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1. INTRODUCTION

A nation’s prosperity is reflected not only by economic growth but also by economic stability.
Maintaining stability in an economic play a crucial role in ensuring a predictable environment for businesses,
households, and policymakers to thrive. Economic stability is characterized by controlled inflation, stable
exchange rates, and sustainable fiscal policies, all of which contribute to long-term growth and improved
living standards [1]. This aligns with the Sustainable Development Goals (SDGs), especially Goal 8, which
emphasizes fostering inclusive, sustained, and sustainable economic growth, as well as ensuring productive,
full, and decent employment for everyone [2]. However, achieving and maintaining this stability is a complex
challenge, as it can be disrupted by various factors. One of the most significant threats to economic stability
is inflation, that can affects purchasing power, increases uncertainty, and distorts market efficiency [3].

Inflation refers to the rise in the prices of goods and services in an economy over a specific time frame
[4]. When inflation persists, it results in a reduction in the market value of a country’s produced goods and
services. In essence, inflation indicates how much the cost of a selected group of goods and services has
increased over time [5]. The country's economic growth is threatened by the persistent rise in inflation.
Consequently, fluctuations in the inflation rate can cause price instability and changes in market value, which,
in turn, impact the nation's gross domestic product [6]. This economic uncertainty can lead to reduced trade
activity and slower economic growth.

In Indonesia, inflation is still a major concern for the government and economic stakeholders due to its
significant impact on policy-making, market stability, and overall economic growth. Over the past few
decades, inflation in Indonesia has often experienced significant fluctuations. In the last 5 years, the highest
inflation in Indonesia reached 5.51% in 2022 and the lowest reached 1.68% in 2020 [7]. Such fluctuations
can occur anytime and anywhere, even under the worst conditions that cannot be controlled. Therefore,
forecasting future inflation rates is very important for the government and the business world as a basis for
determining economic policies and strategies [8]. For this reason, an appropriate method is needed to analyze
and manage inflation patterns, in order to forecast its future movements, thus enabling the formulation of
preventive policies to maintain economic stability. The combined application of traditional statistical and
econometric models, including the Autoregressive Integrated Moving Average (ARIMA) and the
Generalized Autoregressive Conditional Heteroskedasticity (GARCH), has been extensively utilized for
inflation forecasting [9]. ARIMA captures trends and historical dependencies, while GARCH models
volatility and dynamic variance changes. Thus, the ARIMA-GARCH model provides a more robust
framework for analyzing inflation patterns and assessing risks [10].

Previous studies have examined the effectiveness of the ARIMA-GARCH hybrid model in forecasting
inflation. For example, research by [11] found that the conventional ARIMA model provided a reasonably
accurate estimation of monthly inflation in Nigeria, with ARIMA(1,2,1) identified as the best-performing
model . Another study reported that the ARIMA model outperformed the ARIMA-GARCH hybrid, as
indicated by lower RMSE, MAPE, MAE, Theil, and BIAS values in forecasting inflation in Kenya [12].
Similarly, Qasim et al. (2021) highlighted that the conventional ARIMA model still exhibited
heteroskedasticity issues, as reflected in the significant lags observed in the ACF and PACF of squared
ARIMA residuals. As a result, the GARCH model was applied to capture the error component within
ARIMA, leading to improved predictive accuracy compared to the standalone ARIMA model [13]. These
findings reinforce that the ARIMA-GARCH model can enhance inflation forecasting accuracy by addressing
the heteroskedasticity issues commonly found in conventional ARIMA models.

While many studies have explored ARIMA-GARCH for inflation forecasting, none have specifically
applied it to Indonesian inflation using recent data. This study fills the gap by analyzing Indonesian inflation
using the most recent data, thus providing a more accurate picture of current economic conditions. This
approach evaluates the effectiveness of the model in capturing inflation volatility which contributes to the
advancement of knowledge on inflation prediction in the context of Indonesia's volatile economy. The results
of this research have the potential to enhance the development of monetary policies, support better strategies
for managing inflation risks, and promote the wider use of advanced forecasting methods in economic
decision-making.

This study aims to analyze Indonesian inflation using a quantitative approach, utilizing data from the
Bank Indonesia website covering September 2004 to August 2024. By employing RStudio and Minitab, the
study applies descriptive statistics, ARIMA modelling, and GARCH model identification to capture inflation
trends and volatility. The methodology involves stationarity testing, model selection based on AIC, and
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heteroscedasticity analysis to determine the most suitable forecasting approach. The effectiveness of the
models is assessed using MAPE and RMSE, ensuring accurate and reliable inflation predictions. The findings
contribute to financial forecasting techniques, supporting economic decision-making and policy formulation
in Indonesia.

2. RESEARCH METHODS

2.1 Autoregressive Integrated Moving Average (ARIMA)

The ARIMA model is an extension of the Auto Regressive Moving Average (ARMA) model,
specifically designed to handle non-stationary time series. While the conventional ARMA model assumes
that the time series under analysis is stationary, ARIMA addresses non-stationary data by transforming it into
a stationary series. This transformation is achieved through differencing denoted as (d), a process that
eliminates trends and seasonality by computing the differences between consecutive data points [14].

A stationary time series can be conceptualized as a combination of signal (the underlying pattern) and
noise (random fluctuations). The ARIMA model focuses on analyzing the signal component after separating
it from the noise, and it generates predictions for future time. As the name implies, the ARIMA model has
three main components, namely autoregressive, integration, and moving average, which are represented by
the autoregressive order. The fundamental concept of time series analysis indicates that the present value of
an observation (Y;) is affected by one or more past observation values (Y;). Typically, the autoregressive
integrated moving average model is denoted as ARIMA (p, d, q) and is formulated as follows [15].

(1-B)%, = u+®(B)(1 - B)Y, = u+ PB)Z(t) + O(B)s,, 1)
®(B)=1—¢1B—¢p,B*— -+~ ¢,BP, (2)
O(B) =1+ 6,B+ 6,B* + -+ 6,BY, (3)

where @ (B) is an autoregressive operator with order p, and @ (B) is a moving average operator with order q.

ARIMA models are commonly estimated using either the Maximum Likelihood (MLE) method or the
Conditional Sum of Squares (CSS) approach to derive parameter estimates [16]. Nevertheless, selecting the
appropriate values for parameters p and g in an ARIMA model is guided by the patterns observed in the
autocorrelation function (ACF) and the partial autocorrelation function (PACF).

2.2 Generalized Autoregressive Conditional Heteroscedasticity (GARCH)

ARCH (Autoregressive Conditional Heteroskedasticity) is a model designed to analyze volatility in
time series data, especially when residual variance is not constant (heteroskedasticity). It was introduced to
capture unstable price movements, where significant fluctuations are typically followed by further large
shifts, and minor changes tend to be succeeded by similarly small ones. The fundamental equation for the
ARCH model can be expressed as follows:

0f =g+ ar€fq + -+ agetg. (4)

The data variance at time period ¢; o? id modeled as a function of the coefficient a, ; the ARCH
parameter «; ; and the squared error term from the previous period eZ ;. The ARCH model only considers
the squared residuals from the previous period, while the GARCH model adds an autoregressive component
by considering the variance from the previous period. Thus, the GARCH model is more flexible and capable
of handling more complex volatility compared to the ARCH model [17].

GARCH (Generalized Autoregressive Conditional Heteroskedasticity) is a statistical model used to
analyze and forecast volatility (variation) in time series data, especially within financial applications. This
model was developed to address conditional heteroskedasticity, which refers to situations where the variance
of errors in the model changes over time. GARCH is particularly useful in modeling the volatility of financial
assets, such as stock prices, currencies, or commodities like gold, which often experience periods of both
high and low volatility [18]. The general form of the GARCH (p, q) model is as follows.

O-tz = Qp + Z?:l aigtz—p + Z?:l .Bio-tz—ql (5)
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where ¢ is the conditional variance, a, is the constant, s,_?_p is the residuals in period t — p, atz_q is the
conditional variance in period t — q, and «a;, B; is the ARCH, GARCH parameter.

2.3 Mean Absolute Error (MAPE)

MAPE (Mean Absolute Percentage Error) is a performance metric widely used in regression models,
valued for its clear interpretation in terms of relative error. It is particularly recommended for tasks where
sensitivity to relative variations is more critical than sensitivity to absolute variations. However, MAPE also
has several limitations. The most notable drawbacks are its restriction to strictly positive data by definition
and its inherent bias toward lower forecasts. MAPE aims to minimize or reduce the level of error in the
forecasting process. In forecasting, there is always a level of uncertainty that can leads to error value. The
MAPE can be calculated as follows [19].

100

MAPE = (=) gp, [P

Yt

: (6)
where y; and ; is the actual and predicted data at time t, and n is the number of data observations.

The characteristics of MAPE values that indicate prediction accuracy are as follow in Table 1 below.

Table 1. Interpretation of MAPE Values

MAPE Interpretations
MAPE < 10% Model has a high degree of forecasting accuracy.
10% < MAPE <20% Model's forecasting accuracy is good.
20% < MAPE <50% Model has sufficient predictive power.

MAPE > 50% Model demonstrates minimal predictive capability.

2.4 Root Mean Squared Error (RMSE)

Root Mean Squared Error (RMSE) is a metric used to evaluate model performance by measuring the
difference between observed values and model predictions, RMSE is calculated as the square root of the
average of the squared errors between the observed values y; and the predicted values (¥;). The formula used
to calculate RMSE is:

RMSE = [L50, (v = 90 ™

where y; and J, is the actual and predicted data at time ¢, and n is the number of data observations.

RMSE provides an indication of the magnitude of the average error produced by the model, with the
same units as the observed data. This metric is optimal for errors that are normally distributed (Gaussian), as
it minimizes the squared error, which aligns with the principle of maximum likelihood estimation (MLE) for
normal distributions [20].

2.5 Research Methodology

This type of research uses quantitative research methods. The data used in this study was obtained from
the Bank Indonesia website regarding inflation in Indonesia. The dataset consists of 240 monthly Indonesian
inflation data points from September 2004 to August 2024. The training data consists of 216 observations
covering the period from September 2004 to August 2022, while the testing data consists of 24 observations
from September 2022 to August 2024. There are two types of variables in this study: independent and
dependent variables. Based on the background and research objectives, the independent variable in this study
is the period (time), while the dependent variable is the inflation rate in Indonesia, expressed as a percentage
(%).

This research was conducted using RStudio [21] and Minitab. The analysis steps in this study include
descriptive statistics, GARCH model identification, and accuracy evaluation. Descriptive statistics involve
collecting data, creating descriptive statistics on the original data, and making a time series plot of the original
data. In the GARCH model identification stage, the data is divided into training and testing sets with a ratio
of 90%:10%. The stationarity of the training data in variance is identified, and if necessary, transformed
according to the appropriate lambda value. The stationarity of the transformed training data in mean is then
examined using ACF and PACF plots and the ADF test. The appropriate ARIMA model is identified based
on differencing order (d) and model selection criteria such as the Akaike Information Criterion (AIC). The
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best ARIMA mathematical model is formulated, and the presence of heteroscedasticity in the residuals is
tested using the ARCH-LM test. If heteroscedasticity is present, further ARCH/GARCH modelling is
conducted using transformed data and the selected ARIMA order. The appropriate ARCH/GARCH order is
determined, followed by significance testing, and the ARIMA variance model is formulated based on the
GARCH model obtained. The accuracy of the GARCH model is evaluated by comparing the original data,
ARIMA estimations, and ARIMA-GARCH estimations through visualization. The MAPE and RMSE values
of the training data are calculated for both ARIMA and ARIMA-GARCH models. The model is then tested
using the testing data, and the MAPE and RMSE values are calculated to assess its performance. The research
methodology is illustrated in Fig. 1 to provide a clearer understanding of the analysis process.

Differencing and
Start BoxCox
Transformation

No

Input data ”
set Yes Observe for ACF, ARIMA model Formulate the best
) PACF, and ADF identification ARIMA model

Make time series Divide into test
plot and Train ARIMA Model
('omp‘urc the plot of Formulate model
Identity MARE onigna; data, ARIMA variance Identify ARCH/
e visice ARIMAand fe— ) ccdon GARCH [*—] GARCH order
>f the training data ARIMA-GARCH i it
estimation

Evaluate the model
with testing data then
find MAPE and

RMSE values

Figure 1. Flowchart of Research Methodological Process

3. RESULTS AND DISCUSSION

3.1 Descriptive Statistics

One of the initial observations to determine general characteristics of the dataset is through descriptive
statistics. Table 2 below highlights these statistics for Indonesia's inflation rates on a monthly basis from
September 2004 to August 2024.

Table 2. Summary Results of Descriptive Statistics Inflation Rate in Indonesia
Variable N Mean  Variance Standard Deviation Median Minimum Maximum
Inflation rate 240 5.44 11.59 34 4,52 1.32 18.38

The average inflation rate in Indonesia is 5.44%, with a variance of 11.59% and a standard deviation
of 3.4%. Therefore, the highest inflation rate, recorded at 18.38% in November 2005, was attributed to a fuel
price hike policy during Susilo Bambang Yudhoyonao's presidency, leading to increased prices of goods and
necessities. Conversely, the lowest rate, at 1.32%, occurred in August 2020, driven by the economic
slowdown during the COVID-19 pandemic, which weakened purchasing power and suppressed inflation.
Fig. 2 illustrates these inflation rate fluctuations.
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Figure 2. Time Series Plot of Inflation Rate Data in Indonesia

The graph shown in Fig. 2 illustrates the monthly inflation rate in Indonesia across 240 time points from
September 2004 to August 2024. The plot reveals no clear upward or downward trend, yet the series is notably
non-stationary, with evident shifts in both mean and variance over time. Several sharp spikes are observed,
particularly in the early periods, where inflation surpasses 15%, indicating episodes of extreme volatility.
These fluctuations are not constant; periods of high variability alternate with more stable intervals, suggesting
the presence of volatility clustering. Overall, the inflation series demonstrates complex dynamic behavior,
with irregular movements and structural changes that evolve throughout the observed time frame.

3.2 Data Stationarity

The assumption of stationarity is fundamental in time series analysis, as it underpins the validity of
numerous statistical tests and forecasting models. A non-stationary time series, characterized by trends and
seasonal variations, can lead to biased parameter estimates and unreliable forecasts [22]. Therefore, ensuring
stationarity is a prerequisite for model construction, as many time series methodologies assume constant
statistical properties over time. To achieve this, appropriate transformations, such as detrending and seasonal
adjustment, must be applied to remove time-dependent structures before conducting any statistical analysis
or model estimation. The Box-Cox transformation is often applied to stabilize variance, particularly in cases
where non-stationarity arises due to heteroscedasticity. This transformation is particularly effective when the
estimated transformation parameter (1) deviates from 1, indicating the necessity of variance stabilization.

Lower CL Upper CL
x Lower CL Upper CL

10
{using 95,0% confidence) 020 2
Estimate 008 {using 25,0% confidence)
Estimate 108
s Lower @ 012 Lonercl 052
Upper @ 029 018 ovier )
pper . UppercL 136
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Rounded Value 1,00
016
6
g z
a o oM
& 2
&
4
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o Limit 008 Limit
50 -25 00 25 50 -2 -1 ] 1 2 3 4 5
A A
(a) (b)

Source: Minitab Output
Figure 3. Box-Cox Plot (a) Before (b) After Logarithm Transformation

As presented in Fig. 3, the rounded lambda (A) value is 0, indicating the necessity of a logarithmic
transformation, represented as log(Z;). Following the application of this transformation, the results of the
Box-Cox analysis yield a rounded lambda (1) value of 1, suggesting that the transformation has appropriately
adjusted the data distribution. This adjustment facilitates the application of subsequent statistical tests with
greater reliability and interpretability. Table 3 presents the descriptive statistics of the data after the
logarithmic transformation.

Table 3. Summary Results of Descriptive Statistics (Logarithm Transformation)
Variable N Mean  Variance Standard Deviation Median Minimum Maximum
Inflation rate 240 1.5275 0.3298 0.5743 1.5074 0.2776 2.9113




BAREKENG: J. Math. & App., vol. 20(2), pp. 0955-0970, Jun, 2026. 961

Subsequently, the stationarity of the mean is assessed using the Box-Cox transformed data by
examining the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots. These
plots serve as diagnostic tools to evaluate whether the time series data exhibit stationarity, thereby
determining the suitability of the series for further model development.

1.00- 1.00-
0.75- 0.75-
0.50- 0.50-
5 8
© o
] o
0.00 0.00 |_I|_'II|"'I|I'||'I
025+ . . . . -0.25+ . : . .
0 5 10 15 20 0 5 10 15 20
lag [1] lag [1]
(@) (b)

Source: R Output
Figure 4. (a) ACF Plot of Training Data, (b) PACF Plot of Training Data

In Fig. 4, the ACF pattern of the data exhibits a "dies down" behaviour, indicating that the time series
is non-stationary. Consequently, differencing is required to achieve stationarity. The ACF and PACF plots
following the first differencing, presented in Fig. 5, serve as diagnostic tools to evaluate whether the series
has attained stationarity after the transformation.

lag [1] lag [1]
@ (b)
Source: R Output

Figure 5. (a) ACF Plot for Differencing 1, (b) PACF Plot for Differencing 1

Based on Fig. 5, it is concluded that the data becomes stationary after applying first differencing to the
Box-Cox transformed series. Additionally, the Augmented Dickey-Fuller (ADF) Test and Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) Tests is widely utilized as a formal statistical method to asses stationarity. The
ADF test is a unit root test commonly used to determine whether a time series is stationary by evaluating the
presence of a unit root in the autoregressive model. A rejection of the null hypothesis, which assumes the
presence of a unit root (non-stationarity), confirms that the series is stationary. In addition to the ADF test,
the stationarity of the series is further examined using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test.
This approach is motivated by the findings of [22] which suggest that the KPSS test demonstrates superior
performance compared to the ADF test for both small and large sample sizes. Unlike the ADF test, which
assumes non-stationarity as the null hypothesis, the KPSS test assumes stationarity, providing a
complementary perspective in stationarity analysis. The results of the ADF and KPSS test are presented in
Table 4.

Table 4. ADF and KPSS Test
Statistics p-value Conclusion
ADF Test  -5.1302 0.01 Reject H, the series is stationary
KPSS Test  0.0495 0.1 Failed to reject Hy, the series is stationary

Based on Table 4 the results of the Augmented Dickey-Fuller (ADF) test indicate a p-value < 0.05,
providing statistical evidence that the series has achieved stationarity. The results of the KPSS test, presented
in Table 4, indicate a p-value of 0.1, which is greater than the significance level, leading to a failure to reject
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the null hypothesis of stationarity. Consequently, both tests yield consistent conclusions, confirming that the
data is stationary.

3.3 ARIMA Model Identification

The ARIMA model selection was carried out on the Box-Cox transformed data, which had been
subjected to a logarithmic transformation followed by first differencing (d = 1) to ensure stationarity. The
estimation results of the selected ARIMA model, including the optimal parameter specifications, are
presented in Table 5.

Table 5. Selection of the Best ARIMA Model
Model Parameters White Noise  Residual Normality AIC

ARIMA (1,1,0) Significant v X -259.94
ARIMA (1,1,1) Insignificant v X -261.74
ARIMA (1,1,2) Insignificant v X -259.74
ARIMA (0,1,1) Significant v X -263.18
ARIMA (2,1,1) Insignificant v X -259.75
ARIMA (2,1,2) Insignificant v X -257.98

As observed in Table 5, the ARIMA (0,1,1) model is identified as the optimal model based on the
significance of its parameters, the white noise characteristics of its residuals, and the lowest Akaike
Information Criterion (AIC) value. However, the assumption of residual normality is not satisfied, which is
likely attributable to the presence of autocorrelation in the model’s residuals. To further assess this issue, a
detailed examination of the residual distribution is conducted using a histogram, as illustrated in Fig. 6.

50-
40-

30-

df$y

20-

10-

T IIIII-—IIl-III-I I 1
-0.5 0.0 0.5

residuals
Source: R Output
Figure 6. ARIMA (0,1,1) Residual Normality Chart

The histogram of the residuals from the ARIMA (0,1,1) model indicates that the observed non-
normality can be attributed to an excessive concentration of values around zero, leading to a pronounced peak
and increased kurtosis. This phenomenon, known as leptokurtic, occurs when a distribution exhibits higher
kurtosis and more pronounced tails compared to a normal distribution. Despite this deviation from normality,
the residuals oscillate around zero, suggesting that the model's predictions closely align with the actual values.
Moreover, according to the Central Limit Theorem (CLT), the sampling distribution of the residuals can be
approximated as normal when the sample size is sufficiently large. Given this statistical property, minor
deviations from normality in the residuals do not necessarily undermine the validity of the model.
Consequently, the diagnostic criteria for the ARIMA (0,1,1) model are deemed satisfactory, supporting its
suitability for modelling Indonesia's inflation data. The parameters generated by the selected model, along
with their significance levels, are presented in Table 6.

Table 6. Parameter Estimation Results of Selected Models
Parameter  Coefficient Standard Error p-value AlIC
MA (1) 0.315634  0.068273 0.0000 -263.18

The mathematical equation for the estimation of the transformed ARIMA (0,1,1) model is represented in Eq.

(8).
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ZAZ = ZA;_l + ét - 0.315634ét_1, (8)

where Z; = In (Z;) (by A Box-Cox transformation), and &, is error.

3.4 Heteroscedasticity Test

In the previously estimated ARIMA model, it is assumed that the residuals follow a normal distribution
with a mean of 4 = 0 and a constant variance 2 (homoscedasticity). However, in economic time series
data, such as exchange rates, inflation, and stock prices, periods of high volatility often result in violations of
the homoscedasticity assumption. To assess the presence of heteroskedasticity, diagnostic testing is
performed on the squared residuals derived from the ARIMA model. Specifically, the squared errors (£2)
obtained from the ARIMA (0,1,1) model estimates serve as an empirical proxy for 2. The time series plot,
along with the ACF and PACF of these squared residuals, is presented in Fig. 7 to evaluate potential
autoregressive dependencies in volatility dynamics.

Quadratic Residual Plot
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Source: R Output
Figure 7. Plot of (a) Residual Squares (b) Residual ACF and (c) Residual PACF from ARIMA (0,1,1)

As shown in Fig. 7, the presence of significant lags beyond the critical thresholds in both the ACF and
PACF plots suggests autocorrelation in the squared residuals, indicating time-varying variance and potential
heteroskedasticity. To formally assess this, the ARCH-LM (Autoregressive Conditional Heteroskedasticity —
Lagrange Multiplier) test is applied. The null hypothesis of the ARCH-LM test states that no conditional
heteroskedasticity is present in the residuals of the ARIMA model. If rejected, this confirms the presence of
autoregressive volatility patterns, necessitating the incorporation of volatility modeling techniques. The
results of the ARCH-LM test for the residuals of the ARIMA (0,1,1) model are presented in Table 7.

Table 7. Lagrange Multiplier Test Results
Lag Order LM Test Statistics  p-value

4 558.9 0.0000
8 263.0 0.0000
12 155.7 0.0000
16 25.6 0.0427
20 19.4 0.4305
24 15.2 0.8887

The test results presented in Table 7 indicate that for lags 4 to 16, the p-values are lower than the
predetermined significance level (a« = 5%), leading to the rejection of the null hypothesis. This finding
provides statistical evidence of autocorrelation in the squared residuals of the ARIMA (0,1,1) model,
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suggesting the presence of heteroskedasticity and necessitating further modelling to account for volatility
effects. However, the non-significant p-values at lags 20 and 24 indicate that heteroskedasticity is not detected
at these lags. This pattern is characteristic of financial and economic time series data, where volatility tends
to fluctuate unevenly over time. Despite the presence of heteroskedasticity at certain lags, the analysis can
proceed while considering appropriate adjustments for volatility modelling.

3.5 GARCH Model

The ARCH (Autoregressive Conditional Heteroskedasticity) model is a commonly used method to
model variance in time series data that exhibits heteroscedasticity, assuming that the conditional variance is
influenced by the squared past residuals. However, the standard ARCH model has a weakness in describing
persistent volatility dynamics, as it only considers the squared past residuals without involving the conditional
past variance. To overcome this weakness, the GARCH (Generalized ARCH) model was developed by
adding the lagged conditional variance into the model, thus providing a more flexible and comprehensive
view of the volatility clustering pattern. Given the presence of heteroskedasticity in the residuals of the
ARIMA (0,1,1) model, the GARCH (1,0) and GARCH (1,1) specifications were selected based on the
patterns observed in the ACF and PACF plots, ensuring an appropriate characterization of the time-varying
variance structure.

Table 8. Parameter Estimation Results of GARCH (1,0) and (1,1) Models
Model Parameters Coefficient p-value ARCH LM Test AIC

GARCH (1,0) ;)1 8:(9);(5)2;; 8:888(2) Significant  0.23912
® 0004538 0.0791

GARCH (1,1) @ 0.553366 00000 Significant
B, 0432184 0.0002 '

As shown in Table 8, the GARCH (1,1) model exhibits insignificant parameter estimates, indicating
its limitations in capturing the volatility dynamics of the data. Furthermore, although the GARCH (1,0) model
demonstrates statistically significant parameters, it fails to fully eliminate the heteroskedasticity present in
the residuals of the ARIMA (0,1,1) model. Given these findings, alternative GARCH model specifications
were explored to better accommodate the observed volatility structure. The results of these additional model
evaluations are presented in Table 9.

Table 9. Parameter Estimation Results of GARCH (2,0) and (2,1) Models
Model Parameters Coefficient p-value ARCH LM Test AIC

w 0.010985  0.0018

GARCH (2,0) @ 0.125678  0.0387 Insignificant  0.064947
a, 0757438 0.0000
w 0.010985  0.0011

GARCH (2,1) 2 8:%;2;2 8:888(1) Insignificant  0.074207
B, 0.000000  1.0000

Based on the results in Table 9, the GARCH (2,0) model is identified as the most suitable specification
for addressing the heteroskedasticity present in the residuals of the ARIMA (0,1,1) model. This selection is
justified by the statistical significance of its parameter estimates, indicating its effectiveness in capturing
volatility dynamics. Consequently, the variance equation for the error term of the ARIMA (0,1,1) model
under the GARCH (2,0) specification is formulated in Eq. (9) as follows:

62 = 0.010985 + 0.125678¢7_; + 0.7574388%_,, 9)

where 62 is the estimated conditional variance, which accounts for time-varying volatility and addresses the
presence of heteroskedasticity in the residuals. Additionally, €2, : the squared residual from the ARIMA
(0,1,1) model lagged by one period, capturing the impact of past shocks on current volatility.
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3.6 Evaluation of ARIMA-GARCH Model

The performance assessment of the ARIMA-GARCH model is conducted using Mean Absolute
Percentage Error (MAPE) and Root Mean Squared Error (RMSE) metrics, which are derived from the model's
estimation results on both the training and testing datasets. These evaluation criteria provide a quantitative
measure of the model's predictive accuracy and error magnitude. To facilitate a comparative analysis, Fig. 8
presents the actual observations alongside the predictions generated by the ARIMA model and the ARIMA-
GARCH model for the training dataset, allowing for a visual examination of their respective forecasting
capabilities.

Time Series Inflation vs Fitted

Model
— Training
ARIMA
— ARIMA_GARCH

Inflation Rate

0 50 1 150 200

00
Period

Source: R Output

Figure 8. Time Series Plot of Actual Vs Fitted Inflation Rate on Training Data

The graph shown in Fig. 8 provides empirical evidence that the ARIMA-GARCH model exhibits a
superior fit to the actual values in the training dataset compared to the conventional ARIMA model. This
improvement can be attributed to the GARCH component’s ability to model time-dependent volatility, which
the conventional ARIMA framework fails to capture. The enhanced predictive performance of the ARIMA-
GARCH model is further substantiated by the MAPE and RMSE values presented in Table 10, reinforcing
its efficacy in capturing the underlying data dynamics with greater precision.

Table 10. MAPE and RMSE Values in Training Data
ARIMA  ARIMA-GARCH
MAPE (%) 8.52 2.73
RMSE 1.02 0.74

To further assess the predictive capability of ARIMA (0,1,1)-GARCH (2,0), its forecasting
performance is evaluated using the testing dataset. This evaluation ensures the model's generalizability
beyond the training data. The comparison between actual values and forecasted results is presented in Table
11, providing empirical insights into the model's effectiveness in capturing future observations.

Table 11. Forecasting Results
Inflation Rate (%)

Period Actual Forecast Lower Bounds Upper Bounds
Sep-22 5.95 5.54 331 9.27
Oct-22 571 5.53 3.04 10.09
Nov-22 5.42 6.45 3.33 12.49
Dec-22 5.51 6.23 3.06 12.66
Jan-23 5.28 5.80 2.73 12.30
Feb-23 5.47 5.97 2.71 13.15
Mar-23 4.97 5.51 241 12.57
Apr-23 4.33 5.19 2.20 12.23
May-23 4.00 4.84 1.99 11.77
Jun-23 3.52 4.62 1.85 11.55
Jul-23 3.08 4.32 1.68 11.09
Aug-23 3.27 4.38 1.66 11.56

Sep-23 2.28 2.90 1.07 7.84
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Inflation Rate (%)

Period Actual Forecast Lower Bounds Upper Bounds
Oct-23 2.56 3.25 1.17 8.99
Nov-23 2.86 3.22 1.14 9.12
Dec-23 2.61 2.95 1.02 8.55
Jan-24 2.57 3.07 1.04 9.09
Feb-24 2.75 3.21 1.06 9.70
Mar-24 3.05 3.77 1.23 11.63
Apr-24 3.00 3.78 1.20 11.87
May-24 2.84 3.66 1.14 11.73
Jun-24 2.51 3.12 0.95 10.16
Jul-24 2.13 2.35 0.71 7.79
Aug-24 2.12 1.97 0.58 6.66

Based on the forecasting results, the Mean Absolute Percentage Error (MAPE) for the testing dataset
is 18.95%, which falls within the range classified as "good" in predictive accuracy assessment. Furthermore,
the Root Mean Squared Error (RMSE) is recorded at 0.702, indicating a reasonable level of precision in the
model's forecasts. A visual representation of the testing data alongside the ARIMA-GARCH model estimates
is provided in Fig. 9, offering a comparative analysis of the predicted and actual values.

Legend
= Actual
— ARIMA

% T
5

Inflation Rate

0 5 10 15 20 25
Period

Source: R Output

Figure 9. Time Series Plot of Actual Vs Forecast Inflation Rate with Confidence Interval on Testing Data

The graph shown in Fig. 9 presents the inflation rate forecasts using the ARIMA (0,1,2) and ARIMA
(0,1,2)-GARCH (2,0) models, compared to the actual data. In general, the ARIMA (0,1,2) model produces
relatively stable forecasts that tend to converge toward the long-term average. This characteristic is typical
of ARIMA models, which do not account for volatility in the estimation process. Consequently, when the
data exhibit high volatility, ARIMA forecasts appear excessively constant, as the model captures only linear
patterns and struggles to adapt to dynamic variability in inflation rates. These findings are consistent with the
study by [23] which identified similar forecasting patterns in Indonesia’s export values using the ARIMA
method. On the other hand, the ARIMA-GARCH (2,0) model is better equipped to capture fluctuations in
volatility. By explicitly modelling heteroskedasticity, the GARCH component adjusts forecast uncertainty
based on past fluctuations. As a result, the ARIMA-GARCH model (blue line) demonstrates greater flexibility
in tracking actual inflation trends compared to the pure ARIMA model. Furthermore, the wider confidence
intervals in certain periods indicate that the ARIMA-GARCH approach successfully accommodates high
volatility, thereby reducing the risk of underestimating forecast errors.

In terms of forecast accuracy, the Mean Absolute Percentage Error (MAPE) is recorded at 18.95%,
which is relatively high. This elevated MAPE is primarily attributed to the ARIMA model’s overly constant
forecasts, particularly during periods of substantial inflation volatility. Since ARIMA does not account for
changes in variability, its forecasts tend to be less responsive, leading to increased errors in certain time
periods. Therefore, the ARIMA-GARCH approach proves superior in handling high-volatility data due to its
ability to capture evolving volatility patterns over time.
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From the overall analysis, inflation is a key economic indicator that influences purchasing power,
monetary policy decisions, and overall economic stability. Accurate inflation forecasting is crucial for
policymakers, businesses, and investors, enabling them to anticipate economic trends and develop effective
strategies. Given its fluctuating nature, inflation requires a robust forecasting approach to capture both short-
term variations and long-term trends. Advanced time series models, such as ARIMA-GARCH, have been
widely used to analyze inflation patterns, providing valuable insights for economic planning and financial
stability.

Previous research findings indicate mixed results regarding the effectiveness of the ARIMA model in
forecasting inflation. Study by [11] found that the conventional ARIMA model provides a reasonably
accurate estimation of monthly inflation in Nigeria, with ARIMA(1,2,1) identified as the best model based
on forecast errors ranging between -0.24 and 3.77. However, other studies have highlighted the limitations
of ARIMA in handling volatility. Study by [13] on inflation in Pakistan, revealed that the conventional
ARIMA model still faces heteroskedasticity issues, as indicated by significant lags in the ACF and PACF of
squared ARIMA residuals. Consequently, the GARCH approach was employed to model the error component
within ARIMA, demonstrating improved predictive accuracy compared to the conventional ARIMA model.
Nevertheless, a contrasting finding was reported by Uwilingiyimana et.al (2015) in her study on inflation in
Kenya, where the conventional ARIMA model outperformed the ARIMA-GARCH hybrid, as evidenced by
lower RMSE, MAPE, MAE, Theil, and BIAS values. These discrepancies suggest that the effectiveness of
the ARIMA-GARCH approach is highly dependent on data characteristics and the degree of inflation
volatility in each country [12].

In line with [13], the findings of this study indicate that the ARIMA-GARCH model is superior to the
conventional ARIMA model in modeling inflation in Indonesia. The ARIMA (0,1,1)-GARCH (2,0) model
applied in this study effectively addresses heteroskedasticity, produces more stable forecasts, and enhances
accuracy compared to ARIMA without GARCH. This model suggests that a 1-unit shock to current inflation
(&¢) results in a 1-unit increase in the log-transformed inflation variable (Z;). Conversely, a shock from the
previous period (e,_1) leads to a 0.315634-unit decline in inflation, indicating that past shocks continue to
exert an influence, albeit in the opposite direction. Additionally, inflation volatility is affected by previous
shocks, where a 1-unit increase in past-period volatility (¢2_,) leads to a 0.125678-unit rise in uncertainty,
while two-period lagged volatility (é7_,) has a larger impact of 0.757438 units. Thus, this model not only
captures inflationary patterns over time but also accounts for the economic shocks that influence inflation
movements in Indonesia.

Forecast accuracy is commonly evaluated using the Mean Absolute Percentage Error (MAPE), with
lower values indicating better predictive performance. Although the ARIMA-GARCH model proves
effective in capturing volatility, the main challenge remains minimizing MAPE, particularly during the
testing phase. Moreover, the computational complexity of this model must be considered, especially for real-
time forecasting applications. One potential solution is to optimize model selection to balance accuracy and
computational efficiency, ensuring that the model remains practical without compromising predictive
performance. Previous studies, [24] demonstrated that increasing the alpha parameter while proportionally
reducing beta improves the accuracy of information criteria in selecting the optimal model with high
probability and performance.

Furthermore, in this study, the inflation forecasting model does not incorporate exogenous variables,
in accordance with the established research limitations, meaning that predictions rely solely on historical
inflation patterns in Indonesia. However, prior research, such as that conducted by [25] suggests that external
macroeconomic factors, such as exchange rates and interest rates, significantly influence inflation dynamics.
Additionally, while the ARIMA-GARCH framework effectively captures inflation volatility, it is still based
on linear assumptions, which may not adequately represent the complex nonlinear patterns inherent in
macroeconomic data. Therefore, future research may consider incorporating exogenous variables and
exploring machine learning-based time series models.

4. CONCLUSION

The ARIMA (0,1,1)-GARCH (2,0) model demonstrates strong performance in predicting inflation
rates in Indonesia. Evaluation on training data yielded a MAPE of 2.73% and an RMSE of 0.74, while testing
data recorded a MAPE of 18.95% and an RMSE of 0.702. However, the relatively high MAPE of 18.95% on
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the test data suggests limitations in generalization and highlights the need for improvement. This discrepancy
may be due to unmodeled nonlinearities or the absence of exogenous variables that influence inflation. Future
research could explore the integration of nonlinear models such as LSTM or the inclusion of external
economic indicators to improve forecasting robustness. Additionally, comparative studies with alternative
methods like Prophet or VAR would provide a broader perspective on model performance. Despite these
limitations, the current model offers valuable insights for policymakers, supporting the formulation of
responsive and data-driven monetary and fiscal policies aimed at maintaining inflation stability and
promoting sustainable economic growth.
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