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Article Info ABSTRACT 

Article History: 
Landslides are among the most destructive natural hazards, causing severe casualties, 

economic losses, and environmental degradation. Central Sulawesi, characterized by active 

tectonics such as the Palu-Koro fault, is highly susceptible to landslides, as tragically 

demonstrated in 2018. Therefore, developing accurate landslide susceptibility maps is 

essential to support comprehensive landslide mitigation efforts in this region. While 

machine learning, particularly Random Forest (RF), has proven highly effective for 

landslide modeling, previous studies around Palu have often overlooked model 

simplification through feature selection and hyperparameter optimization. This study 

proposes an integrated approach combining RF with Recursive Feature Elimination (RFE) 

to reduce model complexity and enhance predictive accuracy. This research utilizes 498 

landslide events with fifteen conditions, including topography, environment, geology, and 

anthropogenic influences. The RFE-RF model achieves superior classification 

performance, with accuracy, balanced accuracy, and F1-scores exceeding 0.81, 

outperforming the RF without RFE and Logistic Regression baselines. These findings 

underscore the urgent need to integrate feature selection methods such as RFE into 

landslide modeling frameworks to improve predictive accuracy. High accuracy enables 

government authorities and stakeholders to develop more targeted and effective mitigation 

priorities. Spatial analysis indicates that Donggala, Palu, and Sigi are the most critical 

areas requiring prioritized mitigation, with over 9% of their territories classified as highly 

susceptible. Feature importance analysis reveals that elevation, slope, and land cover are 

the most influential factors. This study suggests that mitigation efforts should focus on the 

hills and mountainous areas on both sides of the Palu Valley, with recommended strategies 

emphasizing land cover management practices, such as reforestation, to enhance slope 

stability and reduce landslide risk. 
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1. INTRODUCTION 

Landslides are among the most destructive geological hazards, resulting from the downslope 

movement of soil, rock, and other earth materials driven by gravitational forces. This disaster not only results 

in loss of life but also substantial economic losses and widespread social and environmental impacts [1], [2]. 

One of the most critical mitigation efforts to reduce the risks posed by landslides is the development of 

landslide susceptibility mapping, which involves delineating areas based on their likelihood of experiencing 

landslide events in the future. 

Alongside advancements in technology and geospatial science, landslide susceptibility mapping 

methods have evolved from conventional opinion-based and statistical approaches toward the broader 

application of machine learning techniques, which offer more adaptive and accurate predictive capabilities 

[3]. In a comprehensive review, [3] summarized numerous studies that applied machine learning and deep 

learning algorithms for landslide susceptibility mapping, concluding that tree-based ensemble algorithms, 

particularly Random Forest (RF), consistently delivered superior classification performance, offering high 

accuracy and robustness against non-linear data characteristics [4]. The effectiveness of RF for landslide 

susceptibility mapping has also been demonstrated by [5], who reported that the combination of RF and cross-

validation techniques outperformed 40 other models in classifying landslide and non-landslide areas in 

Kendari City. This further solidifies RF’s position as one of the most reliable methods for landslide 

classification tasks. 

On the other hand, Central Sulawesi is one of Indonesia’s regions with a high susceptibility to 

landslides. The presence of the Palu-Koro active fault, with a slip rate ranging from 20–40 mm per year based 

on GPS observations up to 2016, is a key contributing factor to landslide hazards in the region [6], [7]. In 

2018, the region experienced one of its most devastating landslide incidents, which caused significant damage 

in Palu City, Donggala Regency, and the surrounding areas. 

In Central Sulawesi, various landslide susceptibility mapping efforts have been undertaken as part of 

disaster mitigation strategies, including a study by [8] that applied the weighted overlay technique. While the 

method is frequently employed and relatively simple to implement, its weighting process is inherently 

subjective, as it relies heavily on expert judgment or literature references, which can affect the objectivity 

and accuracy of the final mapping results [9]. In a more recent study, [10] utilized the RF algorithm for 

landslide susceptibility mapping near Palu City; however, the study did not incorporate hyperparameter 

optimization nor implement feature selection methods to simplify the model structure. 

In response to these gaps, this study develops a landslide susceptibility model for Palu and its 

surrounding areas using Random Forest (RF) with hyperparameter tuning combined with the Recursive 

Feature Elimination (RFE) technique. RFE is a feature selection method that iteratively discards less 

significant variables based on their importance values derived from the RF algorithm [11]. This is particularly 

important because the absence of hyperparameter tuning can result in suboptimal model calibration, whereas 

omitting feature selection may retain redundant or irrelevant variables, leading to unnecessarily complex 

models and potentially diminished classification accuracy [12]. To date, the integration of RF with RFE for 

landslide susceptibility mapping in Palu and its surrounding areas has not been explored. This methodology 

is expected to enhance predictive accuracy and reduce model complexity, thereby providing more reliable 

and actionable information to support targeted landslide mitigation strategies in the region. 

2. RESEARCH METHODS 

2.1 Random Forest (RF) 

Random Forest (RF) is an ensemble method that combines multiple decision trees to improve 

predictive accuracy and stability. RF implements the principle of bootstrap aggregating (bagging) as shown 

in Fig. 1. Each tree is constructed from a randomly selected subset of data through a bootstrap mechanism 

(sampling with replacement), and the predictions of all trees are then aggregated to produce the final decision 

[4]. This technique reduces the risk of overfitting and yields a more stable model compared to using a single 

decision tree. 

RF is an extension of the bagging method, with the primary difference being the predictor selection 

process during tree construction. In pure bagging, each tree considers all available predictors. In contrast, RF 
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randomly selects a subset of predictors for consideration at each split. This approach aims to prevent the trees 

from becoming too similar, as can occur in standard bagging, thereby reducing inter-tree correlation and 

improving model generalization. In classification tasks, the final prediction is determined by majority voting 

across all decision trees. 

 

Figure 1. Illustration of Random Forest Algorithm 

The construction of each decision tree in RF depends on an optimal splitting criterion, typically based 

on the Gini index, entropy, or other measures. The Gini index for a dataset 𝐷 with 𝑘 classes is calculated as 

defined in Eq. (1): 

𝐺𝑖𝑛𝑖 (𝐷) = 1 − ∑ 𝑝𝑖
2𝑘

𝑖=1 ,           (1) 

where 𝑝𝑖 denotes the probability of class 𝑖, a Gini value of 0.5 indicates a perfectly balanced class distribution, 

while zero reflects complete purity within a node. 

Consider a node in a dataset containing 10 instances, where each instance represents an observation 

characterized by one or more predictor variables. In this example, based on a certain predictor, 6 instances 

belong to class A, and 4 instances belong to class B. The probability 𝑝𝑖 of an instance belonging to each class 

is calculated as the proportion of instances of that class in the node, following Eq. (2): 

𝑝𝐴 =
6

10
= 0.6, 𝑝𝐵 =

4

10
= 0.4.      (2) 

The Gini index for this node is then: 

𝐺𝑖𝑛𝑖 (𝐷) = 1 − (0.62 + 0.42) = 0.48 .           (3) 

Based on Eq. (3), a value of 0.48 indicates that the node is relatively impure, containing a mixture of 

instances from both classes. A value of 0 corresponds to a perfectly pure node, while higher values reflect 

greater heterogeneity. During tree construction, the algorithm selects splits that minimize the Gini index, 

producing nodes that are more homogeneous and improving model classification accuracy. 

2.2 Recursive Feature Elimination (RFE) 

Recursive Feature Elimination (RFE) is a feature selection technique designed to identify the most 

relevant predictors for distinguishing between target classes [11]. It iteratively removes the least important 

feature based on importance scores from a RF classifier, producing a reduced feature set while maintaining 

overall predictive accuracy. In each iteration, a new RF model is trained, and cross-validation is used to 

evaluate its accuracy. The feature with the lowest importance is removed, and the process continues 

recursively until the desired number of features is reached. The cross-validated accuracy at each iteration 

provides a quantitative measure to identify the optimal subset of features. 

Illustrative example: consider a dataset with 𝑚 predictors [𝑥1, 𝑥2, … , 𝑥𝑚]. RFE is configured to remove 

one predictor at each iteration, starting from all 𝑚 predictors and continuing until only a single predictor 

remains. 
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1. Iteration 1: All 𝑚 predictors are used to train the Random Forest model. Feature importance scores 

{𝐼1, 𝐼2, … , 𝐼𝑚} are computed, and 𝑘-fold cross-validation is performed to calculate the average 

accuracy 𝐴1. The predictor with the lowest importance, say 𝑥𝑙, is removed. 

2. Iteration 2: The model is retrained with the remaining 𝑚 − 1 predictors. Importance scores and 

cross-validated accuracy 𝐴2 are calculated. The least important feature is removed. 

3. Iteration 𝑗: Only one feature remains, and the corresponding cross-validated accuracy 𝐴𝑗 is 

calculated. 

This iterative process produces a sequence of accuracies [𝐴1, 𝐴2, … , 𝐴𝑗] corresponding to decreasing 

feature subsets. By visualizing this sequence, the optimal subset of features can be identified as the smallest 

set that achieves the highest or near-highest cross-validated accuracy, balancing predictive performance with 

model simplicity. 

2.3 Data and Pre-Processing 

The study area encompasses four regencies in Central Sulawesi, covering a total of 1,491.68 km² (Fig. 

2). Landslide inventory data, comprising 498 events induced by the 7.5 Mw earthquake in September 2018, 

were obtained from the USGS database [13]. Non-landslide points are generated randomly following the 

approach of [14], with a minimum spatial separation of 30 m to prevent points from falling within the same 

raster cell, which is consistent with the resolution of the conditioning factor data. This random sampling 

strategy is computationally efficient, reduces selection bias, and ensures that non-landslide points uniformly 

cover the full range of conditioning factors across the study area. 

Unlike approaches that restrict non-landslide points to areas of low slope, this study intentionally 

allows them to occur even in steep terrain. This reflects the fact that steep slopes do not always fail; slope 

instability is governed by a combination of conditioning factors rather than slope alone. Including non-

landslide points in high-slope areas enables the model to better discriminate which factor combinations truly 

lead to landslides, rather than overestimating slope as a single dominant trigger. We utilize fifteen 

conditioning factors classified into four categories: topography, environment, anthropology, and geology 

(Table 1). 

 
Figure 2. Study Area in Central Sulawesi 
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 Table 1. Landslide Conditioning Factors 

Category Data Source Data Type Variable (Factor) Scale/Resolution 

Topography Digital Elevation Model (SRTM) 

Raster 

 

 

Elevation 

Slope 

Profile Curvature 

Aspect 

TWI 

TPI 

SPI 

TRI 

±30m 

Environment 

LANDSAT 8 OLI Raster NDVI ±30m 

OpenStreetMap Vector 
Distance to river 

River density 

±30m 

- 

Geology 
ESDM Republic of Indonesia 

Vector 
Formation 1:250,000 

KLHK Republic of Indonesia Distance to fault ±30m 

Anthropology 
KLHK Republic of Indonesia 

Vector 
Land cover ±30m 

OpenStreetMap Road density - 

Topographic factors (Fig. 3), including slope, topographic position index (TPI), topographic wetness 

index (TWI), profile curvature, terrain ruggedness index (TRI), elevation, stream power index (SPI), and 

aspect, are derived from SRTM data (±30 m) using GIS-based processing [15]. Slope is calculated using a 

numerical differentiation technique that estimates elevation changes by considering the neighboring cells 

within the DEM grid. The hilly and mountainous regions on the western and eastern sides of the Palu Valley 

exhibit extreme slopes, with values ranging from 33 to 69 degrees. These areas also show positive values of 

the TPI, indicating that they are located at higher elevations relative to their surroundings. In contrast, the 

central part of the study area—namely, the Palu Valley, which includes Palu and Sigi—generally has slopes 

of less than 8 degrees, along with lower elevation and TPI values compared to adjacent areas. 

The Palu Valley also predominantly shows low values of the TRI, which reflects smooth terrain. This 

contrasts sharply with the surrounding hilly and mountainous areas, which exhibit higher TRI values, 

indicating rougher topography [5]. Additionally, TWI, which represents the potential for water accumulation 

[15], tends to be higher in the Palu Valley, suggesting greater water retention capacity. 

 

 
                         (a)  

(b) 
 

(c) 

 

 
                         (d) 

 
(e) 

 
(f) 



1024 Siregar et al.           OPTIMIZING LANDSLIDE SUSCEPTIBILITY MAPPING IN CENTRAL SULAWESI WITH RECURSIVE...  

                 
                                            (g)                                                                    (h) 

Figure 3. Topographic Factors 

(a) Slope, (b) TPI, (c) TWI, (d) Profile Curvature, (e) TRI, (f) Elevation, (g) SPI, (h) Aspect 

Profile curvature indicates whether a slope accelerates or decelerates the flow of water and materials 

such as soil and sediment. Positive values represent convex surfaces, negative values indicate concave 

surfaces, and values close to zero suggest relatively flat terrain [16]. The Palu Valley mostly exhibits flat 

curvature, while the adjacent hills and mountains are dominated by convex and concave forms. 

SPI is a composite topographic attribute used to measure the erosive power of surface water flow [17]. 

It assumes that water discharge is proportional to the specific catchment area. Higher SPI values—found in 

the western and eastern hills of the Palu Valley—suggest stronger erosive forces that may threaten soil 

stability. Finally, the aspect, which describes the compass direction of the steepest slope (i.e., the direction of 

maximum elevation change) [15], shows that the study area is predominantly characterized by slopes facing 

southwest and west. 

Environmental factors (Fig. 4) consist of the normalized difference vegetation index (NDVI) derived 

from LANDSAT 8 OLI imagery [18], distance to the river, and river density. NDVI is a remote sensing index 

employed to monitor variations in land cover by quantifying vegetation greenness on the Earth’s surface. In 

general, the more positive the NDVI value, the healthier and denser the vegetation. Within the study area, 

mountainous and hilly regions tend to exhibit relatively high and positive NDVI values. 

Water flow also plays a crucial role in landslide classification [19]. Therefore, this study incorporates 

two potential hydrological variables: distance to the river and river density. Distance to the river is categorized 

into six buffer zones at 2 km intervals, while river density is calculated as the total length of rivers divided 

by the pixel area. River systems in this region originate from the mountainous areas in the west and east, and 

flow toward the central part of the study area. 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 4. Environmental Factors 

(a) NDVI, (b) Distance to River, (c) River Density 

The anthropological factor is represented by two variables: land cover and road density (Fig. 5). Land 

cover is reclassified into six categories based on the guidelines provided by the intergovernmental panel on 

climate change (IPCC) [20]. This reclassification aims to reduce the number of unique land cover values and 

to eliminate categories that are not represented by either landslide or non-landslide samples. The central part 

of the study area, particularly the city of Palu, is predominantly characterized by settlements, indicating a 

high level of anthropogenic activity. In contrast, the western and eastern margins of the region are primarily 
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covered by forest land and grassland. Consistent with the presence of settlements, the lowland areas of Palu 

and Sigi also exhibit relatively high road density compared to the surrounding regions. 

 
                         (a) 

 
                          (b) 

Figure 5. Anthropological Factors 

(a) Land Cover, (b) Road Density 

 
                        (a) 

 
                         (b) 

Figure 6. Geological factors 

(a) Formation, (b) Distance to Fault 

Geological factors (Fig. 6) encompass six formation classes and distance to fault lines. Previous studies 

[21], [22] have also incorporated geological factors into landslide and non-landslide classification models, 

highlighting their relevance in capturing terrain stability and susceptibility. Among these factors, geological 

formations—representing the classification and distribution of rock types—are particularly influential, as 

they reflect the underlying lithological diversity across the study area. Different rock types exhibit varying 

levels of resistance to weathering, erosion, and slope failure, thereby exerting differential impacts on landslide 

potential. 

In this study, geological information is further enriched by the inclusion of fault line data, which serves 

as a proxy for seismic activity—a well-known landslide-triggering mechanism. To systematically quantify 

proximity to potential seismic sources, the distance to the nearest fault is categorized into seven buffer zones 

at 5 km intervals. This classification facilitates a more refined spatial analysis of the influence of tectonic 

factors on landslide occurrence. 

Data from various sources are reprojected to a specific coordinate system, namely UTM Zone 51S 

(Fig. 7). Subsequently, vector-format data are converted into raster format. All rasterized datasets are then 

stacked to ensure spatial alignment and consistency for further analysis. The data are randomly divided (70% 

train, 30% test), and this process is repeated 5 times to ensure more comprehensive results. In each iteration 

of the data split, both models undergo hyperparameter tuning using k-fold cross-validation [23] on the training 

data before evaluation on the test data. We compare the performance of the RF model without RFE and the 

RF model with RFE (RFE-RF) using accuracy, balanced accuracy, and F1-score metrics on the test data. As 

a baseline, we also implement a Logistic Regression (LR) [21] model for comparison in this study. 



1026 Siregar et al.           OPTIMIZING LANDSLIDE SUSCEPTIBILITY MAPPING IN CENTRAL SULAWESI WITH RECURSIVE...  

 
Figure 7. Workflow of Data Preprocessing and Modeling 

Table 2 summarizes the hyperparameters explored for tuning the Random Forest (RF) model. Three 

key hyperparameters are considered: the mtry, the trees, and the min_n. The mtry, representing the number 

of predictor variables randomly selected at each split, is tested from 1 to 4 to control the diversity among 

individual trees. The trees, defining the total number of trees in the forest, are varied from 5 to 500 to balance 

predictive stability and computational efficiency. 

Table 2. Hyperparameters of the RF Model 

Hyperparameter 

mtry: [1, 2, 3, 4] 

trees: [5, 10, 15, 20, 25, …, 500] 

min node size: [ 2, 3, 5, 7, 10, 12, 15, 17, 20] 

Finally, the min_n, which specifies the minimum number of samples required in a node to attempt a 

split, is explored from 2 to 20 to regulate tree growth and prevent overfitting. A grid search combined with 

k-fold cross-validation is used to identify the optimal combination of these hyperparameters. 

3. RESULTS AND DISCUSSION 

3.1 Exploratory Data Analysis (EDA) 

In the initial stage, we perform an exploratory analysis of all available landslide conditioning factors. 

For continuous features, Pearson correlation analysis (Fig. 8) reveals no highly correlated pairs (r > 0.8); 

however, several feature pairs exhibit moderate correlations (r > 0.5), such as road density–elevation, TWI–

slope, and TWI–TPI, which may indicate potential redundancy. Although previous study [24] suggests that 

the RF algorithm can handle multicollinearity, simplifying the model by removing redundant features remains 

a prudent strategy to enhance model interpretability and computational efficiency. 

Subsequently, a visual analysis using boxplots (Fig. 9) provides initial insights into the discriminative 

ability of each continuous feature in separating landslide and non-landslide classes. Features such as 

elevation, slope, TWI, and river density exhibit distinct differences in median values across classes, indicating 

a strong potential to improve classification performance. In contrast, features such as SPI and TPI show 

relatively similar distributions across classes, suggesting limited discriminative capability. 
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Figure 8. Pearson Correlation Heatmap of Continuous Features 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure 9. Boxplot of Continuous Features Categorized by Landslide (y=1) and Non-Landslide (y=0) Classes 

(a) Elevation, (b) Slope, (c) Aspect, (d) TPI, (e) TWI, (f) SPI, (g) NDVI, (h) Road Density, (i) River Density 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 10. Barplot of Categorical Features Categorized by Landslide (y=1) and Non-Landslide (y=0) Classes 

(a) Formation, (b) Land Cover, (c) Profile Curvature, (d) TRI, (e) Distance to River, (f) Distance to Fault 
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For categorical features, the barplot in Fig. 10 reveals that landslide occurrences in the study area are 

more frequently associated with Qp and GR geological formations, grassland land cover, and a TRI value 

exceeding 9.6. Conversely, profile curvature appears to have limited influence on classification, as there is 

no substantial difference in the proportion of landslide and non-landslide cases across its categories (concave, 

convex, and flat). 

3.2 Modelling and Landslide Susceptibility Map 

We incorporate a feature selection process using RFE into the RF model applied to the training data, 

with the evaluation using 5-fold cross-validation to identify the optimal combination of features from all 

available features. The results of the RFE-RF are presented in Fig. 11, which shows that the highest 

classification performance—indicated by the red point representing the maximum accuracy—is achieved 

using nine features: elevation, slope, distance to fault, road density, land cover, TWI, formation, TRI, and 

river density. These nine features represent the most significant factors for modeling landslide susceptibility 

for this study. 

The RFE-RF model is subsequently compared with the RF model without RFE and the LR model on 

the test data, as presented in Table 3. The results show that the RFE-RF model achieves the best performance, 

with all metric values consistently exceeding 0.81 and outperforming both the RF and LR models on the test 

data. These findings indicate that the application of RFE contributes to selecting more relevant features for 

distinguishing between landslide and non-landslide classes. As highlighted by [25], RFE can assist in 

eliminating redundant features or those that are highly correlated. In this study, for instance, the correlation 

between TPI and TWI is approximately -0.58 (Fig. 8), and RFE advises the exclusion of the TPI. In the 

boxplot visualization shown in Fig. 9, TWI values exhibit a sharper separation univariately between landslide 

and non-landslide classes compared to TPI. Thus, in this context, RFE effectively discards less relevant 

features and reduces potential redundancy among variables. 

 
Figure 11. Recursive Feature Elimination on RF Using Train Data 

Table 3. Comparison of RFE-RF, RF, and LR on the Test data (Splitting Repeated 5 Times) 

Number 

of 

Features 

Model 

(after 

hyperparameter 

tuning) 

Best 

Hyperparameters 

Mean 

Accuracy 

± SD 

Mean 

Balanced 

Accuracy 

± SD 

Mean F1-

Score 

± SD 

15 LR - 0.75 ± 0.029 0.75 ± 0.029 0.73 ± 0.033 

15 RF mtry: 3 

trees: 150 

min node size: 5 

0.80 ± 0.026 0.80 ± 0.026 0.78 ± 0.02 

9 RFE-RF mtry: 2 

trees: 100 

min node size: 5 

0.82 ± 0.01 0.82 ± 0.01 0.81 ± 0.01 

We categorize landslide susceptibility into five levels, ranging from very low to very high, based on 

probability values generated by the RFE-RF model (Fig. 12). The predictions predominantly fall into the very 

low (427.3 km²) and low (504.8 km²) categories, while areas with high and very high susceptibility only cover 

172.5 km² (Table 4). Parigi Moutong and northern Donggala are mainly predicted as very low susceptibility 

zones, which aligns with the low number of recorded landslide events in these regions. Overall, landslide 
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points are successfully identified within high and very high susceptibility zones, indicating good model 

performance. 

However, the model exhibits limitations in certain areas, particularly in the eastern part of Sigi, where 

several recorded landslide locations are still classified as low susceptibility. This indicates that while the 

RFE-RF model performs well for earthquake-induced (coseismic) landslides, it may not generalize to 

landslides triggered by other factors, such as rainfall. Recognizing this limitation provides direction for future 

research, including the incorporation of rainfall and other triggering factors to improve model generalizability 

across different landslide types.  

 
Figure 12. Landslide Susceptibility Map Using RFE-RF Model. Susceptibility Classes are Based on Probability: Very 

Low (0-0.2), Low (0.2-0.4), Moderate (0.4-0.6), High (0.6-0.8), Very High (0.8-1) 

 

Table 4. Area Size per Category from RFE-RF Prediction 

Susceptibility Class 
RFE-RF 

Pixel count Area (km²) 

Very low 449,225 427.3 

Low 530,706 504.8 

Moderate 406,928 387.1 

High 153,723 146.2 

Very high 27,597 26.3 

Table 5 depicts the proportion of areas with high and very high landslide susceptibility relative to the 

total area of each regency, as predicted by the RFE-RF model. This information is crucial for establishing 

priorities in disaster mitigation planning. Donggala, Palu, and Sigi have more than 9% of their territory 

classified as highly susceptible, indicating a significant elevation in landslide risk. The spatial analysis 

illustrated in Fig. 12 reveals a concentration of susceptible areas along the administrative boundary between 

Donggala and Palu. The geomorphological interpretation further indicates that landslides are predominantly 

distributed along the hilly and mountainous zones flanking the eastern and western margins of the Palu 

Valley, reflecting structural control on landslide distribution patterns. In contrast, Parigi Moutong exhibits 

the lowest susceptibility levels among the regencies analyzed. 
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Table 5. Summary of High and Very High Landslide Susceptibility Areas per Regency from RFE-RF Model 

Regency 
Total  

“High” and “Very High” 

Landslide Category 

Percentage Area 

(km²) of “High” 

and “Very High” Pixel Count Area (km²) Pixel Count Area (km²) 

Donggala 686,491 653 96,643 91.9 14.1% 

Palu 410,545 390.5 51,120 48.6 12.4% 

Parigi M. 175,326 166.7 44,64 4.2 2.5% 

Sigi 295,817 281.2 29,271 27.8 9.9% 

To identify the features that contribute most significantly to model performance, we extract feature 

importance from the RFE-RF model. This analysis highlights the key features that enhance the model's 

predictive capability and provides insights into the factors influencing landslide occurrence. Fig. 13 presents 

the features ordered according to their relative importance. Elevation shows the highest importance, while 

geological formation exhibits the lowest. 

 
Figure 13. Feature Importance of RFE-RF Model 

Fig. 13 shows that the elevation median associated with landslide events is 375 meters, compared to 

500 meters for non-landslide events. This observation is particularly noteworthy, considering that previous 

studies, such as [21], have indicated that landslides are more prevalent at higher elevations relative to their 

surroundings. Moreover, [21] demonstrated a linear correlation between elevation and landslide frequency, 

implying that higher elevations are associated with an increased probability of landslides. Nevertheless, 

susceptibility to landslides is not solely determined by elevation but also by local geological characteristics. 

A study by [26] in the European Alps revealed that shallow landslides can occur at relatively low 

elevations, particularly in areas covered by grassland. This finding aligns with our observations in Central 

Sulawesi, where the frequency of landslides is notably high in grassland areas. It can be attributed to the 

susceptibility of grasslands to soil stability disturbances, such as erosion, especially during periods of high 

rainfall [26]. 

The most significant factor after elevation is slope. Landslide occurrences tend to be more frequent in 

areas with a slope greater than 20°, whereas non-landslide events typically have a slope of less than 20°. 

Previous studies [27], [28] have revealed that as the slope value increases, the frequency of landslides also 

rises, with slope playing a crucial role in mass movement driven by gravity [29]. 

TRI is among the top five factors significantly contributing to landslides in the RFE-RF model. TRI 

measures the elevation difference between a surface and its neighboring points [5] and reflects the roughness 

of the terrain. As shown in Fig. 13, the proportion of landslides is higher than that of non-landslides when 

TRI values exceed 9.6. Associating with the prevalence of rugged topography, it contributes to slope 

instability and increases the likelihood of landslides. Additionally, high road density plays a key role in 

triggering landslides due to anthropogenic activities such as vehicles and human presence. As noted by [5], 

road construction can damage the natural structure of slopes and expose fractures, thereby amplifying the 

potential for landslides. 
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High TWI increases soil moisture through groundwater accumulation, contributing to the potential for 

landslides. With a median TWI of 5.4 at landslide points, this value approaches the value associated with 

high landslide density [30]. In addition to TWI, another hydrological factor is river density. Fig. 9 illustrates 

that landslide points tend to have higher river density compared to non-landslide points, which are associated 

with erosion potential. The dominance of Qp and gr formations also contributes to landslide potential, 

although to a lesser extent compared to other factors based on RFE-RF modeling. 

Based on the analysis, Donggala, Palu, and Sigi are recommended as the primary priorities for landslide 

mitigation efforts, although another regency in the study area also exhibits significant landslide potential in 

certain zones. Feature importance analysis reveals that elevation, slope, and land cover are the three main 

factors influencing landslide susceptibility. Elevation and slope are inherent geomorphological characteristics 

formed through long-term geological processes, making them difficult to alter significantly for mitigation 

purposes. Therefore, interventions should focus on land cover management. Strategies such as reforestation, 

increasing vegetation density, or planting deep-rooted species could enhance slope stability and effectively 

reduce landslide risk in the future [31]. 

4. CONCLUSION 

Applying the Recursive Feature Elimination technique to the tuned Random Forest model has proven 

to enhance the performance of landslide and non-landslide classification. The RFE-RF model achieves 

average accuracy, balanced accuracy, and F1-score exceeding 0.81, outperforming both the RF and Logistic 

Regression models. The classification results, categorized into five susceptibility classes from very low to 

very high, generally align with the distribution of landslide locations. In the study area located in Central 

Sulawesi, the model identifies regions such as Donggala, Palu, and Sigi, where high and very high 

susceptibility areas exceed 9%, suggesting these regions as priorities for mitigation. Mitigation efforts can 

concentrate on areas along the hills and mountains on both sides of the Palu Valley. Based on the feature 

importance analysis, we recommend mitigation strategies such as reforestation and planting deep-rooted 

vegetation to enhance soil stability. This approach aims to minimize disruptions to slope stability caused by 

the dominance of grasses, which are highly susceptible to erosion, particularly during periods of heavy 

rainfall. Future work could build upon the current model by integrating high-resolution rainfall data, which 

would enable the analysis to account for precipitation patterns that strongly influence landslide occurrence. 

Incorporating rainfall alongside soil moisture and land cover dynamics may further enhance the accuracy of 

landslide susceptibility predictions over time. 
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