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1. INTRODUCTION

The fixed point theorem (briefly FP) is a fundamental result in mathematical analysis, with extensive
applications across various fields. This broad utility has inspired significant research into extending and
generalizing the theorem. The Banach Contraction Principle (briefly BCP), introduced by S. Banach in 1922,
serves as the foundation of FP theory, and modern studies have explored more complex mappings and spaces.
Researchers have investigated FP theorems in generalized structures such as b-metric spaces (briefly bMS),
as seen in [1]-[3]. In bMS, the classical triangle inequality from metric spaces (briefly MS) is relaxed by
incorporating a constant s > 1, leading to a generalized inequality that still preserves the essential properties
of distance.

Another generalization of MS in which FP theorems have been studied is the modular metric space
(briefly MMS), introduced in [4]-[5]. As defined in [6], a modular is a functional on vector spaces. The
concept of MMS generalizes both MS and modular spaces by extending the theory of MS, and a FP theorem
for contractions in the framework of MMS was obtained in [7] as the basis of their structure. Further
developments of this theorem in the same framework were presented in [8]-[12]. Moreover, various studies
on FP theorems in generalized MMS have been conducted in [13]-[21]. In [22], the notion of complex valued
MMS was introduced, and a generalization of The BCP was established. Building on this, [23] extended the
framework by proving Meir-Keeler’s FP theorem.

In [24], a space more general than both bMS and MS, known as a modular b-metric space (briefly
MbMS), was introduced. Similar to the concept of MMS, this space extends the theory of bMS by
incorporating a modular. In the same work, some FP theorems for ordinary contraction mappings were
established, along with their applications to systems of linear equations. Subsequently, some common FP
theorems for two self-mappings, as well as results for a self-mapping in the framework of MbMSs were
established in [25]. Furthermore, there are developments related to FP theorems in extended MbMSs [26]. In
addition, studies have also explored Generalized F-Contraction mappings, both in the context of MS [27] and
MbMSs [28]. On the other hand, [29] introduced the concept of MbMSs also with a different formulation of
the triangle inequality axiom compared to [24]. In the same work, FP theorems for mappings satisfying a
contractive type condition were also established. Building on this space, [30] proposed the notion of modular
b-gauge spaces, which are more general than MbMSs, and obtained several FP theorems to set-valued
mappings. Subsequently, [31] presented some common FP theorems for set-valued mappings in modular b-
gauge spaces, thereby generalizing the result in [30].

Along with the emergence of various generalizations of MS, the development of more general types
of mappings than contraction mappings has also influenced the advancement of FP theory. Notable examples
include non-expansive mappings discussed in [32] and pointwise contraction mappings presented in [33].
Another important generalization is the concept of multivalued contraction mappings, introduced in [34],
where some FP theorems for such mappings in MS were also established. Building on this, in [35],
generalized multivalued non-expansive mappings are presented along with the corresponding FP theorems.
In the framework of bMS, a generalization of set-valued contraction mappings with their FP theorems was
established in [36], while a generalized common FP for such mappings was provided in [37]. Moreover,
multivalued mappings satisfying a nonlinear quasi-contractive condition in bMS were investigated in [38],
where a corresponding FP theorem was also established. These advancements aim to adapt the theory to
increasingly complex mathematical and real-world problems, demonstrating its enduring significance and
versatility.

Despite various advancements in the study of multivalued mappings, research on FP theorems for such
mappings within MbMSs remain limited. For instance, [30] and [31] established FP and common FP
theorems for set-valued mappings in modular b-gauge spaces, which generalize the MbMSs introduced in
[29]. However, no prior work has investigated FP theorems for multivalued mappings using the Hausdorff
distance within the specific framework of MbMSs introduced in [24]. Previous studies have predominantly
focused on multivalued mappings in other frameworks, such as MS in [39], bMS in [40]-[42], and MMS in
[43]-[45]. In this paper, we extend FP theorems for multivalued mappings previously established in bMS
[42] and MMS [44] to the more general framework of MbMSs [24]. The paper aims to develop and prove
new FP theorems for multivalued contraction mappings within this context. To support and illustrate the
applicability of our results, we also provide a concrete example and an illustrative application.
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2. RESEARCH METHODS

This research utilizes a literature study method, starting with an examination of articles on FP theorems
for multivalued mappings in bMS. Subsequently, we explore the concepts of MMS and MbMSs as a
foundation for developing FP theorems for multivalued mappings in MbMSs.

We outline the preliminary concepts and definitions necessary for establishing the main results of this
paper. We begin with the definition of MbMSs, as introduced in [24], which extends the classical notion of
bMS by incorporating modular structures. This generalization provides a flexible framework for analyzing a
broader class of mappings and FP theorems.

Definition 1. [24] Let X denote an arbitrary nonempty set, and let s € R with s > 1. A function
w: (0,00) X X X X — [0, 0] is called a modular b-metric (briefly MbM) on X if the following three axioms
hold:

(Bl) wy(x,y) =0forallx,y e Xand A > 0 ifand only if x = y/;

(B2) m(x,y) = w(y,%) forall 5,y € Xand 1 > 0;

(B3) w1, (x,y) < s[w(x,2) + @, (y,2)] forall x,y,z € Xand 4, u > 0.

Later, the pair (X, @, s) is called a MbMS. Furthermore, if condition (B1) is replaced by
(B1) @ (%,%) = 0forall A > 0and x € X,
then @ is called a pseudomodular b-metric on X.

It is clear that every MbM @ is also a pseudomodular b-metric. Further, if @ is a pseudomodular b-
metricon X and 0 < u < 4, then based on Axioms (B1"), (B2), and (B3), it follows that for all x,y" € X,

@ (% Y) < sl@p,(3,%) + @, X)] = s @, %) = s @ (%, Y), (D
which shows that w is increasing with respect to s, as described in Eq. (1).
To illustrate the concept of a MbMS, consider the following example.
Example 1. Let X = [0,1] and @: (0, 0) X X X X — [0, o] be a function defined by

Ix —y?
i

w/’l()S' Y) =
forall x,y € Xand A > 0. Then, (X, @, 2) isa MbMS.
Next, let (X, @,s) be a MbMS and x° € X. The modular set in [24] is defined as

Xo(3°) = X = {>s € X: lim @, (x,x°) = 0}-

The pair (X, @,s) is also a MbMS. For convenience, instead of writing (X, @, s), we denote the
space simply as X. In the following discussion, we focus on MbMSs of the form X,;. We now present the
relevant definitions within the framework of X.. The notions of convergence, Cauchy sequences, and
complete spaces are established based on [46], which are more general than those in [24], thereby enabling
the framework to support broader theoretical development and applications. Moreover, the definition of
closed sets is constructed following the framework presented in [46], while the definition of bounded sets is
developed based on [47].

Definition 2. Let X, be an arbitrary MbMS.

1. A sequence {x,} S X, is said to be @w-convergent to x € X, if there exists A > 0 such that
@3 (X, %) = 0asn — oo, In this case, x is called the w-limit of {x,,}.

2. A sequence {x,} € X is called a w-Cauchy (briefly w-C) sequence if there exists 2 > 0 such
that @, (X, X;m) = 0asn,m — oo,

3. A MbMS is said to be w-complete if every @w-C sequence in X; is w-convergent, and its w-limit
belongs to X.,. Specifically, for some A > 0, if @, (x,,X,») = 0 as n,m — oo, then there exists
X € X such that @, (x,,,X) = 0asn - oo.

4. AsetC < X, is called w-closed if C contains all w-limits of @w-convergent sequences in C.
5. AsetC € X, is said to be w-bounded if



944 Hartono et al. FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS IN MODULAR ...

85(C) = sup{ @ (x,¥):x,y € C} < oo,

Now, let us recall the concept of a multivalued mapping. Let X be an arbitrary nonempty set. A mapping
T:X — 2% is called a multivalued mapping if each element in X is mapped to a subset of X rather than a single
point. From [48] and [49], the FP for such a mapping is defined as follows.

Definition 3. Let X denote an arbitrary nonempty set, and let 23 the collection of all subsets of X. A mapping
T: X — 2% is said to have a FP if there exists x € X such that x € T(x). In this case, x is called a FP of T.

3. RESULTS AND DISCUSSION

Let X be an arbitrary MbMS, and let M € X_,. The following notations represent specific collections
of subsets of X:

P(M) ={Y S M:Y # 0},
P,(M) = {Y € P(M) : Y is @ -bounded},
P,(M) ={Y € P(M) : Y isw-closed},

CB(NM) = Pp(M) N Py (M).

The following definitions extend several well-known concepts from bMS, particularly those related to
the Hausdorff distance, into the framework of MbMSs, based on the formulations presented in [42] and [50].
These extensions adapt the notions of proximity and separation between subsets in the context of MbMSs.

Definition 4. Let X bea MbMS and M € X_.
1. The mapping D: (0, ) X CB(M) X CB(M) — [0, ) is defined by
D, (A B) = inf{w;(x,y):x € A,y € B},
forall A, B € CB(M) and A > 0. Furthermore, if x, € X,;, we denote D, ({X,}, B) by @; (X, B).
2. The mapping p: (0,) X CB(M) X CB(M) — [0, «) is defined by
pa(A,B) = sup{w, (x,B):x € A},
forall £,B € CB(M) and 1 > 0.
3. The mapping H: (0, ©) X CB(M) X CB(M) — [0, o) is defined by
Hy (4, B) = max{p;(4,B), pA(B, A)},
forall £,B € CB(M) and 1 > 0.

The mappings established in Definition 4 yield the following properties. First, for all A,B € CB(M)
and 1 > 0, we have

D;(A,B) < pa(A,B) < H;(4,B). ()
This further implies the inequality
@;(x,B) < pa(4 B) < Hy(4 B), 3)
forall x € Aand A > 0. Next, when B € CB(M) and A > 0, we have
@y (x,B) = inflw; (x,¥): ¥ € B} < ma (x,), (4)
for all x € X Lastly, we find the symmetry property of H, that is
Hy(A,B) = Hy(B, A), ()

forall A, B € CB(M)and A > 0.

Based on [42], [44], and [51], these results establish fundamental relationships among the distance functions
D, p, and H in MbMSs, which will be useful in proving the following results.

Lemma 1. Let X be an arbitrary MbMS and M < X. Then
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1. forallx,y € X5, 4, u>0,and A € CB(M),

D%, 4) < slan(x,y) + @, (v, A)], (6)
2. forallx € X4, A,u>0,and & B € CB(M),
D (5 A) < s[@(x,B) + Hy (B, A)]. 7

Proof.
1. Letx,y € Xy, 4, u > 0,and A € CB(M). Based on Axiom (B3) in Definition 1, it follows that
@+ (%,2) < s[ma(x,Y) + @ (v, D]
for all 2 € A. As a result, we have
inf{wlw()g, A):4 € A} < inf{s [w,l(x, Y) + @, (Y, a)]: 4€ A},
& inflwy,,(x,4) : 2 € A} < sw(x,y) + sinf{w, (v, 4):2 € A},
S Wy X4 < s [@(xy) + @, D]
2. Letx€Xy A u>0,and A B € CB(M). From point (1), we have
DK < s[m(xy) + @, D),
for all y € B. Thus, based on Eq. (3), it follows that
W+ (% A) < s[@(x,Y) + Hu (B, A)].
As a result, we have
@4 (5 A) = inf{@y,, (5 Y, K): Y € B}
< inf{s [zzrl()g, y) +H,(B, A)]: y € B}
= s[@(x,B) + H,(B,A)]. m
LLemma 2. Let X, be an arbitrary MbMS, 1 > 0,and M < X. If A € CB(M) and x € X, then
x4 =0 x€A

Proof. If x € A, then @, (x, A) < @, (%, %) = 0, S0 @, (x, A) = 0. Conversely, if @, (x, A) = 0, then for all
n € N, there exists a,, € A such that @, (%, 4,,) < % Thus, @, (x,4,) = 0 as n — oo. In other words, {a,,} is
w-convergent to x. Since A is w-closed, we conclude that x € A. m

The following lemmas provide some properties of the function H. The lemmas show that H satisfies
the conditions required to be a MbM.

LLemma 3. Let X, be an arbitrary MbMS and M < X_,. Then for all A,B € CB(M) and 1 > 0, we have
H)y(4,B) =0 A =B.

Proof. Let £, B € CB(M) and A > 0. If A = B, then by Lemma 2, we have @;(%,B) = 0 and @;(x, £) = 0
forall x € A = B. As aresult, we have p; (4,B) = 0 and p;(B, A) = 0, so that

H,(4,B) = 0.
Conversely, if Hy(4,B) = 0, then p, (4, B) = p,(B, A) = 0. We consider the following two cases

1. Case l. Letx € A. Since p;(4,B) = 0, it follows that @; (x,B) = 0. By Lemma 2, we have x €
B, so A € B.
2. Case 2. Let x € B. Since p;(B, &) = 0, it follows that @, (%, A) = 0. By Lemma 2, we have x €
A, s0B C A
Therefore, we conclude that A = B. m

LLemma 4. Let X be an arbitrary MbMS and M € X;.. Then
Hy.+u (& @) < s[H,(A4,B) + H,(B, D)), (8)
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forall £,B,¢ € CB(M) and A, u > 0.
Proof. Let A,B,C € CB(M) and A, u > 0. Based on Lemma 1, we have
@1 (8, €) < 5[ (2, B) + H, (B, 0)] (©)
foralla € A and
W+u (2 A) < s[wy(¢,B) + Hu (B, A)] (10)
for all ¢ € €. As a consequence of Egs. (3) and (9), we obtain
Pr+u(K @) = inflwy,, (7,0): 4 € A}
< inf{s[@;(#,B) + H,(B,0)]: 2 € A}
= sinf{w,(7,B):4 € A} + s H,(B, )
= s[pa(4,B) + H,(B,0)]
< s[H,(4,B) + H,(B,0)].
Similarly, using Egs. (3), (5), and (10), we derive
Preu (€ K) = inflwy,, (¢, K):¢ € €}
= inf{w,+1(¢, A): ¢ € ¢}
< inf{s[w,(¢,B) + H,(B, A)]: ¢ € ¢}
=5 [p,(¢,B) + Hy(B,A)]
< s[H,(¢,B) + H;(B, A)]
= s[H,(4,B) + H,(B, 0)].
Thus, we have
Hasu (K ©) = max{ps4, (& ), pa+, (€, K)} < s[H (A B) + H,(B,0)]. m

Lemma 5. If X isa MbMS, M € X, 4 > 0, and &, B € CB(M), then for all e > 0 and y" € B, there exists
4 € A such that

w,(ay) <H (4, B) + ¢ (1)
Proof. Let € > 0 and y" € B. Using the infimum property, there exists a € A such that
@ @Y) =m0 <@, A +e
Based on Eq. (3), we have
w,(@y) <H;(A,B)+em

Therefore, based on Lemma 3 satisfies condition (B1), Eq. (5) satisfies condition (B2), and Lemma 4
satisfies condition (B3), we have the following theorem.

Theorem 1. If X5 isaMbMS and M € X, then (CB(M), H, s) is also a MbMS.

Note that if a sequence is w-convergent for some A > 0, it does not necessarily converge for all A > 0.
Therefore, the following definition is introduced, based on [47].

Definition 5. A MbM w on a MbMS X is said to satisfy the A,-condition if
lim @; (x,%) = 0,

for some A > 0 implies
lim @ (%, %) = 0

forall A > 0.
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Example 2. Let (X, @, 2) be the modular b-metric space given in Example 1. It can be shown that @ satisfies
the A,-condition.

The following discussion focuses on contraction-type multivalued mappings in MbMSs and their
corresponding FP theorems. We begin by defining multivalued mappings in this space, based on [42], [44],
and [45].

Definition 6. Let X be an arbitrary MbMS, M € X, and H be the mapping defined in Definition 4. A

mapping T: M — CB(M) is called a w-contraction mapping if there exist A > 0 and k € [Oi) such that for
all x,y" € M, the following inequality holds:

Hi(TX), TO)) < ki (xy). (12)
To illustrate this concept, we provide an example demonstrating a w-contraction mapping ina MbMS.
Example 3. Let (X, @, 2) be a MbMS given in Example 1. Let T: X — CB(X) be a mapping defined by

too- 24

for all x € X. Note that

X Y)’m(xﬂ y+ 1>}=1I>s—y|2.

HA(T(X):T(Y))zmaX{wA (E'E > o )

Thus, by taking k = %, we have k € [0, i) and
Hy(T®), TO) < ka3, y).

Hence, T is a w-contraction mapping.

Based on [42], [44], and [45], we extend the following theorem. The theorem is the main result
concerning multivalued mappings in the context of MbMSs. It establishes a FP theorem for @w-contraction
mappings defined on nonempty subsets of X;.

Theorem 2. Let X, be a MbMS such that @ satisfies the 4,-condition, X, is w-complete, and M € X is a
w-closed nonempty set. If T: M — CB(M) is a w-contraction mapping and there exists x, € M such that

@ (X0, Y) < oo, forall y € T(x,) and 1 > 0, (13)
then T has a fixed point.

Proof. Since T: M — CB(M) is a w-contraction mapping, there exist A > 0 and k € [Oi) such that

Hy(T®), TO)) < k i (x,Y)

forall x,y" € M. Note that 0 < k < i; it follows that 1 < é Consequently, there exists q € R such that

1< <1
q KS

Let x, € M be a point satisfying Eq. (13). Since T(x,) S CB(M) < P(M), it follows that T(x,) # @.
Thus, there exists x; € T(x0). If T(x0) = T(x1), then x; € T(x1) and we are done. Suppose that T(x,) #

T(x1). By applying Lemma 3, we obtain H;(T(%0), T(x1)) > 0. Since (q — DHa(T(0), T(x1)) > 0,
Lemma 5 guarantees the existence of x, € T(x;) such that

@1 (%1,%2) < Ha(TG0), TG1)) + (@ — DHA(TX0), T(1)) = q Ha(TG0), T(x1))-

Similarly, suppose that T(x,) # T(x2). Following the same reasoning as before, there exists x5 € T(x;) such
that

@y (X2,%3) < q HA(T(’SO;T()SZ))-
By continuing this process, we construct a sequence {x,} such that x,,,; € T(x,) and

wAOSrHl:’Sn) < q Hl(T(’Sn):T(’Sn—l))
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for all n € N. Since T satisfies Eq. (12), it follows that
@) Kn+1,¥n) < 9K @1 (Xn, Xn—-1)
for all n € N. By iterating this process, we obtain
@) (Rn+1,Xn) < 4K T3 (X Xn—1)
< (9%)* @1 (Xn-1, ¥n-2)
< (9)° @1 (X2, ¥n-3)

< (qx)" @1 (%1, %0) (14)

for all n € N. Next, we will show that {x,,} is a @-C sequence. By applying Axiom (B3) and Eq. (1), we
obtain the following inequality for all n,i € N:

w/l()Sn')SnH) =5 w&(’Sn: )Sn+1) +5° zD'i()Sn+1:)Sn+2) +5° wi()Sn+2')Sn+3) + -
2 22 23

+5' wa Kn+i-1Xn+i) (15)

2

We illustrate the validity of this inequality by considering the first few cases explicitly.

Fori = 1, we have

@ (X Xn+1) < 8 [w%()Sn')Sn) + w%(xn. >sn+1)] = sw%()Snr)SrHl)-
For i = 2, we obtain
@3 (Xn, Xn+2) < & [w%(xn. Xn+1) + w%()Sn+1r)Sn+2)]
<s w%()sn. Xn+1) + Szw%()Sn+1r)Sn+2)
=5 w%()Sn')Sn+1) +5°®@ 2 (Xn4 1 Xn+2)-

22

For i = 3, it follows that

wl()Sn')Sn+3) =s [wi()Sn' Xn+1) + w&(%n+1')5n+3)]
2 2

< Sw&()Sn')Sn+1) +5° [w&()Sn+11)Sn+2) + zD'&()Sn+2r)5n+3)
2 4 4

= Sw&()sn')ﬁwl) + szw&()Sn+1')Sn+2) + S3W&(’Sn+2r’5n+3)
2 4 8

= Swﬁ()Snr)Sn+1) + Szwi()Sn+1')Sn+2) + 53571()Sn+2')§n+3)-
2 22 23
By continuing this iterative process, Eq. (15) is established for all n,i € N.

Since for all i € N, we have

using this fact along with Egs. (1) and (15), we further obtain

@) X, Xn+i) < s’w 2 KX Xne1) + s’w 2 Kn+1,¥ne2) stw 2 Kn+2:Xne3) +
2i+1 2i+1 2i+1

+si+1w_L()Sn+i—1:)Sn+i) (16)

2i+1

for all n,i € N. By utilizing Egs. (14) and (16), it follows that
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@) (S, Xnr1) < 82(q)"@ 2 (X0,%1) + 82 (@)@ 4 (X0, %1) +5*(@0)" @ 2 (%0,%1)

2i+1 2i+1 2i+1

++ 51 (q) M Be 5 (x0,%1)

2i+1
= s2(qi)"@ 2 (X0, %1)[1 + sqK + (5qK)? + -+ + (sqK) ]
2i+1
< 82(q)"@ 2 (X0, %1)[1 +5qK + (5qK)* + -]
2i+1

foralln,i € N.Since1 < q< é we have that 0 < sqx < 1. Therefore, for all n,i € N, we obtain

s*(qr)" 0x)
w 3 ,X1).
T=sax gt

wl()Snv )Sn+i) <

Now, observe that 0 < qx < i < 1, so that (qx)™ — 0 as n — oo. Moreover, since x, € M satisfies Eq. (13)
and x; € T(x,), we have

w 1 (X0,%1) < 0.
2i+1

Hence, we conclude that

w/’[()Sn' )Sn+i) -0

asn,i — oo. Thus, {x,} is a {x,} is a @-C sequence. By the completeness of X, there exists x € X, such
that

@3 (Xn,%) = 0
asn — oo. Since M is w-closed, we have x € M. Then, applying Lemma 1, we obtain
@ (3 T6) = lim @3 (5 TC) < Jim s |2 5 T6s0)) + Ha (105, TG9) (a7
Since x,4+1 € T(x,,) for all n € N, it follows that
@105 T0s0) = nf | @105Y) < @205 e, (18)

forall n € N. Using Egs. (12), (17), and (18), we derive

(% TR) < lims [wg(x, Xn+1) + k @2 (X, x)]-
2 2

Since w satisfies the A,-condition and @, (x,,,%) = 0 asn — oo, it follows that

@1 (Xn,%) > 0
2
asn — oo. As a result, we obtain
@ (% TC) < lims [G@(Xr Xn1) + k @3 Gin, x)] =0.
2 2

Since @, (%, T(x)) = 0, applying Lemma 2, we conclude that x € T(x).m

Example 4. Let (X, @, 2) be a MbMS as defined in Example 1. From Example 2, we have that @ satisfies
the A,-condition. Based on the definition of X, consider x° = 0 € X. Then, we have

131
Xo = )gE)S:T—>Oas/1—>00.

Itis clear that X = X, which implies that X is @w-complete and w-closed. Moreover, by taking x, = 0 € X,
we obtain

T6i0) =T = [0.5]
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and for all y € T(x,) and A > 0,

X0 — y'I? z
ZUA()SO;}/):—)SOAV =y7<00.

This shows that x, = 0 satisfies Eq. (13). Now, let T be the @w-contractive mapping given in Example 3. Since

1 1
T(0) = [0,5] and T(1) = [5, 1],
where 0 € T(0) and 1 € T(1), it follows that 0 and 1 are both FPs of T.

If T: X& — X IS a single-valued mapping on a MbMS X, the following corollary directly follows as
a consequence of Theorem 2.

Corollary 1. Let X, be a MbMS, where @ satisfies the 4,-condition. Suppose that X is @w-complete, M <
X IS @ w-closed nonempty set, and there exists x, € M that satisfies (13). Consider a mapping T:M - M

for which there exists a constant k € [O, i) such that

T (TE),TY)) < k@),
for all x,y" € M. Then, there exists x € M such that x € T ().

Application to Integral Equation

In the section, inspired by [52] and [53], we give a typical application of FP methods to the study of existence
of solutions to integral equations. Briefly, we provide the background a notation. Let X = C ([0, a], R) be the
set of all real-valued continuous functions defined on [0, a], where a > 0, and define d.: X x X — [0, o) by

dx¥) = lllx = ¥1*ll = sup |x(t) —y(®)I?
te[o,a]

forall x,y € X. Then (X, d, 2) is a complete bMS. Next, let @: (0,0) X X X X — [0, o] given by
d(xY)
A

for all x,y" € X. Then (X, @, 2) is a w-complete MbMS and w satisfies the A,-condition. We consider the
following integral equation

Wy ()S' }/) =

5O =p(©) + [ 5w £(wx) du
0

where f:[0,a2] X R - R and p:[0,a] - R are two continuous functions. Moreover, S:[0,a] x [0, a] —
[0, o) is a function satisfying S(t,.) € L1([0,a]) forall t € [0, 4], i.e.,

a
f [S(t,w)| du < oo
0
forall t € [0, a].
Defined the operator T: X — X by
a
T&® =p@®) + J. St w)f(w,x(w)) du.
0

Then we prove the following existence result.

Theorem 3. Let X = C([0, a], R). Suppose that there exists x, € X satisfying Eq. (13) and a constant k €
[O, i) such that the following inequalities are satisfied:

(i) |f (e x(w) = f(wy(W)] < Vrlx(w) —y(w)] forallx,y € Xand v € [0,4]
i) |y st wd]| <V

Then the integral equation has a solution in X.
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Proof. Forall x,y" € X and t € [0, 2], we have

ITH® = TOO1? = [

f S W[ (wxW) - £(w yW)] du
0
a 2
< [ [ 5w xw) - feyon) du]
0
a 2
< [ f St w) Y 5w — y ()l du]
0
a 2
=¢z[ f St w |>s<w)—y(u>|2du]
0

a 2
<k f SEwW VX = Y1l dlr]
0

a 2
= Velllx = y1?lle U S(t,w) du’] -
0

Then, we obtain

T = TP lleo < Vel = Y121l

f 21S (t,w) du
0

[o0]

< kll1% = ¥1*]l -
As a result, it follows that

(T, TO)) < kDK Y).
By Corollary 1, Thasa FP. m

4. CONCLUSION

This study introduces multivalued mappings in MbMSs, focusing on contraction-type mappings. By
establishing the concept of Hausdorff distance in this framework, the study proves FP theorems for
contraction-type multivalued mappings. These findings confirm that the existence of a FP is guaranteed under
the following fundamental conditions: completeness of the space, closedness of the considered subset, and
satisfaction of the A.-condition of the MbM. Furthermore, the corollary of the main result is applied to
guarantee the existence of solutions to an integral equation. These results open new possibilities for further
developments in FP theory and its applications in various fields of applied mathematics.
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