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ABSTRACT

Modeling and forecasting mortality rates have been widely performed using various
approaches. One such approach is the Second Adapted Nolfi model, which is one of three
adaptations derived from the Nolfi and Generalized Nolfi models. Unfortunately, its
application remains limited compared to widely used models like Lee-Carter and Cairns-
Blake-Dowd. Previous studies on this model have shown satisfactory performance,
particularly in residual analysis. However, those studies were conducted before the
COVID-19 pandemic, and no study has yet applied it in the pandemic or post-pandemic
periods. Although the pandemic may appear less relevant in 2025, the absence of such
studies highlights the importance of further investigation into the model’s performance
under extreme demographic conditions. This study addresses that gap by evaluating the
Second Adapted Nolfi model using data from the Human Mortality Database (HMD) for
the United States, the United Kingdom, and Italy. The model was applied to data up to
2019, and Auto-ARIMA was used to forecast from 2020 onward. The modeling results
indicate that the logarithmic mortality curves align with established patterns, such as
high rates at age 0, a decline through childhood, a sharp increase in early adulthood, and
a continued rise into old age. The results also show that HMD mortality rates exceed the
forecasted values for individuals aged 80 and above, suggesting increased elderly
mortality during the pandemic. Three error metrics were used, yielding RMSE values
from 0.01 to 0.18, MAE from 0.004 to 0.07, and MAPE from 28 to 286. Although Italy
had the highest MAPE, the United States and the United Kingdom also showed notable
errors. These findings reveal both the pandemic’s demographic impact and limitations of
the model in capturing sudden shocks. Future studies may enhance this model through
new adaptations, further comparison with other models, or alternative smoothing
techniques to develop more robust mortality forecasts.
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1. INTRODUCTION

Modeling mortality rates has been widely studied worldwide, including the analysis of various factors
that affect mortality rates, the development of strategies to reduce mortality rates, and other related studies.
Several studies on mortality rates in Indonesia, for instance, are regarding the analysis of factors associated
with maternal mortality rates [1], strategies to reduce maternal and child mortality rates in East Java [2],
Indonesian mortality rates using the Whittaker-Henderson Graduation method [3], and comparison of the
modeling of the number of infant mortality in West Java [4]. Meanwhile, modeling and forecasting studies
include the application of the Lee-Carter model and the ARIMA method for Indonesia’s mortality rate [5],
forecasting COVID-19 positive cases in East Java using the Hybrid ARIMA-LSTM method [6], forecasting
the number of COVID-19 cases in West Java [ 7] and Central Java [8] using the ARIMA method, and the use
of the PLAT model, ARIMA, and Residual Bootstrap methods for Indonesian male mortality [9].

An approach that may be employed to model the mortality rates is the Nolfi model, first introduced by
P. Nolfi in his article in the Bulletin/Association of Swiss Actuaries in 1959 [10]. Furthermore, the model
developed into several forms: Generalized, First Adapted, Second Adapted, and Third Adapted Nolfi model.
The Generalized Nolfi model is a generalization of the original Nolfi model, achieved by modifying the
characteristics of the parameter A,.. Subsequently, the Adapted Nolfi model generalises the Generalized Nolfi
model by incorporating a stochastic process, allowing the first-year mortality rates and/or the parameter A1,.to
vary with time ¢t [11]. Later on, G. Binder compared these models with other established approaches, such as
the Lee-Carter model, the Cairns-Blake-Dowd model, and the extrapolation model [12]. In the study, Binder
concluded that the Second Adapted Nolfi model gives the best performance because the model best fits the
Swiss country population data from 1912 to 2010 in terms of residuals.

Our previous study applied the Nolfi, Generalized Nolfi, and Adapted Nolfi models to Taiwanese
mortality data from 1970 to 2014, obtained from the Human Mortality Database (HMD) [13]. Among these
models, the Second Adapted Nolfi model again gave the smallest error with RMSE and MAE measures.
However, the study was conducted before the COVID-19 pandemic. More recent studies have examined
mortality modeling during the pandemic, such as examining mortality shocks induced by the COVID-19
pandemic within the framework of the Lee-Carter model [14] and predicting COVID-19 mortality rates in
Indonesia using a Zero-Inflated Negative Binomial (ZINB) model [15]. Unfortunately, to the best of our
knowledge, none of these studies have modelled mortality rates using the Adapted Nolfi model.

One of the primary justifications for conducting this research is the limited number of studies
employing the Nolfi, Generalized Nolfi, or Adapted Nolfi models for mortality rate modeling. While earlier
studies discussing these models have been documented in [10], [11], [12], and [13], they remain significantly
outnumbered by studies on more established mortality models like Lee-Carter or Cairns-Blake-Dowd.
Furthermore, to our knowledge, no subsequent studies have applied these models during or after the pandemic
period. Therefore, this study aims to fill that gap by employing the Second Adapted Nolfi model, one of the
three Adapted Nolfi models, to model mortality rates during the COVID-19 pandemic, in combination with
the Auto-ARIMA forecasting method.

Beyond its previously demonstrated ability to produce the smallest error, the Second Adapted Nolfi
model incorporates a single modification, which is the addition of a stochastic process to the first-year
mortality rate. This modification causes its influence on the overall mortality rate to vary from year to year.
This is closely related to the smoothing of the first-year mortality rate, which is also one of the key steps in
this study. Meanwhile, the Auto-ARIMA method itself has been widely used by researchers as a forecasting
method because it offers a suitable model and saves time. Several studies about Auto-ARIMA are [16] about
the comparison of ARIMA and Auto-ARIMA methods, [17] on the COVID-19 case in European countries,
and [18] on the COVID-19 case in Pakistan. Given the convenience offered by the Auto-ARIMA method,
this study employed it to forecast mortality rates during the COVID-19 pandemic from 2020 to 2022.

Although the COVID-19 pandemic may appear less relevant in 2025, the lack of studies exploring the
Second Adapted Nolfi model in the context of pandemic-related mortality underscores the importance of
further investigation. The findings from this study are expected to provide insights into how this model, in
combination with Auto-ARIMA, performs under extreme conditions such as a global health crisis, as well as
in future situations that may result in sudden changes or shocks in mortality patterns. This study is expected
to further promote the application of the Second Adapted Nolfi model, as well as other Nolfi models, to
encourage continued development and evaluation in future studies.
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The remainder of this paper is structured as follows. Section 2 presents the data sources and the
methodology, including methods and research stages for modeling and forecasting mortality rates using the
Second Adapted Nolfi model and the Auto-ARIMA method. Section 3 presents the results of smoothing and
parameter estimation, as well as the modeling and forecasting outcomes, along with a discussion that includes
error measurements. Section 4 concludes the paper and offers suggestions for future research.

2. RESEARCH METHODS

This research employed quantitative research in which the data originated from secondary sources. The
mortality data used in this study were secondary data from the HMD website in the form of mortality and
population data for the United States, the United Kingdom, and Italy. Based on the WHO data as of 22 August
2024, the highest number of deaths of COVID-19 patients occurred in the United States of America, with a
total of 1.2 million people; the United Kingdom of Great Britain and Northern Ireland occupied the sixth
position with a total of 232 thousand people, and Italy occupied the eighth position with a total of 197
thousand people [19]. In this study, the mortality data of the three countries were modelled with the Second
Adapted Nolfi model and forecasted with the Auto-ARIMA method.

2.1 Methods for Modeling and Forecasting the Mortality Rates

Mortality data for three countries up to 2019 are used as the basis for modeling in this study [19].
Furthermore, stochastic parameter forecasting is carried out for 2020 to 2021 or 2022 to obtain the forecasted
mortality rate. The results of mortality rate forecasting are compared with HMD mortality rates to see changes
in mortality rates during the COVID-19 pandemic. This mortality rate modeling and forecasting can be
extended to subsequent years or extended to other countries according to user needs and applied to various
fields that make use of mortality rates, such as mortality tables, insurance premium calculations, and others.

The Second Adapted Nolfi model is one of three Adapted Nolfi models developed by Luthy et. al. by
adding stochastic process parameters to the Generalized Nolfi model [11]. Eq. (1) presents the mathematical
formulation of the Second Adapted Nolfi Model, while Eq. (2) presents its logarithmic mortality rates
formula.

Ayt = {at,lqpc.to exp(—/lx(t - to))}: 1

Ingy, = ln{atrqu_to exp(—2A,(t — to))}- (2)

Where x: age, t: year, t,: first year of observation, g, .,: mortality rate at age x in year t, gy : mortality rate
atage x inyear t for x > 0,t > t,, and there is a condition A, > 0.

The parameters A, in the Second Adapted Nolfi model are the same as the parameters 4, in the
Generalized Nolfi model. The estimated value of the parameter A,, can be calculated using Eq. (3), while the
estimated value of the parameter a, ; can be obtained from Eq. (4) below.

( Setog (F2) e~ )
i Tt — ) f ©
S

ix(t_t )
Gp1 = (xtCIxt)eXp( 20 )’ 4)

T (exp (et — t)))

a:, € R, is a stochastic process that makes the effect of g, on q, . different each year according to the
value a; ; in that year.

Mortality data for three countries up to 2019 are used as the basis for modeling in this study.
Furthermore, stochastic parameter forecasting is carried out for 2020 to 2021 or 2022 to obtain the forecasted
mortality rate. The results of mortality rate forecasting are compared with HMD mortality rates to observe
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changes in mortality rates during the COVID-19 pandemic. The forecasting method in the present study was
performed by using the Auto-ARIMA method.

2.2 Stages of Modeling and Forecasting using the Second Adapted Nolfi Model and Auto-ARIMA

The study was initiated with a literature review to collect information on the COVID-19 pandemic,
mortality data sources, characteristics of the available data, methods for processing mortality data using
Python, and other relevant aspects. This information formed the basis for conducting the research, which
followed several methodological steps. The stages of this study are as follows:

1.

2.

7.

8.

Collecting mortality and population data for the United States, the United Kingdom, and Italy
from the HMD website.

Smoothing the first-year mortality rate (q,..,) using the Whittaker-Henderson method in Python.
This smoothing method has been previously used to smooth data such as the 2019 World Health
Organization (WHO) mortality data for Indonesia [3], series data in the health sector [20], and
data from the social security system of the Republic of the Philippines [21].

Estimating parameters 4,, and a, ;. by employing the functions given in [22] and [23]. In the third
stage, the parameters 4, and a ; are estimated by first deriving the estimation formula for &, ;
using the least squares linear regression method. The first parameter to be estimated is the
parameter A,.. The estimation results are then used to estimate the parameter a, ;.

Calculating the modelled mortality rate. In the fourth stage, the parameter estimation results are
substituted into Eq. (1) to obtain the modelled mortality rate (g, .) for all ages from the first year
to 2019. The results of the modeling were subsequently illustrated by employing several Python
library functions, as presented in [24] and [25].

Forecasting the mortality rate. In the fifth stage, stochastic parameter forecasting is carried out
using the Auto-ARIMA method in Python, as presented in [26].

Comparing the forecasted mortality rate with the mortality rate in HMD. In the sixth stage, the
forecasted mortality rate is compared with the mortality rate in HMD. A mortality rate plot for the
three countries was produced for both female and male genders in 2020-2021 for the United
Kingdom and Italy, and 2020-2022 for the United States.

Calculating the forecasting error using Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Mean Absolute Percentage Error (MAPE).

Drawing conclusion(s) and suggestion(s).

To provide a clearer overview of the research steps, they are illustrated in the methodological flowchart
presented in Fig. 1.
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Figure 1. Method Flow

3. RESULTS AND DISCUSSION

607

The results of this study are presented in four sections. The first section presents the parameter
estimation of 4, and a, 1, conducted using Microsoft Excel. The second section presents the mortality rate
modeling results using the Second Adapted Nolfi model with HMD data from the first year up to 2019. The
third section presents the mortality rate forecasting using the Auto-ARIMA method, conducted using Python.

The final section provides further discussion.

3.1 Smoothing and Estimating Parameters Results

By following the research stages above for stages (1) and (2), the smoothed first-year mortality rates
for Italy (female and male) and the United Kingdom (female) were obtained. A comparison between these

smoothing results and the original data is presented in Figs. 2 and 3.
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Figure 2. Italy First-Year Mortality Rates (a) Female, (b) Male
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Figure 3. United Kingdom Female First-Year Mortality Rates

The remaining three datasets of first-year mortality rates, which are the United Kingdom male, United
States female, and United States male, were not smoothed, as such a procedure would alter the trend of the
original data. Comparisons between the smoothed results and original data for these datasets are presented in
Figs. 4 and 5.

Observed
WH-1
WH-2
WH-3
WH-4
WH-5

Logarithmic Mortality Rate

6 ZIO 4‘0 6|0 80 160
Age
Figure 4. United Kingdom Male First-Year Mortality Rates
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Logarithmic Mortality Rate
Logarithmic Mortality Rate
&

6 ZID 4‘[) 6‘0 BID 16(] (I) 2‘0 4‘0 6‘0 BIU
Age Age
_ (@) . . (b)
Figure 5. United States First-Year Mortality Rates (a) Female, (b) Male

As illustrated in Figs. 4 and 5, the smoothed first-year mortality rates for United Kingdom males,
United States females, and United States males exhibit an increasing trend at age 7 that is not present in the
original data. Therefore, the original first-year mortality data, rather than the smoothed data, were used in the
modeling process.
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The obtained values of g, ., along with the data d, ; and L, ;, were substituted into Eq. (3) to estimate

the parameter 1,.. The value of 1, may vary for each age x, subject to the condition 1, > 0. Subsequently,
the estimated 4, values were substituted into Eq. (4) to estimate the parameter @ 1. Fig. 6 (a) and (b) present

the estimated parameters A, and @, 1 for all three countries, as obtained using the Second Adapted Nolfi
Model.

Lambda Alpha
0.03 25
0.025
0.02
0.015

0.01

0.005

—Male [taly —e—Female [taly s—Male UK Ml (taly  e—Female |taly ee—Male UK

e Femidle UK e Male US e Female US e FeMale UK s Male US s Female US

(@) (b)

Figure 6. Estimated Parameter Values (a) /Alx, (b) @ q

The estimated parameters were then used to calculate the modeled mortality rates and logarithmic mortality
rates using Egs. (1) and (2).

3.2 Mortality Rate Modeling Results

Modeling in this study was carried out on mortality data for the United States for 1933-2019, the United
Kingdom for 1922-2019, and Italy for 1872-2019. The smoothed values of g, ., and the estimated parameters
1, and @, 1 obtained in steps (2) nd (3) are substituted into the mortality rate and logarithmic mortality rate
formulas, for the corresponding age x and year t, to obtain the modeled values of g, and Ingq, . Fig. 7

presents the modeling results of mortality rates for United States females, as obtained using the Second
Adapted Nolfi model.

Year Range

—— 1933-1937
1938-1942
1943-1947
1948-1952
1953-1957
1958-1962
1963-1967
1968-1972
1973-1977
1978-1982
1983-1987
1988-1992
1993-1997
1998-2002
2003-2007
2008-2012
2013-2017
2018-2019

Logarithmic Mortality Rate

0 20 40 60 80 100
Age

Figure 7. Female Logarithmic Mortality Rates for the United States

The modeling results of the female logarithmic mortality rates in the United States using the Second
Adapted Nolfi model from 1933 to 2019 are shown in Fig. 7. In general, the logarithmic values show a
declining trend over the years, which aligns with the increase in life expectancy due to advances in health
science and technology. However, life expectancy is not examined in this study and may serve as a topic for
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future research. Subsequently, Fig. 8 presents the modeling results of male logarithmic mortality rates in the
United States.

Year Range

—— 1933-1937
1938-1942
1943-1947
1948-1952
1953-1957
1958-1962
1963-1967
1968-1972
1973-1977
1978-1982

—— 1983-1987

—— 1988-1992

—— 1993-1997

—— 1998-2002

—— 2003-2007

—— 2008-2012

—— 2013-2017

—— 2018-2019

4

Logarithmic Mortality Rate

[ 20 40 60 80 100
Age

Figure 8. Male Logarithmic Mortality Rates for the United States

The modeled mortality rates for males in the United States show an overall declining trend over time,
much like Fig. 7. Fig. 9 shows the outcomes of predicting mortality rates for females in the United Kingdom.

Year Range

—— 1933-1937
1938-1942
1943-1947
1948-1952
1953-1957
1958-1962
1963-1967
1968-1972
1973-1977
1978-1982
1983-1987
1988-1992
1993-1997
1998-2002
2003-2007
2008-2012
2013-2017
2018-2019

-3

Logarithmic Mortality Rate

0 20 40 60 80 100
Age

Figure 9. Female Logarithmic Mortality Rates for the United Kingdom
The female logarithmic mortality rates in the United Kingdom likewise exhibit a general declining

tendency over time, which is consistent with the findings of mortality rates modeling for the United States.
Fig. 10 then displays the findings of the modeling of males’ mortality rates in the United Kingdom.
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Year Range

—— 1933-1937
—— 1938-1942
1943-1947
1948-1952
1953-1957
1958-1962
—— 1963-1967
1968-1972
1973-1977
1978-1982
—— 1983-1987
—— 1988-1992
— 1993-1997
— 1998-2002
—— 2003-2007
—— 2008-2012
—— 2013-2017
—— 2018-2019

Logarithmic Mortality Rate

0 20 40 60 80 100
Age

Figure 10. Male Logarithmic Mortality Rates for the United Kingdom

Similar to the modeling results presented in Fig. 7 through Fig. 9, the mortality rates for males in the
United Kingdom also show a general decline over time. As for Italy, the results of mortality rate modeling
for females are presented in Fig. 11.

Year Range
—— 1872-1875
o —— 1876-1879
——— 1880-1883
1884-1887
1888-1891
1892-1895
1896-1899
1900-1903
1904-1907
1908-1911
1912-1915
1916-1919
1920-1923

- 1924-1927
1928-1931
1932-1935
1936-1939
1940-1943
1944-1947

—— 1948-1951
—— 1952-1955
—— 1956-1959
—— 1960-1963
—— 1964-1967
—— 1968-1971
- 1972-1975
— 1976-1979
—— 1980-1983
~—— 1984-1987
—— 1988-1991
= 1992-1995
— 1996-1999
-~ 2000-2003
—— 2004-2007
~— 2008-2011
— 2012-2015
—— 2016-2019

Logarithmic Mortality Rate
!
A

!
b

-7

-8

o 20 40 60 80 100
Age

Figure 11. Female Logarithmic Mortality Rates for Italy

The female logarithmic mortality rates in Italy also show a declining trend over the years, like those
observed in the United States and the United Kingdom. However, the curve of female logarithmic mortality
rates presented in Fig. 11 appears less smooth compared to the other two countries. Higher smoothing levels
or alternative smoothing methods may yield different results, but it is important to carefully analyze the
associated error values. Subsequently, the results of modeling males’ mortality rates in Italy are presented in
Fig. 12.
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Year Range
—— 1872-1875
—— 1876-1879
1880-1883
1884-1887
1888-1891
1892-1895
1896-1899
1900-1903
1904-1907
1908-1911
1912-1915
1916-1919
1920-1923
1924-1927
1928-1931
1932-1935
1936-1939
1940-1943
1944-1947
1948-1951
1952-1955
—— 1956-1959
—— 1960-1963
~—— 1964-1967
—— 1968-1971
— 1972-1975
— 1976-1979
—— 1980-1983
—— 1984-1987
- 1988-1991
— 1992-1995
~— 1996-1999
—— 2000-2003
~— 2004-2007
—— 2008-2011
- 2012-2015
— 2016-2019

Logarithmic Mortality Rate

Age

Figure 12. Male Logarithmic Mortality Rates for Italy

Similar to Fig. 11, Fig.12 also presents logarithmic mortality rate curves that appear less smooth
compared to those of the other countries. A comparison of various smoothing methods and different
smoothing levels applied to Italy’s mortality data appears promising for further investigation to improve
modeling and forecasting results.

3.3 Mortality Rate Forecasting Results

The parameter estimation values a; ;, obtained through Microsoft Excel, are then used as the basis for
forecasting the parameter a, ; with Python. Auto-ARIMA forecasting in this study is carried out using the
‘Auto-ARIMA program’ in Python, which produces the forecasting results for a, ; for 2020-2021 (for the
United Kingdom and Italy) and 2020-2022 (for the United States). The forecasted values of a, ; is then
substituted into the Second Adapted Nolfi model formula to obtain the forecasted mortality rates g, ¢, as
shown in the following figures.

01 — Forecast 2020 —— Forecast 2020

HMD 2020 —2 HMD 2020
N /—-’_—/ 1

T T T . . T i ; T T T
0 20 40 60 80 100 0 20 40 60 80
Age Age

(@) (b)
Figure 13. Logarithmic Mortality Rates for the United States in 2020 (a) Female, (b) Male

The mortality rate forecasting results for the United States and the HMD in 2020 are shown in Fig. 13.
For the age range of 20 to 90 years, the forecasted male mortality rates for the United States in 2020 closely
align with the HMD mortality rates. Subsequently, the forecasting results in 2021 are presented in Fig. 14.
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HMD 2021
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T
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Figure 14. Logarithmic Mortality Rate for the United States in 2021 (a) Female, (b) Male

As seen in Fig. 14, the 2021 male mortality rate forecasting results nearly match the 20-90 age group
HMD mortality rates. The HMD mortality rates are continuously greater than the forecasted mortality rates
for ages beyond 80, according to all comparisons of the preceding curves. Following that, Fig. 15 displays

the forecasting findings for 2022.

o
.

—— Forecast 2022
HMD 2022

values

—— Forecast 2022
HMD 2022

/

(@)
Figure 15. Logarithmic Mortality Rate for the United States in 2022 (a) Female, (b) Male
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(b)

T
60

T
80

Similar to the previous comparisons, Fig. 15 also shows that the HMD mortality rates are higher than
the forecasted mortality rates for ages above 80. Following this, Fig. 16 displays the forecasted findings for

the United Kingdom in 2020.
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T
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T
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T
60

T
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T
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Figure 16. Logarithmic Mortality Rate for the United Kingdom in 2020 (a) Female, (b) Male

The forecasted findings for the United Kingdom in 2020, in Fig. 16, demonstrate that the HMD
mortality rates are greater than the forecasted death rates for ages beyond 80, in line with the earlier
comparisons. Subsequently, Fig. 17 below displays the forecasted findings for the United Kingdom in 2021.
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Figure 17. Logarithmic Mortality Rate for the United Kingdom in 2021 (a) Female, (b) Male

Similar to the previous forecasted findings, Fig. 17 shows that the HMD mortality rates rise again at
older ages, eventually exceeding the forecasted mortality rates, consistent with the earlier comparisons. Fig.

18 then displays the forecasted findings for Italy in 2020.
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Consistent with the previous comparisons, Fig. 18 also indicates that the HMD mortality rates are
higher than the forecasted mortality rates for ages above 80. Subsequently, the forecasting results for Italy in

2021 are presented in Fig. 19.
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Figure 19. Logarithmic Mortality Rate for Italy in 2021 (a) Female, (b) Male

The HMD mortality rates are greater than the predicted death rates for ages beyond 80, as shown in Fig. 19,

as was the case with the earlier comparisons.
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3.4 Discussion

In general, the shape of the logarithmic mortality curves for each country is consistent with the patterns
observed in our previous study [13] as well as [3] which presents Indonesian mortality rates based on WHO
data; [9] which displays the logarithmic values of estimated mortality and data from the World Population
Prospects; and [12], which illustrates the logit-rate patterns produced by the Generalized Nolfi Model, the
Lee-Carter model, and the Adapted Nolfi model. This similarity in shape is indicated by relatively high
logarithmic mortality rates at age 0, followed by a decline approaching adolescence. During adolescence, the
logarithmic mortality rate curves exhibit a sharp increase, peaking around age 20 and the early twenties. This
rise suggests an increased risk of mortality during this age period and is reflected not only in the curves
generated by the Second Adapted Nolfi Model but also in the curves derived from the HMD data. After this
period, the logarithmic mortality rate continues to show an upward trend, increasing into old age.

In addition to the graphical comparisons above, error measurements using RMSE, MAE, and MAPE
were also conducted to quantitatively assess the differences between the forecasted mortality rates and those
from the HMD. The error measurement results for the three countries are presented in Table 1.

Table 1. RMSE, MAE, and MAPE Values for Forecasted Mortality Rates

Country Year Sex RMSE MAE MAPE
Female 0.184004648 0.073782445 85.31661933
2020 Male 0.017904343 0.006332479 35.46963059
United States 2021 Female 0.157128267 0.063178657 69.97607619
Male 0.014512721 0.005697734 36.77197821
Female 0.155363739 0.063225963 75.60102928
2022 Male 0.012886374 0.004323143 28.34253109
Female 0.04517895 0.015474572 90.53402631
United Kingdom 2020 Male 0.030735854 0.010334874 59.05325757
Female 0.0350076 0.012085115 77.19254811
2021 Male 0.022833809 0.007624545 62.13244917
Female 0.052628122 0.019639248 286.5172872
2020 Male 0.053251688 0.020777432 283.4422284
faly Female 0.040744759 0.015706425 263.1976437
202t Male 0.045884028 0.01785296 263.7672034

In this study, pre-COVID-19 data were used as the basis for modeling, which subsequently served as
the foundation for forecasting. As a result, the forecasted outcomes tend to follow pre-pandemic patterns. A
similar situation was observed in mortality modeling using the Lee-Carter model, as noted in [22], where it
is assumed that mortality rates evolve smoothly over time without sudden changes or shocks. Another study,
as noted in the reference [23], also applied other mortality models without jump effects, such as the Renshaw
and Haberman model and the Cairns-Blake-Dowd model, by fitting the models to pre-pandemic data and
forecasting mortality during and after the pandemic. Therefore, considering that the comparison between the
forecasted values and the actual data in Table 1 was conducted during the COVID-19 pandemic, a period that
claimed many lives and potentially caused sudden changes or shocks, high errors may have occurred due to
significant deviations in the actual values from the expected forecast patterns.

Regarding the error results, this study found that error values for United States males and United
Kingdom males were lower than those for females across all observed years. This aligns with the fact that the
age intervals for males in both countries were narrower than those for females. This difference is attributed
to limitations in the HMD database, the requirement to meet the condition A, > 0, and the absence of
interpolation and extrapolation processes, which resulted in some age intervals being unobservable.
Consequently, the contribution of error differences at older ages was more prominently captured in the female
data than in the male data.
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In the case of Italy, the MAPE value was significantly higher compared to the other two countries. This
can be attributed to the contrast between the fluctuating HMD mortality rates for Italy and the smooth
forecasted mortality rates, which had undergone a smoothing process, as illustrated in Fig. 2. Furthermore,
Figs. 18 and 19 also reveal that the discrepancies between the forecasted and HMD mortality rates at younger
ages in Italy were greater than those observed in the other countries.

Although Italy’s MAPE values were notably high, the MAPE values for the United States and the
United Kingdom were also not negligible. This indicates a significant difference between the forecasted
mortality rates, which were generated based on pre-pandemic modeling data, and the actual mortality rates
observed during the COVID-19 pandemic. However, it is also possible that these high errors reflect
limitations in the model and forecasting method in capturing the dynamics of the data. Therefore, further
comparisons between the Second Adapted Nolfi model and other mortality models, or adjustments to the
Second Adapted Nolfi model to accommodate sudden changes or shocks, may be useful for assessing its
effectiveness. Additionally, the RMSE, MAE, and MAPE values are influenced by the data smoothing
process and the level of smoothing applied. Since smoothing was applied only to three datasets (Italy females,
Italy males, and the United Kingdom females), while the other three used raw data, the resulting error values
may vary if alternative smoothing techniques and levels were implemented.

4. CONCLUSION

The Nolfi model, the Generalized Nolfi model, and the Adapted Nolfi models are some of the
approaches that can be used to model mortality rates. Unfortunately, discussions surrounding these models
in the context of mortality modeling remain limited, and, to our knowledge, no studies have applied these
models to the pandemic or post-pandemic period. Although the pandemic may appear less relevant in 2025,
the absence of such studies highlights the importance of further investigation into the model’s performance
under extreme demographic conditions. Accordingly, this study aimed to fill that gap by employing the
Second Adapted Nolfi model, one of the three Adapted Nolfi models, to model mortality rates during the
COVID-19 pandemic. The findings from this study are expected to provide insights into how this model, in
combination with Auto-ARIMA, performs under extreme conditions such as a global health crisis, as well as
in future situations that may result in sudden changes or shocks in mortality patterns. By applying the Second
Adapted Nolfi model to data from the United States, the United Kingdom, and Italy, we found that the
modeling mortality rates results remains consistent with our previous findings, such as high logarithmic
mortality rates at age 0, followed by a decline approaching adolescence, then a sharp increase around age 20
and the early twenties, and a continued rise into old age. The mortality rate forecasts using the Auto-ARIMA
method also revealed that the HMD mortality rates were higher than the forecasted rates for individuals aged
above 80 years. This suggests that mortality rates for the elderly population increased during the COVID-19
pandemic in the three countries examined. It also exhibited relatively high forecasting errors that may reflect
deviations caused by the pandemic’s impact, but also highlight potential limitations in the model and
forecasting method in capturing sudden changes or shocks. This is supported by the error values obtained in
this study, with RMSE ranging from 0.01 to 0.18, MAE from 0.004 to 0.07, and MAPE from 28 to 286,
varying across countries and genders. Furthermore, differences in smoothing techniques across datasets
affected model performance, underscoring the importance of consistent preprocessing in mortality modeling.

Despite its limitations, the Second Adapted Nolfi model shows potential and warrants further
exploration. Future studies may enhance this model by introducing new adaptations, applying it to broader
datasets, or experimenting with alternative smoothing techniques. These steps will support the development
of more resilient mortality models capable of handling both normal and exceptional demographic conditions.
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