be used as input for other algorithms, including those

for determining the shortest path. In 2018, Anwar et al. presented a fuzzy Tsukamoto for a decision support

system for selecting scholarship recipient students [12].

Researchers have previously explored the integration of fuzzy logic with the Traveling Salesman

Problem to solve various issues, such as Mukminin et. al, who used dynamic programming and fuzzy logic

to solve the traveling salesman problem on Semarang tourism [13]. Kim G applied a dynamic vehicle routing

problem framework incorporating fuzzy customer responses [14]. Almahasneh et al. developed an interval-

valued intuitionistic fuzzy set approach to optimize the time-dependent TSP [15]. Cheikhrouhou introduced

FL-MTSP, a fuzzy logic-based method to solve the multi-objective multiple traveling salesman problem

within multi-robot systems [16]. Yang et al. propose a vehicle routing optimization method with fuzzy

demand and flexible time windows using a credibility theory-based chance-constrained programming model

and a hybrid simulated annealing-genetic algorithm to minimize total logistics costs [17].

In light of the preceding discussion, this research addresses optimizing route selection for multiple

tourist attractions within the Special Region of Yogyakarta. In this investigation, we employ the Tsukamoto

BAREKENG: J. Math. & App., vol. 119(4), pp. 3087- 3104, December, 2025. 3089

fuzzy logic model, considering the interplay between distance and average travel duration to ascertain the

weights of the edges within the graph. Subsequently, we implement algorithms such as the Minimum

Spanning Tree and Nearest Neighbor to identify the most efficient route. The findings of this research are

anticipated to aid travelers in navigating to tourist sites, thereby enhancing the efficiency of their excursions

and serving as a foundation for subsequent scholarly inquiries.

2. RESEARCH METHODS

In this chapter, we discuss several aspects of the research methodology. First, regarding data collection,

we used secondary data from the Tourism Office of the Special Region of Yogyakarta to identify the leading

tourist destinations in this province. Then, we measured the travel distances and average travel times using

Google Maps and Google Earth. According to the data, we identified 15 leading tourist destinations in the

Special Region of Yogyakarta, with the initial departure point from Yogyakarta International Airport (YIA).

Subsequently, we obtained the travel distance matrix and average travel times between the tourist

destinations. This data was then processed using Fuzzy Logic and the Traveling Salesman Problem (TSP) to

determine the optimal route. We discuss the fuzzy Tsukamoto to determine the decision variable outputs,

which are subsequently used to identify the shortest route. The algorithms we employed include Minimum

Spanning Tree and Nearest Neighbor. These algorithms were then compared to each other to obtain the

minimum route.

2.1 Fuzzy Logic

Fuzzy logic is a field that incorporates varying degrees of membership within a set, allowing for values

that are not restricted to a simple true or false dichotomy. The idea of fuzzy sets was initially proposed by

Professor Lotfi A. Zadeh in 1965 as a broadening of the traditional mathematical notion of sets. A fuzzy set

consists of a spectrum of values, each assigned a degree of membership that falls within the range of [0,1]

[18].

A fuzzy set 𝐴 in a universe of discourse is represented by a membership function A which expressed

as:

𝜇𝐴: 𝑈 → [0,1] (1)

 The fuzzy set 𝐴 in the universe of discourse 𝑈 is typically represented as a collection of element pairs

x U with their corresponding of membership value:

𝐴 = {(𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ 𝑈} (2)

In general, fuzzy logic is applied to problems that involve uncertainty. The foundation of fuzzy logic

is the theory of fuzzy sets, which represent certain conditions within a fuzzy variable, such as the set of

intelligent people, the set of tall students, or the set of employees with high salaries. Within fuzzy logic, there

are two main processes: fuzzification and defuzzification. Fuzzification transforms a crisp set into a fuzzy

set, which involves defining the fuzzy variables and their corresponding fuzzy sets, and then determining the

degree of membership between input data and the predefined fuzzy sets for each input variable in the fuzzy

rule set. On the other hand, defuzzification converts a fuzzy set into a specific value within the domain of

that fuzzy set, resulting in a crisp set [19].

In general, the inference steps of the Tsukamoto fuzzy method are formally represented in Pseudocode

1.

Pseudocode 1. Fuzzy Logic

FUNCTION main():

Data input: distance and time matrices between destinations

distance_matrix; time_matrix; fuzzy_outputs

 FOR EACH pair IN distance_matrix AND time_matrix:

 Fuzzification of distance and time

 mu_Distance = fuzzification(pair.distance, "Travel Distance")

 mu_Time = fuzzification(pair.time, "Travel Time")

 Fuzzy inference

3090 Mukminin, et al. TRAVELING SALESMAN PROBLEM INTEGRATED WITH FUZZY LOGIC ON …

 alpha_predicate, output_values = fuzzy_inference(mu_Distance, mu_Time)

 Defuzzification

 Z_star = defuzzification(alpha_predicate, output_values)

 fuzzy_outputs.append(Z_star)

END FUNCTION

2.2 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) seeks to identify the most efficient route for a salesman,

requiring him to visit multiple destinations while ensuring that no location is revisited during the journey

[20].

The Traveling Salesman Problem in dynamic programming is defined as follows:

min 𝑧 = ∑ 𝜑𝑖𝑗𝛿𝑖𝑗
𝑛
𝑗=1 ; 𝑖, 𝑗 = 1, … , 𝑛 (3)

s.t.

∑𝛿𝑖𝑗

𝑛

𝑖=1

= 1, 𝑗 = 1, … , 𝑛 (4)

∑𝛿𝑗𝑖

𝑛

𝑖=1

= 1, 𝑗 = 1,… , 𝑛 (5)

where,

𝛿𝑖𝑗 = {
1,

0,

if salesman travels from 𝑖 to 𝑗

others
(6)

2.3 Minimum Spanning Tree (Prim-Kruskal Algorithm)

The Minimum Spanning Tree (MST) of a weighted graph is a tree that consists of a subgraph of the

weighted graph with the minimal total weight [21]. There are two standard methods for finding the MST:

Prim's and Kruskal's algorithms.

Applying Kruskal's algorithm to obtain a Minimum Spanning Tree (MST) for solving the Traveling

Salesman Problem (TSP) is formally represented in Pseudocode 2.

Pseudocode 2. Minimum Spanning Tree (Kruskal’s Algoritm)

Procedure KRUSKAL_MST(dist_matrix):

1. Initialize:

 - n = size(dist_matrix)

 - edges = [] (List to store all edges)

 - parent = [0..n-1] (Each node is its own parent initially)

 - rank = [0,..,0] (For union by rank)

 - mst_edges = [] (To store MST edges)

2. Collect all possible edges

 For i = 0 to n-1 do:

 For j = i+1 to n-1 do:

 If dist_matrix[i,j] ≠ ∞ then:

 Append (dist_matrix[i,j], i, j) to edges

 End If

 End For

 End For

3. Sort edges by weight in ascending order

4. Define FIND(u): ▷ Path compression

 If parent[u] ≠ u then:

 parent[u] = FIND(parent[u])

 End If

 Return parent[u]

BAREKENG: J. Math. & App., vol. 119(4), pp. 3087- 3104, December, 2025. 3091

5. Define UNION(u, v): ▷ Union by rank

 root_u = FIND(u)

 root_v = FIND(v)

 If root_u ≠ root_v then:

 If rank[root_u] > rank[root_v] then:

 parent[root_v] = root_u

 Else If rank[root_u] < rank[root_v] then:

 parent[root_u] = root_v

 Else:

 parent[root_v] = root_u

 rank[root_u] += 1

 End If

 End If

6. Build MST

 For each (weight, u, v) in edges do:

 If FIND(u) ≠ FIND(v) then:

 UNION(u, v)

 Append (u, v) to mst_edges

 End If

 End For

7. Return mst_edges

End Procedure

Procedure MST_TO_PATH(mst_edges, num_nodes):

1. Initialize:

 - visited = [False,..,False] (Size num_nodes)

 - path = []

2. Define DFS(u): (Depth-first search)

 a. Append u to path

 b. visited[u] = True

 c. For each (u,v) in mst_edges do:

 If not visited[v] then:

 DFS(v)

 End If

 End For

 d. For each (v,u) in mst_edges do:

 If not visited[v] then:

 DFS(v)

 End If

 End For

3. DFS(0) (Start from node 0)

4. Return path

End Procedure

On the other hand, Prim's algorithm are formally represented in Pseudocode 3.

Pseudocode 3. Minimum Spanning Tree (Prim’s Algoritm)

Procedure PRIM_MST(graph):

1. Initialize:

 - num_nodes = size(graph)

 - visited = [False, ..., False] (Track visited nodes)

 - mst_edges = [] (Store MST edges)

 - start_node = 0 (Begin from node 0)

 - visited[start_node] = True

2. For _ = 1 to num_nodes-1 do: (Need n-1 edges for MST)

 a. min_edge_weight = ∞

 b. min_edge = NULL

 c. For u = 0 to num_nodes-1 do: (Find minimum edge)

 If visited[u] then:

 For v = 0 to num_nodes-1 do:

 If (not visited[v]) and (graph[u][v] < min_edge_weight) then:

 min_edge_weight = graph[u][v]

 min_edge = (u, v)

 End If

3092 Mukminin, et al. TRAVELING SALESMAN PROBLEM INTEGRATED WITH FUZZY LOGIC ON …

 End For

 End If

 End For

 d. Append min_edge to mst_edges

 e. visited[min_edge.1] = True (Mark second node as visited)

End For

3. Return mst_edges

End Procedure

Procedure MST_TO_PATH(mst_edges, num_nodes):

1. Initialize:

 - visited = [False, ..., False]

 - path = []

2. Define DFS(u): (Nested depth-first search)

 a. Append u to path

 b. visited[u] = True

 c. For each edge in mst_edges do:

 If (edge.0 == u) and (not visited[edge.1]) then:

 DFS(edge.1)

 Else If (edge.1 == u) and (not visited[edge.0]) then:

 DFS(edge.0)

 End If

 End For

3. DFS(0) (Start DFS from node 0)

4. Return path

End Procedure

2.4 Nearest Neighbor (NN)

The Nearest Neighbor algorithm exemplifies a Greedy approach in problem-solving. This algorithm

identifies the optimal choice based solely on the currently available information, without considering the

complete dataset. Its simplicity makes it easy to comprehend and implement swiftly [22]. The steps for

addressing the Traveling Salesman Problem with the Nearest Neighbor algorithm are formally represented in

Pseudocode 4.

Pseudocode 4. Nearest Neighbor

Procedure NEAREST_NEIGHBOR_TSP(dist_matrix, n):

1. Initialize:

 visited = [False, ..., False]

 best_path = [0]

 visited[0] = True

 current_node = 0

 min_distance = 0

2. While |best_path| < n do:

 nearest_node = NULL

 nearest_dist = ∞

 For j = 0 to n-1 do:

 If (not visited[j]) and (dist_matrix[current_node][j] < nearest_dist) then:

 nearest_node = j

 nearest_dist = dist_matrix[current_node][j]

 End If

 End For

 Append nearest_node to best_path

 visited[nearest_node] = True

 min_distance += nearest_dist

 current_node = nearest_node

End While

3. Complete the cycle

 min_distance += dist_matrix[current_node][0]

 Append 0 to best_path

4. Return (best_path, min_distance)

End Procedure

BAREKENG: J. Math. & App., vol. 119(4), pp. 3087- 3104, December, 2025. 3093

2.5 High-Level Workflow

In general, the inference steps of the Tsukamoto fuzzy method combined with MST and NN are

formally represented in Pseudocode 5.

Pseudocode 5. Fuzzy Logic and Traveling Salesman Problem (MST and NN)

Procedure HYBRID_FUZZY_TSP():

Initialize:

 - distance_matrix ▷ Raw distance data between nodes

 - time_matrix ▷ Travel time data between nodes

 - fuzzy_matrix = [] ▷ To store combined fuzzy scores

Phase 1: Fuzzy Evaluation

 For each (i,j) in distance_matrix AND time_matrix do:

 a. mu_Distance = FUZZIFICATION(distance_matrix[i,j], "Distance")

 b. mu_Time = FUZZIFICATION(time_matrix[i,j], "Time")

 c. (alpha, outputs) = FUZZY_INFERENCE(mu_Distance, mu_Time)

 d. fuzzy_matrix[i,j] = DEFUZZIFICATION(alpha, outputs)

 End For

Phase 2: TSP Solution Generation

 Algorithm 1: Prim-based Solution

 mst_edges_prim = PRIM_MST(fuzzy_matrix)

 prim_path = MST_TO_PATH(mst_edges_prim, num_nodes)

 prim_distance = CALCULATE_DISTANCE(prim_path, fuzzy_matrix)

 Algorithm 2: Kruskal-based Solution

 mst_edges_kruskal = KRUSKAL_MST(fuzzy_matrix)

 kruskal_path = MST_TO_PATH(mst_edges_kruskal, num_nodes)

 kruskal_distance = CALCULATE_DISTANCE(kruskal_path, fuzzy_matrix)

 Algorithm 3: Nearest Neighbor Solution

 nn_path, nn_distance = NEAREST_NEIGHBOR(fuzzy_matrix)

Phase 3: Result Evaluation

 results = [

 ("Algorithm 1 (Prim)", prim_path, prim_distance),

 ("Algorithm 2 (Kruskal)", kruskal_path, kruskal_distance),

 ("Algorithm 3 (NN)", nn_path, nn_distance)

]

 best_solution = ARGMIN(results.distances)

Return (results, best_solution)

End Procedure

3. RESULTS AND DISCUSSION

In this study, we define the starting point with the code "D1", which refers to Yogyakarta International

Airport as the point of departure. Subsequently, the tourist destinations to be visited are denoted as P1, P2,

..., P15, with a total of 15 tourist destinations to be explored. The details of the visited tourist destinations are

represented in Table 1.

Table 1. Tourist Destination Code
Code Tourist Destination

D1 Yogyakarta International Airport

T1 Prambanan Temple

T2 Ratu Boko Temple

T3 Heha Skyview

T4 Obelix Hills

T5 Breksi Rock Cliff

T6 Gembira Loka Zoo

T7 Parangtritis Beach

T8 Kids Fun

T9 Ngayogyakarta Hadiningrat Palace

T10 Malioboro

3094 Mukminin, et al. TRAVELING SALESMAN PROBLEM INTEGRATED WITH FUZZY LOGIC ON …

Code Tourist Destination

T11 Jogja Kembali Memorial Monument

T12 Ibarbo Park

T13 Merapi Museum

T14 Ullen Sentalu Museum

T15 Klangon Hills

Table 2 and Table 3 present the data regarding the travel distances and average travel times of all

nodes according to Google Maps and Google Earth. We assume that each node, except for itself, is accessible

from any other node.

Table 2. Travel Distance Each Destination

From - to D1 T1 T2 T3 T4 … T15

D1 - 65.5 66.3 62.5 69.3 … 75.6

T1 64 - 5.6 15.1 10.1 … 21.9

T2 65.4 5.5 - 12.9 7.7 … 28.2

T3 58.6 14.9 12.9 - 14 … 35.9

T4 67.2 11.2 7.7 11.4 - … 33.9

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

T15 74.9 21.2 28.2 35.5 32.5 … -

Table 3. Average Travel Time Each Destination

From - to D1 T1 T2 T3 T4 … T15

D1 - 102 105 93 114 … 124

T1 103 - 13 30 25 … 43

T2 103 14 - 26 22 … 52

T3 91 28 25 - 27 … 64

T4 110 28 22 28 - … 65

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

T15 118 42 52 62 63 … -

3.1 Determination of Fuzzy Output Based on Fuzzy Tsukamoto

In this study, we employ fuzzy logic to obtain fuzzy output values, which are subsequently processed

using several Traveling Salesman Problem (TSP) algorithms. The fuzzy logic data processing is based on the

Tsukamoto fuzzy inference system. This inference method transforms linguistic variable values into fuzzy

linguistic terms, then makes inference decisions from a set of fuzzy rules.

We begin the data processing by fuzzifying the travel distance data into fuzzy sets and determining

their membership values. In this case, the travel distance variable is divided into four fuzzy sets: "Near",

"Medium", "Far", and "Very Far". The fuzzification results for the travel distance variable are represented in

Table 4. The membership function is represented by Equation (7) - Equation (10), and the graph of the

membership function is depicted in Figure 1.

𝜇𝐴1(𝑥) = {

1, if 𝑥 ≤ 15.12
30.24 − 𝑥

15.12
, if 15.12 ≤ 𝑥 ≤ 30.24

0, if others

(7)

BAREKENG: J. Math. & App., vol. 119(4), pp. 3087- 3104, December, 2025. 3095

𝜇𝐴2(𝑥) =

{

𝑥 − 15.12

15.12
, if 15.12 ≤ 𝑥 ≤ 30.24

45.36 − 𝑥

15.12
, if 30.24 ≤ 𝑥 ≤ 45.36

0, if others

(8)

𝜇𝐴3(𝑥) =

{

𝑥 − 30.24

15.12
, if 30.24 ≤ 𝑥 ≤ 45.36

60.48 − 𝑥

15.12
, if 45.36 ≤ 𝑥 ≤ 60.48

0, if others

(9)

𝜇𝐴4(𝑥) = {

𝑥 − 45.36

15.12
, if 45.36 ≤ 𝑥 ≤ 60.48

1, if 𝑥 ≥ 60.48
0, if others

(10)

Figure 1. Membership Function of Travel Distance

Table 4. Travel Distance Fuzzification

From - to D1 T1 T2 T3 T4 … T15

D1 - 𝐴4 𝐴4 𝐴4 𝐴4 … 𝐴4

T1 𝐴4 - 𝐴1 𝐴1 𝐴1 … 𝐴1

T2 𝐴4 𝐴1 - 𝐴1 𝐴1 … 𝐴2

T3 𝐴4 𝐴1 𝐴1 - 𝐴1 … 𝐴3

T4 𝐴4 𝐴1 𝐴1 𝐴1 - … 𝐴2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

T15 𝐴4 𝐴1 𝐴2 𝐴2 𝐴2 … -

Then, we perform fuzzification for the average travel time data into fuzzy sets. Here, we divide the

average travel time variable into four sets: "Short", "Medium", "Long", and "Very Long". The fuzzification

results for the average travel time variable are shown in Table 5. The membership function is represented by

Equation (11) - Equation (14), and the graph of the membership function is depicted in Figure 2.

𝜇𝐵1(𝑥) = {

1, if 𝑥 ≤ 10
38.5 − 𝑥

28.5
, if 10 ≤ 𝑥 ≤ 38.5

0, if others

(11)

3096 Mukminin, et al. TRAVELING SALESMAN PROBLEM INTEGRATED WITH FUZZY LOGIC ON …

𝜇𝐵2(𝑥) =

{

𝑥 − 10

28.5
, if 10 ≤ 𝑥 ≤ 38.5

67 − 𝑥

28.5
, if 38.5 ≤ 𝑥 ≤ 67

0, if others

(12)

𝜇𝐵3(𝑥) =

{

𝑥 − 38.5

28.5
, if 38.5 ≤ 𝑥 ≤ 67

95.5 − 𝑥

28.5
, if 67 ≤ 𝑥 ≤ 95.5

0, if others

(13)

𝜇𝐵4(𝑥) = {

𝑥 − 67

28.5
, if 67 ≤ 𝑥 ≤ 95.5

1, if 𝑥 ≥ 95.5
0, if others

(14)

Figure 2. Membership Function of Average Travel Time

Table 5. Average Travel Time Fuzzification

From - to D1 T1 T2 T3 T4 … T15

D1 - 𝐵4 𝐵4 𝐵3 𝐵4 … 𝐵4

T1 𝐵4 - 𝐵1 𝐵2 𝐵2 … 𝐵2

T2 𝐵4 𝐵1 - 𝐵2 𝐵1 … 𝐵2

T3 𝐵4 𝐵2 𝐵2 - 𝐵2 … 𝐵3

T4 𝐵4 𝐵2 𝐵1 𝐵2 - … 𝐵3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

T15 𝐵4 𝐵2 𝐵2 𝐵3 𝐵3 … -

After fuzzifying the distance and average travel time data, we proceeded to formulate the fuzzy rules

that will be used for fuzzy inference. We established 16 fuzzy rules, as represented in Table 6. The allocation

of the 16 rules is derived from the combination of 4 fuzzy sets A and 4 fuzzy sets B, resulting number of

possible events 42 = 16 rules [23].

Table 6. Fuzzy Rules

Rules Travel Distance Travel Time Output

R1 Near Short Very Very Near

R2 Near Medium Very Near

R3 Near Long Near

R4 Near Very Long Medium

BAREKENG: J. Math. & App., vol. 119(4), pp. 3087- 3104, December, 2025. 3097

Rules Travel Distance Travel Time Output

R5 Medium Short Near

R6 Medium Medium Medium

R7 Medium Long Far

R8 Medium Very Long Far

R9 Far Short Medium

R10 Far Medium Far

R11 Far Long Very Far

R12 Far Very Long Very Far

R13 Very Far Short Far

R14 Very Far Medium Very Far

R15 Very Far Long Very Far

R16 Very Far Very Long Very Very Far

Then we define 𝛼 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 for all fuzzy sets of travel distance data and average travel time data.

For example, we define 𝛼 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 of T1 to T2’s fuzzy sets. Its travel distance fuzzy set is 𝐴1 and average

travel time fuzzy set is 𝐵1.

The criteria of each rule 𝑧𝑖 are shown as follows:

Very Very Near = 0.14

Very Near = 0.29

Near = 0.43

Medium = 0.57

Far = 0.71

Very Far = 0.86

Very Very Far = 1

Table 7 evaluates T1 to T2’s fuzzy set according to fuzzy rules. The evaluation is processed until all

fuzzy sets in Table 4 and Table 5 are determined.

Table 7. Evaluation of T1 to T2’s Fuzzy Set According to Fuzzy Rules

𝑹𝒊
Travel

Distance
Travel Time

Membership

Value in Travel

Distance

Membership

Value in Travel

Time

𝜶 − 𝒑𝒓𝒆𝒅𝒊
(Minimum)

𝒁𝒊

R1 Near Short 1 0.89 0.89 0.14

R2 Near Medium 1 0.1 0.1 0.29

R3 Near Long 1 0 0 0.43

R4 Near Very Long 1 0 0 0.57

R5 Medium Short 0 0.89 0 0.43

R6 Medium Medium 0 0.1 0 0.57

R7 Medium Long 0 0 0 0.71

R8 Medium Very Long 0 0 0 0.71

R9 Far Short 0 0.89 0 0.57

R10 Far Medium 0 0.1 0 0.71

R11 Far Long 0 0 0 0.86

R12 Far Very Long 0 0 0 0.86

R13 Very Far Short 0 0.89 0 0.71

R14 Very Far Medium 0 0.1 0 0.86

R15 Very Far Long 0 0 0 0.86

R16 Very Far Very Long 0 0 0 1

After obtaining the 𝛼 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, we then determine the value of Z* by employing the weighted

average method, as represented by Equation (15).

𝑍∗ =
∑ 𝛼𝑖𝑧𝑖
𝑛
𝑖=1

∑ 𝛼𝑖
𝑛
𝑖=1

(15)

3098 Mukminin, et al. TRAVELING SALESMAN PROBLEM INTEGRATED WITH FUZZY LOGIC ON …

Since only [R1] and [R2] which has 𝛼 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 value, so we define fuzzy output value of T1 to

T2’s fuzzy set only by using [R1] and [R2]. It is represented by calculation as follows:

𝑍∗ =
0.89 × 0.14 + 0.1 × 0.29

0.89 + 0.1
= 0.551

The Z* value is the output derived from the fuzzy set that has undergone the inference process based

on fuzzy rules. This process is carried out until all fuzzified data have determined their respective output

values. The resulting output is presented in Table 8.

Table 8. Fuzzy Outputs

From - to D1 T1 T2 T3 T4 … T15

D1 - 1 1 0.87 1 … 1

T1 1 - 0.16 0.25 0.22 … 0.45

T2 1 0.16 - 0.22 0.20 … 0.58

T3 0.95 0.23 0.22 - 0.23 … 0.78

T4 1 0.23 0.20 0.23 - … 0.73

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

T15 1 0.44 0.58 0.73 0.71 … -

Following the acquisition of fuzzy outputs in Table 8, we analyze them to determine the most efficient

route using the Traveling Salesman Problem (TSP) principles. This analysis employs various algorithms,

such as Minimum Spanning Tree methods (including Prim's and Kruskal's algorithms) and Nearest Neighbor

(NN). The outcomes derived from the data processing of each algorithm will be examined in the subsequent

subsection.

3.2 Minimum Spanning Tree (Prim and Kruskal Algorithm)

Based on calculations using Prim’s and Kruskal’s Algorithm with the help of Python, we get the

optimal route as shown in Table 9 and Figure 3 - Figure 4.

Table 9. Optimal Route of Minimum Spanning Tree

Prim's Algorithm Kruskal's Algorithm

Start End Distance Time Start End Distance Time

D1 T9 42.5 68 D1 T9 42.5 68

T9 T6 6.5 21 T9 T6 6.5 21

T6 T8 6 13 T6 T8 6 13

T8 T3 8.3 16 T8 T3 8.3 16

T3 T2 12.9 25 T3 T5 12.8 26

T2 T5 3.5 10 T5 T2 3.5 12

T5 T4 4.2 12 T2 T1 5.5 14

T4 T1 11.2 28 T1 T4 10.1 25

T1 T11 19.3 36 T4 T11 24.6 50

T11 T12 9.3 15 T11 T12 9.3 15

T12 T13 16.7 31 T12 T13 16.7 31

T13 T14 2.8 10 T13 T14 2.8 10

T14 T15 15.2 33 T14 T15 15.2 33

T15 T10 36.6 72 T15 T10 36.6 72

T10 T7 28.1 52 T10 T7 28.1 52

TOTAL 223.1 442 TOTAL 228.5 458

BAREKENG: J. Math. & App., vol. 119(4), pp. 3087- 3104, December, 2025. 3099

Figure 3. Prim’s Algorithm Graph Representation

Figure 4. Kruskal’s Algorithm Graph Representation

Based on the data analysis employing Prim's algorithm, as represented in Table 9 and Figure 3, the

resulting optimal travel route is as follows: commencing from the Depot (D1 – Yogyakarta International

Airport), followed sequentially by T9 (Ngayogyakarta Hadiningrat Palace), T6 (Gembira Loka Zoo), T8

(Kids Fun), T3 (Heha Skyview), T2 (Ratu Boko Temple), T5 (Breksi Rock Cliff), T4 (Obelix Hills), T1

(Prambanan Temple), T11 (Jogja Kembali Memorial Monument), T12 (Ibarbo Park), T13 (Merapi Museum),

T14 (Ullen Sentalu Museum), T15 (Klangon Hills), T10 (Malioboro), and concluding at T7 (Parangtritis

Beach) before back to Depot D1 (YIA). This algorithm achieves the total optimal travel distance of 223.1

kilometers, with a corresponding optimal travel time of 442 minutes.

Furthermore, by applying Kruskal's algorithm, the optimal route obtained—illustrated in Table 9 and

Figure 4—comprises the following sequence: beginning from the Depot (D1 – Yogyakarta International

Airport), then proceeding to T9 (Ngayogyakarta Hadiningrat Palace), T6 (Gembira Loka Zoo), T8 (Kids

Fun), T3 (Heha Skyview), T5 (Breksi Rock Cliff), T2 (Ratu Boko Temple), T1 (Prambanan Temple), T4

(Obelix Hills), T11 (Jogja Kembali Memorial Monument), T12 (Ibarbo Park), T13 (Merapi Museum), T14

(Ullen Sentalu Museum), T15 (Klangon Hills), T10 (Malioboro), and terminating at T7 (Parangtritis Beach)

before back to Depot D1 (YIA). The total optimal travel distance resulting from this approach is 228.5

kilometers, with an average optimal travel time of 458 minutes.

3100 Mukminin, et al. TRAVELING SALESMAN PROBLEM INTEGRATED WITH FUZZY LOGIC ON …

3.3 Nearest Neighbor (NN)

Based on the calculation using the Nearest Neighbor (NN) Algorithm with the help of Python, we get

the optimal route as shown in Table 10 and Figure 5.

Table 10. Optimal Route of Nearest Neighbor (NN)

Nearest Neighbor (NN)

Start End Distance Time

D1 T9 42.5 68

T9 T6 6.5 21

T6 T8 6 13

T8 T3 8.3 16

T3 T2 12.9 25

T2 T5 3.5 10

T5 T4 4.2 12

T4 T1 11.2 28

T1 T11 19.3 36

T11 T12 9.3 15

T12 T10 15.1 40

T10 T13 25.6 52

T13 T14 2.8 10

T14 T15 15.2 33

T15 T7 64 101

TOTAL 246.4 480

Figure 5. Nearest Neighbor (NN) Algorithm Graph Representation

Based on the data analysis utilizing the Nearest Neighbor (NN) Algorithm, as presented in Table 10

and Figure 5, the resulting optimal route is as follows: the journey commences from the Depot D1

(Yogyakarta International Airport), subsequently followed by T9 (Ngayogyakarta Hadiningrat Palace), T6

(Gembira Loka Zoo), T8 (Kids Fun), T3 (Heha Skyview), T2 (Ratu Boko Temple), T5 (Breksi Rock Cliff),

T4 (Obelix Hills), T1 (Prambanan Temple), T11 (Jogja Kembali Memorial Monument), T12 (Ibarbo Park),

T10 (Malioboro), T13 (Merapi Museum), T14 (Ullen Sentalu Museum), T15 (Klangon Hills), and concludes

at T7 (Parangtritis Beach) before back to Depot D1 (YIA). The total optimal travel distance attained through

this algorithm is 246.4 kilometers, with a corresponding average optimal travel time of 480 minutes.

BAREKENG: J. Math. & App., vol. 119(4), pp. 3087- 3104, December, 2025. 3101

3.4 Result Comparison

Based on the analysis of the optimal route calculations performed in the previous section, we present

a comparison of the results among three methods and the comparison between the proposed method and only

using single travel distance data, as shown in Table 11.

Table 11. Result Comparison

Algorithm

Proposed Method Using Travel Distance Data

Total

Distance
Total Time

Total

Distance
Total Time

MST
Prim 223.1 442 284,8 567

Kruskal 228.5 458 257,5 495

Nearest Neighbor (NN) 246.4 480 294.2 589

Based on Table 11, it can be concluded that integrating outputs from the Tsukamoto fuzzy logic system

with various Traveling Salesman Problem (TSP) solution methods yields improved efficiency. Regarding

travel distance, the Prim and Kruskal algorithms achieved travel efficiencies of 21.66% and 11.2%.

Meanwhile, the Nearest Neighbor (NN) method resulted in an efficiency of 16.25%. Furthermore, regarding

travel time, the three algorithms attained efficiencies of 22.4%, 7.48%, and 18.5%, respectively. These

findings demonstrate that the proposed method significantly affects optimizing travel distance and travel

time.

4. CONCLUSION

From the discussion we have conducted above, we can conclude that:

1. In this article, we conduct a study on integrating fuzzy logic and the Traveling Salesman Problem

(TSP) to minimize the travel route for tourism in the Special Region of Yogyakarta. We process

data, including travel distance and average travel time, by fuzzifying them into fuzzy sets.

Subsequently, we perform a fuzzy inference process to obtain fuzzy outputs. These outputs are then

processed using the TSP concept with three algorithms: Minimum Spanning Tree (MST), Prim’s

and Kruskal’s Algorithms, and Nearest Neighbor (NN).

2. This study is expected to serve as an academic recommendation for various stakeholders in making

decisions regarding the organization of visits to tourism destinations throughout the Special Region

of Yogyakarta Province. The analysis presented herein is particularly suggested for use by travel

agencies and tourists who seek to plan their journeys efficiently across multiple destinations within

the province.

3. The data processing and analysis results indicate that the Prim algorithm produces the best total

travel distance and travel time among the three methods. The integration of fuzzy logic with TSP

is effective in generating optimal tourism route solutions.

4. However, additional variables, such as travel time and traffic density, should be incorporated

alongside the consideration of travel distance alone. Future research is expected to further develop

this concept by considering other variables, such as the time spent at tourist destinations, and so

on, thus allowing for a more comprehensive evaluation of factors that were previously overlooked.

AUTHOR CONTRIBUTIONS

Uskar Sabilil Mukminin: Data Curation, Formal Analysis, Methodology, Software, Validation,

Investigation. Irma Sari Yulianti: Project Administration, Resources, Visualization. Budi Surodjo: Data

Writing - Review and Editing. All authors discussed the results and contributed to the final manuscript.

3102 Mukminin, et al. TRAVELING SALESMAN PROBLEM INTEGRATED WITH FUZZY LOGIC ON …

FUNDING STATEMENT

This research received no specific grant from any funding agency in the public, commercial, or not-

for-profit sectors.

ACKNOWLEDGEMENT

The authors sincerely thank the Department of Mathematics, Faculty of Mathematics and Natural

Sciences, Universitas Gadjah Mada, for the financial support. The authors also gratefully acknowledge the

contributions of all parties who assisted in facilitating this research.

CONFLICT OF INTEREST

The authors declare that no conflicts of interest exist in this study.

REFERENCES

[1] D. Bandara, “AN APPLICATION TO THE TRAVELLING SALESMAN PROBLEM,” Operations Research and
Applications : An International Journal, vol. 4, no. 3/4, pp. 09–20, Nov. 2017, doi: https://doi.org/10.5121/oraj.2017.4402.

[2] T. Narwadi and Subiyanto, “AN APPLICATION OF TRAVELING SALESMAN PROBLEM USING THE IMPROVED

GENETIC ALGORITHM ON ANDROID GOOGLE MAPS,” in AIP Conference Proceedings, American Institute of

Physics Inc., Mar. 2017. doi: https://doi.org/10.1063/1.4976899.
[3] T. Hao, W. Yingnian, Z. Jiaxing, and Z. Jing, “STUDY ON A HYBRID ALGORITHM COMBINING ENHANCED ANT

COLONY OPTIMIZATION AND DOUBLE IMPROVED SIMULATED ANNEALING VIA CLUSTERING IN THE

TRAVELING SALESMAN PROBLEM (TSP),” PeerJ Comput Sci, vol. 9, no. 1, pp. 1–31, Oct. 2023, doi:

https://doi.org/10.7717/peerj-cs.1609.
[4] İ. Küçükoğlu, R. Dewil, and D. Cattrysse, “HYBRID SIMULATED ANNEALING AND TABU SEARCH METHOD FOR

THE ELECTRIC TRAVELLING SALESMAN PROBLEM WITH TIME WINDOWS AND MIXED CHARGING

RATES,” Expert Syst Appl, vol. 134, no. 1, pp. 279–303, May 2019, doi: https://doi.org/10.1016/j.eswa.2019.05.037.

[5] G. Soares, T. Bulhões, and B. Bruck, “AN EFFICIENT HYBRID GENETIC ALGORITHM FOR THE TRAVELING
SALESMAN PROBLEM WITH RELEASE DATES,” Eur J Oper Res, vol. 318, no. 1, pp. 31–42, Oct. 2024, doi:

https://doi.org/10.1016/j.ejor.2024.05.010.

[6] M. Rabbani, H. Farrokhi-Asl, and H. Rafiei, “A HYBRID GENETIC ALGORITHM FOR WASTE COLLECTION

PROBLEM BY HETEROGENEOUS FLEET OF VEHICLES WITH MULTIPLE SEPARATED COMPARTMENTS,”
Journal of Intelligent and Fuzzy Systems, vol. 30, no. 3, pp. 1817–1830, Mar. 2016, doi: https://doi.org/10.3233/IFS-151893.

[7] A. Di Placido, C. Archetti, and C. Cerrone, “A GENETIC ALGORITHM FOR THE CLOSE-ENOUGH TRAVELING

SALESMAN PROBLEM WITH APPLICATION TO SOLAR PANELS DIAGNOSTIC RECONNAISSANCE,” Comput

Oper Res, vol. 145, Sep. 2022, doi: https://doi.org/10.1016/j.cor.2022.105831.
[8] Muren, J. Wu, L. Zhou, Z. Du, and Y. Lv, “MIXED STEEPEST DESCENT ALGORITHM FOR THE TRAVELING

SALESMAN PROBLEM AND APPLICATION IN AIR LOGISTICS,” Transp Res E Logist Transp Rev, vol. 126, pp. 87–

102, Jun. 2019, doi: https://doi.org/10.1016/j.tre.2019.04.004.

[9] A. Gharehgozli, C. Xu, and W. Zhang, “HIGH MULTIPLICITY ASYMMETRIC TRAVELING SALESMAN PROBLEM
WITH FEEDBACK VERTEX SET AND ITS APPLICATION TO STORAGE/RETRIEVAL SYSTEM,” Eur J Oper Res,

vol. 289, no. 2, pp. 495–507, Mar. 2021, doi: https://doi.org/10.1016/j.ejor.2020.07.038.

[10] Z. Zhang and J. Yang, “A DISCRETE CUCKOO SEARCH ALGORITHM FOR TRAVELING SALESMAN PROBLEM

AND ITS APPLICATION IN CUTTING PATH OPTIMIZATION,” Comput Ind Eng, vol. 169, Jul. 2022, doi:
https://doi.org/10.1016/j.cie.2022.108157.

[11] S. Bock, S. Bomsdorf, N. Boysen, and M. Schneider, “A SURVEY ON THE TRAVELING SALESMAN PROBLEM AND

ITS VARIANTS IN A WAREHOUSING CONTEXT,” Eur J Oper Res, vol. 322, no. 4, pp. 1–14, Apr. 2024, doi:

https://doi.org/10.1016/j.ejor.2024.04.014.
[12] M. Husain Anwar and M. Furqan, “DECISION SUPPORT SYSTEM FOR SELECTION OF SCHOLARSHIP RECIPIENT

STUDENTS USING TSUKAMOTO METHOD FUZZY LOGIC,” International Journal of Information System &

Technology Akreditasi, vol. 8, no. 158, pp. 6–11, Apr. 2024, doi: https://doi.org/10.30645/ijistech.v8i1.341.

[13] U. S. Mukminin, B. Irawanto, B. Surarso, and Farikhin, “VEHICLE ROUTING PROBLEM ON DYNAMIC
PROGRAMMING USING FUZZY LOGIC APPROACH FOR TOURIST DESTINATION ROUTE IN SEMARANG,” in

AIP Conference Proceedings, American Institute of Physics Inc., Jun. 2023. doi: https://doi.org/10.1063/5.0140408.

[14] G. Kim, “DYNAMIC VEHICLE ROUTING PROBLEM WITH FUZZY CUSTOMER RESPONSE,” Sustainability

(Switzerland), vol. 15, no. 5, Mar. 2023, doi: https://doi.org/10.3390/su15054376.
[15] R. Almahasneh, B. Tüú-Szabó, L. T. Kóczy, and P. Földesi, “OPTIMIZATION OF THE TIME-DEPENDENT

TRAVELING SALESMAN PROBLEM USING INTERVAL-VALUED INTUITIONISTIC FUZZY SETS,” Axioms, vol.

9, no. 2, Jun. 2020, doi: https://doi.org/10.3390/axioms9020053.

https://doi.org/10.5121/oraj.2017.4402
https://doi.org/10.1063/1.4976899
https://doi.org/10.7717/peerj-cs.1609
https://doi.org/10.1016/j.eswa.2019.05.037
https://doi.org/10.1016/j.ejor.2024.05.010
https://doi.org/10.3233/IFS-151893
https://doi.org/10.1016/j.cor.2022.105831
https://doi.org/10.1016/j.tre.2019.04.004
https://doi.org/10.1016/j.ejor.2020.07.038
https://doi.org/10.1016/j.cie.2022.108157
https://doi.org/10.1016/j.ejor.2024.04.014
https://doi.org/10.30645/ijistech.v8i1.341
https://doi.org/10.1063/5.0140408
https://doi.org/10.3390/su15054376
https://doi.org/10.3390/axioms9020053

BAREKENG: J. Math. & App., vol. 119(4), pp. 3087- 3104, December, 2025. 3103

[16] S. Trigui, O. Cheikhrouhou, A. Koubaa, U. Baroudi, and H. Youssef, “FL-MTSP: A FUZZY LOGIC APPROACH TO

SOLVE THE MULTI-OBJECTIVE MULTIPLE TRAVELING SALESMAN PROBLEM FOR MULTI-ROBOT

SYSTEMS,” Soft comput, vol. 21, no. 24, pp. 7351–7362, Dec. 2017, doi: ttps://doi.org/10.1007/s00500-016-2279-7.
[17] T. Yang, W. Wang, and Q. Wu, “FUZZY DEMAND VEHICLE ROUTING PROBLEM WITH SOFT TIME WINDOWS,”

Sustainability (Switzerland), vol. 14, no. 9, May 2022, doi: https://doi.org/10.3390/su14095658.

[18] R. Saatchi, “FUZZY LOGIC CONCEPTS, DEVELOPMENTS AND IMPLEMENTATION,” Information (Switzerland),

vol. 15, no. 10, Oct. 2024, doi: https://doi.org/10.3390/info15100656.
[19] M. S. Rahman and M. H. Ali, “ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)-BASED CONTROL FOR

SOLVING THE MISALIGNMENT PROBLEM IN VEHICLE-TO-VEHICLE DYNAMIC WIRELESS CHARGING

SYSTEMS,” Electronics (Switzerland), vol. 14, no. 3, Feb. 2025, doi: https://doi.org/10.3390/electronics14030507.

[20] F. S. Aisyah, W. Winarno, and D. N. Rinaldi, “OPTIMIZING CARTON PRODUCT DELIVERY BY SOLVING
TRAVELLING SALESMAN PROBLEM AT PACKAGING COMPANIES,” BAREKENG: Jurnal Ilmu Matematika dan

Terapan, vol. 18, no. 3, pp. 1803–1816, Aug. 2024, doi: https://doi.org/10.30598/barekengvol18iss3pp1803-1816.

[21] S. M. H. Al Kafaji and M. A. K. Shiker, “OPTIMIZING THE MINIMUM SPANNING TREE (MST) AND ITS

RELATIONSHIP WITH THE MINIMUM CUT,” Int J Health Sci (Qassim), vol. 6, no. 6, pp. 9347–9360, Sep. 2022, doi:
https://doi.org/10.53730/ijhs.v6nS6.12436.

[22] S. Hougardy and M. Wilde, “ON THE NEAREST NEIGHBOR RULE FOR THE METRIC TRAVELING SALESMAN

PROBLEM,” Discrete Appl Math (1979), vol. 195, no. 1, pp. 101–103, Apr. 2015, doi:

https://doi.org/10.1016/j.dam.2014.03.012.
[23] R. Li, G. Rose, H. Chen, and J. Shen, “EFFECTIVE LONG-TERM TRAVEL TIME PREDICTION WITH FUZZY RULES

FOR TOLLWAY,” Neural Comput Appl, vol. 30, no. 9, pp. 2921–2933, Nov. 2018, doi: https://doi.org/10.1007/s00521-

017-2899-6.

https://doi.org/10.1007/s00500-016-2279-7
https://doi.org/10.3390/su14095658
https://doi.org/10.3390/info15100656
https://doi.org/10.3390/electronics14030507
https://doi.org/10.30598/barekengvol18iss3pp1803-1816
https://doi.org/10.53730/ijhs.v6nS6.12436
https://doi.org/10.1016/j.dam.2014.03.012
https://doi.org/10.1007/s00521-017-2899-6
https://doi.org/10.1007/s00521-017-2899-6

3104 Mukminin, et al. TRAVELING SALESMAN PROBLEM INTEGRATED WITH FUZZY LOGIC ON …

	TRAVELING SALESMAN PROBLEM INTEGRATED WITH FUZZY LOGIC ON TOURISM IN D.I. YOGYAKARTA
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Fuzzy Logic
	2.2 Traveling Salesman Problem
	2.3 Minimum Spanning Tree (Prim-Kruskal Algorithm)
	2.4 Nearest Neighbor (NN)
	2.5 High-Level Workflow

	3. RESULTS AND DISCUSSION
	3.1 Determination of Fuzzy Output Based on Fuzzy Tsukamoto
	3.2 Minimum Spanning Tree (Prim and Kruskal Algorithm)
	3.3 Nearest Neighbor (NN)
	3.4 Result Comparison

	4. CONCLUSION
	AUTHOR CONTRIBUTIONS
	FUNDING STATEMENT
	CONFLICT OF INTEREST
	REFERENCES

