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Article Info ABSTRACT

Landslides are among the most destructive natural hazards, causing severe casualties,
economic losses, and environmental degradation. Central Sulawesi, characterized by active
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Available online: 26" January 2026  machine learning, particularly Random Forest (RF), has proven highly effective for
landslide modeling, previous studies around Palu have often overlooked model
simplification through feature selection and hyperparameter optimization. This study
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Central Sulawesi; to reduce model complexity and enhance predictive accuracy. This research utilizes 498
Landslide; landslide events with fifteen conditions, including topography, environment, geology, and
Mitigation; anthropogenic influences. The RFE-RF model achieves superior classification
Random forest; performance, with accuracy, balanced accuracy, and F1-scores exceeding 0.81,
Recursive feature elimination. outperforming the RF without RFE and Logistic Regression baselines. These findings

underscore the urgent need to integrate feature selection methods such as RFE into
landslide modeling frameworks to improve predictive accuracy. High accuracy enables
government authorities and stakeholders to develop more targeted and effective mitigation
priorities. Spatial analysis indicates that Donggala, Palu, and Sigi are the most critical
areas requiring prioritized mitigation, with over 9% of their territories classified as highly
susceptible. Feature importance analysis reveals that elevation, slope, and land cover are
the most influential factors. This study suggests that mitigation efforts should focus on the
hills and mountainous areas on both sides of the Palu Valley, with recommended strategies
emphasizing land cover management practices, such as reforestation, to enhance slope
stability and reduce landslide risk.
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1. INTRODUCTION

Landslides are among the most destructive geological hazards, resulting from the downslope
movement of soil, rock, and other earth materials driven by gravitational forces. This disaster not only results
in loss of life but also substantial economic losses and widespread social and environmental impacts [1], [2].
One of the most critical mitigation efforts to reduce the risks posed by landslides is the development of
landslide susceptibility mapping, which involves delineating areas based on their likelihood of experiencing
landslide events in the future.

Alongside advancements in technology and geospatial science, landslide susceptibility mapping
methods have evolved from conventional opinion-based and statistical approaches toward the broader
application of machine learning techniques, which offer more adaptive and accurate predictive capabilities
[3]. In a comprehensive review, [3] summarized numerous studies that applied machine learning and deep
learning algorithms for landslide susceptibility mapping, concluding that tree-based ensemble algorithms,
particularly Random Forest (RF), consistently delivered superior classification performance, offering high
accuracy and robustness against non-linear data characteristics [4]. The effectiveness of RF for landslide
susceptibility mapping has also been demonstrated by [5], who reported that the combination of RF and cross-
validation techniques outperformed 40 other models in classifying landslide and non-landslide areas in
Kendari City. This further solidifies RF’s position as one of the most reliable methods for landslide
classification tasks.

On the other hand, Central Sulawesi is one of Indonesia’s regions with a high susceptibility to
landslides. The presence of the Palu-Koro active fault, with a slip rate ranging from 20—40 mm per year based
on GPS observations up to 2016, is a key contributing factor to landslide hazards in the region [6], [7]. In
2018, the region experienced one of its most devastating landslide incidents, which caused significant damage
in Palu City, Donggala Regency, and the surrounding areas.

In Central Sulawesi, various landslide susceptibility mapping efforts have been undertaken as part of
disaster mitigation strategies, including a study by [8] that applied the weighted overlay technique. While the
method is frequently employed and relatively simple to implement, its weighting process is inherently
subjective, as it relies heavily on expert judgment or literature references, which can affect the objectivity
and accuracy of the final mapping results [9]. In a more recent study, [10] utilized the RF algorithm for
landslide susceptibility mapping near Palu City; however, the study did not incorporate hyperparameter
optimization nor implement feature selection methods to simplify the model structure.

In response to these gaps, this study develops a landslide susceptibility model for Palu and its
surrounding areas using Random Forest (RF) with hyperparameter tuning combined with the Recursive
Feature Elimination (RFE) technique. RFE is a feature selection method that iteratively discards less
significant variables based on their importance values derived from the RF algorithm [11]. This is particularly
important because the absence of hyperparameter tuning can result in suboptimal model calibration, whereas
omitting feature selection may retain redundant or irrelevant variables, leading to unnecessarily complex
models and potentially diminished classification accuracy [12]. To date, the integration of RF with RFE for
landslide susceptibility mapping in Palu and its surrounding areas has not been explored. This methodology
is expected to enhance predictive accuracy and reduce model complexity, thereby providing more reliable
and actionable information to support targeted landslide mitigation strategies in the region.

2. RESEARCH METHODS

2.1 Random Forest (RF)

Random Forest (RF) is an ensemble method that combines multiple decision trees to improve
predictive accuracy and stability. RF implements the principle of bootstrap aggregating (bagging) as shown
in Fig. 1. Each tree is constructed from a randomly selected subset of data through a bootstrap mechanism
(sampling with replacement), and the predictions of all trees are then aggregated to produce the final decision
[4]. This technique reduces the risk of overfitting and yields a more stable model compared to using a single
decision tree.

RF is an extension of the bagging method, with the primary difference being the predictor selection
process during tree construction. In pure bagging, each tree considers all available predictors. In contrast, RF
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randomly selects a subset of predictors for consideration at each split. This approach aims to prevent the trees
from becoming too similar, as can occur in standard bagging, thereby reducing inter-tree correlation and
improving model generalization. In classification tasks, the final prediction is determined by majority voting
across all decision trees.

Bootstrap

id [ ] id
2
1
3

1 0

0

Xg, X1 Xz, X3 X2, Xg X1, X3

NammmuH

Decision Tree Decision Tree Decision Tree Decision Tree

o X1 X2 X3 Xy -

predictions (aggregate): 1 0 1 1

Booztstrap + Aggregating - Bagging

<O

majority vote (final prediction): 1
Figure 1. Ilustration of Random Forest Algorithm

The construction of each decision tree in RF depends on an optimal splitting criterion, typically based
on the Gini index, entropy, or other measures. The Gini index for a dataset D with k classes is calculated as
defined in Eq. (1):

Gini (D) =1-Yk , p?, @
where p; denotes the probability of class i, a Gini value of 0.5 indicates a perfectly balanced class distribution,
while zero reflects complete purity within a node.

Consider a node in a dataset containing 10 instances, where each instance represents an observation
characterized by one or more predictor variables. In this example, based on a certain predictor, 6 instances
belong to class A, and 4 instances belong to class B. The probability p; of an instance belonging to each class
is calculated as the proportion of instances of that class in the node, following Eq. (2):

6 4
pa=15=06p = — =04 ()
The Gini index for this node is then:
Gini (D) =1 — (0.6 + 0.4%) = 0.48. (3)

Based on Eqg. (3), a value of 0.48 indicates that the node is relatively impure, containing a mixture of
instances from both classes. A value of 0 corresponds to a perfectly pure node, while higher values reflect
greater heterogeneity. During tree construction, the algorithm selects splits that minimize the Gini index,
producing nodes that are more homogeneous and improving model classification accuracy.

2.2 Recursive Feature Elimination (RFE)

Recursive Feature Elimination (RFE) is a feature selection technique designed to identify the most
relevant predictors for distinguishing between target classes [11]. It iteratively removes the least important
feature based on importance scores from a RF classifier, producing a reduced feature set while maintaining
overall predictive accuracy. In each iteration, a new RF model is trained, and cross-validation is used to
evaluate its accuracy. The feature with the lowest importance is removed, and the process continues
recursively until the desired number of features is reached. The cross-validated accuracy at each iteration
provides a quantitative measure to identify the optimal subset of features.

Illustrative example: consider a dataset with m predictors [x4, x5, ..., x,,]. RFE is configured to remove
one predictor at each iteration, starting from all m predictors and continuing until only a single predictor
remains.
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1. Iteration 1: All m predictors are used to train the Random Forest model. Feature importance scores
{I,,1,, ..., I,,} are computed, and k-fold cross-validation is performed to calculate the average
accuracy A,. The predictor with the lowest importance, say x;, is removed.

2. lteration 2: The model is retrained with the remaining m — 1 predictors. Importance scores and
cross-validated accuracy A, are calculated. The least important feature is removed.

3. lteration j: Only one feature remains, and the corresponding cross-validated accuracy A; is
calculated.

This iterative process produces a sequence of accuracies [A;, A, ..., A;] corresponding to decreasing
feature subsets. By visualizing this sequence, the optimal subset of features can be identified as the smallest
set that achieves the highest or near-highest cross-validated accuracy, balancing predictive performance with
model simplicity.

2.3 Data and Pre-Processing

The study area encompasses four regencies in Central Sulawesi, covering a total of 1,491.68 km2 (Fig.
2). Landslide inventory data, comprising 498 events induced by the 7.5 Mw earthquake in September 2018,
were obtained from the USGS database [13]. Non-landslide points are generated randomly following the
approach of [14], with a minimum spatial separation of 30 m to prevent points from falling within the same
raster cell, which is consistent with the resolution of the conditioning factor data. This random sampling
strategy is computationally efficient, reduces selection bias, and ensures that non-landslide points uniformly
cover the full range of conditioning factors across the study area.

Unlike approaches that restrict non-landslide points to areas of low slope, this study intentionally
allows them to occur even in steep terrain. This reflects the fact that steep slopes do not always fail; slope
instability is governed by a combination of conditioning factors rather than slope alone. Including non-
landslide points in high-slope areas enables the model to better discriminate which factor combinations truly
lead to landslides, rather than overestimating slope as a single dominant trigger. We utilize fifteen
conditioning factors classified into four categories: topography, environment, anthropology, and geology
(Table 1).
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Figure 2. Study Area in Central Sulawesi
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Table 1. Landslide Conditioning Factors

Category Data Source Data Type Variable (Factor) Scale/Resolution
Elevation
Slope
Profile Curvature
. Raster Aspect
Topography  Digital Elevation Model (SRTM) TWI +30m
TPI
SPI
TRI
LANDSAT 8 OLI Raster NDVI +30m
Environment OpenStreetMap Vector Disj[ance to r'iver +30m
River density -
Geology ESDM Republic of Indonesia Vector Formation 1:250,000
KLHK Republic of Indonesia Distance to fault +30m
Anthropology KLHK Republic of Indonesia Vector Land cover +30m
OpenStreetMap Road density -

Topographic factors (Fig. 3), including slope, topographic position index (TPI), topographic wetness
index (TWI), profile curvature, terrain ruggedness index (TRI), elevation, stream power index (SPI), and
aspect, are derived from SRTM data (+30 m) using GIS-based processing [15]. Slope is calculated using a
numerical differentiation technique that estimates elevation changes by considering the neighboring cells
within the DEM grid. The hilly and mountainous regions on the western and eastern sides of the Palu Valley
exhibit extreme slopes, with values ranging from 33 to 69 degrees. These areas also show positive values of
the TPI, indicating that they are located at higher elevations relative to their surroundings. In contrast, the
central part of the study area—namely, the Palu Valley, which includes Palu and Sigi—generally has slopes
of less than 8 degrees, along with lower elevation and TPI values compared to adjacent areas.

The Palu Valley also predominantly shows low values of the TRI, which reflects smooth terrain. This
contrasts sharply with the surrounding hilly and mountainous areas, which exhibit higher TRI values,
indicating rougher topography [5]. Additionally, TWI, which represents the potential for water accumulation
[15], tends to be higher in the Palu Valley, suggesting greater water retention capacity.
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Figure 3. Topographic Factors
(@) Slope, (b) TPI, (c) TWI, (d) Profile Curvature, (e) TRI, (f) Elevation, (g) SPI, (h) Aspect

Profile curvature indicates whether a slope accelerates or decelerates the flow of water and materials
such as soil and sediment. Positive values represent convex surfaces, negative values indicate concave
surfaces, and values close to zero suggest relatively flat terrain [16]. The Palu Valley mostly exhibits flat
curvature, while the adjacent hills and mountains are dominated by convex and concave forms.

SPI is a composite topographic attribute used to measure the erosive power of surface water flow [17].
It assumes that water discharge is proportional to the specific catchment area. Higher SPI values—found in
the western and eastern hills of the Palu Valley—suggest stronger erosive forces that may threaten soil
stability. Finally, the aspect, which describes the compass direction of the steepest slope (i.e., the direction of
maximum elevation change) [15], shows that the study area is predominantly characterized by slopes facing
southwest and west.

Environmental factors (Fig. 4) consist of the normalized difference vegetation index (NDVI) derived
from LANDSAT 8 OLI imagery [18], distance to the river, and river density. NDV/I is a remote sensing index
employed to monitor variations in land cover by quantifying vegetation greenness on the Earth’s surface. In
general, the more positive the NDVI value, the healthier and denser the vegetation. Within the study area,
mountainous and hilly regions tend to exhibit relatively high and positive NDVI values.

Water flow also plays a crucial role in landslide classification [19]. Therefore, this study incorporates
two potential hydrological variables: distance to the river and river density. Distance to the river is categorized
into six buffer zones at 2 km intervals, while river density is calculated as the total length of rivers divided
by the pixel area. River systems in this region originate from the mountainous areas in the west and east, and
flow toward the central part of the study area.

NDVI

§ river density
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Figure 4. Environmental Factors
(a) NDVI, (b) Distance to River, (c) River Density

The anthropological factor is represented by two variables: land cover and road density (Fig. 5). Land
cover is reclassified into six categories based on the guidelines provided by the intergovernmental panel on
climate change (IPCC) [20]. This reclassification aims to reduce the number of unique land cover values and
to eliminate categories that are not represented by either landslide or non-landslide samples. The central part
of the study area, particularly the city of Palu, is predominantly characterized by settlements, indicating a
high level of anthropogenic activity. In contrast, the western and eastern margins of the region are primarily
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covered by forest land and grassland. Consistent with the presence of settlements, the lowland areas of Palu
and Sigi also exhibit relatively high road density compared to the surrounding regions.
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Figure 5. Anthropological Factors
(a) Land Cover, (b) Road Density
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Figure 6. Geological factors
(a) Formation, (b) Distance to Fault

Geological factors (Fig. 6) encompass six formation classes and distance to fault lines. Previous studies
[21], [22] have also incorporated geological factors into landslide and non-landslide classification models,
highlighting their relevance in capturing terrain stability and susceptibility. Among these factors, geological
formations—representing the classification and distribution of rock types—are particularly influential, as
they reflect the underlying lithological diversity across the study area. Different rock types exhibit varying
levels of resistance to weathering, erosion, and slope failure, thereby exerting differential impacts on landslide
potential.

In this study, geological information is further enriched by the inclusion of fault line data, which serves
as a proxy for seismic activity—a well-known landslide-triggering mechanism. To systematically quantify
proximity to potential seismic sources, the distance to the nearest fault is categorized into seven buffer zones
at 5 km intervals. This classification facilitates a more refined spatial analysis of the influence of tectonic
factors on landslide occurrence.

Data from various sources are reprojected to a specific coordinate system, namely UTM Zone 51S
(Fig. 7). Subsequently, vector-format data are converted into raster format. All rasterized datasets are then
stacked to ensure spatial alignment and consistency for further analysis. The data are randomly divided (70%
train, 30% test), and this process is repeated 5 times to ensure more comprehensive results. In each iteration
of the data split, both models undergo hyperparameter tuning using k-fold cross-validation [23] on the training
data before evaluation on the test data. We compare the performance of the RF model without RFE and the
RF model with RFE (RFE-RF) using accuracy, balanced accuracy, and F1-score metrics on the test data. As
a baseline, we also implement a Logistic Regression (LR) [21] model for comparison in this study.
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Table 2 summarizes the hyperparameters explored for tuning the Random Forest (RF) model. Three
key hyperparameters are considered: the mtry, the trees, and the min_n. The mtry, representing the number
of predictor variables randomly selected at each split, is tested from 1 to 4 to control the diversity among
individual trees. The trees, defining the total number of trees in the forest, are varied from 5 to 500 to balance
predictive stability and computational efficiency.

Table 2. Hyperparameters of the RF Model
Hyperparameter
mtry: [1, 2, 3, 4]
trees: [5, 10, 15, 20, 25, ..., 500]
min node size: [ 2, 3,5, 7,10, 12, 15, 17, 20]

Finally, the min_n, which specifies the minimum number of samples required in a node to attempt a
split, is explored from 2 to 20 to regulate tree growth and prevent overfitting. A grid search combined with
k-fold cross-validation is used to identify the optimal combination of these hyperparameters.

3. RESULTS AND DISCUSSION

3.1 Exploratory Data Analysis (EDA)

In the initial stage, we perform an exploratory analysis of all available landslide conditioning factors.
For continuous features, Pearson correlation analysis (Fig. 8) reveals no highly correlated pairs (r > 0.8);
however, several feature pairs exhibit moderate correlations (r > 0.5), such as road density—elevation, TWI—
slope, and TWI-TPI, which may indicate potential redundancy. Although previous study [24] suggests that
the RF algorithm can handle multicollinearity, simplifying the model by removing redundant features remains
a prudent strategy to enhance model interpretability and computational efficiency.

Subsequently, a visual analysis using boxplots (Fig. 9) provides initial insights into the discriminative
ability of each continuous feature in separating landslide and non-landslide classes. Features such as
elevation, slope, TWI, and river density exhibit distinct differences in median values across classes, indicating
a strong potential to improve classification performance. In contrast, features such as SPI and TPI show
relatively similar distributions across classes, suggesting limited discriminative capability.
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For categorical features, the barplot in Fig. 10 reveals that landslide occurrences in the study area are
more frequently associated with Qp and GR geological formations, grassland land cover, and a TRI value
exceeding 9.6. Conversely, profile curvature appears to have limited influence on classification, as there is
no substantial difference in the proportion of landslide and non-landslide cases across its categories (concave,
convex, and flat).

3.2 Modelling and Landslide Susceptibility Map

We incorporate a feature selection process using RFE into the RF model applied to the training data,
with the evaluation using 5-fold cross-validation to identify the optimal combination of features from all
available features. The results of the RFE-RF are presented in Fig. 11, which shows that the highest
classification performance—indicated by the red point representing the maximum accuracy—is achieved
using nine features: elevation, slope, distance to fault, road density, land cover, TWI, formation, TRI, and
river density. These nine features represent the most significant factors for modeling landslide susceptibility
for this study.

The RFE-RF model is subsequently compared with the RF model without RFE and the LR model on
the test data, as presented in Table 3. The results show that the RFE-RF model achieves the best performance,
with all metric values consistently exceeding 0.81 and outperforming both the RF and LR models on the test
data. These findings indicate that the application of RFE contributes to selecting more relevant features for
distinguishing between landslide and non-landslide classes. As highlighted by [25], RFE can assist in
eliminating redundant features or those that are highly correlated. In this study, for instance, the correlation
between TPI and TWI is approximately -0.58 (Fig. 8), and RFE advises the exclusion of the TPI. In the
boxplot visualization shown in Fig. 9, TWI values exhibit a sharper separation univariately between landslide
and non-landslide classes compared to TPI. Thus, in this context, RFE effectively discards less relevant
features and reduces potential redundancy among variables.

ot
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Figure 11. Recursive Feature Elimination on RF Using Train Data

Table 3. Comparison of RFE-RF, RF, and LR on the Test data (Splitting Repeated 5 Times)

Number Model Best Mean Mean Mean F1-
of (after Hyperparameters Accuracy Balanced Score
Features hyperparameter + SD Accuracy + SD
tuning) + SD
15 LR - 0.75 + 0.029 0.75+0.029 0.73 +0.033
15 RF mtry: 3 0.80 + 0.026 0.80 +0.026  0.78 + 0.02
trees: 150
min node size: 5
9 RFE-RF mtry: 2 0.82 + 0.01 0.82 + 0.01 0.81 +0.01
trees: 100

min node size: 5

We categorize landslide susceptibility into five levels, ranging from very low to very high, based on
probability values generated by the RFE-RF model (Fig. 12). The predictions predominantly fall into the very
low (427.3 km?2) and low (504.8 km?) categories, while areas with high and very high susceptibility only cover
172.5 km2 (Table 4). Parigi Moutong and northern Donggala are mainly predicted as very low susceptibility
zones, which aligns with the low number of recorded landslide events in these regions. Overall, landslide
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points are successfully identified within high and very high susceptibility zones, indicating good model
performance.

However, the model exhibits limitations in certain areas, particularly in the eastern part of Sigi, where
several recorded landslide locations are still classified as low susceptibility. This indicates that while the
RFE-RF model performs well for earthquake-induced (coseismic) landslides, it may not generalize to
landslides triggered by other factors, such as rainfall. Recognizing this limitation provides direction for future
research, including the incorporation of rainfall and other triggering factors to improve model generalizability
across different landslide types.

120000E 135000E 150000E 165000E

9930000N

NODDOEGS

RFE-RF landslide
susceptibility
B very low
M low

[ moderate
[ high

B very high

* landslide
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Figure 12. Landslide Susceptibility Map Using RFE-RF Model. Susceptibility Classes are Based on Probability: Very
Low (0-0.2), Low (0.2-0.4), Moderate (0.4-0.6), High (0.6-0.8), Very High (0.8-1)

Table 4. Area Size per Category from RFE-RF Prediction

- RFE-RF
Susceptibility Class Pixel count Area (km?)
Very low 449,225 427.3
Low 530,706 504.8
Moderate 406,928 387.1
High 153,723 146.2
Very high 27,597 26.3

Table 5 depicts the proportion of areas with high and very high landslide susceptibility relative to the
total area of each regency, as predicted by the RFE-RF model. This information is crucial for establishing
priorities in disaster mitigation planning. Donggala, Palu, and Sigi have more than 9% of their territory
classified as highly susceptible, indicating a significant elevation in landslide risk. The spatial analysis
illustrated in Fig. 12 reveals a concentration of susceptible areas along the administrative boundary between
Donggala and Palu. The geomorphological interpretation further indicates that landslides are predominantly
distributed along the hilly and mountainous zones flanking the eastern and western margins of the Palu
Valley, reflecting structural control on landslide distribution patterns. In contrast, Parigi Moutong exhibits
the lowest susceptibility levels among the regencies analyzed.
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Table 5. Summary of High and Very High Landslide Susceptibility Areas per Regency from RFE-RF Model
Total “High” and “Very High”  Percentage Area

Regency Landslide Category (km?) of “High”
Pixel Count Area (km?) Pixel Count Area (km? and “Very High”
Donggala 686,491 653 96,643 91.9 14.1%
Palu 410,545 390.5 51,120 48.6 12.4%
Parigi M. 175,326 166.7 44,64 4.2 2.5%
Sigi 295,817 281.2 29,271 27.8 9.9%

To identify the features that contribute most significantly to model performance, we extract feature
importance from the RFE-RF model. This analysis highlights the key features that enhance the model's
predictive capability and provides insights into the factors influencing landslide occurrence. Fig. 13 presents
the features ordered according to their relative importance. Elevation shows the highest importance, while
geological formation exhibits the lowest.

Elevation
Slope
Land cover

TRI
Road density

Feature

TWI

River density

Distance to fault

Formation

0.000 0.025 0.050 0.075
Importance

Figure 13. Feature Importance of RFE-RF Model

Fig. 13 shows that the elevation median associated with landslide events is 375 meters, compared to
500 meters for non-landslide events. This observation is particularly noteworthy, considering that previous
studies, such as [21], have indicated that landslides are more prevalent at higher elevations relative to their
surroundings. Moreover, [21] demonstrated a linear correlation between elevation and landslide frequency,
implying that higher elevations are associated with an increased probability of landslides. Nevertheless,
susceptibility to landslides is not solely determined by elevation but also by local geological characteristics.

A study by [26] in the European Alps revealed that shallow landslides can occur at relatively low
elevations, particularly in areas covered by grassland. This finding aligns with our observations in Central
Sulawesi, where the frequency of landslides is notably high in grassland areas. It can be attributed to the
susceptibility of grasslands to soil stability disturbances, such as erosion, especially during periods of high
rainfall [26].

The most significant factor after elevation is slope. Landslide occurrences tend to be more frequent in
areas with a slope greater than 20°, whereas non-landslide events typically have a slope of less than 20°.
Previous studies [27], [28] have revealed that as the slope value increases, the frequency of landslides also
rises, with slope playing a crucial role in mass movement driven by gravity [29].

TRI is among the top five factors significantly contributing to landslides in the RFE-RF model. TRI
measures the elevation difference between a surface and its neighboring points [5] and reflects the roughness
of the terrain. As shown in Fig. 13, the proportion of landslides is higher than that of non-landslides when
TRI values exceed 9.6. Associating with the prevalence of rugged topography, it contributes to slope
instability and increases the likelihood of landslides. Additionally, high road density plays a key role in
triggering landslides due to anthropogenic activities such as vehicles and human presence. As noted by [5],
road construction can damage the natural structure of slopes and expose fractures, thereby amplifying the
potential for landslides.
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High TWI increases soil moisture through groundwater accumulation, contributing to the potential for
landslides. With a median TWI of 5.4 at landslide points, this value approaches the value associated with
high landslide density [30]. In addition to TWI, another hydrological factor is river density. Fig. 9 illustrates
that landslide points tend to have higher river density compared to non-landslide points, which are associated
with erosion potential. The dominance of Qp and gr formations also contributes to landslide potential,
although to a lesser extent compared to other factors based on RFE-RF modeling.

Based on the analysis, Donggala, Palu, and Sigi are recommended as the primary priorities for landslide
mitigation efforts, although another regency in the study area also exhibits significant landslide potential in
certain zones. Feature importance analysis reveals that elevation, slope, and land cover are the three main
factors influencing landslide susceptibility. Elevation and slope are inherent geomorphological characteristics
formed through long-term geological processes, making them difficult to alter significantly for mitigation
purposes. Therefore, interventions should focus on land cover management. Strategies such as reforestation,
increasing vegetation density, or planting deep-rooted species could enhance slope stability and effectively
reduce landslide risk in the future [31].

4. CONCLUSION

Applying the Recursive Feature Elimination technique to the tuned Random Forest model has proven
to enhance the performance of landslide and non-landslide classification. The RFE-RF model achieves
average accuracy, balanced accuracy, and F1-score exceeding 0.81, outperforming both the RF and Logistic
Regression models. The classification results, categorized into five susceptibility classes from very low to
very high, generally align with the distribution of landslide locations. In the study area located in Central
Sulawesi, the model identifies regions such as Donggala, Palu, and Sigi, where high and very high
susceptibility areas exceed 9%, suggesting these regions as priorities for mitigation. Mitigation efforts can
concentrate on areas along the hills and mountains on both sides of the Palu Valley. Based on the feature
importance analysis, we recommend mitigation strategies such as reforestation and planting deep-rooted
vegetation to enhance soil stability. This approach aims to minimize disruptions to slope stability caused by
the dominance of grasses, which are highly susceptible to erosion, particularly during periods of heavy
rainfall. Future work could build upon the current model by integrating high-resolution rainfall data, which
would enable the analysis to account for precipitation patterns that strongly influence landslide occurrence.
Incorporating rainfall alongside soil moisture and land cover dynamics may further enhance the accuracy of
landslide susceptibility predictions over time.

Author Contributions

Indra Rivaldi Siregar: Conceptualization, Methodology, Data Pre-processing, Data Modelling, Visualization and
Interpretation, Writing-Original Draft. Anik Djuraidah: Conceptualization, Interpretation of Spatial Analysis,
Reviewing and Editing. Agus Mohamad Soleh: Conceptualization, Interpretation of Machine Learning perspectives,
Reviewing and Editing. All authors contributed to manuscript refinement, approved the final version, and agreed to be
accountable for all aspects of the work.

Funding Statement

This research was funded by the Indonesia Endowment Fund for Education Agency (LPDP), Ministry of Finance,
Republic of Indonesia.

Acknowledgment

We sincerely thank the Indonesia Endowment Fund for Education Agency of the Republic of Indonesia for their financial
support of this study. Our gratitude also extends to USGS, ESDM, and KLHK for their significant contributions to the
data, which were crucial to the research.

Declarations

The authors declare no conflicts of interest.



1032

Siregar et al. OPTIMIZING LANDSLIDE SUSCEPTIBILITY MAPPING IN CENTRAL SULAWESI WITH RECURSIVE...

Declaration of Generative Al and Al-assisted Technologies

The authors declare that no generative Al or Al-assisted technologies were used in the preparation of this manuscript,
including for writing, editing, data analysis, or the creation of tables and figures.

REFERENCES

[1]
(2]

(3]

(4]
(5]

(6]
[7]
(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

X. Fan et al, “EARTHQUAKE-INDUCED CHAINS OF GEOLOGIC HAZARDS: PATTERNS, MECHANISMS, AND
IMPACTS,” Reviews of Geophysics, vol. 57, no. 2, pp. 421-503, Jun. 2019, doi: https://doi.org/10.1029/2018RG000626.
F. S. Tehrani, M. Calvello, Z. Liu, L. Zhang, and S. Lacasse, “MACHINE LEARNING AND LANDSLIDE STUDIES:
RECENT ADVANCES AND APPLICATIONS,” Natural Hazards, vol. 114, no. 2, pp. 1197-1245, Nov. 2022, doi:
https://doi.org/10.1007/s11069-022-05423-7.

A. Merghadi et al, “MACHINE LEARNING METHODS FOR LANDSLIDE SUSCEPTIBILITY STUDIES: A
COMPARATIVE OVERVIEW OF ALGORITHM PERFORMANCE,” Earth-Science Reviews, vol. 207, p. 103225, Aug.
2020, doi: https://doi.org/10.1016/j.earscirev.2020.103225.

L. Breiman, “RANDOM FORESTS,” Mach Learn, wvol. 45 pp. 5-32, Oct. 2001, doi:
https://doi.org/10.1023/A:1010933404324.

S. Aldiansyah and F. Wardani, “ASSESSMENT OF RESAMPLING METHODS ON PERFORMANCE OF LANDSLIDE
SUSCEPTIBILITY PREDICTIONS USING MACHINE LEARNING IN KENDARI CITY, INDONESIA,” Water Practice
and Technology, vol. 19, no. 1, pp. 52-81, Jan. 2024, doi: https://doi.org/10.2166/wpt.2024.002.

[BG] Badan Geologi, DI BALIK PESONA PALU: BENCANA MELANDA GEOLOGI MENATA, 1st ed. Bandung:
Kementerian Energi dan Sumber Daya Mineral Republik Indonesia, 2018.

A. Sabaruddin., LAPORAN PROGRESS PENEGASAN ZONA RAWAN BENCANA SESAR PALUKORO PASCA GEMPA
PALU 28 SEPTEMBER 2018. Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2018.

Sunardi, N. Anggraini, S. Alfiandy, and A. F. Ilahi, “IDENTIFIKASI TINGKAT KERAWANAN TANAH LONGSOR DI
PROVINSI SULAWESI TENGAH,” Buletin GAW Bariri, vol. 3, no. 2, pp. 47-57, Dec. 2022, doi:
https://doi.org/10.31172/bgb.v3i2.79.

H. Kaur, S. Gupta, S. Parkash, and R. Thapa, “KNOWLEDGE-DRIVEN METHOD: A TOOL FOR LANDSLIDE
SUSCEPTIBILITY ZONATION (LSZ),” Geology, Ecology, and Landscapes, vol. 7, no. 1, pp. 1-15, Jan. 2023, doi:
https://doi.org/10.1080/24749508.2018.1558024.

S. Sukristiyanti et al, “MACHINE LEARNING FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING PHYTON IN
SIGI BIROMARU AREA (NEAR PALU), CENTRAL SULAWESI, INDONESIA,” I0P Conference Series: Earth and
Environmental Science, vol. 1276, no. 1, p. 012024, Dec. 2023, doi: https://doi.org/10.1088/1755-1315/1276/1/012024.

L. Demarchi et al, “RECURSIVE FEATURE ELIMINATION AND RANDOM FOREST CLASSIFICATION OF
NATURA 2000 GRASSLANDS IN LOWLAND RIVER VALLEYS OF POLAND BASED ON AIRBORNE
HYPERSPECTRAL AND LIDAR DATA FUSION,” Remote Sensing, vol. 12, no. 11, p. 1842, Jun. 2020, doi:
https://doi.org/10.3390/rs12111842.

A. R. Barzani, P. Pahlavani, O. Ghorbanzadeh, K. Gholamnia, and P. Ghamisi, “EVALUATING THE IMPACT OF
RECURSIVE FEATURE ELIMINATION ON MACHINE LEARNING MODELS FOR PREDICTING FOREST FIRE-
PRONE ZONES,” Fire, vol. 7, no. 12, p. 440, Nov. 2024, doi: https://doi.org/10.3390/fire7120440

B. Zhao, “AN OPEN REPOSITORY OF EARTHQUAKE-TRIGGERED GROUND FAILURE INVENTORIES, U.S.
geological survey data release collection.”

M. Azarafza, M. Azarafza, H. Akgiin, P. M. Atkinson, and R. Derakhshani, “DEEP LEARNING-BASED LANDSLIDE
SUSCEPTIBILITY MAPPING,” Scientific Reports, vol. 11, no. 1, p. 24112, Dec. 2021, doi: https://doi.org/10.1038/s41598-
021-03585-1.

N. Saleem, Md. E. Huq, N. Y. D. Twumasi, A. Javed, and A. Sajjad, “PARAMETERS DERIVED FROM AND/OR USED
WITH DIGITAL ELEVATION MODELS (DEMS) FOR LANDSLIDE SUSCEPTIBILITY MAPPING AND
LANDSLIDE RISK ASSESSMENT: A REVIEW,” ISPRS International Journal of Geo-Information, vol. 8, no. 12, p. 545,
Nov. 2019, doi: https://doi.org/10.3390/ijgi8120545.

S. Lee and J. A. Talib, “PROBABILISTIC LANDSLIDE SUSCEPTIBILITY AND FACTOR EFFECT ANALYSIS,”
Environmental Geology, vol. 47, no. 7, pp. 982-990, May 2005, doi: https://doi.org/10.1007/s00254-005-1228-z.

H. R. Pourghasemi, B. Pradhan, and C. Gokceoglu, “APPLICATION OF FUZZY LOGIC AND ANALYTICAL
HIERARCHY PROCESS (AHP) TO LANDSLIDE SUSCEPTIBILITY MAPPING AT HARAZ WATERSHED, IRAN,”
Natural Hazards, vol. 63, no. 2, pp. 965-996, Sep. 2012, doi: https://doi.org/10.1007/s11069-012-0217-2.

K. R. Ahmed and S. Akter, “ANALYSIS OF LANDCOVER CHANGE IN SOUTHWEST BENGAL DELTA DUE TO
FLOODS BY NDVI, NDWI AND K-MEANS CLUSTER WITH LANDSAT MULTI-SPECTRAL SURFACE
REFLECTANCE SATELLITE DATA,” Remote Sensing Applications: Society and Environment, vol. 8, pp. 168-181, Nov.
2017, doi: https://doi.org/10.1016/j.rsase.2017.08.010.

H. R. Pourghasemi and O. Rahmati, “PREDICTION OF THE LANDSLIDE SUSCEPTIBILITY: WHICH ALGORITHM,
WHICH PRECISION?,” Catena, vol. 162, pp. 177-192, Mar. 2018, doi: https://doi.org/10.1016/j.catena.2017.11.022.
IPCC, “LAND USE, LAND-USE CHANGE, AND FORESTRY. A special report,” 2002.

N. B. Raja, I. Cicek, N. Tiirkoglu, O. Aydin, and A. Kawasaki, “LANDSLIDE SUSCEPTIBILITY MAPPING OF THE
SERA RIVER BASIN USING LOGISTIC REGRESSION MODEL,” Natural Hazards, vol. 85, no. 3, pp. 1323-1346, Feb.
2017, doi: https://doi.org/10.1007/s11069-016-2591-7.

L. Y. Irawan et al, “THE USE OF MACHINE LEARNING FOR ACCESSING LANDSLIDE SUSCEPTIBILITY CLASS:
STUDY CASE OF PACET SUBDISTRICT, MOJOKERTO REGENCY,” in IOP Conference Series: Earth and
Environmental Science, IOP Publishing Ltd, Nov. 2021. doi: https://doi.org/10.1088/1755-1315/884/1/012006.

S. M. Malakouti, M. B. Menhaj, and A. A. Suratgar, “THE USAGE OF 10-FOLD CROSS-VALIDATION AND GRID
SEARCH TO ENHANCE ML METHODS PERFORMANCE IN SOLAR FARM POWER GENERATION



https://doi.org/10.1029/2018RG000626
https://doi.org/10.1007/s11069-022-05423-7
https://doi.org/10.1016/j.earscirev.2020.103225
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.2166/wpt.2024.002
https://doi.org/10.31172/bgb.v3i2.79
https://doi.org/10.1080/24749508.2018.1558024
https://doi.org/10.1088/1755-1315/1276/1/012024
https://doi.org/10.3390/rs12111842
https://doi.org/10.3390/fire7120440
https://doi.org/10.1038/s41598-021-03585-1
https://doi.org/10.1038/s41598-021-03585-1
https://doi.org/10.3390/ijgi8120545
https://doi.org/10.1007/s00254-005-1228-z
https://doi.org/10.1007/s11069-012-0217-2
https://doi.org/10.1016/j.rsase.2017.08.010
https://doi.org/10.1016/j.catena.2017.11.022
https://doi.org/10.1007/s11069-016-2591-7
https://doi.org/10.1088/1755-1315/884/1/012006

BAREKENG: J. Math. & App., vol. 20(2), pp. 10191034, Jun, 2026. 1033

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

PREDICTION,” Cleaner Engineering and Technology, wvol. 15, p. 100664, Aug. 2023, doi:
https://doi.org/10.1016/j.clet.2023.100664.

X. Guo and P. Hao, “USING A RANDOM FOREST MODEL TO PREDICT THE LOCATION OF POTENTIAL
DAMAGE ON ASPHALT PAVEMENT,” Applied Sciences, vol. 11, no. 21, p. 10396, Nov. 2021, doi:
https://doi.org/10.3390/app112110396.

L. Demarchi et al, “RECURSIVE FEATURE ELIMINATION AND RANDOM FOREST CLASSIFICATION OF
NATURA 2000 GRASSLANDS IN LOWLAND RIVER VALLEYS OF POLAND BASED ON AIRBORNE
HYPERSPECTRAL AND LIDAR DATA FUSION,” Remote Sensing, vol. 12, no. 11, p. 1842, Jun. 2020, doi:
https://doi.org/10.3390/rs12111842.

C. Geitner et al, “SHALLOW EROSION ON GRASSLAND SLOPES IN THE EUROPEAN ALPS -
GEOMORPHOLOGICAL CLASSIFICATION, SPATIO-TEMPORAL ANALYSIS, AND UNDERSTANDING SNOW
AND VEGETATION IMPACTS,” Geomorphology, wvol. 373, p. 107446, Jan. 2021, doi:
https://doi.org/10.1016/j.geomorph.2020.107446.

Asdar et al, “ANALYSIS OF THE LANDSLIDES VULNERABILITY LEVEL USING FREQUENCY RATIO METHOD
IN TANGKA WATERSHED,” IOP Conference Series: Earth and Environmental Science, vol. 870, no. 1, p. 012013, Oct.
2021, doi: https://doi.org/10.1088/1755-1315/870/1/012013.

R. Amaliah, A. S. Soma, B. Mappangaja, and F. Mambela, “ANALYSIS OF THE LANDSLIDE SUSCEPTIBILITY MAP
USING FREQUENCY RATIO METHOD IN SUB-SUB-WATERSHED MAMASA,” IOP Conference Series: Earth and
Environmental Science, vol. 886, no. 1, p. 012088, Nov. 2021, doi: https://doi.org/10.1088/1755-1315/886/1/012088.

F. E. S. Silalahi, Pamela, Y. Arifianti, and F. Hidayat, “LANDSLIDE SUSCEPTIBILITY ASSESSMENT USING
FREQUENCY RATIO MODEL IN BOGOR, WEST JAVA, INDONESIA,” Geoscience Letters, vol. 6, no. 1, p. 10, Dec.
2019, doi: https://doi.org/10.1186/s40562-019-0140-4.

M. Meinhardt, M. Fink, and H. Tiinschel, “LANDSLIDE SUSCEPTIBILITY ANALYSIS IN CENTRAL VIETNAM
BASED ON AN INCOMPLETE LANDSLIDE INVENTORY: COMPARISON OF A NEW METHOD TO CALCULATE
WEIGHTING FACTORS BY MEANS OF BIVARIATE STATISTICS,” Geomorphology, vol. 234, pp. 80-97, Apr. 2015,
doi: https://doi.org/10.1016/j.geomorph.2014.12.042.

L. Chen, Z. Guo, K. Yin, D. P. Shrestha, and S. Jin, “THE INFLUENCE OF LAND USE AND LAND COVER CHANGE
ON LANDSLIDE SUSCEPTIBILITY: A CASE STUDY IN ZHUSHAN TOWN, XUAN’EN COUNTY (HUBEI,
CHINA),” Natural Hazards and Earth System Sciences, vol. 19, no. 10, pp. 2207-2228, Oct. 2019, doi:
https://doi.org/10.5194/nhess-19-2207-2019.



https://doi.org/10.1016/j.clet.2023.100664
https://doi.org/10.3390/app112110396
https://doi.org/10.3390/rs12111842
https://doi.org/10.1016/j.geomorph.2020.107446
https://doi.org/10.1088/1755-1315/870/1/012013
https://doi.org/10.1088/1755-1315/886/1/012088
https://doi.org/10.1186/s40562-019-0140-4
https://doi.org/10.1016/j.geomorph.2014.12.042
https://doi.org/10.5194/nhess-19-2207-2019

1034 Siregar et al. OPTIMIZING LANDSLIDE SUSCEPTIBILITY MAPPING IN CENTRAL SULAWESI WITH RECURSIVE...



	OPTIMIZING LANDSLIDE SUSCEPTIBILITY MAPPING IN CENTRAL SULAWESI WITH RECURSIVE FEATURE ELIMINATION AND RANDOM FOREST ALGORITHM
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Random Forest (RF)
	2.2 Recursive Feature Elimination (RFE)
	2.3 Data and Pre-Processing

	3. RESULTS AND DISCUSSION
	3.1 Exploratory Data Analysis (EDA)
	3.2 Modelling and Landslide Susceptibility Map

	4. CONCLUSION
	Author Contributions
	Funding Statement
	Acknowledgment
	Declarations
	Declaration of Generative AI and AI-assisted Technologies
	REFERENCES

