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Article Info ABSTRACT 

Article History: 
This study compares the Log-linear Realized GARCH (LRG) and its extension with 

Continuous and Jump components (LRG-CJ) in modeling the volatility of financial assets, 

using daily data from the Tokyo Stock Price Index (TOPIX) over 2004–2011. The urgency 

arises from the need for more accurate volatility models during turbulent periods such as 

the 2008 Global Financial Crisis and the 2011 Great East Japan Earthquake, where 

markets exhibit both smooth fluctuations and abrupt jumps. Methodologically, the LRG-

CJ framework introduces a novel integration of continuous and jump decomposition into 

the LRG structure, offering an applied innovation to high-frequency volatility modeling. 

Realized Volatility (RV) was calculated from 1-, 5-, and 10-minute intraday data and 

decomposed into continuous and jump components. Parameter estimation employed the 

Adaptive Random Walk Metropolis (ARWM) within a Markov Chain Monte Carlo 

algorithm, while model performance was assessed using multiple information criteria and 

out-of-sample forecast evaluations. The empirical results reveal that incorporating 

continuous and jump components improves volatility modeling accuracy, forecasting, and 

Value-at-Risk estimation. However, these benefits are frequency-dependent: the LRG-CJ 

model shows superior in-sample fit for 1-minute RV but provides the strongest out-of-

sample forecasting and risk prediction at lower frequencies (5- and 10-minute intervals). 

This highlights that while jumps are best identified at ultra-high frequencies, their 

predictive value is most effectively captured in slightly aggregated data. The originality 

of this study lies in being the first empirical application of LRG-CJ, demonstrating how 

continuous–jump decomposition interacts with the dual-equation structure of LRG, which 

has not been examined in TGARCH or APARCH contexts. Limitations include sensitivity 

to microstructure noise in very high-frequency data and computational challenges in 

parameter convergence. Overall, the findings underscore the novelty and practical 

importance of the LRG-CJ framework for risk management, offering actionable guidance 

for aligning volatility models with data frequency 
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1. INTRODUCTION 

In the challenging and rapidly changing world of financial markets, a deep understanding of asset price 

fluctuations is essential for market participants and analysts. Volatility, which refers to asset price 

fluctuations, plays an important role in decision-making in financial markets [1]. The higher the volatility, 

the higher the risk of loss and instability in financial markets. Therefore, it is important to develop a model 

that is able to describe the financial asset volatility. 

One of the methods to estimate and measure the financial market asset volatility is by using the 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model (see [2] for the formula). 

However, to improve the prediction accuracy, the GARCH model has been extended to the GARCH-X model 

in [3] by incorporating high-frequency data, such as the Realized Volatility (RV) measure, as exogenous 

variables, into the volatility dynamics equation. Furthermore, the study by [4] introduced the GARCH-CJ 

model that decomposes exogenous variables into continuous component C and discontinuous jump J. The 

results show that the GARCH-CJ model has a more accurate and better prediction ability to measure the 

financial market asset volatility. 

In stock market analysis, continuous variables refer to data related to gradual or scaled changes, while 

jump variables indicate sudden or discontinuous changes. The relationship between absolute returns, 

continuous variables, and jump variables indicates a high level of volatility in the stock market at certain 

points. For investment decision-making and risk management, a deep understanding of the complex 

relationship between returns, continuous variables, and jump variables is extremely helpful for market 

participants and analysts [5]. This study focuses on one of the asymmetric GARCH models, namely the 

Exponential GARCH (EGARCH) model (see [6] for the formula). In a number of studies, the EGARCH 

model has been proven to be superior to the GARCH model, such as in international cotton price forecasting 

[7] and volatility forecasting in the foreign exchange markets of five Eastern and Central European countries 

[8]. Furthermore, the study by [9] developed the Realized EGARCH (REG) model that utilizes multiple 

realized measures. Most recently, the study by [10] modified REG to Log-linear Realized GARCH (LRG) 

and empirically proven that the LRG model is superior to the EGARCH-X model. 

The application of these advanced volatility models in the context of Asian markets, and specifically 

the TOPIX, has yielded significant insights. For instance, the study by [11] examined volatility in the Tokyo 

Stock Exchange using NIKKEI 225 and TOPIX indices with asymmetric GARCH models (EGARCH, 

TARCH, PARCH), finding that the EGARCH model performed best, underscoring the prevalence of leverage 

effects in this market. More recently, the study by [12] explored hybrid models for forecasting TOPIX 

volatility, demonstrating the superior performance of combined models that leverage both linear stochastic 

properties and nonlinear machine learning patterns, particularly during turbulent periods. These studies 

collectively highlight the TOPIX as a rich empirical setting for testing advanced volatility models due to its 

distinct reactions to both global financial shocks and local structural events. 

Furthermore, recent empirical studies on TOPIX using decomposed RV within different GARCH 

frameworks provide a crucial comparative backdrop for this research. A study on APARCH-type models in 

[13] on the same TOPIX dataset revealed a contrasting result: while a GARCH-CJ model improved fit, the 

APARCH-CJ model did not outperform the simpler APARCH-X, suggesting that the benefits of jump 

decomposition might be sensitive to the specific asymmetric structure of the volatility model. These divergent 

findings underscore a critical nuance in volatility modeling—the interaction between model asymmetry and 

jump dynamics—and highlight a gap in understanding how these components function within the LRG 

framework. This study directly addresses this gap by investigating whether the exponential form and dual-

equation structure of the LRG model provide a more suitable foundation for utilizing continuous-jump 

decomposition compared to threshold or power ARCH specifications. 

This study compared two models, namely LRG and LRG-CJ, to determine which model is more 

appropriate for describing financial asset price volatility. To the best of the authors’ knowledge, the LRG-CJ 

model represents an applied modeling innovation that adapts existing theoretical frameworks, specifically by 

integrating the continuous and jump components from the EGARCH-CJ model introduced in [4] into the 

LRG framework developed by [9]. While the theoretical foundations of these components are well-

established, their combined application in the LRG-CJ model offers a novel empirical approach to volatility 

modeling.  The model has been shown to have the potential to better predict future market asset volatility, 

making it practical for applications such as capital asset pricing, risk measurement, and financial derivative 

pricing (e.g., options). Therefore, this study contributes to the field by providing an applied alternative for 



BAREKENG: J. Math. & App., vol. 20(1), pp. 0881- 0894, Mar, 2026.     883 

 

modeling financial asset volatility, utilizing high-frequency (intraday) data with continuous and jump 

components. 

To estimate the model parameters, this study uses the Adaptive Random Walk Metropolis (ARWM) 

method [14] in the Markov Chain Monte Carlo (MCMC) algorithm. Most recently, this method was utilized 

in [3], [10] to estimate the parameters of GARCH-X and LRG models, and was shown to be efficient in 

estimating the model parameters. This study provides additional evidence of the ARWM method’s ability to 

estimate the extended models of the LRG model. 

Therefore, this study contributes to the literature by introducing the first empirical application of the 

LRG-CJ model, which explicitly decomposes RV into continuous and jump components within the LRG 

framework. This addresses a critical research gap, as previous studies have not examined how such 

decomposition impacts volatility forecasting and Value-at-Risk estimation in high-frequency settings. By 

demonstrating that jump components improve accuracy—particularly at lower frequencies (5- and 10-minute 

intervals)—we provide novel insights into the frequency-dependent efficacy of volatility models, offering 

practical advancements for financial risk management. 

2. RESEARCH METHODS 

2.1 Data  

The Tokyo Stock Price Index (TOPIX) data from 2004–2011 was selected for this study due to its 

unique representation of volatility dynamics during periods of significant financial turbulence, including the 

2008 Global Financial Crisis and the 2011 Great East Japan Earthquake. The high-frequency intraday data 

(1-minute, 5-minute, and 10-minute intervals) was obtained through a licensed purchase from a reputable 

third-party financial data provider. These events caused significant volatility jumps and structural breaks in 

TOPIX, providing an ideal empirical setting to test the LRG-CJ model’s ability to distinguish between 

continuous and discontinuous market movements. Although more recent datasets may provide additional 

insights, high-frequency intraday data with 1, 5, and 10-minute intervals remains scarce and prohibitively 

expensive for public academic use. Crucially, the purposive sampling of this dataset—limited to actively 

traded periods—ensures its suitability for benchmarking the proposed model against its predecessors (LRG 

and EGARCH-CJ), as our primary objective is methodological innovation rather than real-time market 

analysis. The observed improvements in forecasting accuracy (Section 3.3) confirm the model’s robustness 

even with this older but well-documented dataset. 

The selection of 1-, 5-, and 10-minute intervals for RV calculation was carefully considered based on 

recent literature and empirical needs. Studies have shown that while higher-frequency data (e.g., 1-minute) 

can better capture intraday jumps and market microstructure effects, they are also more susceptible to noise 

and biases like bid-ask bounce [15]. Conversely, lower frequencies (e.g., 10-minute) provide smoother 

volatility estimates but may miss short-term market dynamics. The 5-minute interval has emerged as a 

practical compromise, often regarded as the “gold standard” in RV research due to its optimal balance 

between precision and noise reduction [16]. Therefore, by including these three intervals, our study can 

systematically evaluate how the presence of market microstructure noise and the aggregation of data over 

different time horizons impact the performance of the LRG and LRG-CJ models, providing valuable insights 

for both high-frequency and lower-frequency trading strategies. 

The relationship pattern between the plot of absolute returns, continuous variables, and jump variables 

for the daily period of the TOPIX data from the intra-day data between 2004 and 2011, with intervals of 1 

minute, is presented in Fig. 1. The actual stock index data (original price series at time t, Pₜ) was transformed 

into three fundamental variables for volatility analysis, each serving distinct purposes in modeling market 

dynamics. The primary transformation begins with the calculation of daily logarithmic returns: 

𝑅𝑡 = 100 × (log 𝑃𝑡 − log 𝑃𝑡−1). (1) 

This logarithmic transformation corresponds exactly to the solution of geometric Brownian motion 

(where log returns are normally distributed), while simultaneously achieving stationarity in the time series 

and preserving the relative scale of price movements. Building upon these returns, we decompose market 

volatility into its continuous and discontinuous components through intraday realized measures, as detailed 

in the next subsection. 

file:///C:/Users/acer/Downloads/18557-Article%20Text-139116-1-9-20251114.docx%23Fig1
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The graph in Fig. 1 shows that any changes in the absolute returns, either in the form of an increase or 

a decrease in return, directly affect the changes in continuous and jump variables. In other words, when there 

are significant fluctuations in the market in terms of gains or losses, other variables also respond sharply. 

 
Figure 1. Plot of Absolute Return |Rt|, Continuous Variable Ct as well as Jumps Variable Jt over the Daily 

Period of TOPIX 

Several descriptive statistics values of the TOPIX data between 2004 and 2011 are presented in Table 

1. It can be seen that the mean of the returns is close to 0, indicating that overall, there is no general trend 

towards significant gains or losses during the period. The distribution skewness of the returns is slightly 

skewed to the left (negative value). It indicates that the distribution of the TOPIX returns in the 8 years 

observed is characterized by many small gains and few extreme losses [17]. Meanwhile, high kurtosis (more 

than 3) describes a wider distribution shape with a thicker tail than a normal distribution. Many value 

fluctuations are far from the mean of the returns [18]. This results in a greater chance of extreme positive or 

negative events. In line with these results, the Jarque–Bera test statistic strongly rejects the normality 

hypothesis. However, since this study focuses on the continuous and jump components in the RV, it assumes 

that the returns follow a normal distribution as the simplest framework. 

Table 1. Descriptive Statistics for Returns of TOPIX  

Mean Median 
Standard 

Deviation 
Skewness Kurtosis 

16 0.0476 0.0399 0.0287 0.0456 

2.2 EGARCH-type Models 

One of the most popular asymmetric GARCH models is the exponential GARCH (EGARCH) model. 

This model is specifically designed to deal with the asymmetric characteristics between returns and volatility. 

It is assumed that the time series of the return Rt follows a normal distribution with zero mean and variance 

𝜎𝑡
2. The EGARCH(1,1) model equation for the volatility 𝜎𝑡 of the return Rt can be expressed as follows: 

𝑅𝑡 = 𝜎𝑡𝜀𝑡,   𝜀𝑡~𝑁(0,1), (2) 

 ℎ𝑡 = 𝜔 + 𝛼1|𝜀𝑡−1| + 𝛼2𝜀𝑡−1 + 𝛽ℎ𝑡−1, (3) 

where ℎ𝑡 = log 𝜎𝑡
2 and 𝜀𝑡 =

𝑅𝑡

𝜎𝑡
. The parameter 𝛼2 indicates the asymmetric effect of volatility on returns, 

meaning that positive or negative values of returns (which have the same absolute value) at time 𝑡 − 1 have 

different effects on volatility at time t. When negative returns have a greater impact on volatility, compared 

to positive returns, the effect is called the leverage effect [19]. 

By incorporating exogenous variables into the volatility equation in the EGARCH model, the 

EGARCH-X model becomes able to capture more complex patterns in market fluctuations that may be 

difficult to explain by simpler models [20]. Following [21], the EGARCH-X(1,1) volatility equation can be 

expressed as follows: 

ℎ𝑡 = 𝜔 + 𝛼1|𝜀𝑡−1| + 𝛼2𝜀𝑡−1 + 𝛽ℎ𝑡−1 + 𝛾1 log 𝑋𝑡−1 , (4) 

where X represents the exogenous component and normally uses RV measures calculated from the intra-day 

data. 
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Furthermore, the study by [21] developed the EGARCH-X model into the EGARCH-CJ model by 

decomposing the exogenous component X into two components, namely the continuous component C and 

the jump component J. The volatility equation of EGARCH-CJ(1,1) can be expressed as follows: 

 ℎ𝑡 = 𝜔 + 𝜏(𝜀𝑡−1) + 𝛽ℎ𝑡−1 + γ1 log 𝐶𝑡−1 + 𝛾2 log(𝐽𝑡−1 + 1) . (5) 

The components C and J are calculated based on the RV ( X), Median RV ( D), and Median Realized Tri-

power Quarticity ( Q) measures as follows: 

 𝐶𝑡 = 𝐼𝑍𝑡>∅𝛼
(𝑋𝑡 − 𝐷𝑡), (6) 

  𝐽𝑡 = 𝐼𝑍𝑡≤∅𝛼
𝑋𝑡 + 𝐼𝑍𝑡>∅𝛼

𝐷𝑡, (7) 

where ∅𝛼  is the 𝛼-quantile of the standard normal distribution function, I is the indicator function, and the 

𝑍𝑡 statistic can be expressed as follows: 

 
𝑍𝑡 =

𝑋𝑡−𝐷𝑡
𝑋𝑡

√((
𝜋

2
)

2
+𝜋−5)(

1

𝑀
) max(1,

𝑄𝑡
𝐷𝑡

)

(8)
 

with 

 𝑋𝑡
2 = ∑ 𝑅𝑡,𝑖

2𝑀−1
𝑖=2 , (9) 

 𝐷𝑡 =
𝜋

6−4√3+𝜋
(

𝑀

𝑀−2
) × ∑ 𝑀𝑒𝑑𝑖𝑎𝑛(|𝑟𝑡,𝑖−1|, |𝑟𝑡,𝑖|, |𝑟𝑡,𝑖+1|)

2𝑀−1
𝑖=2 , (10) 

 𝑄𝑡 =
3𝜋𝑀

9𝜋+72−52√3
(

𝑀

𝑀−2
) × ∑ 𝑀𝑒𝑑𝑖𝑎𝑛(|𝑟𝑡,𝑖−1|, |𝑟𝑡,𝑖|, |𝑟𝑡,𝑖+1|)

4𝑀−1
𝑖=2 , (11) 

where 𝑀 = 𝑁 + 1 represents the number of partitions plus one, and 𝑅𝑡,𝑖 represents the intraday return at 

specific time intervals. 

With a different method, the study by [9] extended the EGARCH-X model by adding a measure 

equation to characterize a more flexible modeling of the dependence between returns and volatility. This 

model is called the LRG(1,1) model and is expressed as follows: 

 ℎ𝑡 = 𝜔 + 𝜏(𝜀𝑡−1) + 𝛽ℎ𝑡−1 + 𝛾1 ln 𝑋𝑡−1 , (12) 

 ln 𝑋𝑡 = 𝜉 + 𝜑ℎ𝑡 + 𝛿(𝜀𝑡) + 𝜂𝑢𝑡 , (13) 

where 𝑢𝑡~𝑁(0,1) and the leverage functions are expressed by: 

 𝜏(𝜀𝑡) = 𝜏1𝜀𝑡 + 𝜏2(𝜀𝑡
2 − 1) and 𝛿(𝜀𝑡) = 𝛿1𝜀𝑡 + 𝛿2(𝜀𝑡

2 − 1). (14) 

This study specifically proposes a development of the EGARCH-CJ(1,1) and LRG(1,1) models into the LRG-

CJ(1,1) model which is expressed as follows: 

 ℎ𝑡 = 𝜔 + 𝜏(𝜀𝑡−1) + 𝛽ℎ𝑡−1 + 𝛾1 log 𝐶𝑡−1  + 𝛾2 log(𝐽𝑡−1 + 1) , (15) 

log 𝐶𝑡  = 𝜉 + 𝜑ℎ𝑡 + 𝛿(𝜀𝑡) + 𝜂𝑢𝑡 .  (16) 

To provide a clear conceptual overview of the modeling framework, particularly for the novel LRG-

CJ model, Fig. 2 presents a flowchart illustrating the data flow and key components of the volatility 

forecasting process. The diagram summarizes how intraday high-frequency data is transformed into realized 

measures, decomposed, and then integrated into the dual-equation structure of the LRG-CJ model to produce 

volatility forecasts and Value-at-Risk (VaR) estimates. 
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Figure 2. Conceptual Flowchart of the LRG-CJ Volatility Modeling and Forecasting Process 

2.3 Estimation Method 

According to [22], MCMC is an increasingly popular method in Bayesian inference to obtain 

approximate information about the posterior distribution, especially when the posterior distribution is difficult 

to obtain analytically. This method consists of two components, namely the Markov chain and the Monte 

Carlo method. The Monte Carlo part refers to random samples from a distribution to obtain numerical results 

that describe the distribution (such as mean, standard deviation, and Bayesian interval). 

One of the methods for generating Markov chains is the ARWM method. This method is an 

improvement on the RWM method by adaptively updating the parameter estimations. The Markov chains are 

constructed by generating samples from the posterior distribution. In the Bayesian context, the posterior 

distribution of the parameter 𝜃, given the data D, is expressed by Bayes’ theorem as follows: 

𝑓(𝜃|𝐷) ∝  𝐿(𝐷|𝜃) ×  𝑝(𝜃), (17) 



BAREKENG: J. Math. & App., vol. 20(1), pp. 0881- 0894, Mar, 2026.     887 

 

where 𝑓 represents the posterior distribution, 𝐿 represents the likelihood function, and 𝑝 represents the prior 

distribution. 

To measure the efficiency of the ARWM method in obtaining statistically independent samples, this 

study used Integrated Autocorrelation Time (IACT). A smaller IACT value indicates that the estimation 

method is more efficient, so the estimation is more accurate [23]. The study by [24] recommended Effective 

Sample Size (ESS), calculated as the length of the Markov chains divided by the IACT, to be greater than 

400 to state that the estimation method is statistically efficient. 

2.4 Model Selection Criteria 

In determining which model has a better data fit, this study applied four information criteria, namely 

the Akaike Information Criterion (AIC), the Consistent Akaike Information Criterion (CAIC), the Bayesian 

Information Criterion (BIC), and the Adjusted Bayesian Information Criterion (ABIC), which can be 

expressed as follows [25]: 

AIC =  −2 log 𝐿 + 2𝑘, (18) 

CAIC =  −2 log 𝐿  +  𝑘(1 + log 𝑛), (19) 

BIC =  −2 log 𝐿  + 𝑘 log 𝑛 , (20) 

ABIC =  −2 log 𝐿  +  𝑘 log (
𝑛+2

24
) , (21) 

where 𝑘 represents the number of parameters, 𝐿 represents the likelihood value, and n represents the number 

of data samples. If the given value is smaller, then the model shows a better fit. 

3. RESULTS AND DISCUSSION 

In this section, research results related to existing theories are presented. Furthermore, a careful 

discussion is elaborated to explore the significance of the analysis results to see the extent to which the results 

match the relevant research topic. 

3.1 Parameter Estimation Results 

For example, Fig. 3 displays the trace plots of the estimated key parameters for the LRG and LRG-CJ 

models with 1-minute RV, obtained by running the MCMC for 25,000 iterations (with the first 5,000 

iterations discarded as a burn-in period). Visually, the parameter values fluctuate around their means 

(indicated by the red lines), suggesting that the Markov chains generated by the ARWM method have reached 

a stationary distribution. This indicates convergence of the chains to their target distributions. However, slow 

convergence is observed for the parameters 𝛾1 and 𝛾2. Statistically, the ESS values (see Table 2) further 

confirm that the ARWM method is less efficient in estimating 𝛾1. These findings align with the results of 

[10] in the context of the LRG model. With this convergence established, the analysis of the parameter 

estimates can now proceed. 

From the posterior samples of key parameters, we compute posterior mean, Standard Deviation (SD), 

and 95% HPD (Highest Posterior Density) interval (LB: Lower Bound, UB: Upper Bound), with additional 

diagnostics (IACT and ESS) presented in Table 2. For all leverage function parameters (1,  2, 1, 2) in 

both models, the 95% HPD intervals exclude zero regardless of intra-day data frequency, demonstrating their 

statistical significance. Notably, the estimated values of 1 and 1 are negative, suggesting that past negative 

returns have a stronger impact on current conditional volatility than positive returns of equal magnitude. 

These findings collectively demonstrate that leverage effects in both conditional volatility and RV processes 

play a crucial role in LRG-type modeling. This evidence reinforces existing literature on the significance of 

leverage effects in intra-day data-based volatility modeling and forecasting (e.g., [10], [26]), while extending 

its application to more sophisticated modeling frameworks. 
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 (a)  (b) 

Figure 3. Trace Plot of the Posterior Samples of the Key Parameters for: (a) the LRG Model and (b) the LRG-

CJ Model; with 1-minute RV 

The estimated parameters of both LRG and LRG-CJ models provide significant insights into volatility 

dynamics and their implications for financial risk management. The consistently negative values of the 

leverage effect parameters (1 in the volatility equation and 1 in the RV equation) across all frequency bands 

confirms the presence of asymmetric volatility responses to negative returns in the TOPIX market. The 

estimation results reveal that in both models (LRG and LRG-CJ), the absolute values of leverage parameters 

tend to increase as intraday frequency decreases (from 1-minute to 10-minute intervals), indicating a stronger 

leverage effect over longer time windows. From a practical standpoint, the estimated 1 value of –0.0748 in 

the LRG model with 1-minute data indicates that a 1% negative return exerts a 7.48% greater impact on 

conditional volatility than an equivalent positive return, while the corresponding 1 of –0.0426 shows RV 

measures increase about 4.26% more for negative returns. This dual effect intensifies at lower frequencies, 

with 1 reaching –0.0836 and 1 reaching –0.0533 for 10-minute intervals, suggesting that prolonged negative 

trends captured by lower-frequency data significantly exacerbate both conditional volatility and RV 

asymmetry—a crucial finding for risk managers monitoring multi-day market stress conditions. This reflects 

how market participants process and react to negative information over different time horizons, with more 

sustained selling pressure emerging in longer timeframes. 

The inclusion of jump components in LRG-CJ systematically reduces the leverage effect in the 

volatility equation (1 becomes less negative by 0.0074 to 0.0108 across frequencies), suggesting continuous 

jumps partially offset asymmetric volatility responses. Conversely, the RV equation’s leverage parameter 

(1) intensifies in LRG-CJ (more negative by 0.0039 to 0.0114), indicating discontinuous jumps amplify 

RV’s sensitivity to negative returns. This divergence is most pronounced at lower frequencies (10-minute), 

where 1 values nearly converge between models while 1 differences peak, implying jumps dominate RV 

dynamics in lower-frequency data. The results align with theoretical expectations: jumps redistribute leverage 

effects, weakening them in conditional volatility while strengthening them in RV, with frequency-dependent 

magnitudes reflecting competing discontinuous jump influences. These findings support the results of [27] 

in their analysis of the Heterogeneous Autoregressive (HAR) model. 

The differential behavior between 1 and 1 parameters reveal important temporal dynamics in market 

responses: while 1captures the immediate overreaction of conditional volatility to negative returns, 1 

reflects the more gradual incorporation of these effects into RV measures. This lagged transmission 

mechanism enables algorithmic trading systems to optimize strategies by initially responding to 1 signals 

during market shocks, and then progressively adjusting positions as 1 confirms the sustained volatility 
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impact, particularly valuable when the 10-minute 1 shows more persistent effects than 1-minute readings. 

For instance, a 2% market drop triggers instant volatility alerts via 1, but prudent algorithms would await 1 

stabilization in subsequent 5 to 10 minutes windows before re-entering positions, thereby avoiding 

overtrading during transient spikes while capitalizing on more reliable RV signals. This dual-parameter 

approach effectively bridges short-term market overreactions with medium-term volatility reality, enhancing 

both risk management and profitability in high-frequency environments. 

In the LRG-CJ model, the negative estimates of the jump component parameter (𝛾2), such as the value 

of –0.0899 for 1-minute RV, reveal that discontinuous jumps contribute disproportionately to volatility 

persistence. Economically, each 1% increase in the jump component reduces conditional volatility by 

approximately 9%, reflecting the characteristic of market jumps as short-lived shocks that decay more rapidly 

than continuous volatility components. This finding substantiates the importance of decomposing RV into 

continuous and jump components for derivative pricing applications, where jump risks require distinct 

hedging strategies. 

Table 2. Estimation Results of the Key Parameters for the LRG and LRG-CJ Models on the TOPIX Data 

 Parameter 

𝜏1 𝜏2 𝛾1 𝛾2 𝛿1 𝛿2 

LRG with RV 1-min 

Mean –0.0748 0.0199 0.6125 - –0.0426 0.0479 

SD 0.0074 0.0045 0.0501 - 0.0043 0.0029 

LB –0.0901 0.0124 0.5153 - –0.0509 0.0425 

UB –0.0617 0.0296 0.6991 - –0.0343 0.0539 

ESS 1250.8 2026.3 35.1 - 2617.8 655.5 

LRG-CJ with RV 1-min 

Mean –0.0674 0.0327 0.8070 –0.0899 –0.0465 0.0254 

SD 0.0074 0.0050 0.0459 0.0527 0.0039 0.0024 

LB –0.0816 0.0226 0.7211 –0.1950 –0.0542 0.0208 

UB –0.0536 0.0420 0.8968 0.0105 –0.0390 0.0300 

ESS 1555.2 847.1 33.7 165.8 2681.0 1826.5 

LRG with RV 5-min 

Mean –0.0780 0.0261 0.6231 - –0.0569 0.0484 

SD 0.0085 0.0055 0.0409 - 0.0050 0.0033 

LB –0.0952 0.0158 0.5405 - –0.0660 0.0421 

UB –0.0622 0.0370 0.7010 - –0.0464 0.0552 

ESS 1554.0 2506.4 39.4 - 2462.5 1252.6 

LRG-CJ with RV 5-min 

Mean –0.06719 0.0354 0.6443 0.0279 –0.0626 0.0394 

SD 0.0083 0.0058 0.0516 0.0683 0.0051 0.0033 

LB –0.0830 0.0245 0.5499 –0.1054 –0.0725 0.0328 

UB –0.0506 0.0467 0.7412 0.1567 –0.0526 0.0457 

ESS 1889.9 1910.0 37.2 114.5 1927.9 1234.4 

LRG with RV 10-min 

Mean –0.0836 0.0269 0.4840 - –0.0533 0.0615 

SD 0.0087 0.0062 0.0411 - 0.0059 0.0041 

LB –0.1010 0.0148 0.4095 - –0.0647 0.0535 

UB –0.0671 0.0387 0.5689 - –0.0419 0.0698 

ESS 1417.3 2404.1 35.7 - 2660.4 872.4 

LRG-CJ with RV 10-min 

Mean –0.0821 0.0361 0.5155 0.0482 –0.0647 0.0396 

SD 0.0092 0.0068 0.0458 0.0559 0.0062 0.0039 

LB –0.1004 0.0231 0.4186 –0.0599 –0.0765 0.0318 

UB –0.0644 0.0496 0.5974 0.1624 –0.0525 0.0468 

ESS 1737.0 1079.8 44.9 169.7 2846.2 2107.1 

3.2 Model Selection 

The log-likelihood values and four information criteria for assessing the fitting performance of the 

LRG and LRG-CJ models based on three RV measures are presented in Table 3 . Models with better 

performance can be seen through the criteria dominance that have lower values. By considering each case of 

the RV measure, the LRG-CJ model is superior only in the use of 1-minute RV data. Moreover, overall, the 
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application of the RV data provides evidence of the superiority of the LRG-CJ model. These findings not 

only highlight the importance of incorporating jump components in RV modeling, particularly for high-

frequency data applications, but also support three key studies: [26] on HAR model jump dynamics, [28] on 

jump magnitude in total price variance, and [29] on jumps in the Heston stochastic volatility model. 

Table 3. Log-likelihood (LL) and Information Criteria Values 

Data Model LL AIC ABIC BIC CAIC 

RV 1-min LRG –2526.6 5073.1 5107.2 5128.9 5138.9 

LRG-CJ –2337.9 4697.9 4735.3 4759.3 4770.3 

RV 5-min LRG –2846.9 5713.8 5747.9 5769.6 5779.6 

LRG-CJ –2885.4 5792.7 5830.1 5845.1 5865.1 

RV 10-min LRG –3189.8 6399.6 6433.6 6455.4 6465.4 

LRG-CJ –3233.7 6489.3 6526.8 6550.7 6561.7 

 

3.3 Forecast Evaluation 

The primary objective of volatility modeling is not only to find the model that best fits historical data 

but also to generate accurate forecasts for future periods. Thus, the evaluation process should not stop at 

analyzing the model’s in-sample fit to the entire dataset. Out-of-sample performance assessment becomes an 

essential step to measure how reliable a model is in predicting volatility outside the data sample used for 

estimation [30].  

Testing the accuracy of out-of-sample volatility forecasting relies on the use of statistical loss 

functions. These functions quantify the forecasting error, which represents the difference between the actual 

volatility and the forecasted volatility. Consequently, the accuracy of the out-of-sample forecast can be 

analyzed, where a smaller value indicates the most accurate forecast. 

Since no single accuracy measure is considered superior for comparing various volatility models [31], 

this study adopts three different goodness-of-fit measures commonly used in the relevant literature [32]: the 

Mean Squared Error (MSE), mean absolute error (MAE), and Mean Absolute Percentage Error (MAPE). The 

formulas for calculating these three approaches are as follows: 

MSE =
1

𝑛
∑ (𝜎𝑡

2 − 𝜎̂𝑡
2)2𝑛

𝑡=1 , MAE =
1

𝑛
∑ |𝜎𝑡

2 − 𝜎̂𝑡
2|,𝑛

𝑡=1  MAPE =
1

𝑛
∑ |

𝜎𝑡
2−𝜎̂𝑡

2

𝜎𝑡
2 | ,𝑛

𝑡=1 (22) 

where 𝜎𝑡
2 represents the true volatility, 𝜎̂𝑡

2 is the forecasted volatility, and n is the total number of forecasts.  

Although the calculation of forecast error implicitly assumes that RV is the true volatility value, in 

reality, RV is merely an approximation. To address this, the study approximates the true (daily) volatility by 

using five-minute RV. The selection of this measure is supported by evidence from studies in [33], [34], 

which showed its superior performance over alternative measures within the context of GARCH models. 

For each LRG-type model, this study used the observations from 15 November 2011 to 30 December 

2011 to perform the one-day-ahead volatility forecasts using the recursive method. Forecasting is estimated 

through three RV measures. As displayed in Table 4, we have compared the models via three loss functions 

to select the model with the most accurate forecasts.  

Table 4. Evaluations of Volatility Forecasts for One-Day Out-of-Sample Using Loss Functions 

Loss 

Function 

RV 1-min RV 5-min RV 10-min 

LRG LRG-CJ LRG LRG-CJ LRG LRG-CJ 

MSE 2.290 2.626 1.965 1.575 1.878 1.463 

MAE 1.422 1.541 1.310 1.158 1.263 1.096 

MAPE 3.788 4.332 3.239 2.607 3.128 2.450 

In the out-of-sample forecasting analysis (Table 4), the LRG-CJ model demonstrated significant 

superiority when using 5-minute and 10-minute RV data. However, during the same period, the standard 

LRG model performed slightly better when employing 1-minute RV data. This suggests that, for predictive 

purposes within this timeframe, the “CJ” components were more effective in capturing volatility dynamics at 

lower data frequencies. 



BAREKENG: J. Math. & App., vol. 20(1), pp. 0881- 0894, Mar, 2026.     891 

 

The observed performance discrepancies—where LRG-CJ excels with 1-minute RV data in full-

sample fitting but outperforms in volatility forecasting with 5-minute and 10-minute RV data in out-of-sample 

tests—lead to a key conclusion: the superiority of the “CJ” decomposition in RV data depends on the 

performance objective. These inconsistent results likely stem from the distinction between a model’s ability 

to fit historical data (in-sample fit) and its capacity to predict unseen data (out-of-sample forecast), where 

market conditions in each period may exhibit distinct characteristics. 

VaR has emerged as one of the most widely used methods for market risk estimation. As defined in 

[35], VaR represents the maximum potential loss over a specified t-day holding period, calculated at a (1-

𝛼)% confidence interval. Building on this foundation, the current study further examines the application of 

volatility forecasts in calculating risk measures, with particular focus on VaR estimation. VaR is computed 

according to the formula: 

VaR𝛼(𝑡) = 𝑁𝛼𝜎̂𝑡, (23) 

where 𝑁𝛼 represents the quantile of the Normal distribution 𝑁(0,1). 

The evaluation of VaR model performance has led to the development of various testing 

methodologies. Existing literature classifies backtesting procedures into two distinct categories: statistical 

hypothesis-based backtesting and loss-function-based evaluation. Statistical backtesting approaches 

primarily assess the accuracy of VaR estimates, yet this framework lacks the capacity for comparative model 

ranking. In contrast, loss-function-based evaluation incorporates both the frequency and magnitude of VaR 

exceptions. This methodology enables financial regulators/supervisors and risk managers/firms to establish 

a model hierarchy, where preference is given to specifications that minimize aggregate loss metrics. 

Further developments in VaR validation methodologies include the approach introduced by Lopez, 

which focuses on evaluating the accuracy of VaR estimation. This method was later refined by Sarma, 

Thomas, and Shah, who proposed modifications to enhance its effectiveness. In their framework, a loss 

function is calculated for each analyzed period based on the corresponding rate of returns, following the 

formula specified below [36]: 

Regulator’s loss function: Lopez’s Quadratic (RQL) = {
1 + (VaR𝑡 − 𝑅𝑡)2 if 𝑅𝑡 < VaR𝑡

0 if 𝑅𝑡 ≥ VaR𝑡
, (24) 

Firms’ loss function: Sarma, Thomas, and Shah (STS) = {
(VaR𝑡 − 𝑅𝑡)2 if 𝑅𝑡 < VaR𝑡

−0.6VaR𝑡 if 𝑅𝑡 ≥ VaR𝑡
. (25) 

For the competing models, we compute the loss functions at both the 1% and 5% significance levels. 

The optimal model is determined by selecting the specification that yields the minimal loss function value. 

The corresponding results for each RV measure are presented in Table 5. 

Table 5. Results of RQL and STS Loss Functions Test 

Loss 

Function 

RV 1-min RV 5-min RV 10-min 

LRG LRG-CJ LRG LRG-CJ LRG LRG-CJ 

% VaR 1 5 1 5 1 5 1 5 1 5 1 5 

RQL 7.72% 4.41% 8.42% 5.10% 7.12% 4.13% 6.04% 3.42% 6.76% 3.98% 5.71% 3.47% 

STS 6.48% 3.21% 7.16% 3.95% 6.12% 3.07% 5.04% 2.32% 5.76% 2.91% 4.71% 2.42% 

From a regulatory point of view, the RQL function emphasizes strict adherence to VaR thresholds, 

especially at the 1% significance level, where underestimation of risk would have severe systemic 

consequences. The results show that LRG-CJ consistently outperforms LRG for both 5-minute and 10-minute 

RV measures, with lower RQL values (e.g., 6.04% vs. 7.12% at 5-minute RV, 1% VaR). This suggests that 

incorporating CJ components improves the accuracy of risk estimation when volatility is sampled at lower 

frequencies. However, for 1-minute RV, the standard LRG model yields better performance (7.72% vs. 8.42% 

at 1% VaR), likely due to noise in the very high-frequency data that complicates jump detection. The 5% 

VaR level universally shows lower RQL values, confirming that the model performs better under less extreme 

market conditions. Regulators should prioritize LRG-CJ for 5- and 10-minute RV applications, but may prefer 

the simpler LRG for high-frequency settings. 

For financial firms, the Sarma-Thomas-Shah (STS) loss function provides a more balanced view, 

weighing the frequency and magnitude of VaR violations to optimize capital allocation. Like the RQL results, 

LRG-CJ dominates for both 5-minute and 10-minute RVs, providing the lowest STS losses (e.g., 4.71% vs. 
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5.76% at 10-minute RV, 1% VaR). This is in line with the company’s need to minimize unexpected losses 

while avoiding excessive capital buffering. However, at the 1-minute RV level, LRG again proved superior 

(6.48% vs. 7.16% at 1% VaR), reinforcing that jump adjustments can render noisy high-frequency data 

inappropriate. The smaller gap between STS and RQL values at the 5% VaR level (e.g., 2.42% vs. 3.47% for 

LRG-CJ at 10-minute RV) suggests that firms face a milder trade-off for a moderate risk threshold. Firms 

should adopt LRG-CJ for lower-frequency RVs, but stick with LRG for high-frequency trading desks. 

The practical implications of these forecasting and VaR results are very important for financial 

institutions and traders. The finding that the LRG-CJ model performs better with 5- and 10-minute data for 

out-of-sample prediction and risk management, but not with 1-minute data, provides a clear, actionable 

guidance for model selection based on data frequency. For risk managers focusing on daily VaR calculations 

and intraday strategies that rely on slightly smoothed signals (e.g., 5- or 10-minute intervals), adopting the 

LRG-CJ model can lead to more accurate risk assessments and better capital allocation, ultimately reducing 

unexpected losses. Conversely, for ultra-high-frequency trading desks operating at the 1-minute level, the 

standard LRG model remains the more robust and parsimonious choice, as the noise in the data at this 

frequency outweighs the benefits of jump decomposition. This frequency-dependent performance 

underscores the critical importance of aligning model complexity with the specific characteristics of the 

available data to achieve optimal practical outcomes. 

4. CONCLUSION 

This study compared the LRG and LRG-CJ models in modeling financial asset volatility using TOPIX 

data. The results show that integrating continuous and jump components significantly improves volatility 

modeling accuracy, forecasting, and Value-at-Risk estimation. A key and novel contribution is the first 

empirical application of the LRG-CJ framework, which demonstrates frequency-dependent performance: 

while it fits ultra-high-frequency (1-minute) data better in-sample, its forecasting and risk estimation are most 

effective at 5- and 10-minute intervals. 

Practically, these findings provide guidance for implementation in financial systems. The LRG-CJ 

model is particularly suitable for risk management and trading strategies that rely on lower-frequency data, 

where noise is reduced and jump dynamics are better captured. For implementation, model calibration should 

prioritize out-of-sample forecasting accuracy and ensure convergence diagnostics in parameter estimation. 

Limitations remain, including the model’s sensitivity to high-frequency market noise and 

computational challenges in estimation. Future work could refine jump-detection techniques, extend the 

framework to multivariate settings, and test robustness across different asset classes. In sum, this study 

contributes a novel empirical framework that enhances volatility modeling by explicitly incorporating 

continuous and jump components, offering both theoretical advancement and actionable value for financial 

risk management. 
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