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This study compares the Log-linear Realized GARCH (LRG) and its extension with
Continuous and Jump components (LRG-CJ) in modeling the volatility of financial assets,
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1. INTRODUCTION

In the challenging and rapidly changing world of financial markets, a deep understanding of asset price
fluctuations is essential for market participants and analysts. Volatility, which refers to asset price
fluctuations, plays an important role in decision-making in financial markets [1]. The higher the volatility,
the higher the risk of loss and instability in financial markets. Therefore, it is important to develop a model
that is able to describe the financial asset volatility.

One of the methods to estimate and measure the financial market asset volatility is by using the
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model (see [2] for the formula).
However, to improve the prediction accuracy, the GARCH model has been extended to the GARCH-X model
in [3] by incorporating high-frequency data, such as the Realized Volatility (RV) measure, as exogenous
variables, into the volatility dynamics equation. Furthermore, the study by [4] introduced the GARCH-CJ
model that decomposes exogenous variables into continuous component C and discontinuous jump J. The
results show that the GARCH-CJ model has a more accurate and better prediction ability to measure the
financial market asset volatility.

In stock market analysis, continuous variables refer to data related to gradual or scaled changes, while
jump variables indicate sudden or discontinuous changes. The relationship between absolute returns,
continuous variables, and jump variables indicates a high level of volatility in the stock market at certain
points. For investment decision-making and risk management, a deep understanding of the complex
relationship between returns, continuous variables, and jump variables is extremely helpful for market
participants and analysts [5]. This study focuses on one of the asymmetric GARCH models, namely the
Exponential GARCH (EGARCH) model (see [6] for the formula). In a number of studies, the EGARCH
model has been proven to be superior to the GARCH model, such as in international cotton price forecasting
[7] and volatility forecasting in the foreign exchange markets of five Eastern and Central European countries
[8]. Furthermore, the study by [9] developed the Realized EGARCH (REG) model that utilizes multiple
realized measures. Most recently, the study by [10] modified REG to Log-linear Realized GARCH (LRG)
and empirically proven that the LRG model is superior to the EGARCH-X model.

The application of these advanced volatility models in the context of Asian markets, and specifically
the TOPIX, has yielded significant insights. For instance, the study by [11] examined volatility in the Tokyo
Stock Exchange using NIKKEI 225 and TOPIX indices with asymmetric GARCH models (EGARCH,
TARCH, PARCH), finding that the EGARCH model performed best, underscoring the prevalence of leverage
effects in this market. More recently, the study by [12] explored hybrid models for forecasting TOPIX
volatility, demonstrating the superior performance of combined models that leverage both linear stochastic
properties and nonlinear machine learning patterns, particularly during turbulent periods. These studies
collectively highlight the TOPIX as a rich empirical setting for testing advanced volatility models due to its
distinct reactions to both global financial shocks and local structural events.

Furthermore, recent empirical studies on TOPIX using decomposed RV within different GARCH
frameworks provide a crucial comparative backdrop for this research. A study on APARCH-type models in
[13] on the same TOPIX dataset revealed a contrasting result: while a GARCH-CJ model improved fit, the
APARCH-CJ model did not outperform the simpler APARCH-X, suggesting that the benefits of jump
decomposition might be sensitive to the specific asymmetric structure of the volatility model. These divergent
findings underscore a critical nuance in volatility modeling—the interaction between model asymmetry and
jump dynamics—and highlight a gap in understanding how these components function within the LRG
framework. This study directly addresses this gap by investigating whether the exponential form and dual-
equation structure of the LRG model provide a more suitable foundation for utilizing continuous-jump
decomposition compared to threshold or power ARCH specifications.

This study compared two models, namely LRG and LRG-CJ, to determine which model is more
appropriate for describing financial asset price volatility. To the best of the authors’ knowledge, the LRG-CJ
model represents an applied modeling innovation that adapts existing theoretical frameworks, specifically by
integrating the continuous and jump components from the EGARCH-CJ model introduced in [4] into the
LRG framework developed by [9]. While the theoretical foundations of these components are well-
established, their combined application in the LRG-CJ model offers a novel empirical approach to volatility
modeling. The model has been shown to have the potential to better predict future market asset volatility,
making it practical for applications such as capital asset pricing, risk measurement, and financial derivative
pricing (e.g., options). Therefore, this study contributes to the field by providing an applied alternative for
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modeling financial asset volatility, utilizing high-frequency (intraday) data with continuous and jump
components.

To estimate the model parameters, this study uses the Adaptive Random Walk Metropolis (ARWM)
method [14] in the Markov Chain Monte Carlo (MCMC) algorithm. Most recently, this method was utilized
in [3], [10] to estimate the parameters of GARCH-X and LRG models, and was shown to be efficient in
estimating the model parameters. This study provides additional evidence of the ARWM method ability to
estimate the extended models of LRG model.

Therefore, this study contributes to the literature by introducing the first empirical application of the
LRG-CJ model, which explicitly decomposes RV into continuous and jump components within the LRG
framework. This addresses a critical research gap, as previous studies have not examined how such
decomposition impacts volatility forecasting and Value-at-Risk estimation in high-frequency settings. By
demonstrating that jump components improve accuracy——particularly at lower frequencies (5- and 10-minute
intervals)—we provide novel insights into the frequency-dependent efficacy of volatility models, offering
practical advancements for financial risk management.

2. RESEARCH METHODS

2.1 Data

The Tokyo Stock Price Index (TOPIX) data from 2004-2011 was selected for this study due to its
unique representation of volatility dynamics during periods of significant financial turbulence, including the
2008 Global Financial Crisis and the 2011 Great East Japan Earthquake. The high-frequency intraday data
(1-minute, 5-minute, and 10-minute intervals) was obtained through a licensed purchase from a reputable
third-party financial data provider. These events caused significant volatility jumps and structural breaks in
TOPIX, providing an ideal empirical setting to test the LRG-CJ model’s ability to distinguish between
continuous and discontinuous market movements. Although more recent datasets may provide additional
insights, high-frequency intraday data with 1, 5, and 10-minute intervals remains scarce and prohibitively
expensive for public academic use. Crucially, the purposive sampling of this datasets—Ilimited to actively
traded periods—ensures its suitability for benchmarking the proposed model against its predecessors (LRG
and EGARCH-CJ), as our primary objective is methodological innovation rather than real-time market
analysis. The observed improvements in forecasting accuracy (Section 3.3) confirm the model’s robustness
even with this older but well-documented dataset.

The selection of 1-, 5-, and 10-minute intervals for RV calculation was carefully considered based on
recent literature and empirical needs. Studies have shown that while higher-frequency data (e.g., 1-minute)
can better capture intraday jumps and market microstructure effects, they are also more susceptible to noise
and biases like bid-ask bounce [15]. Conversely, lower frequencies (e.g., 10-minute) provide smoother
volatility estimates but may miss short-term market dynamics. The 5-minute interval has emerged as a
practical compromise, often regarded as the “gold standard” in RV research due to its optimal balance
between precision and noise reduction [16]. Therefore, by including these three intervals, our study can
systematically evaluate how the presence of market microstructure noise and the aggregation of data over
different time horizons impact the performance of the LRG and LRG-CJ models, providing valuable insights
for both high-frequency and lower-frequency trading strategies.

Fig. 1 displays the relationship pattern between the plot of absolute returns, continuous variables, and
jump variables for the daily period of the TOPIX data from the intra-day data between 2004 and 2011 with
intervals of 1 minute. The actual stock index data (original price series at time t, P) was transformed into
three fundamental variables for volatility analysis, each serving distinct purposes in modeling market
dynamics. The primary transformation begins with the calculation of daily logarithmic returns:

R; =100 X (log P; — log P;_1). (1)

This logarithmic transformation corresponds exactly to the solution of geometric Brownian motion
(where log returns are normally distributed), while simultaneously achieving stationarity in the time series
and preserving the relative scale of price movements. Building upon these returns, we decompose market
volatility into its continuous and discontinuous components through intraday realized measures, as detailed
in the next subsection.
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The graph in Fig. 1 shows that any changes in the absolute returns, either in the form of an increase or
decrease in return, directly affect the changes in continuous and jump variables. In other words, when there
are significant fluctuations in the market in terms of gains or losses, other variables also respond sharply.
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Figure 1. Plot of Absolute Return |Ry|, Continuous Variable C; as well as Jumps Variable J; over Daily Period of
TOPIX

Table 1 presents a number of descriptive statistics values of the TOPIX data between 2004 and 2011.
It can be seen that the mean of the returns is close to 0, indicating that overall, there is no general trend
towards significant gains or losses during the period. The distribution skewness of the returns is slightly
skewed to the left (negative value). It indicates that the distribution of the TOPIX returns in the 8 years
observed is characterized by many small gains and few extreme losses [17]. Meanwhile, high kurtosis (more
than 3) describes a wider distribution shape with a thicker tail than a normal distribution. Many value
fluctuations are far from the mean of the returns [18]. This results in a greater chance of extreme positive or
negative events. In line with these results, the Jarque—Bera test statistic strongly rejects the normality
hypothesis. However, since this study focuses on the continuous and jump components in the RV, it assumes
that the returns follow a normal distribution as the simplest framework.

Table 1. Descriptive Statistics for Returns of TOPI1X

Mean Median Star)da}rd Skewness  Kurtosis
Deviation
16 0.0476 0.0399 0.0287 0.0456

2.2 EGARCH-type Models

One of the most popular asymmetric GARCH models is the exponential GARCH (EGARCH) model.
This model is specifically designed to deal with the asymmetric characteristics between returns and volatility.
It is assumed that the time series of the return R; follows a normal distribution with zero mean and variance
oZ. The EGARCH(1,1) model equation for the volatility o, of the return R can be expressed as follows:

Rt = O0¢&, St""’N(O,l), (2)
he =+ aqle_1| + azeeq + Bheq, 3)

where h; = logo? and &, = ?. The parameter a, indicates the asymmetric effect of volatility on returns,
t

meaning that positive or negative values of returns (which have the same absolute value) at time t — 1 have
different effects on volatility at time t. When negative returns have a greater impact on volatility, compared

to positive returns, the effect is called the leverage effect [19].

By incorporating exogenous variables into the volatility equation in the EGARCH model, the
EGARCH-X model becomes able to capture more complex patterns in market fluctuations that may be
difficult to explain by simpler models [20]. Following [21], the EGARCH-X(1,1) volatility equation can be
expressed as follows:

he =w+agler_q| + azeeq + Bheq +y1logXe_y, (4)

where X represents the exogenous component and normally uses RV measures calculated from the intra-day
data.
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Furthermore, the study by [21] developed the EGARCH-X model into the EGARCH-CJ model by
decomposing the exogenous component X into two components, namely the continuous component C and
the jJump component J. The volatility equation of EGARCH-CJ(1,1) can be expressed as follows:

he = w + t(g—1) + Bhe—1 + y110gCry + v2 log(e—1 + 1). (5)

The components C and J are calculated based on the RV (= X), Median RV (= D), and Median Realized Tri-
power Quarticity (= Q) measures as follows:

Ce = IZt>(Z)a(Xt — D), (6)
Jt = Iz,<0,X¢ + I7,50,D¢ (7

where @, is the a-quantile of the standard normal distribution function, I is the indicator function, and the
Z, statistic can be expressed as follows:

X¢t—D¢

Zy = = (8)
(@ m-s)ma(22)
with
X =T RE, ()
D= srm (%) x LM Median(|rei-al Ireal, Ireiea])’) (10)
Qe = %ﬁ(ﬁ) x 25! Median([rei s, [redl, [reiea]), (11)

where M = N + 1 represents the number of partitions plus one, and R;; represents the intraday return at
specific time intervals.

With a different method, the study by [9] extended the EGARCH-X model by adding a measure
equation to characterize a more flexible modeling of the dependence between returns and volatility. This
model is called the LRG(1,1) model and is expressed as follows:

hy = w 4+ t(ee—1) + Bhe—1 +y1In X, (12)
InX; =&+ @hy +6(ep) +nue, (13)

where u;~N(0,1) and the leverage functions are expressed by:
1(&) = 118 + 12(e2 — 1) and 8(&p) = 816 + 8, (g2 — 1). (14)

This study specifically proposes a development of the EGARCH-CJ(1,1) and LRG(1,1) models into the LRG-
CJ(1,1) model which is expressed as follows:

he = w + t(g_1) + Bhe—1 + ¥1log Cy +y2log(Ur—q + 1), (15)
logC; =&+ @hy + 6(&) + nug. (16)

To provide a clear conceptual overview of the modeling framework, particularly for the novel LRG-
CJ model, Fig. 2 presents a flowchart illustrating the data flow and key components of the volatility
forecasting process. The diagram summarizes how intraday high-frequency data is transformed into realized
measures, decomposed, and then integrated into the dual-equation structure of the LRG-CJ model to produce
volatility forecasts and Value-at-Risk (VaR) estimates.
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Figure 2. Conceptual Flowchart of the LRG-CJ Volatility Modeling and Forecasting Process

2.3 Estimation Method

According to [22], MCMC is an increasingly popular method in Bayesian inference to obtain
approximate information about the posterior distribution, especially when the posterior distribution is difficult
to obtain analytically. This method consists of two components, namely the Markov chain and the Monte
Carlo method. The Monte Carlo part refers to random samples from a distribution to obtain numerical results
that describe the distribution (such as mean, standard deviation, and Bayesian interval).

One of the methods for generating Markov chains is the ARWM method. This method is an
improvement on the RWM method by adaptively updating the parameter estimations. The Markov chains are
constructed by generating samples from the posterior distribution. In the Bayesian context, the posterior
distribution of the parameter 6, given the data D, is expressed by Bayes’ theorem as follows:

f(8ID) o< L(D[6) x p(0), (17)
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where f represents the posterior distribution, L represents the likelihood function, and p represents the prior
distribution.

To measure the efficiency of the ARWM method in obtaining statistically independent samples, this
study used Integrated Autocorrelation Time (IACT). A smaller IACT value indicates that the estimation
method is more efficient, so the estimation is more accurate [23]. The study by [24] recommended Effective
Sample Size (ESS), calculated as the length of the Markov chains divided by the IACT, to be greater than
400 to state that the estimation method is statistically efficient.

2.4 Model Selection Criteria

In determining which model has a better data fit, this study applied four information criteria, namely
the Akaike Information Criterion (AIC), the Consistent Akaike Information Criterion (CAIC), the Bayesian
Information Criterion (BIC), and the Adjusted Bayesian Information Criterion (ABIC), which can be
expressed as follows [25]:

AIC = —2logl + 2k, (18)

CAIC = —2logL + k(1 + logn), (19)

BIC = —2logL + klogn, (20)
n+2

ABIC = —2loglL + klog(22), (1)

where k represents the number of parameters, L represents the likelihood value, and n represents the number
of data samples. If the given value is smaller, then the model shows a better fit.

3. RESULTS AND DISCUSSION

In this section, research results related to existing theories are presented. Furthermore, a careful
discussion is elaborated to explore the significance of the analysis results to see the extent to which the results
match the relevant research topic.

3.1 Parameter Estimation Results

For example, Fig. 3 displays the trace plots of the estimated key parameters for the LRG and LRG-CJ
models with 1-minute RV, obtained by running the MCMC for 25,000 iterations (with the first 5,000
iterations discarded as a burn-in period). Visually, the parameter values fluctuate around their means
(indicated by the red lines), suggesting that the Markov chains generated by the ARWM method have been
reached a stationary distribution. This indicates convergence of the chains to their target distributions.
However, slow convergence is observed for the parameters y, and y,. Statistically, the ESS values (see Table
2) further confirm that the ARWM method is less efficient in estimating y;. These findings align with the
results of [10] in the context of the LRG model. With this convergence established, the analysis of the
parameter estimates can now proceed.

From the posterior samples of key parameters, we compute posterior mean, Standard Deviation (SD),
and 95% HPD (Highest Posterior Density) interval (LB: Lower Bound, UB: Upper Bound), with additional
diagnostics (IACT and ESS) presented in Table 2. For all leverage function parameters (z;, 7, &, &) in
both models, the 95% HPD intervals exclude zero regardless of intra-day data frequency, demonstrating their
statistical significance. Notably, the estimated values of z; and o; are negative, suggesting that past negative
returns have a stronger impact on current conditional volatility than positive returns of equal magnitude.
These findings collectively demonstrate that leverage effects in both conditional volatility and RV processes
play a crucial role in LRG-type modeling. This evidence reinforces existing literature on the significance of
leverage effects in intra-day data-based volatility modeling and forecasting (e.g., [10], [26]), while extending
its application to more sophisticated modeling frameworks.
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Figure 3. Trace Plot of the Posterior Samples of the Key Parameters for: (a) the LRG Model and (b) the LRG-CJ
Model; with 1-minute RV

The estimated parameters of both LRG and LRG-CJ models provide significant insights into volatility
dynamics and their implications for financial risk management. The consistently negative values of the
leverage effect parameters (z; in the volatility equation and &; in the RV equation) across all frequency bands
confirm the presence of asymmetric volatility responses to negative returns in the TOPIX market. The
estimation results reveal that in both models (LRG and LRG-CJ), the absolute values of leverage parameters
tend to increase as intraday frequency decreases (from 1-minute to 10-minute intervals), indicating a stronger
leverage effect over longer time windows. From a practical standpoint, the estimated z; value of —0.0748 in
the LRG model with 1-minute data indicates that a 1% negative return exerts a 7.48% greater impact on
conditional volatility than an equivalent positive return, while the corresponding 6; of —0.0426 shows RV
measures increase about 4.26% more for negative returns. This dual effect intensifies at lower frequencies,
with 7; reaching —0.0836 and &, reaching —0.0533 for 10-minute intervals, suggesting that prolonged negative
trends captured by lower-frequency data significantly exacerbate both conditional volatility and RV
asymmetry—a crucial finding for risk managers monitoring multi-day market stress conditions. This reflects
how market participants process and react to negative information over different time horizons, with more
sustained selling pressure emerging in longer timeframes.

The inclusion of jump components in LRG-CJ systematically reduces the leverage effect in the
volatility equation (z; becomes less negative by 0.0074 to 0.0108 across frequencies), suggesting continuous
jumps partially offset asymmetric volatility responses. Conversely, the RV equation’s leverage parameter
(07) intensifies in LRG-CJ (more negative by 0.0039 to 0.0114), indicating discontinuous jumps amplify
RV’s sensitivity to negative returns. This divergence is most pronounced at lower frequencies (10-minute),
where z; values nearly converge between models while J; differences peak, implying jumps dominate RV
dynamics in lower-frequency data. The results align with theoretical expectations: jumps redistribute leverage
effects, weakening them in conditional volatility while strengthening them in RV, with frequency-dependent
magnitudes reflecting competing discontinuous jump influences. These findings support the results of [27]
in their analysis of the Heterogeneous Autoregressive (HAR) model.

The differential behavior between z; and &; parameters reveal important temporal dynamics in market
responses: while z;captures the immediate overreaction of conditional volatility to negative returns, &;
reflects the more gradual incorporation of these effects into RV measures. This lagged transmission
mechanism enables algorithmic trading systems to optimize strategies by initially responding to z; signals
during market shocks, and then progressively adjusting positions as ¢; confirms the sustained volatility
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impact, particularly valuable when the 10-minute &; shows more persistent effects than 1-minute readings.
For instance, a 2% market drop triggers instant volatility alerts via z;, but prudent algorithms would await &;
stabilization in subsequent 5 to 10 minutes windows before re-entering positions, thereby avoiding
overtrading during transient spikes while capitalizing on more reliable RV signals. This dual-parameter
approach effectively bridges short-term market overreactions with medium-term volatility reality, enhancing
both risk management and profitability in high-frequency environments.

In the LRG-CJ model, the negative estimates of the jump component parameter (y,), such as the value
of —0.0899 for 1-minute RV, reveal that discontinuous jumps contribute disproportionately to volatility
persistence. Economically, each 1% increase in the jump component reduces conditional volatility by
approximately 9%, reflecting the characteristic of market jumps as short-lived shocks that decay more rapidly
than continuous volatility components. This finding substantiates the importance of decomposing RV into
continuous and jump components for derivative pricing applications, where jump risks require distinct
hedging strategies.

Table 2. Estimation Results of the Key Parameters for the LRG and LRG-CJ Models on the TOPIX Data

Parameter
(51 T2 V1 Y2 9 5,
LRG with RV 1-min
Mean -0.0748 0.0199 0.6125 - —-0.0426 0.0479
SD 0.0074 0.0045 0.0501 - 0.0043 0.0029
LB -0.0901 0.0124 0.5153 - -0.0509 0.0425
uB -0.0617 0.0296 0.6991 - -0.0343 0.0539
ESS 1250.8 2026.3 35.1 - 2617.8 655.5
LRG-CJ with RV 1-min
Mean -0.0674 0.0327 0.8070 -0.0899 —-0.0465 0.0254
SD 0.0074 0.0050 0.0459 0.0527 0.0039 0.0024
LB -0.0816 0.0226 0.7211 —-0.1950 -0.0542 0.0208
UB -0.0536 0.0420 0.8968 0.0105 —0.0390 0.0300
ESS 1555.2 847.1 33.7 165.8 2681.0 1826.5
LRG with RV 5-min
Mean -0.0780 0.0261 0.6231 - —-0.0569 0.0484
SD 0.0085 0.0055 0.0409 - 0.0050 0.0033
LB -0.0952 0.0158 0.5405 - —0.0660 0.0421
UB -0.0622 0.0370 0.7010 - -0.0464 0.0552
ESS 1554.0 2506.4 39.4 - 2462.5 1252.6
LRG-CJ with RV 5-min
Mean -0.06719 0.0354 0.6443 0.0279 -0.0626 0.0394
SD 0.0083 0.0058 0.0516 0.0683 0.0051 0.0033
LB -0.0830 0.0245 0.5499 -0.1054 -0.0725 0.0328
uB -0.0506 0.0467 0.7412 0.1567 -0.0526 0.0457
ESS 1889.9 1910.0 37.2 114.5 1927.9 1234.4
LRG with RV 10-min
Mean -0.0836 0.0269 0.4840 - -0.0533 0.0615
SD 0.0087 0.0062 0.0411 - 0.0059 0.0041
LB -0.1010 0.0148 0.4095 - -0.0647 0.0535
UB -0.0671 0.0387 0.5689 - -0.0419 0.0698
ESS 1417.3 2404.1 35.7 - 2660.4 872.4
LRG-CJ with RV 10-min
Mean -0.0821 0.0361 0.5155 0.0482 -0.0647 0.0396
SD 0.0092 0.0068 0.0458 0.0559 0.0062 0.0039
LB -0.1004 0.0231 0.4186 —-0.0599 -0.0765 0.0318
uB -0.0644 0.0496 0.5974 0.1624 -0.0525 0.0468
ESS 1737.0 1079.8 449 169.7 2846.2 2107.1

3.2 Model Selection

Table 3 presents the log-likelihood values and four information criteria for assessing the fitting
performance of the LRG and LRG-CJ models based on three RV measures. Models with better performance
can be seen through the criteria dominance that have lower values. By considering each case of the RV
measure, the LRG-CJ model is superior only in the use of 1-minute RV data. Moreover, overall, the
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application of the RV data provides evidence of the superiority of the LRG-CJ model. These findings not
only highlight the importance of incorporating jump components in RV modeling, particularly for high-
frequency data applications, but also support three key studies: [26] on HAR model jump dynamics, [28] on
jump magnitude in total price variance, and [29] on jumps in Heston stochastic volatility model.

Table 3. Log-likelihood (LL) and Information Criteria Values

Data Model LL AlIC ABIC BIC CAIC
RV 1-min LRG -2526.6 5073.1 5107.2 5128.9 5138.9
LRG-CJ -2337.9 4697.9 4735.3 4759.3 4770.3
RV 5-min LRG -2846.9 5713.8 5747.9 5769.6 5779.6
LRG-CJ -2885.4 5792.7 5830.1 5845.1 5865.1
. LRG -3189.8 6399.6 6433.6 6455.4 6465.4

RV 10-min
LRG-CJ -3233.7 6489.3 6526.8 6550.7 6561.7

3.3 Forecast Evaluation

The primary objective of volatility modeling is not only to find the model that best fits historical data
but also to generate accurate forecasts for future periods. Thus, the evaluation process should not stop at
analyzing the model’s in-sample fit to the entire dataset. Out-of-sample performance assessment becomes an
essential step to measure how reliable a model is in predicting volatility outside the data sample used for
estimation [30].

Testing the accuracy of out-of-sample volatility forecasting relies on the use of statistical loss
functions. These functions quantify the forecasting error, which represents the difference between the actual
volatility and the forecasted volatility. Consequently, the accuracy of the out-of-sample forecast can be
analyzed, where a smaller value indicates the most accurate forecast.

Since no single accuracy measure is considered superior for comparing various volatility models [31],
this study adopts three different goodness-of-fit measures commonly used in the relevant literature [32]: the
Mean Squared Error (MSE), mean absolute error (MAE) and Mean Absolute Percentage Error (MAPE). The
formula for calculating these three approaches are as follows:

of-5¢

2
o

MSE = % ?:1(0-['2 - 6t2)/\21 MAE = %2?:1'0-1? - 6-\132" MAPE = % ?:1

: (22)

where o7 represents the true volatility, 67 is the forecasted volatility, and n is the total number of forecasts.

Although the calculation of forecast error implicitly assumes that RV is the true volatility value, in
reality, RV is merely an approximation. To address this, the study approximates the true (daily) volatility by
using five-minute RV. The selection of this measure is supported by evidence from studies in [33], [34],
which showed its superior performance over alternative measures within the context of GARCH models.

For each LRG-type model, this study used the observations from 15 November 2011 to 30 December
2011 to perform the one-day-ahead volatility forecasts using the recursive method. Forecasting is estimated
through three RV measures. As displayed in Table 4, we have compared the models via three loss function
to select the model with the most accurate forecasts.

Table 4. Evaluations of Volatility Forecasts for One-Day Out-of-Sample Using Loss Functions

Loss RV 1-min RV 5-min RV 10-min
Function LRG LRG-CJ LRG LRG-CJ LRG LRG-CJ
MSE 2.290 2.626 1.965 1.575 1.878 1.463
MAE 1.422 1.541 1.310 1.158 1.263 1.096
MAPE 3.788 4,332 3.239 2.607 3.128 2.450

In the out-of-sample forecasting analysis (Table 4), the LRG-CJ model demonstrated significant
superiority when using 5-minute and 10-minute RV data. However, during the same period, the standard
LRG model performed slightly better when employing 1-minute RV data. This suggests that, for predictive
purposes within this timeframe, the “CJ” components was more effective in capturing volatility dynamics at
lower data frequencies.
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The observed performance discrepancies—where LRG-CJ excels with 1-minute RV data in full-
sample fitting but outperforms in volatility forecasting with 5-minute and 10-minute RV data in out-of-sample
tests—Ilead to a key conclusion: the superiority of the “CJ” decomposition in RV data depends on the
performance objective. These inconsistent results likely stem from the distinction between a model’s ability
to fit historical data (in-sample fit) and its capacity to predict unseen data (out-of-sample forecast), where
market conditions in each period may exhibit distinct characteristics.

VaR has emerged as one of the most widely used methods for market risk estimation. As defined in
[35], VaR represents the maximum potential loss over a specified t-day holding period, calculated at a (1-
a)% confidence interval. Building on this foundation, the current study further examines the application of
volatility forecasts in calculating risk measures, with particular focus on VaR estimation. VaR is computed
according to the formula:

VaR,(t) = Nq6, (23)
where N, represents the quantile of Normal distribution N(0,1).

The evaluation of VaR model performance has led to the development of various testing
methodologies. Existing literature classifies backtesting procedures into two distinct categories: statistical
hypothesis-based backtesting and loss-function-based evaluation. Statistical backtesting approaches
primarily assess the accuracy of VaR estimates, yet this framework lacks the capacity for comparative model
ranking. In contrast, loss-function-based evaluation incorporates both the frequency and magnitude of VaR
exceptions. This methodology enables financial regulators/supervisors and risk managers/firms to establish
a model hierarchy, where preference is given to specifications that minimize aggregate loss metrics.

Further developments in VaR validation methodologies include the approach introduced by Lopez,
which focuses on evaluating the accuracy of VaR estimation. This method was later refined by Sarma,
Thomas, and Shah, who proposed modifications to enhance its effectiveness. In their framework, a loss
function is calculated for each analyzed period based on the corresponding rate of returns, following the
formula specified below [36]:

, . ) . _ (14 (VaR; — R,)? ifR, <VaR,
Regulator’s loss function: Lopez’s Quadratic (RQL) = { 0 ifR, > VaR, (24)

. ) . . _ (VaRt - Rt)z lth < VaRt
Firms’s loss function: Sarma, Thomas, and Shah (STS) = { —0.6VaR, ifR, > VaR, (25)

For the competing models, we compute the loss functions at both the 1% and 5% significance levels.
The optimal model is determined by selecting the specification that yields the minimal loss function value.
The corresponding results for each RV measure are presented in Table 5.

Table 5. Results of RQL and STS Loss Functions Test

Loss RV 1-min RV 5-min RV 10-min
Function LRG LRG-CJ LRG LRG-CJ LRG LRG-CJ
% VaR 1 5 1 5 1 5 1 5 1 5 1 5

ROQL  7.72% 4.41% 8.42% 510% 7.12% 4.13% 6.04% 3.42% 6.76% 3.98% 571% 3.47%
STS 6.48% 3.21% 7.16% 3.95% 6.12% 3.07% 5.04% 2.32% 5.76% 291% 4.71% 2.42%

From a regulatory point of view, the RQL function emphasizes strict adherence to VaR thresholds,
especially at the 1% significance level, where underestimation of risk would have severe systemic
consequences. The results show that LRG-CJ consistently outperforms LRG for both 5-minute and 10-minute
RV measures, with lower RQL values (e.g., 6.04% vs. 7.12% at 5-minute RV, 1% VaR). This suggests that
incorporating CJ components improves the accuracy of risk estimation when volatility is sampled at lower
frequencies. However, for 1-minute RV, the standard LRG model yields better performance (7.72% vs. 8.42%
at 1% VaR), likely due to noise in the very high-frequency data that complicates jump detection. The 5%
VaR level universally shows lower RQL values, confirming that the model performs better under less extreme
market conditions. Regulators should prioritize LRG-CJ for 5- and 10-minute RV applications, but may prefer
the simpler LRG for high-frequency settings.

For financial firms, the Sarma-Thomas-Shah (STS) loss function provides a more balanced view,
weighing the frequency and magnitude of VVaR violations to optimize capital allocation. Like the RQL results,
LRG-CJ dominates for both 5-minute and 10-minute RVs, providing the lowest STS losses (e.g., 4.71% vs.
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5.76% at 10-minute RV, 1% VaR). This is in line with the company's need to minimize unexpected losses
while avoiding excessive capital buffering. However, at the 1-minute RV level, LRG again proved superior
(6.48% vs. 7.16% at 1% VaR), reinforcing that jump adjustments can render noisy high-frequency data
inappropriate. The smaller gap between STS and RQL values at the 5% VaR level (e.g., 2.42% vs. 3.47% for
LRG-CJ at 10-minute RV) suggests that firms face a milder trade-off for a moderate risk threshold. Firms
should adopt LRG-CJ for lower-frequency RVs, but stick with LRG for high-frequency trading desks.

The practical implications of these forecasting and VaR results are very important for financial
institutions and traders. The finding that the LRG-CJ model performs better with 5- and 10-minute data for
out-of-sample prediction and risk management, but not with 1-minute data, provides a clear, actionable
guidance for model selection based on data frequency. For risk managers focusing on daily VaR calculations
and intraday strategies that rely on slightly smoothed signals (e.g., 5- or 10-minute intervals), adopting the
LRG-CJ model can lead to more accurate risk assessments and better capital allocation, ultimately reducing
unexpected losses. Conversely, for ultra-high-frequency trading desks operating at the 1-minute level, the
standard LRG model remains the more robust and parsimonious choice, as the noise in the data at this
frequency outweighs the benefits of jump decomposition. This frequency-dependent performance
underscores the critical importance of aligning model complexity with the specific characteristics of the
available data to achieve optimal practical outcomes.

4. CONCLUSION

This study compared the LRG and LRG-CJ models in modeling financial asset volatility using TOPIX
data. The results show that integrating continuous and jump components significantly improves volatility
modeling accuracy, forecasting, and Value-at-Risk estimation. A key and novel contribution is the first
empirical application of the LRG-CJ framework, which demonstrates frequency-dependent performance:
while it fits ultra-high-frequency (1-minute) data better in-sample, its forecasting and risk estimation are most
effective at 5- and 10-minute intervals.

Practically, these findings provide guidance for implementation in financial systems. The LRG-CJ
model is particularly suitable for risk management and trading strategies that rely on lower-frequency data,
where noise is reduced and jump dynamics are better captured. For implementation, model calibration should
prioritize out-of-sample forecasting accuracy and ensure convergence diagnostics in parameter estimation.

Limitations remain, including the model’s sensitivity to high-frequency market noise and
computational challenges in estimation. Future work could refine jump-detection techniques, extend the
framework to multivariate settings, and test robustness across different asset classes. In sum, this study
contributes a novel empirical framework that enhances volatility modeling by explicitly incorporating
continuous and jump components, offering both theoretical advancement and actionable value for financial
risk management.
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