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Article Info ABSTRACT 

Article History: 
Inflation is a key economic indicator that affects purchasing power, economic growth, and 

financial stability. Accurate forecasting is essential for policymakers to implement effective 

monetary and fiscal policies. However, traditional models like ARIMA (Autoregressive 

Integrated Moving Average) mainly capture general trends and often fail to address 

inflation volatility. This study enhances inflation forecasting accuracy by applying the 

ARIMA-GARCH hybrid model, which combines trend estimation with volatility modelling. 

Focusing on Indonesia’s inflation patterns using recent data, it addresses a gap in existing 

research. This type of research uses quantitative methods, and the data were obtained from 

the official website of Bank Indonesia. The dataset consists of 240 monthly Indonesian 

inflation data points spanning from September 2004 to August 2024. The ARIMA (0,1,1)-

GARCH (2,0) model is used to analyze inflation trends and volatility dynamics. The model 

evaluation shows strong predictive performance, with a Mean Absolute Percentage Error 

(MAPE) of 2.73% and Root Mean Squared Error (RMSE) of 0.74 for training data. Testing 

data results in a MAPE of 18.95% and RMSE of 0.702, which remains within an acceptable 

range. These findings highlight the importance of incorporating volatility modelling in 

inflation forecasting to enhance economic decision-making. A reliable forecast mitigates 

economic uncertainty, thereby providing a stronger foundation for achieving long-term 

economic growth. This study contributes by demonstrating the practical application of 

ARIMA-GARCH in Indonesia’s inflation modelling, providing valuable insights for 

policymakers in managing inflation-related risks. 
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1. INTRODUCTION 

A nation’s prosperity is reflected not only by economic growth but also by economic stability. 

Maintaining stability in an economic play a crucial role in ensuring a predictable environment for businesses, 

households, and policymakers to thrive. Economic stability is characterized by controlled inflation, stable 

exchange rates, and sustainable fiscal policies, all of which contribute to long-term growth and improved 

living standards [1]. This aligns with the Sustainable Development Goals (SDGs), especially Goal 8, which 

emphasizes fostering inclusive, sustained, and sustainable economic growth, as well as ensuring productive, 

full, and decent employment for everyone [2]. However, achieving and maintaining this stability is a complex 

challenge, as it can be disrupted by various factors. One of the most significant threats to economic stability 

is inflation, that can affects purchasing power, increases uncertainty, and distorts market efficiency [3]. 

Inflation refers to the rise in the prices of goods and services in an economy over a specific time frame 

[4]. When inflation persists, it results in a reduction in the market value of a country’s produced goods and 

services. In essence, inflation indicates how much the cost of a selected group of goods and services has 

increased over time [5]. The country's economic growth is threatened by the persistent rise in inflation. 

Consequently, fluctuations in the inflation rate can cause price instability and changes in market value, which, 

in turn, impact the nation's gross domestic product [6]. This economic uncertainty can lead to reduced trade 

activity and slower economic growth.  

In Indonesia, inflation is still a major concern for the government and economic stakeholders due to its 

significant impact on policy-making, market stability, and overall economic growth.  Over the past few 

decades, inflation in Indonesia has often experienced significant fluctuations. In the last 5 years, the highest 

inflation in Indonesia reached 5.51% in 2022 and the lowest reached 1.68% in 2020 [7]. Such fluctuations 

can occur anytime and anywhere, even under the worst conditions that cannot be controlled. Therefore, 

forecasting future inflation rates is very important for the government and the business world as a basis for 

determining economic policies and strategies [8]. For this reason, an appropriate method is needed to analyze 

and manage inflation patterns, in order to forecast its future movements, thus enabling the formulation of 

preventive policies to maintain economic stability. The combined application of traditional statistical and 

econometric models, including the Autoregressive Integrated Moving Average (ARIMA) and the 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH), has been extensively utilized for 

inflation forecasting [9]. ARIMA captures trends and historical dependencies, while GARCH models 

volatility and dynamic variance changes. Thus, the ARIMA-GARCH model provides a more robust 

framework for analyzing inflation patterns and assessing risks [10]. 

Previous studies have examined the effectiveness of the ARIMA-GARCH hybrid model in forecasting 

inflation. For example, research by [11] found that the conventional ARIMA model provided a reasonably 

accurate estimation of monthly inflation in Nigeria, with ARIMA(1,2,1) identified as the best-performing 

model . Another study reported that the ARIMA model outperformed the ARIMA-GARCH hybrid, as 

indicated by lower RMSE, MAPE, MAE, Theil, and BIAS values in forecasting inflation in Kenya [12]. 

Similarly, Qasim et al. (2021) highlighted that the conventional ARIMA model still exhibited 

heteroskedasticity issues, as reflected in the significant lags observed in the ACF and PACF of squared 

ARIMA residuals. As a result, the GARCH model was applied to capture the error component within 

ARIMA, leading to improved predictive accuracy compared to the standalone ARIMA model [13]. These 

findings reinforce that the ARIMA-GARCH model can enhance inflation forecasting accuracy by addressing 

the heteroskedasticity issues commonly found in conventional ARIMA models. 

While many studies have explored ARIMA-GARCH for inflation forecasting, none have specifically 

applied it to Indonesian inflation using recent data. This study fills the gap by analyzing Indonesian inflation 

using the most recent data, thus providing a more accurate picture of current economic conditions. This 

approach evaluates the effectiveness of the model in capturing inflation volatility which contributes to the 

advancement of knowledge on inflation prediction in the context of Indonesia's volatile economy. The results 

of this research have the potential to enhance the development of monetary policies, support better strategies 

for managing inflation risks, and promote the wider use of advanced forecasting methods in economic 

decision-making. 

This study aims to analyze Indonesian inflation using a quantitative approach, utilizing data from the 

Bank Indonesia website covering September 2004 to August 2024. By employing RStudio and Minitab, the 

study applies descriptive statistics, ARIMA modelling, and GARCH model identification to capture inflation 

trends and volatility. The methodology involves stationarity testing, model selection based on AIC, and 
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heteroscedasticity analysis to determine the most suitable forecasting approach. The effectiveness of the 

models is assessed using MAPE and RMSE, ensuring accurate and reliable inflation predictions. The findings 

contribute to financial forecasting techniques, supporting economic decision-making and policy formulation 

in Indonesia. 

2. RESEARCH METHODS 

2.1 Autoregressive Integrated Moving Average (ARIMA) 

The ARIMA model is an extension of the Auto Regressive Moving Average (ARMA) model, 

specifically designed to handle non-stationary time series. While the conventional ARMA model assumes 

that the time series under analysis is stationary, ARIMA addresses non-stationary data by transforming it into 

a stationary series. This transformation is achieved through differencing denoted as (𝑑), a process that 

eliminates trends and seasonality by computing the differences between consecutive data points [14]. 

A stationary time series can be conceptualized as a combination of signal (the underlying pattern) and 

noise (random fluctuations). The ARIMA model focuses on analyzing the signal component after separating 

it from the noise, and it generates predictions for future time. As the name implies, the ARIMA model has 

three main components, namely autoregressive, integration, and moving average, which are represented by 

the autoregressive order. The fundamental concept of time series analysis indicates that the present value of 

an observation (𝑌𝑡) is affected by one or more past observation values (𝑌𝑡). Typically, the autoregressive 

integrated moving average model is denoted as ARIMA (𝑝, 𝑑, 𝑞) and is formulated as follows [15]. 

(1 − 𝐵)𝑑𝑌𝑡 = 𝜇 + 𝛷(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜇 + 𝛷(𝐵)𝑍(𝑡) + 𝛩(𝐵)𝜀𝑡 ,    (1) 

𝛷(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 −  ⋯ −  𝜙𝑝𝐵𝑝,     (2) 

𝛩(𝐵) = 1 + 𝜃1𝐵 + 𝜃2𝐵2 + ⋯ + 𝜃𝑞𝐵𝑞 ,      (3) 

where 𝛷(𝐵) is an autoregressive operator with order 𝑝, and 𝛩(𝐵) is a moving average operator with order 𝑞.  

ARIMA models are commonly estimated using either the Maximum Likelihood (MLE) method or the 

Conditional Sum of Squares (CSS) approach to derive parameter estimates [16]. Nevertheless, selecting the 

appropriate values for parameters 𝑝 and 𝑞 in an ARIMA model is guided by the patterns observed in the 

autocorrelation function (ACF) and the partial autocorrelation function (PACF).  

2.2 Generalized Autoregressive Conditional Heteroscedasticity (GARCH) 

ARCH (Autoregressive Conditional Heteroskedasticity) is a model designed to analyze volatility in 

time series data, especially when residual variance is not constant (heteroskedasticity). It was introduced to 

capture unstable price movements, where significant fluctuations are typically followed by further large 

shifts, and minor changes tend to be succeeded by similarly small ones. The fundamental equation for the 

ARCH model can be expressed as follows: 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜖𝑡−1

2 + ⋯ + 𝛼𝑞𝜖𝑡−𝑞
2 .       (4) 

The data variance at time period 𝑡;  𝜎𝑡
2  id modeled as a function of the coefficient 𝛼0  ; the ARCH 

parameter 𝛼1 ; and the squared error term from the previous period 𝜖𝑡−1
2 . The ARCH model only considers 

the squared residuals from the previous period, while the GARCH model adds an autoregressive component 

by considering the variance from the previous period. Thus, the GARCH model is more flexible and capable 

of handling more complex volatility compared to the ARCH model [17].  

GARCH (Generalized Autoregressive Conditional Heteroskedasticity) is a statistical model used to 

analyze and forecast volatility (variation) in time series data, especially within financial applications. This 

model was developed to address conditional heteroskedasticity, which refers to situations where the variance 

of errors in the model changes over time. GARCH is particularly useful in modeling the volatility of financial 

assets, such as stock prices, currencies, or commodities like gold, which often experience periods of both 

high and low volatility [18]. The general form of the GARCH (𝑝, 𝑞) model is as follows. 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑝

2𝑝
𝑖=1 + ∑ 𝛽𝑖𝜎𝑡−𝑞

2𝑞
𝑖=1 ,       (5) 
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where 𝜎𝑡
2 is the conditional variance, 𝛼0 is the constant, 𝜀𝑡−𝑝

2  is the residuals in period 𝑡 − 𝑝,  𝜎𝑡−𝑞
2  is the 

conditional variance in period 𝑡 − 𝑞, and 𝛼𝑖, 𝛽𝑖 is the ARCH, GARCH parameter. 

2.3 Mean Absolute Error (MAPE) 

MAPE (Mean Absolute Percentage Error) is a performance metric widely used in regression models, 

valued for its clear interpretation in terms of relative error. It is particularly recommended for tasks where 

sensitivity to relative variations is more critical than sensitivity to absolute variations. However, MAPE also 

has several limitations. The most notable drawbacks are its restriction to strictly positive data by definition 

and its inherent bias toward lower forecasts. MAPE aims to minimize or reduce the level of error in the 

forecasting process. In forecasting, there is always a level of uncertainty that can leads to error value. The 

MAPE can be calculated as follows [19]. 

𝑀𝐴𝑃𝐸 = (
100

𝑛
) ∑ |

𝑦𝑡−𝑦̂𝑡

𝑦𝑡
|𝑛

𝑡=1 ,                 (6) 

where 𝑦𝑡 and 𝑦̂𝑡 is the actual and predicted data at time 𝑡, and 𝑛 is the number of data observations.  

The characteristics of MAPE values that indicate prediction accuracy are as follow in Table 1 below. 

Table 1. Interpretation of MAPE Values 

MAPE Interpretations 

MAPE ≤ 10% Model has a high degree of forecasting accuracy. 

10% < MAPE ≤ 20%  Model's forecasting accuracy is good. 

20% < MAPE ≤ 50% Model has sufficient predictive power. 

MAPE > 50% Model demonstrates minimal predictive capability. 

2.4 Root Mean Squared Error (RMSE) 

Root Mean Squared Error (RMSE) is a metric used to evaluate model performance by measuring the 

difference between observed values and model predictions, RMSE is calculated as the square root of the 

average of the squared errors between the observed values 𝑦𝑖 and the predicted values (𝑦̂𝑖). The formula used 

to calculate RMSE is: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑛

𝑡=1 .                   (7) 

where 𝑦𝑡 and 𝑦̂𝑡 is the actual and predicted data at time 𝑡, and 𝑛 is the number of data observations.  

RMSE provides an indication of the magnitude of the average error produced by the model, with the 

same units as the observed data. This metric is optimal for errors that are normally distributed (Gaussian), as 

it minimizes the squared error, which aligns with the principle of maximum likelihood estimation (MLE) for 

normal distributions [20].  

2.5 Research Methodology  

This type of research uses quantitative research methods. The data used in this study was obtained from 

the Bank Indonesia website regarding inflation in Indonesia. The dataset consists of 240 monthly Indonesian 

inflation data points from September 2004 to August 2024. The training data consists of 216 observations 

covering the period from September 2004 to August 2022, while the testing data consists of 24 observations 

from September 2022 to August 2024. There are two types of variables in this study: independent and 

dependent variables. Based on the background and research objectives, the independent variable in this study 

is the period (time), while the dependent variable is the inflation rate in Indonesia, expressed as a percentage 

(%). 

This research was conducted using RStudio [21] and Minitab. The analysis steps in this study include 

descriptive statistics, GARCH model identification, and accuracy evaluation. Descriptive statistics involve 

collecting data, creating descriptive statistics on the original data, and making a time series plot of the original 

data. In the GARCH model identification stage, the data is divided into training and testing sets with a ratio 

of 90%:10%. The stationarity of the training data in variance is identified, and if necessary, transformed 

according to the appropriate lambda value. The stationarity of the transformed training data in mean is then 

examined using ACF and PACF plots and the ADF test. The appropriate ARIMA model is identified based 

on differencing order (d) and model selection criteria such as the Akaike Information Criterion (AIC). The 
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best ARIMA mathematical model is formulated, and the presence of heteroscedasticity in the residuals is 

tested using the ARCH-LM test. If heteroscedasticity is present, further ARCH/GARCH modelling is 

conducted using transformed data and the selected ARIMA order. The appropriate ARCH/GARCH order is 

determined, followed by significance testing, and the ARIMA variance model is formulated based on the 

GARCH model obtained. The accuracy of the GARCH model is evaluated by comparing the original data, 

ARIMA estimations, and ARIMA-GARCH estimations through visualization. The MAPE and RMSE values 

of the training data are calculated for both ARIMA and ARIMA-GARCH models. The model is then tested 

using the testing data, and the MAPE and RMSE values are calculated to assess its performance. The research 

methodology is illustrated in Fig. 1 to provide a clearer understanding of the analysis process. 

 
Figure 1. Flowchart of Research Methodological Process 

3. RESULTS AND DISCUSSION 

3.1 Descriptive Statistics 

One of the initial observations to determine general characteristics of the dataset is through descriptive 

statistics. Table 2 below highlights these statistics for Indonesia's inflation rates on a monthly basis from 

September 2004 to August 2024. 

Table 2. Summary Results of Descriptive Statistics Inflation Rate in Indonesia 

Variable N Mean Variance Standard Deviation Median Minimum Maximum 

Inflation rate 240 5.44 11.59 3.4 4.52 1.32 18.38 

The average inflation rate in Indonesia is 5.44%, with a variance of 11.59% and a standard deviation 

of 3.4%. Therefore, the highest inflation rate, recorded at 18.38% in November 2005, was attributed to a fuel 

price hike policy during Susilo Bambang Yudhoyono's presidency, leading to increased prices of goods and 

necessities. Conversely, the lowest rate, at 1.32%, occurred in August 2020, driven by the economic 

slowdown during the COVID-19 pandemic, which weakened purchasing power and suppressed inflation. 

Fig. 2 illustrates these inflation rate fluctuations. 
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Source: R Output 

Figure 2. Time Series Plot of Inflation Rate Data in Indonesia 

The graph shown in Fig. 2 illustrates the monthly inflation rate in Indonesia across 240 time points from 

September 2004 to August 2024. The plot reveals no clear upward or downward trend, yet the series is notably 

non-stationary, with evident shifts in both mean and variance over time. Several sharp spikes are observed, 

particularly in the early periods, where inflation surpasses 15%, indicating episodes of extreme volatility. 

These fluctuations are not constant; periods of high variability alternate with more stable intervals, suggesting 

the presence of volatility clustering. Overall, the inflation series demonstrates complex dynamic behavior, 

with irregular movements and structural changes that evolve throughout the observed time frame. 

3.2 Data Stationarity  

The assumption of stationarity is fundamental in time series analysis, as it underpins the validity of 

numerous statistical tests and forecasting models. A non-stationary time series, characterized by trends and 

seasonal variations, can lead to biased parameter estimates and unreliable forecasts [22]. Therefore, ensuring 

stationarity is a prerequisite for model construction, as many time series methodologies assume constant 

statistical properties over time. To achieve this, appropriate transformations, such as detrending and seasonal 

adjustment, must be applied to remove time-dependent structures before conducting any statistical analysis 

or model estimation. The Box-Cox transformation is often applied to stabilize variance, particularly in cases 

where non-stationarity arises due to heteroscedasticity. This transformation is particularly effective when the 

estimated transformation parameter (λ) deviates from 1, indicating the necessity of variance stabilization. 

             
                             (a)                                       (b) 

Source: Minitab Output 

Figure 3. Box-Cox Plot (a) Before (b) After Logarithm Transformation 

As presented in Fig. 3, the rounded lambda (𝜆) value is 0, indicating the necessity of a logarithmic 

transformation, represented as 𝑙𝑜𝑔(𝑍𝑡). Following the application of this transformation, the results of the 

Box-Cox analysis yield a rounded lambda (𝜆) value of 1, suggesting that the transformation has appropriately 

adjusted the data distribution. This adjustment facilitates the application of subsequent statistical tests with 

greater reliability and interpretability. Table 3 presents the descriptive statistics of the data after the 

logarithmic transformation. 

Table 3. Summary Results of Descriptive Statistics (Logarithm Transformation) 

Variable N Mean Variance Standard Deviation Median Minimum Maximum 

Inflation rate 240 1.5275 0.3298 0.5743 1.5074 0.2776 2.9113 
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Subsequently, the stationarity of the mean is assessed using the Box-Cox transformed data by 

examining the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots. These 

plots serve as diagnostic tools to evaluate whether the time series data exhibit stationarity, thereby 

determining the suitability of the series for further model development. 

 
(a)         (b) 

Source: R Output 

Figure 4. (a) ACF Plot of Training Data, (b) PACF Plot of Training Data  

In Fig. 4, the ACF pattern of the data exhibits a "dies down" behaviour, indicating that the time series 

is non-stationary. Consequently, differencing is required to achieve stationarity. The ACF and PACF plots 

following the first differencing, presented in Fig. 5, serve as diagnostic tools to evaluate whether the series 

has attained stationarity after the transformation.  

 
(a)      (b) 

Source: R Output 

Figure 5. (a) ACF Plot for Differencing 1, (b) PACF Plot for Differencing 1 

Based on Fig. 5, it is concluded that the data becomes stationary after applying first differencing to the 

Box-Cox transformed series. Additionally, the Augmented Dickey-Fuller (ADF) Test and Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) Tests is widely utilized as a formal statistical method to asses stationarity. The 

ADF test is a unit root test commonly used to determine whether a time series is stationary by evaluating the 

presence of a unit root in the autoregressive model. A rejection of the null hypothesis, which assumes the 

presence of a unit root (non-stationarity), confirms that the series is stationary. In addition to the ADF test, 

the stationarity of the series is further examined using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. 

This approach is motivated by the findings of [22] which suggest that the KPSS test demonstrates superior 

performance compared to the ADF test for both small and large sample sizes. Unlike the ADF test, which 

assumes non-stationarity as the null hypothesis, the KPSS test assumes stationarity, providing a 

complementary perspective in stationarity analysis.  The results of the ADF and KPSS test are presented in 

Table 4. 

Table 4. ADF and KPSS Test 

 Statistics p-value Conclusion 

ADF Test -5.1302 0.01 Reject 𝐻0, the series is stationary 

KPSS Test 0.0495 0.1 Failed to reject 𝐻0, the series is stationary 

Based on Table 4 the results of the Augmented Dickey-Fuller (ADF) test indicate a p-value < 0.05, 

providing statistical evidence that the series has achieved stationarity. The results of the KPSS test, presented 

in Table 4, indicate a p-value of 0.1, which is greater than the significance level, leading to a failure to reject 
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the null hypothesis of stationarity. Consequently, both tests yield consistent conclusions, confirming that the 

data is stationary. 

3.3 ARIMA Model Identification 

The ARIMA model selection was carried out on the Box-Cox transformed data, which had been 

subjected to a logarithmic transformation followed by first differencing (𝑑 = 1) to ensure stationarity. The 

estimation results of the selected ARIMA model, including the optimal parameter specifications, are 

presented in Table 5. 

Table 5. Selection of the Best ARIMA Model 

Model Parameters White Noise Residual Normality AIC 

ARIMA (1, 1, 0) Significant ✓  -259.94 

ARIMA (1, 1, 1) Insignificant ✓  -261.74 

ARIMA (1, 1, 2) Insignificant ✓  -259.74 

ARIMA (0, 1, 1) Significant ✓  -263.18 

ARIMA (2, 1, 1) Insignificant ✓  -259.75 

ARIMA (2, 1, 2) Insignificant ✓  -257.98 

As observed in Table 5, the ARIMA (0,1,1) model is identified as the optimal model based on the 

significance of its parameters, the white noise characteristics of its residuals, and the lowest Akaike 

Information Criterion (AIC) value. However, the assumption of residual normality is not satisfied, which is 

likely attributable to the presence of autocorrelation in the model’s residuals. To further assess this issue, a 

detailed examination of the residual distribution is conducted using a histogram, as illustrated in Fig. 6. 

 

Source: R Output 

Figure 6. ARIMA (0,1,1) Residual Normality Chart 

The histogram of the residuals from the ARIMA (0,1,1) model indicates that the observed non-

normality can be attributed to an excessive concentration of values around zero, leading to a pronounced peak 

and increased kurtosis. This phenomenon, known as leptokurtic, occurs when a distribution exhibits higher 

kurtosis and more pronounced tails compared to a normal distribution. Despite this deviation from normality, 

the residuals oscillate around zero, suggesting that the model's predictions closely align with the actual values. 

Moreover, according to the Central Limit Theorem (CLT), the sampling distribution of the residuals can be 

approximated as normal when the sample size is sufficiently large. Given this statistical property, minor 

deviations from normality in the residuals do not necessarily undermine the validity of the model. 

Consequently, the diagnostic criteria for the ARIMA (0,1,1) model are deemed satisfactory, supporting its 

suitability for modelling Indonesia's inflation data. The parameters generated by the selected model, along 

with their significance levels, are presented in Table 6. 

Table 6. Parameter Estimation Results of Selected Models 

Parameter Coefficient Standard Error p-value AIC 

MA (1) 0.315634 0.068273 0.0000 -263.18 

 

The mathematical equation for the estimation of the transformed ARIMA (0,1,1) model is represented in Eq. 

(8).  
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𝑍̂𝑡
∗ = 𝑍̂𝑡−1

∗ + 𝜀𝑡̂ − 0.315634𝜀𝑡̂−1,      (8) 

where 𝑍̂𝑡
∗ = ln (𝑍𝑡

∗) (by 𝜆 Box-Cox transformation), and 𝜀𝑡̂ is error. 

3.4 Heteroscedasticity Test 

In the previously estimated ARIMA model, it is assumed that the residuals follow a normal distribution 

with a mean of 𝜇 =  0 and a constant variance 𝜎2 (homoscedasticity). However, in economic time series 

data, such as exchange rates, inflation, and stock prices, periods of high volatility often result in violations of 

the homoscedasticity assumption. To assess the presence of heteroskedasticity, diagnostic testing is 

performed on the squared residuals derived from the ARIMA model. Specifically, the squared errors (𝜀𝑡̂
2) 

obtained from the ARIMA (0,1,1) model estimates serve as an empirical proxy for 𝜎2. The time series plot, 

along with the ACF and PACF of these squared residuals, is presented in Fig. 7 to evaluate potential 

autoregressive dependencies in volatility dynamics. 

 
(a) 

 

 
      (b)           (c) 

Source: R Output 

Figure 7. Plot of (a) Residual Squares (b) Residual ACF and (c) Residual PACF from ARIMA (0,1,1)  

As shown in Fig. 7, the presence of significant lags beyond the critical thresholds in both the ACF and 

PACF plots suggests autocorrelation in the squared residuals, indicating time-varying variance and potential 

heteroskedasticity. To formally assess this, the ARCH-LM (Autoregressive Conditional Heteroskedasticity – 

Lagrange Multiplier) test is applied. The null hypothesis of the ARCH-LM test states that no conditional 

heteroskedasticity is present in the residuals of the ARIMA model. If rejected, this confirms the presence of 

autoregressive volatility patterns, necessitating the incorporation of volatility modeling techniques. The 

results of the ARCH-LM test for the residuals of the ARIMA (0,1,1) model are presented in Table 7. 

Table 7. Lagrange Multiplier Test Results 

Lag Order LM Test Statistics p-value 

4 558.9 0.0000 

8 263.0 0.0000 

12 155.7 0.0000 

16 25.6 0.0427 

20 19.4 0.4305 

24 15.2 0.8887 

The test results presented in Table 7 indicate that for lags 4 to 16, the p-values are lower than the 

predetermined significance level (𝛼 = 5%), leading to the rejection of the null hypothesis. This finding 

provides statistical evidence of autocorrelation in the squared residuals of the ARIMA (0,1,1) model, 
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suggesting the presence of heteroskedasticity and necessitating further modelling to account for volatility 

effects. However, the non-significant p-values at lags 20 and 24 indicate that heteroskedasticity is not detected 

at these lags. This pattern is characteristic of financial and economic time series data, where volatility tends 

to fluctuate unevenly over time. Despite the presence of heteroskedasticity at certain lags, the analysis can 

proceed while considering appropriate adjustments for volatility modelling. 

3.5 GARCH Model 

The ARCH (Autoregressive Conditional Heteroskedasticity) model is a commonly used method to 

model variance in time series data that exhibits heteroscedasticity, assuming that the conditional variance is 

influenced by the squared past residuals. However, the standard ARCH model has a weakness in describing 

persistent volatility dynamics, as it only considers the squared past residuals without involving the conditional 

past variance. To overcome this weakness, the GARCH (Generalized ARCH) model was developed by 

adding the lagged conditional variance into the model, thus providing a more flexible and comprehensive 

view of the volatility clustering pattern. Given the presence of heteroskedasticity in the residuals of the 

ARIMA (0,1,1) model, the GARCH (1,0) and GARCH (1,1) specifications were selected based on the 

patterns observed in the ACF and PACF plots, ensuring an appropriate characterization of the time-varying 

variance structure. 

Table 8. Parameter Estimation Results of GARCH (1,0) and (1,1) Models 

Model Parameters Coefficient p-value ARCH LM Test AIC 

GARCH (1,0) 
𝜔 0.015091 0.0002 

Significant 0.23912 
𝛼1 0.920638 0.0000 

GARCH (1,1) 

𝜔 0.004538 0.0791 

Significant 
 

0.17505 
𝛼1 0.553366 0.0000 

𝛽1 0.432184 0.0002 

As shown in Table 8, the GARCH (1,1) model exhibits insignificant parameter estimates, indicating 

its limitations in capturing the volatility dynamics of the data. Furthermore, although the GARCH (1,0) model 

demonstrates statistically significant parameters, it fails to fully eliminate the heteroskedasticity present in 

the residuals of the ARIMA (0,1,1) model. Given these findings, alternative GARCH model specifications 

were explored to better accommodate the observed volatility structure. The results of these additional model 

evaluations are presented in Table 9.  

Table 9. Parameter Estimation Results of GARCH (2,0) and (2,1) Models 

Model Parameters Coefficient p-value ARCH LM Test AIC 

GARCH (2,0) 

𝜔 0.010985 0.0018 

Insignificant 0.064947 𝛼1 0.125678 0.0387 

𝛼2 0.757438 0.0000 

GARCH (2,1) 

𝜔 0.010985 0.0011 

Insignificant 0.074207 
𝛼1 0.125678 0.0001 

𝛼2 0.757438 0.0000 

𝛽1 0.000000 1.0000 

Based on the results in Table 9, the GARCH (2,0) model is identified as the most suitable specification 

for addressing the heteroskedasticity present in the residuals of the ARIMA (0,1,1) model. This selection is 

justified by the statistical significance of its parameter estimates, indicating its effectiveness in capturing 

volatility dynamics. Consequently, the variance equation for the error term of the ARIMA (0,1,1) model 

under the GARCH (2,0) specification is formulated in Eq. (9) as follows: 

𝜎̂𝑡
2 =  0.010985 + 0.125678𝜀𝑡̂−1

2 + 0.757438𝜀𝑡̂−2
2 ,               (9) 

where 𝜎̂𝑡
2 is the estimated conditional variance, which accounts for time-varying volatility and addresses the 

presence of heteroskedasticity in the residuals. Additionally, 𝜀𝑡̂−1
2  : the squared residual from the ARIMA 

(0,1,1) model lagged by one period, capturing the impact of past shocks on current volatility.  
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3.6 Evaluation of ARIMA-GARCH Model 

The performance assessment of the ARIMA-GARCH model is conducted using Mean Absolute 

Percentage Error (MAPE) and Root Mean Squared Error (RMSE) metrics, which are derived from the model's 

estimation results on both the training and testing datasets. These evaluation criteria provide a quantitative 

measure of the model's predictive accuracy and error magnitude. To facilitate a comparative analysis, Fig. 8 

presents the actual observations alongside the predictions generated by the ARIMA model and the ARIMA-

GARCH model for the training dataset, allowing for a visual examination of their respective forecasting 

capabilities. 

 
Source: R Output 

Figure 8. Time Series Plot of Actual Vs Fitted Inflation Rate on Training Data 

The graph shown in Fig. 8 provides empirical evidence that the ARIMA-GARCH model exhibits a 

superior fit to the actual values in the training dataset compared to the conventional ARIMA model. This 

improvement can be attributed to the GARCH component’s ability to model time-dependent volatility, which 

the conventional ARIMA framework fails to capture. The enhanced predictive performance of the ARIMA-

GARCH model is further substantiated by the MAPE and RMSE values presented in Table 10, reinforcing 

its efficacy in capturing the underlying data dynamics with greater precision. 

Table 10. MAPE and RMSE Values in Training Data 

 ARIMA ARIMA-GARCH 

MAPE (%) 8.52 2.73 

RMSE 1.02 0.74 

To further assess the predictive capability of ARIMA (0,1,1)-GARCH (2,0), its forecasting 

performance is evaluated using the testing dataset. This evaluation ensures the model's generalizability 

beyond the training data. The comparison between actual values and forecasted results is presented in Table 

11, providing empirical insights into the model's effectiveness in capturing future observations. 

Table 11. Forecasting Results  

Period 
Inflation Rate (%) 

Actual Forecast Lower Bounds Upper Bounds 

Sep-22 5.95 5.54 3.31 9.27 

Oct-22 5.71 5.53 3.04 10.09 

Nov-22 5.42 6.45 3.33 12.49 

Dec-22 5.51 6.23 3.06 12.66 
Jan-23 5.28 5.80 2.73 12.30 

Feb-23 5.47 5.97 2.71 13.15 

Mar-23 4.97 5.51 2.41 12.57 

Apr-23 4.33 5.19 2.20 12.23 

May-23 4.00 4.84 1.99 11.77 

Jun-23 3.52 4.62 1.85 11.55 

Jul-23 3.08 4.32 1.68 11.09 

Aug-23 3.27 4.38 1.66 11.56 

Sep-23 2.28 2.90 1.07 7.84 
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Period 
Inflation Rate (%) 

Actual Forecast Lower Bounds Upper Bounds 

Oct-23 2.56 3.25 1.17 8.99 

Nov-23 2.86 3.22 1.14 9.12 

Dec-23 2.61 2.95 1.02 8.55 

Jan-24 2.57 3.07 1.04 9.09 

Feb-24 2.75 3.21 1.06 9.70 

Mar-24 3.05 3.77 1.23 11.63 

Apr-24 3.00 3.78 1.20 11.87 

May-24 2.84 3.66 1.14 11.73 

Jun-24 2.51 3.12 0.95 10.16 

Jul-24 2.13 2.35 0.71 7.79 

Aug-24 2.12 1.97 0.58 6.66 

Based on the forecasting results, the Mean Absolute Percentage Error (MAPE) for the testing dataset 

is 18.95%, which falls within the range classified as "good" in predictive accuracy assessment. Furthermore, 

the Root Mean Squared Error (RMSE) is recorded at 0.702, indicating a reasonable level of precision in the 

model's forecasts. A visual representation of the testing data alongside the ARIMA-GARCH model estimates 

is provided in Fig. 9, offering a comparative analysis of the predicted and actual values. 

 
Source: R Output 

Figure 9. Time Series Plot of Actual Vs Forecast Inflation Rate with Confidence Interval on Testing Data  

The graph shown in Fig. 9 presents the inflation rate forecasts using the ARIMA (0,1,2) and ARIMA 

(0,1,2)-GARCH (2,0) models, compared to the actual data. In general, the ARIMA (0,1,2) model produces 

relatively stable forecasts that tend to converge toward the long-term average. This characteristic is typical 

of ARIMA models, which do not account for volatility in the estimation process. Consequently, when the 

data exhibit high volatility, ARIMA forecasts appear excessively constant, as the model captures only linear 

patterns and struggles to adapt to dynamic variability in inflation rates. These findings are consistent with the 

study by [23] which identified similar forecasting patterns in Indonesia’s export values using the ARIMA 

method. On the other hand, the ARIMA-GARCH (2,0) model is better equipped to capture fluctuations in 

volatility. By explicitly modelling heteroskedasticity, the GARCH component adjusts forecast uncertainty 

based on past fluctuations. As a result, the ARIMA-GARCH model (blue line) demonstrates greater flexibility 

in tracking actual inflation trends compared to the pure ARIMA model. Furthermore, the wider confidence 

intervals in certain periods indicate that the ARIMA-GARCH approach successfully accommodates high 

volatility, thereby reducing the risk of underestimating forecast errors. 

In terms of forecast accuracy, the Mean Absolute Percentage Error (MAPE) is recorded at 18.95%, 

which is relatively high. This elevated MAPE is primarily attributed to the ARIMA model’s overly constant 

forecasts, particularly during periods of substantial inflation volatility. Since ARIMA does not account for 

changes in variability, its forecasts tend to be less responsive, leading to increased errors in certain time 

periods. Therefore, the ARIMA-GARCH approach proves superior in handling high-volatility data due to its 

ability to capture evolving volatility patterns over time. 



BAREKENG: J. Math. & App., vol. 20(2), pp. 0955-0970, Jun, 2026.     967 

 

From the overall analysis, inflation is a key economic indicator that influences purchasing power, 

monetary policy decisions, and overall economic stability. Accurate inflation forecasting is crucial for 

policymakers, businesses, and investors, enabling them to anticipate economic trends and develop effective 

strategies. Given its fluctuating nature, inflation requires a robust forecasting approach to capture both short-

term variations and long-term trends. Advanced time series models, such as ARIMA-GARCH, have been 

widely used to analyze inflation patterns, providing valuable insights for economic planning and financial 

stability. 

Previous research findings indicate mixed results regarding the effectiveness of the ARIMA model in 

forecasting inflation. Study by [11] found that the conventional ARIMA model provides a reasonably 

accurate estimation of monthly inflation in Nigeria, with ARIMA(1,2,1) identified as the best model based 

on forecast errors ranging between -0.24 and 3.77. However, other studies have highlighted the limitations 

of ARIMA in handling volatility. Study by [13] on inflation in Pakistan, revealed that the conventional 

ARIMA model still faces heteroskedasticity issues, as indicated by significant lags in the ACF and PACF of 

squared ARIMA residuals. Consequently, the GARCH approach was employed to model the error component 

within ARIMA, demonstrating improved predictive accuracy compared to the conventional ARIMA model. 

Nevertheless, a contrasting finding was reported by Uwilingiyimana et.al (2015) in her study on inflation in 

Kenya, where the conventional ARIMA model outperformed the ARIMA-GARCH hybrid, as evidenced by 

lower RMSE, MAPE, MAE, Theil, and BIAS values. These discrepancies suggest that the effectiveness of 

the ARIMA-GARCH approach is highly dependent on data characteristics and the degree of inflation 

volatility in each country [12]. 

In line with [13], the findings of this study indicate that the ARIMA-GARCH model is superior to the 

conventional ARIMA model in modeling inflation in Indonesia. The ARIMA (0,1,1)-GARCH (2,0) model 

applied in this study effectively addresses heteroskedasticity, produces more stable forecasts, and enhances 

accuracy compared to ARIMA without GARCH. This model suggests that a 1-unit shock to current inflation 

(𝜀𝑡) results in a 1-unit increase in the log-transformed inflation variable (𝑍𝑡
∗). Conversely, a shock from the 

previous period (𝜀𝑡−1) leads to a 0.315634-unit decline in inflation, indicating that past shocks continue to 

exert an influence, albeit in the opposite direction. Additionally, inflation volatility is affected by previous 

shocks, where a 1-unit increase in past-period volatility (𝜀𝑡̂−1
2 ) leads to a 0.125678-unit rise in uncertainty, 

while two-period lagged volatility (𝜀𝑡̂−2
2 ) has a larger impact of 0.757438 units. Thus, this model not only 

captures inflationary patterns over time but also accounts for the economic shocks that influence inflation 

movements in Indonesia. 

Forecast accuracy is commonly evaluated using the Mean Absolute Percentage Error (MAPE), with 

lower values indicating better predictive performance. Although the ARIMA-GARCH model proves 

effective in capturing volatility, the main challenge remains minimizing MAPE, particularly during the 

testing phase. Moreover, the computational complexity of this model must be considered, especially for real-

time forecasting applications. One potential solution is to optimize model selection to balance accuracy and 

computational efficiency, ensuring that the model remains practical without compromising predictive 

performance. Previous studies, [24] demonstrated that increasing the alpha parameter while proportionally 

reducing beta improves the accuracy of information criteria in selecting the optimal model with high 

probability and performance. 

Furthermore, in this study, the inflation forecasting model does not incorporate exogenous variables, 

in accordance with the established research limitations, meaning that predictions rely solely on historical 

inflation patterns in Indonesia. However, prior research, such as that conducted by [25] suggests that external 

macroeconomic factors, such as exchange rates and interest rates, significantly influence inflation dynamics. 

Additionally, while the ARIMA-GARCH framework effectively captures inflation volatility, it is still based 

on linear assumptions, which may not adequately represent the complex nonlinear patterns inherent in 

macroeconomic data. Therefore, future research may consider incorporating exogenous variables and 

exploring machine learning-based time series models. 

4. CONCLUSION 

The ARIMA (0,1,1)-GARCH (2,0) model demonstrates strong performance in predicting inflation 

rates in Indonesia. Evaluation on training data yielded a MAPE of 2.73% and an RMSE of 0.74, while testing 

data recorded a MAPE of 18.95% and an RMSE of 0.702. However, the relatively high MAPE of 18.95% on 
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the test data suggests limitations in generalization and highlights the need for improvement. This discrepancy 

may be due to unmodeled nonlinearities or the absence of exogenous variables that influence inflation. Future 

research could explore the integration of nonlinear models such as LSTM or the inclusion of external 

economic indicators to improve forecasting robustness. Additionally, comparative studies with alternative 

methods like Prophet or VAR would provide a broader perspective on model performance. Despite these 

limitations, the current model offers valuable insights for policymakers, supporting the formulation of 

responsive and data-driven monetary and fiscal policies aimed at maintaining inflation stability and 

promoting sustainable economic growth. 
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