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1. INTRODUCTION 

In the digital era, studying mathematical structures is becoming increasingly important, especially in 

the field of graph theory, which models interactions between objects as vertices and their relationships as 

edges [1], [2]. Graph theory serves as a foundation for analyzing complex networks and has broad 

applications across disciplines, including chemistry. In chemical graph theory, molecules are represented as 

graphs, and from these, numerical descriptors known as topological indices are calculated [3], [4]. These 

indices, also called graph invariants, remain identical for isomorphic graphs, and one of the main objectives 

is to identify those that can predict chemical properties based on a molecule's structure [5]. In addition to 

topological indices, recent studies have also emphasized the concept of graph energy, which measures 

structural properties of graphs through the eigenvalues of associated matrices. Several variants, such as 

Sombor energy and degree sum energy, have been investigated in algebraic graph contexts—for instance, the 

Sombor energy of the nilpotent graph of the ring of integers modulo ε and the degree sum energy of non-

coprime graphs on dihedral groups—highlighting the growing role of graph energy in advancing chemical 

and algebraic graph theory [6], [7], [8]. 

Several notable topological indices are explored, including both Zagreb Indices (first and second), as 

well as the Wiener Index [9]. The Zagreb Indices focus on the degree of atoms in a molecular graph, 

highlighting how individual atoms contribute to the overall structure. On the other hand, the Wiener Index 

measures the total size of a molecule by summing the shortest paths between every pair of atoms. These 

indices are crucial for understanding the link between molecular structure and various chemical and biological 

processes, playing a key role in fields like materials science, environmental chemistry, and drug development 

[10]. 

Topological indices can also be applied to finite groups by representing them as graphs, providing a 

powerful way to capture the structural relationships within the group. In this approach, elements of the finite 

group are connected through graphs like the coprime and non-coprime graphs, where vertices represent group 

elements, and edges link pairs of elements according to its algebraics properties [11], [12], [13]. This 

abstraction as well as the unit graph and the nilpoten graph allows mathematicians to visually explore the 

complex interactions among group elements [14], [15], [16]. By applying topological indices to these graphs, 

we gain deeper insights into the group's algebraic properties and the relationships between its elements. 

In 2022, Zahidah and colleagues explored six different connectivity indices on the coprime graph of 

the general quaternion group. These indices included the Zagreb indices (first and second), the Wiener indices 

(regular and hyper), the Harary index, and the Szeged index [17], [18].  Around the same time, Husni and his 

team focused on the harmonic and Gutman indices, applying them to the coprime graph of the group ℤ𝑛 [19], 

[20].  Building on these studies, the authors are eager to explore the Zagreb indices (first and second), and 

Wiener Index as applied to the coprime graph of the group of ℤ𝑛 of specific order of 𝑛.  

2. RESEARCH METHODS 

To find gaps and areas that need more research, the research methodology starts with a thorough review 

of the literature on topological indices of graphs. After that, the graphs are arranged in a particular order (n), 

and a group is established according to their shared attributes. For every graph in the group, a case-by-case 

analysis is conducted, during which topological indices are examined, and the graph's structure is built. A 

conjecture concerning the general structure of graphs within the selected group is formulated from these 

individual cases, with particular emphasis on recurrent patterns. Next, a deductive argument is constructed to 

verify the conjectured general structure and give a mathematical foundation for the patterns observed in 

different circumstances. A general formula for the topological indices of graphs inside a given order can be 

found using the established general structure. 

 

 



BAREKENG: J. Math. & App., vol. 20(2), pp. 0971-0980, Jun, 2026.     973 

 

3. RESULTS AND DISCUSSION  

Within this segment, we revisit fundamental concepts crucial for the subsequent sections. A 

prerequisite for a comprehensive understanding includes familiarity with the definition of the order of an 

element in a group and an understanding of Lagrange's theorem. 

Definition 1 [21]. Let 𝐺 be a group with the identity 𝑒. The order of an element 𝑎 of 𝐺 is the smallest natural 

number 𝑛 such that 𝑎𝑛  =  𝑒. The order of 𝑎 is denoted by |𝑎|. If no such 𝑛 exists, then 𝑎 is said to have 

infinite order. 

Theorem 1 [22]. Let 𝑆 be a subgroup of a finite group 𝐺. Then the order of subgroup 𝑆 divides the order of 

the group 𝐺. 

Prior to computing the initial Zagreb index, the secondary Zagreb index, and the Wiener index for a 

linked graph, it is essential to comprehend the definitions of vertex degree and the distance between two 

vertices within a connected graph. 

Definition 2 [3]. The degree of a vertex 𝑣 in a graph Γ, denoted by 𝑑𝑒𝑔(𝑣), is the number of vertices that are 

adjacent to 𝑣 in Γ. 

Definition 3 [3].Suppose that 𝑢 and 𝑣 are two distinct vertices in a connected graph Γ. The distance 𝑑(𝑢, 𝑣) 

from vertice 𝑢 to vertice 𝑣 in graph Γ is the minimum length of the path (𝑢, 𝑣) in Γ. 

The following are definitions of the topological indices that are used in this research, including the first 

Zagreb index, the second Zagreb index, and the Wiener index. 

Definition 4 [23]. Let Γ be a connected graph. The first Zagreb index of graph Γ is denoted as 𝑀1(Γ), defined 

as follows:  

𝑀1(Γ) = ∑ (𝑑𝑒𝑔(𝑣))2

𝑣∈𝑉(Γ)

. 

The second Zagreb index of Γ is denoted as 𝑀2(Γ), defined as follows: 

𝑀2(Γ) = ∑ 𝑑𝑒𝑔(𝑢) . 𝑑𝑒𝑔 (𝑣)

𝑢,𝑣∈𝐸(Γ)

. 

Definition 5 [24]. Let Γ be a connected graph. The Wiener index of graph Γ, denoted as 𝑊(Γ), is defined as 

follows: 

𝑊(Γ) = ∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑉(𝐻)

. 

Theorem 2 [25]. If 𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑗
𝑘𝑗, where 𝑝1, 𝑝2, … , 𝑝𝑗 are distinct prime numbers, and 𝑘1, 𝑘2, … , 𝑘𝑗  

are natural numbers, then the coprime graph of 𝛤ℤ𝑛
 is a (𝑗 + 1) −partite graph. 

Example 1. The coprime graphs for the groups ℤ3, ℤ5, and ℤ7 are shown in the following figure. 

 
Figure 1. (a) Γℤ3

 (b) Γ5 (c) Γℤ7
 

Example 2. The coprime graphs for the groups ℤ12, ℤ20, and ℤ48 are illustrated in the following figure. 
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Figure 2. (a) Γℤ12

 (b) Γℤ20
 (c) Γℤ48

 

This research aims to determine the Zagreb indices (first and second), and the Wiener index of the 

coprime graph of the group of integers modulo 𝑛, denoted as Γℤ𝑛
. Research findings obtained in several 

theorems are presented in the following. 

3.1 The Coprime Graph 𝚪ℤ𝒏
  of ℤ𝒏 , 𝚪ℤ𝒏

 for 𝒏 = 𝒑𝒓 

We begin by examining the structure of the coprime graph for integers modulo a prime power. This 

forms the basis for calculating the topological indices presented in the next results. 

Lemma 1. Let 𝛤ℤ𝑛
 be the coprime graph of ℤ𝑛, for 𝑛 is the power of prime number 𝑝, then the degrees of 

vertices are given in the following: 

𝑑𝑒𝑔(0) = 𝑛 − 1, 
𝑑𝑒𝑔(𝑢) = 1, ∀𝑢 ∈ 𝑉(𝛤ℤ𝑛

)\{0}, 

and the distance between two vertices of 𝛤ℤ𝑛
 are 

𝑑(0, 𝑣) = 1, 

𝑑(𝑢, 𝑣) = 2, ∀𝑢, 𝑣 ∈ 𝑉(𝛤ℤ𝑛
)\{0}. 

Proof. It is clear that |0| = 1 and |𝑢| = 𝑝𝑖 for 1 ≤ 𝑖 ≤ 𝑟. Then we have 𝑔𝑐𝑑(|0|, |𝑣|) = 1 and 

𝑔𝑐𝑑(|𝑢|, |𝑣|) ≠ 1, ∀𝑢, 𝑣 ∈ 𝑉(Γℤ𝑛
)\{0}.  Hence,  0 is adjacent to other vertices in Γℤ𝑛

, while the remaining 

nodes are not adjacent to each other.  Therefore, the degrees of vertices are 𝑑𝑒𝑔(0) = 𝑛 − 1, 𝑑𝑒𝑔(𝑢) = 1,

∀𝑢 ∈ 𝑉(Γℤ𝑛
)\{0}. Meanwhile, the distance between two vertices is 𝑑(0, 𝑣) = 1, and 𝑑(𝑢, 𝑣) = 2, ∀𝑢, 𝑣 ∈

𝑉(Γℤ𝑛
)\{0}.               ◼ 

Subsequently, the propositions for the Zagreb indices (first and second), and the Wiener index of the 

coprime graph associated with the group of integers modulo 𝑛, where 𝑛 equals 𝑝𝑟, are established in the 

following manner: 

Theorem 3. Let 𝛤ℤ𝑛
 be the coprime graph of ℤ𝑛, for 𝑛 =  𝑝𝑟, where 𝑝 is a prime number and 𝑟 ∈ ℕ. Then, 

the first Zagreb index, the second Zagreb index, and the Wiener index of 𝛤ℤ𝑛
 are 

𝑀1(𝛤ℤ𝑛
) = 𝑛2 − 𝑛, 

𝑀2(𝛤ℤ𝑛
) = 𝑛2 − 2𝑛 + 1, 

𝑊(𝛤ℤ𝑛
) = 𝑛2 − 2𝑛 + 1. 

Proof. According to Lemma 1, it is known that 𝑑𝑒𝑔(0)  =  𝑛 − 1 and 𝑑𝑒𝑔(𝑣)  =  1, ∀𝑣 ∈ 𝑉(Γℤn
)\{0} hence 

1. The First Zagreb Index of Γℤn
 

𝑀1(Γℤ𝑛
) = ∑ (𝑑𝑒𝑔(𝑣))2

𝑣∈𝑉(𝛤ℤ𝑛)

, 

= (𝑑𝑒𝑔(0))2 + ∑ (𝑑𝑒𝑔(𝑣))2

𝑣∈𝑉(𝛤ℤ𝑛)\{0}

, 

= (𝑛 − 1)2 + (𝑛 − 1) ∙ 12, 
= 𝑛2 − 𝑛. 



BAREKENG: J. Math. & App., vol. 20(2), pp. 0971-0980, Jun, 2026.     975 

 

2. The Second Zagreb Index of 𝛤ℤ𝑛
 

𝑀2(Γℤ𝑛
) = ∑ 𝑑𝑒𝑔(𝑢) ∙ 𝑑𝑒𝑔(𝑣)

𝑢,𝑣∈𝐸(Γℤ𝑛)

, 

= 𝑑𝑒𝑔(0) ∑ 𝑑𝑒𝑔(𝑣)

𝑣∈𝐸(𝛤ℤ𝑛)

, 

= (𝑛 − 1) ∙ ((𝑛 − 1) ∙ 1), 

= 𝑛2 − 2𝑛 + 1. 

And from Lemma 1, it is also known that 𝑑(0, 𝑣)  =  1 and 𝑑(𝑢, 𝑣)  =  2, ∀𝑢, 𝑣 ∈ 𝑉(Γℤ𝑛
)\{0}, hence 

3. The Wiener Index of Γℤ𝑛
 

The important thing to note before calculating the Wiener index of Γℤ𝑛
 is to determine the number of 

pairs of two distinct non-zero nodes, which is 

𝐶2
𝑛−1 =

(𝑛 − 1)!

((𝑛 − 1) − 2)! (2)!
=

(𝑛 − 1)(𝑛 − 2)

2
. 

Then, it can be obtained that  

𝑊(Γℤ𝑛
) = ∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑉(Γℤ𝑛)

, 

= ∑ 𝑑(0, 𝑣)

𝑣∈𝑉(Γℤ𝑛)

+ ∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑉(Γℤ𝑛)

, 

= (𝑛 − 1) + (𝑛 − 1)(𝑛 − 2), 
= (𝑛 − 1) + (𝑛2 − 3𝑛 + 2), 
= 𝑛2 − 2𝑛 + 1. 

◼ 

3.2 The Coprime graph 𝚪ℤ𝒏
 of ℤ𝒏, for 𝒏 = 𝒑𝒓𝒒𝒔 

Next, we extend the analysis to the coprime graph of integers modulo a product of two distinct prime 

powers. The following result describes the degrees and distances in this case. 

Lemma 2. Let 𝛤ℤ𝑛
 be the coprime graph of ℤ𝑛, for 𝑛 is the multiplication of the power of two distinct prime 

number 𝑝 and 𝑞. Then, the degrees of vertices are given in the following: 

𝑑𝑒𝑔(0) = 𝑛 − 1, 
𝑋1 = {𝑢 ∈ 𝑉2| 𝑑𝑒𝑔(𝑢) = 1} , 
𝑋2 = {𝑣 ∈ 𝑉2| 𝑑𝑒𝑔(𝑣) = 𝑞𝑠} , 
𝑋3 = {𝑤 ∈ 𝑉3| 𝑑𝑒𝑔(𝑤) = 𝑝𝑟}, 

and the distance between two vertices of 𝛤ℤ𝑛
 are 

𝑑(0, 𝑣) = 𝑛 − 1, 𝑣 ∈ 𝑉(𝛤ℤ𝑛
)\{0}, 

𝑑(𝑢, 𝑣) = 2, 
𝑑(𝑢, 𝑤) = 2, 
𝑑(𝑣, 𝑤) = 1. 

Proof. Let Γℤ𝑛
 with 𝑛 =  𝑝𝑟𝑞𝑠, where 𝑝 and 𝑞 are distinct prime numbers, and 𝑟 and 𝑠 are positive integers, 

are partitioned into three cases: 

𝑉1 = {0}, 

𝑉2 = {𝑢 ∈ 𝑉(Γℤn
); |𝑢| = 𝑝𝑖𝑞𝑗 } with 1 ≤ 𝑖 ≤ 𝑟 and 0 ≤ 𝑗 ≤ 𝑠, 

𝑉3 = {𝑣 ∈ 𝑉(Γℤn
); |𝑣| = 𝑞𝑗} with  1 ≤ 𝑞 ≤ 𝑠. 
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Then we can obtain 𝑔𝑐𝑑(|0|, |𝑢|) = 1, 𝑔𝑐𝑑(|0|, |𝑣|) = 1, in if |𝑢| = 𝑝𝑖𝑞𝑗 with 𝑗 = 0 hence 𝑔𝑐𝑑(|𝑢|, |𝑣|) ≠
1. So that the coprime graph of the group ℤ𝑛 for 𝑛 = 𝑝𝑟𝑞𝑠 is illustrated in Fig. 3. 

 

Figure 3. The Coprime Graph of ℤ𝒏, 𝚪ℤ𝐧
 for 𝒏 = 𝒑𝒓𝒒𝒔 

Therefore, the degrees of vertices are given in the following: 

𝑑𝑒𝑔(0) = 𝑛 − 1, 
𝑋1 = {𝑢 ∈ 𝑉2| 𝑑𝑒𝑔(𝑢) = 1} , 
𝑋2 = {𝑣 ∈ 𝑉2| 𝑑𝑒𝑔(𝑣) = 𝑞𝑠} , 
𝑋3 = {𝑤 ∈ 𝑉3| 𝑑𝑒𝑔(𝑤) = 𝑝𝑟}, 

and the distance between two vertices of Γℤ𝑛
 are 

𝑑(0, 𝑣) = 𝑛 − 1, 𝑣 ∈ 𝑉(𝛤ℤ𝑛
)\{0}, 

𝑑(𝑢, 𝑣) = 2, 
𝑑(𝑢, 𝑤) = 2, 
𝑑(𝑣, 𝑤) = 1. 

◼ 

Then, the Theorem for the first Zagreb index, the second Zagreb index, and the Wiener index will be given 

for the coprime graph of the group of integers modulo 𝑛, for 𝑛 = 𝑝𝑟𝑞𝑠. 

Theorem 4. Let 𝛤ℤ𝑛  is a coprime graph of ℤ𝑛, for 𝑛 is the multiplication of the power of two distinct prime 

number 𝑝 and 𝑞.  Then the  first Zagreb, the second Zagreb index, and the Wiener Index of 𝛤ℤ𝑛
 are 

𝑀1(𝛤ℤ𝑛
) = 𝑛2 + (𝑝𝑟 + 𝑞𝑠 − 1)𝑛 − 𝑝𝑟(𝑝𝑟 + 1) − 𝑞𝑠(𝑞𝑠 + 1) + 2, 

𝑀2(𝛤ℤ𝑛
) = 𝑛(4𝑛 − 3𝑝𝑟 − 3𝑞𝑠 − 1) + 2(𝑝𝑟 + 𝑞𝑠) − 1, 

𝑊(𝛤ℤ𝑛
) = 𝑛2 − 3𝑛 + 𝑝𝑟 + 𝑞𝑠. 

Proof. Let Γℤ𝑛
 be the coprime graph of the group ℤ𝑛 for 𝑛 = 𝑝𝑟𝑞𝑠 where 𝑝 and 𝑞 are distinct prime numbers, 

and 𝑟 and 𝑠 are positive integers. Then, let 𝑎 = 𝑝𝑟 and  𝑏 = 𝑞𝑠 so according to Lemma 2, it is known that 

𝑑𝑒𝑔(0) = 𝑛 − 1, 𝑑𝑒𝑔(𝑢) = 1, 𝑑𝑒𝑔(𝑣) = 𝑏, and 𝑑𝑒𝑔(𝑤) = 𝑎 hence 

1. The first Zagreb index of Γℤ𝑛
 P 

𝑀1(Γℤ𝑛
) = ∑ (𝑑𝑒𝑔(𝑣))2

𝑣∈𝑉(𝛤ℤ𝑛)

, 

= (𝑑𝑒𝑔(0))2 + ∑ (𝑑𝑒𝑔(𝑢))2 + ∑ (𝑑𝑒𝑔(𝑣))2 +

𝑣∈𝑋2\{0}𝑢∈𝑋1\{0}

∑ (𝑑𝑒𝑔(𝑤))2

𝑤∈𝑋3\{0}

, 

= (𝑛 − 1)2 + (𝑛 − 𝑎 − 𝑏 + 1) ∙ (1)2 + (𝑎 − 1) ∙ (𝑏)2 + (𝑏 − 1) ∙ (𝑎)2, 
= 𝑛2 + (𝑝𝑟 + 𝑞𝑠 − 1)𝑛 − 𝑝𝑟(𝑝𝑟 + 1) − 𝑞𝑠(𝑞𝑠 + 1) + 2. 

2. The first Zagreb index of Γℤ𝑛
  

𝑀2(Γℤ𝑛
) = ∑ 𝑑𝑒𝑔(𝑢) ∙ 𝑑𝑒𝑔(𝑣)

𝑢,𝑣∈𝐸(Γℤ𝑛)

, 

= 𝑑𝑒𝑔(0) ∙ ∑ 𝑑𝑒𝑔(𝑢)

𝑢∈𝑋1\{0}

+ 𝑑𝑒𝑔(0) ∙ ∑ 𝑑𝑒𝑔(𝑣)

𝑣∈𝑋2\{0}

+ ∑ 𝑑𝑒𝑔(𝑣)

𝑣∈𝑋2\{0}

∙ ∑ 𝑑𝑒𝑔(𝑤)

𝑤∈𝑋3\{0}

+ 𝑑𝑒𝑔(0) ∙ ∑ 𝑑𝑒𝑔(𝑤)

𝑤∈𝑋3\{0}

, 
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= (𝑛 − 1) ∙ (𝑛 − 𝑎 − 𝑏 + 1) + (𝑛 − 1) ∙ 𝑏(𝑎 − 1) + 𝑏(𝑎 − 1) ∙ 𝑎(𝑏 − 1) + (𝑛 − 1)
∙ 𝑎(𝑏 − 1), 

= 4𝑛2 − 3𝑎𝑛 − 3𝑏𝑛 − 𝑛 + 2𝑎 + 2𝑏 − 1, 
= 𝑛(4𝑛 − 3𝑝𝑟 − 3𝑞𝑠 − 1) + 2(𝑝𝑟 + 𝑞𝑠) − 1. 

And based on Lemma 2, it is also known that 𝑑(0, 𝑣) = 𝑛 − 1, 𝑣 ∈ 𝑉(𝛤ℤ𝑛
)\{0}, 𝑑(𝑢, 𝑣) = 2, 𝑑(𝑢, 𝑤) = 2, 

and 𝑑(𝑣, 𝑤) = 1 such as 

3. The Wiener Index of Γℤ𝑛
 

𝑊(Γℤ𝑛
) = ∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑉(Γℤ𝑛)

, 

= ∑ 𝑑(0, 𝑣)

𝑣∈𝑉(Γℤ𝑛)

+ ∑ 𝑑(𝑢, 𝑣)

𝑢∈𝑋1,𝑣∈𝑋2

+ ∑ 𝑑(𝑢, 𝑣)

𝑢∈𝑋1,𝑣∈𝑋3

+ ∑ 𝑑(𝑢, 𝑣)

𝑢∈𝑋2,𝑣∈𝑋3

+ ∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑋1

+ ∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑋2

+ ∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑋3

, 

= (𝑛 − 1) + 2(𝑛 − 𝑎 − 𝑏 + 1) ∙ (𝑎 − 1) + 2(𝑛 − 𝑎 − 𝑏 + 1) ∙ (𝑏 − 1) + (𝑎 − 1) ∙ (𝑏 − 1)
+ (𝑛 − 𝑎 − 𝑏 + 1) ∙ (𝑛 − 𝑎 − 𝑏) + (𝑎 − 1) ∙ (𝑎 − 2) + (𝑏 − 1) ∙ (𝑏 − 1), 

= 𝑛2 − 3𝑛 + 𝑎 + 𝑏, 
= 𝑛2 − 3𝑛 + 𝑝𝑟 + 𝑞𝑠. 

Example 3. Given the group ℤ36, according to Theorem 4, we have 𝑝 = 2, 𝑞 = 3, and  𝑟 = 𝑠 = 2, thus 

the indices are:  

𝑀1(Γℤ36
) =  362 + (22 + 32 − 1)36 − 22(22 + 1) − 32(32 + 1) + 2 = 1620, 

𝑀2(Γℤ36
) = 36(4(36) − 3(22) − 3(32) − 1) + 2(22 + 32) − 1 = 3769, 

𝑊(Γℤ36
) = 362 − 3(36) + 22 + 32 = 1201. 

4. CONCLUSION 

The results for the Zagreb indices (first and second), and the Wiener index on the coprime graph of the group 

of integers modulo 𝑛, for is the power of prime number 𝑝, are obtained as follows: 

𝑀1(Γℤ𝑛
) = 𝑛2 − 𝑛, 

𝑀2(Γℤ𝑛
) = 𝑛2 − 2𝑛 + 1, 

𝑊(Γℤ𝑛
) = 𝑛2 − 2𝑛 + 1. 

On the other hand, we have computed the Zagreb indices (first and second), and the Wiener index on the 

coprime graph of the group of integers modulo 𝑛, for n is the multiplication of the power of two distinct prime 

number p and q, are as follows: 

𝑀1(Γℤ𝑛
) = 𝑛2 + (𝑝𝑟 + 𝑞𝑠 − 1)𝑛 − 𝑝𝑟(𝑝𝑟 + 1) − 𝑞𝑠(𝑞𝑠 + 1) + 2, 

𝑀2(Γℤ𝑛
) = 𝑛(4𝑛 − 3𝑝𝑟 − 3𝑞𝑠 − 1) + 2(𝑝𝑟 + 𝑞𝑠) − 1, 

𝑊(Γℤ𝑛
) = 𝑛2 − 3𝑛 + 𝑝𝑟 + 𝑞𝑠. 

For example, when 𝑝 = 2, 𝑞 = 3, 𝑠 = 2 and 𝑟 = 2 we obtain that the first Zagreb index of the coprime 

graph is 840, the second Zagreb index is 5040, and the Wiener index is 2065. 
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