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1. INTRODUCTION

In the digital era, studying mathematical structures is becoming increasingly important, especially in
the field of graph theory, which models interactions between objects as vertices and their relationships as
edges [1], [2]. Graph theory serves as a foundation for analyzing complex networks and has broad
applications across disciplines, including chemistry. In chemical graph theory, molecules are represented as
graphs, and from these, numerical descriptors known as topological indices are calculated [3], [4]. These
indices, also called graph invariants, remain identical for isomorphic graphs, and one of the main objectives
is to identify those that can predict chemical properties based on a molecule's structure [5]. In addition to
topological indices, recent studies have also emphasized the concept of graph energy, which measures
structural properties of graphs through the eigenvalues of associated matrices. Several variants, such as
Sombor energy and degree sum energy, have been investigated in algebraic graph contexts—for instance, the
Sombor energy of the nilpotent graph of the ring of integers modulo € and the degree sum energy of non-
coprime graphs on dihedral groups—highlighting the growing role of graph energy in advancing chemical
and algebraic graph theory [6], [7], [8].

Several notable topological indices are explored, including both Zagreb Indices (first and second), as
well as the Wiener Index [9]. The Zagreb Indices focus on the degree of atoms in a molecular graph,
highlighting how individual atoms contribute to the overall structure. On the other hand, the Wiener Index
measures the total size of a molecule by summing the shortest paths between every pair of atoms. These
indices are crucial for understanding the link between molecular structure and various chemical and biological
processes, playing a key role in fields like materials science, environmental chemistry, and drug development
[10].

Topological indices can also be applied to finite groups by representing them as graphs, providing a
powerful way to capture the structural relationships within the group. In this approach, elements of the finite
group are connected through graphs like the coprime and non-coprime graphs, where vertices represent group
elements, and edges link pairs of elements according to its algebraics properties [11], [12], [13]. This
abstraction as well as the unit graph and the nilpoten graph allows mathematicians to visually explore the
complex interactions among group elements [14], [15], [16]. By applying topological indices to these graphs,
we gain deeper insights into the group's algebraic properties and the relationships between its elements.

In 2022, Zahidah and colleagues explored six different connectivity indices on the coprime graph of
the general quaternion group. These indices included the Zagreb indices (first and second), the Wiener indices
(regular and hyper), the Harary index, and the Szeged index [17], [18]. Around the same time, Husni and his
team focused on the harmonic and Gutman indices, applying them to the coprime graph of the group Z,, [19],
[20]. Building on these studies, the authors are eager to explore the Zagreb indices (first and second), and
Wiener Index as applied to the coprime graph of the group of Z,, of specific order of n.

2. RESEARCH METHODS

To find gaps and areas that need more research, the research methodology starts with a thorough review
of the literature on topological indices of graphs. After that, the graphs are arranged in a particular order (n),
and a group is established according to their shared attributes. For every graph in the group, a case-by-case
analysis is conducted, during which topological indices are examined, and the graph's structure is built. A
conjecture concerning the general structure of graphs within the selected group is formulated from these
individual cases, with particular emphasis on recurrent patterns. Next, a deductive argument is constructed to
verify the conjectured general structure and give a mathematical foundation for the patterns observed in
different circumstances. A general formula for the topological indices of graphs inside a given order can be
found using the established general structure.
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3. RESULTS AND DISCUSSION

Within this segment, we revisit fundamental concepts crucial for the subsequent sections. A
prerequisite for a comprehensive understanding includes familiarity with the definition of the order of an
element in a group and an understanding of Lagrange's theorem.

Definition 1 [21]. Let G be a group with the identity e. The order of an element a of G is the smallest natural
number n such that a® = e. The order of a is denoted by |a|. If no such n exists, then a is said to have
infinite order.

Theorem 1 [22]. Let S be a subgroup of a finite group G. Then the order of subgroup S divides the order of
the group G.

Prior to computing the initial Zagreb index, the secondary Zagreb index, and the Wiener index for a
linked graph, it is essential to comprehend the definitions of vertex degree and the distance between two
vertices within a connected graph.

Definition 2 [3]. The degree of a vertex v in a graph I, denoted by deg(v), is the number of vertices that are
adjacenttovinT.

Definition 3 [3].Suppose that u and v are two distinct vertices in a connected graph I'. The distance d (u, v)
from vertice u to vertice v in graph T is the minimum length of the path (u,v) inT.

The following are definitions of the topological indices that are used in this research, including the first
Zagreb index, the second Zagreb index, and the Wiener index.

Definition 4 [23]. Let T be a connected graph. The first Zagreb index of graph I' is denoted as M; (T"), defined
as follows:

M@ = D (deg())*

vev(l)

The second Zagreb index of T is denoted as M, (I"), defined as follows:
M,(T) = Z deg(u).deg (v).
u,veE(T)
Definition 5 [24]. Let T' be a connected graph. The Wiener index of graph I', denoted as W (I"), is defined as
follows:
w(T) = Z d(u,v).

u,veEV(H)
Theorem 2 [25]. If n = py¥1p,*2 ..p;%i, where py,p,, ..., p; are distinct prime numbers, and kq, ky, ..., k;
are natural numbers, then the coprime graph of I isa (j + 1) —partite graph.
Example 1. The coprime graphs for the groups Z, Zs, and Z, are shown in the following figure.

0 0 0

(a) (b) ©
Figure 1. (a) I, (b) Ts (C) Iy,

Example 2. The coprime graphs for the groups Z,, Z,,, and Z,g are illustrated in the following figure.
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(a) (b) (©)

Figure 2. (a) I, (b) Iy, (C) Iy,

This research aims to determine the Zagreb indices (first and second), and the Wiener index of the
coprime graph of the group of integers modulo n, denoted as I’z . Research findings obtained in several
theorems are presented in the following.

3.1 The Coprime Graph I of Z,, , Iz forn =p"

We begin by examining the structure of the coprime graph for integers modulo a prime power. This
forms the basis for calculating the topological indices presented in the next results.

Lemma 1. Let Iz be the coprime graph of Zj, for n is the power of prime number p, then the degrees of
vertices are given in the following:

deg(0) =n—-1,

deg(u) = 1,vu € V(Iz, )\{0},

and the distance between two vertices of I are

d(0,v) =1,
d(u,v) =2,Vu,v € V(an)\{O}.

Proof. It is clear that [0| =1 and |u| =p' for 1 <i<r. Then we have gcd(|0],|v]) =1 and
ged(lul, [v]) # 1, vu,v € V(Tz, )\{0}. Hence, 0 is adjacent to other vertices in I’z , while the remaining
nodes are not adjacent to each other. Therefore, the degrees of vertices are deg(0) =n — 1, deg(u) =1,
Yu € V(l“zn)\{O}. Meanwhile, the distance between two vertices is d(0,v) = 1, and d(u,v) = 2,Vu,v €

V(Tz, )\{0}. u
Subsequently, the propositions for the Zagreb indices (first and second), and the Wiener index of the

coprime graph associated with the group of integers modulo n, where n equals p", are established in the
following manner:

Theorem 3. Let I be the coprime graph of Z,, forn = p”, where p is a prime number and » € N. Then,
the first Zagreb index, the second Zagreb index, and the Wiener index of I are

My(Iz,) =n*—n,

My(Iz,) =n?—2n+1,

W(Iz,) =n*-2n+1.
Proof. According to Lemma 1, it is known that deg(0) = n —1and deg(v) = 1,Vv € V(T )\{0} hence
1. The First Zagreb Index of I';_

M) = ) (deg))?,
vev(Iy,)
= (deg(@)?*+ D (deg®)?,
veV (g, )\{0}
=(n—-1D%*+n-1)-12,
=n?—n.
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2. The Second Zagreb Index of I

Mo(Tz,) = ) deg()-deg(v),

u,veE(T'z,)
= deg(0) ) deg(®),
veE(Iy,)
=(n-1((n-1-1),
=n?-2n+1.

And from Lemma 1, it is also known that d(0,v) = 1and d(u,v) = 2,Vu,v € V(I )\{0}, hence
3. The Wiener Index of I,

The important thing to note before calculating the Wiener index of Iz is to determine the number of
pairs of two distinct non-zero nodes, which is
o1 — (n—1)! _ (n—1)(n—2).
2 (n—1)-2)1(2)! 2

Then, it can be obtained that

w(ry,) = Z d(u,v),

u,vev(Ty,)
= z d(O,v) + Z d(u,v),
vev(Ty,) u,veV(Ty,)

=m-D+n-Dn-2),
=(n—-1D+m*-3n+2),
=n?-2n+1.

3.2 The Coprime graph I, of Z,, for n = p"q°

Next, we extend the analysis to the coprime graph of integers modulo a product of two distinct prime
powers. The following result describes the degrees and distances in this case.

Lemma 2. Let I, be the coprime graph of Z,, for n is the multiplication of the power of two distinct prime
number p and q. Then, the degrees of vertices are given in the following:
deg(0) =n—1,
Xy ={ueV,|deg(w) =1},
X; ={v eVyldeg(w) = q°},
Xz ={w € V3|deg(w) =p"},
and the distance between two vertices of I are

d(0,v) =n—1,v € V(I )\{0},

d(u,v) =2,
du,w) =2,
d(v,w) = 1.

Proof. LetI; withn = p"q®, where p and q are distinct prime numbers, and r and s are positive integers,
are partitioned into three cases:

Vl = {0}!
v, ={u€V(FZn);|u| =plg/ jwithi1<i<rand0<j<s,
Vs={ve V(an)i lv] = g/} with 1 < q <s.
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Then we can obtain gcd (|0], [u]) = 1, gcd(|0], [v|) = 1,inif Ju| = p'q’ with j = 0 hence gcd(Jul, |v|) #
1. So that the coprime graph of the group Z,, for n = p"q* is illustrated in Fig. 3.

0

Xz
Figure 3. The Coprime Graph of Z,, I';, forn = p"q*

Therefore, the degrees of vertices are given in the following:

deg(0) =n—1,
X, ={ueV,|deg(u) =1},
X, ={v €V,|deg(v) = ¢°},
X3 ={w €Vs|deg(w) =p"},

and the distance between two vertices of I are

d(0,v) =n—1,v € V(Iz, )\{0},

d(u,v) =2,
du,w) = 2,
d(v,w) = 1.

[
Then, the Theorem for the first Zagreb index, the second Zagreb index, and the Wiener index will be given
for the coprime graph of the group of integers modulo n, forn = p"qg*.

Theorem 4. Let I, is a coprime graph of Z,, for n is the multiplication of the power of two distinct prime
number p and q. Then the first Zagreb, the second Zagreb index, and the Wiener Index of I are

Mi(Ig,) =n*+ @ +¢° = Dn-p" (0" + 1) —¢*(@*+ D +2,
My(Iz,) =n(4n—3p" =3¢ -1 +2(p" + ¢°) — 1,
W(Iz,) =n*-3n+p" +¢°
Proof. Let I be the coprime graph of the group Z,, for n = p"q® where p and g are distinct prime numbers,

and r and s are positive integers. Then, let a = p” and b = q° so according to Lemma 2, it is known that
deg(0) =n—1,deg(u) =1, deg(v) = b, and deg(w) = a hence

1. The first Zagreb index of Iz P

M) = ) (deg@))?,

UEV(FZn)

= (deg(@)? + Y (deg@y*+ ) (deg@)?+ » (degw)y,

uex;\{o} vEX,\{0} wexz\{0}
=n—-1D*+Mm—-a-b+1)-(D)*+(@—-1-B)*+B-1)-(a)?
=+ @ +¢ -n—-p (@ +1)—-q°@° +1)+2.

2. The first Zagreb index of I

My(lz,)= ) deg()-deg(v),
u,veE(T'z,)
=deg(0) - Z deg(u) + deg(0) - Z deg(v) + Z deg(v) - 2 deg(w)
ueX1\{0} vEX,\{0} vEXZ\{0} weX3\{0}
+ deg(0) - z deg(w),
weX3\{0}
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mn-1D)-n—a-b+1)+(n—1)-bla—1)+b(a—1D-alb—1)+1n-1)
~a(b—1),
=4n® —3an—3bn—n+2a+2b -1,
=n(4n—-3p" -3¢° -1 +2(p" +q°) — 1
And based on Lemma 2, it is also known that d(0,v) = n — 1,v € V(Iz, )\{0}, d(u,v) = 2, d(u,w) = 2,
and d(v,w) = 1 such as

3. The Wiener Index of I,

d(u,v),

u,vEV(FZn)

w(Iy,)

d(u,v) + Z d(u,v) + 2 d(u,v) + Z d(u,v)

I
]
U
N
o
N
+

UEV(an) UEX,,VEX, UEX,,VEX3 UEX,,VEX3 u,veEX,
+ E d(u,v) + E d(u,v),
u,veX, U,VEX3

=n-1D+2n—a-b+1)-(a-1D+2n—a-b+1)-b-1)+(@-1)-(b—-1)
+n—a-b+1)-n—a—-b)+(a—-1)-(@a-2)+B-1)-(b—-1),
=n?-3n+a+b,
=n?-3n+p" +q°
Example 3. Given the group Zs, according to Theorem 4, we have p = 2,q = 3,and r = s = 2, thus
the indices are:

My (Tz,,) = 362+ (22 +32 —1)36 — 22(22 + 1) — 32(3% + 1) + 2 = 1620,
M,(Ty,,) = 36(4(36) — 3(22) — 3(3%) — 1) + 2(22 + 3%) — 1 = 3769,
W(Tz,,) = 36% —3(36) + 22 + 3% = 1201.

4. CONCLUSION

The results for the Zagreb indices (first and second), and the Wiener index on the coprime graph of the group
of integers modulo n, for is the power of prime number p, are obtained as follows:

M1(an) =n? —n,
My(Tz, ) =n*—2n+1,
W(Tz,)=n*-2n+1.
On the other hand, we have computed the Zagreb indices (first and second), and the Wiener index on the

coprime graph of the group of integers modulo n, for n is the multiplication of the power of two distinct prime
number p and g, are as follows:

M(Tz,)=n?+ @ +q¢"—Dn—-p" (0" +1)—q°(@° + 1) + 2,

M,(Tz,) =n(4n—3p" —3¢* = 1) +2(p" +q°) - 1,

W(Tz,)=n?=3n+p" +q°
For example, whenp = 2, q = 3, s = 2 and r = 2 we obtain that the first Zagreb index of the coprime
graph is 840, the second Zagreb index is 5040, and the Wiener index is 2065.
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