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Article History: 
This study investigates the construction of an optimal cryptocurrency portfolio comprising 

Ethereum and Solana using a GARCH-based Monte Carlo simulation framework. Asset 
volatilities were modelled individually through GARCH (1,1) processes, while asset 

correlations were captured using standardized residuals and Cholesky decomposition. 

Simulation results over 180- and 360-day horizons showed that the optimized portfolio 

achieved slightly higher cumulative growth factors and better upside capture compared to 
an equal-weighted benchmark, particularly during volatile market phases. In out-of-sample 

testing, the return-to-risk optimized portfolio delivered a total return of 34% over six 

months, compared to 33% for the equal-weighted strategy, while maintaining a higher 

return-to-risk ratio (0.06 versus 0.05) and lower volatility (3% versus 4%). Over a one-
year period, both portfolios converged closely, with the equal-weighted strategy achieving 

a slightly higher total return of 45% compared to 43% for the optimized portfolio. These 

findings suggest that GARCH-based optimization can enhance portfolio resilience and risk-

adjusted returns, although its realized return advantage may diminish in synchronized 
market conditions. 
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1. INTRODUCTION 

The global investing landscape has been significantly impacted by the emergence of digital assets 

known as cryptocurrencies, introducing unique opportunities accompanied by considerable risks. These 

digital currencies, led by Bitcoin (BTC), Ethereum (ETH), and Solana (SOL), represent different sectors 

within the blockchain ecosystem, including store-of-value assets, smart contract platforms, and scalable 

decentralized financial solutions. Although cryptocurrencies are characterized by unstable price dynamics, 

driven by market sentiment, regulatory developments, macroeconomic uncertainty, and technological 

innovation, they have increasingly gained a role in diversified investment portfolios [1], [2]. 

Traditional portfolio optimization frameworks, such as Markowitz mean-variance theory, typically rely 

on assumptions of continuous volatility, normally distributed returns, and time-invariant covariance 

structures [3], [4], [5]. In cryptocurrency markets, where sudden regime shifts, volatility clustering, and 

heavy-tailed return distributions frequently occur, these assumptions are often violated [6], [7], [8]. Empirical 

studies such as [9], [10], [11], [12] demonstrate that Bitcoin returns deviate significantly from Gaussian 

assumptions, while [13], [14] report notable volatility persistence across crypto assets. These findings imply 

that risk modelling methods for crypto portfolios must extend beyond traditional frameworks. 

Addressing these limitations, researchers have increasingly adopted models capable of capturing time-

varying volatility, such as the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model 

introduced by Bollerslev (1986) [15], [16]. This model effectively captures volatility clustering and 

persistence, phenomena particularly evident in cryptocurrency returns. Katsiampa [10] successfully applied 

GARCH-family models to Bitcoin, demonstrating superior out-of-sample volatility forecasting compared to 

static models. Moreover, multivariate extensions like the DCC-GARCH model have been developed to model 

dynamic correlations across assets, though their practical application in larger portfolios often faces 

computational challenges [17], [18]. Consequently, semi-parametric approaches such as combining 

univariate GARCH specifications with a static correlation matrix have gained traction for high-dimensional 

simulations and risk stress-testing [19]. 

Concurrently, Monte Carlo simulation has proven to be an effective tool for generating forward-

looking scenarios of future returns within a probabilistic framework. Unlike historical simulations that rely 

solely on past return sequences, Monte Carlo methods incorporate empirical volatility dynamics and random 

uncertainty, making them well-suited for portfolio optimization under uncertainty and nonlinear market 

conditions [20]. Previous studies by [21], [22], [23] illustrate the strength of Monte Carlo simulation 

frameworks in portfolio construction contexts. When combined with volatility models like GARCH and a 

well-estimated correlation structure, Monte Carlo simulations can generate thousands of plausible market 

outcomes, providing a robust and flexible foundation for designing volatility-aware portfolios [24], [25]. 

Building upon these advances, this study integrates GARCH (1,1) modeling, Cholesky decomposition-

based correlation estimation, and Monte Carlo simulation to construct an optimal cryptocurrency portfolio 

consisting of ETH and SOL [26]. The decision to exclude Bitcoin (BTC) from the portfolio was based on its 

relatively lower volatility and established role as a store-of-value asset, which differs markedly from the more 

platform-oriented and utility-driven nature of Ethereum and Solana. Including BTC could introduce 

concentration bias and dampen the portfolio's responsiveness to volatility-based optimization. By focusing 

on two higher-beta assets, the simulation framework is better positioned to capture meaningful co-movement 

and volatility interaction — key components in a forward-looking risk optimization context. 

Following GARCH (1,1) model estimation for each asset’s return series, standardized residuals were 

calculated and used to derive a static correlation matrix. This matrix served as the basis for Cholesky 

decomposition, allowing for the generation of correlated standard normal innovations. These innovations 

were embedded into Monte Carlo simulations to project return paths over medium- and long-term horizons. 

By incorporating both asset-specific volatility dynamics and cross-asset correlations, the simulated returns 

represent plausible future market outcomes under uncertainty. Portfolio weights were optimized for each 

simulation based on a return-to-risk objective, excluding the risk-free rate to reflect the crypto environment's 

speculative nature. The resulting optimized portfolio was then evaluated against a benchmark equal-weighted 

strategy using out-of-sample data from January 2024 to January 2025 This methodology delivers a volatility-

aware, simulation-driven portfolio framework that aligns with the unique risk-return structure of 

cryptocurrency markets, offering practical value for investors seeking to navigate high-uncertainty asset 

classes. 
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2. RESEARCH METHODS 

This study employs a GARCH-based Monte Carlo simulation framework to construct an optimal 

cryptocurrency portfolio composed of ETH and SOL. The methodology consists of five main stages: data 

preparation, volatility modelling, return path simulation, portfolio optimization, and performance evaluation. 

The approach is designed to incorporate both the time-varying nature of volatility and the interdependencies 

between assets in a forward-looking, simulation-driven portfolio construction process. 

Daily closing prices for ETH and SOL were collected from Yahoo Finance for the period ranging from 

January 1, 2023, to December 31, 2024. The full sample was divided into an in-sample training period, from 

January 1, 2023, to December 31, 2023, and two out-of-sample testing periods: January 1, 2024, to June 30, 

2024, and January 1, 2024, to December 31, 2024. This structure allowed for both medium-term and full-

year horizon performance evaluations. Logarithmic returns were computed from price relatives between time 

𝑡 and 𝑡 − 1, where 𝑃𝑡 denotes the closing price at time 𝑡. 

𝑟𝑡 = log
𝑃𝑡

𝑃𝑡−1
. (1) 

Log returns were used in the modeling stage, such as for GARCH estimation, due to their advantageous 

statistical properties, including time-additivity, variance stabilization, reduced sensitivity to outliers, and 

improved distributional normality. However, portfolio returns in this study were calculated using simple 

arithmetic returns, as the standard method for aggregating asset returns in a portfolio applies only to simple 

returns. 

To model the time-varying volatility of each asset, univariate GARCH (1,1) models were estimated for 

the log return series of both ETH and SOL. The GARCH model specification allows the conditional variance 

at time 𝑡 to depend on both the squared residual from the previous time and the conditional variance at 𝑡 − 1, 

thus capturing volatility clustering behavior observed in financial time series. The model was expressed as: 

𝑟𝑖,𝑡 = μ𝑖 + ϵ𝑖,𝑡 , (2) 

𝜖𝑖,𝑡 = 𝜎𝑖,𝑡𝑧𝑖,𝑡 ,  𝑧𝑖,𝑡 ∼ 𝒩(0,1), (3) 

𝜎𝑖,𝑡
2 = 𝜔𝑖 + 𝛼𝑖𝜖𝑖,𝑡−1

2 + 𝛽𝑖𝜎𝑖,𝑡−1
2 . (4) 

Maximum Likelihood Estimation (MLE) was used to fit the model parameters (ω, α𝑖, β𝑖) for each 

asset. The choice of GARCH (1,1) was motivated by its parsimony and empirical success in capturing 

conditional heteroskedasticity in asset returns, particularly in highly volatile markets such as cryptocurrencies 

[10]. 

After estimation, standardized residuals were obtained by dividing each residual by its time-varying 

conditional standard deviation, i.e., 𝑧𝑡 =
𝜖𝑖,𝑡

𝜎𝑖,𝑡
  . This transformation normalizes the residuals, ensuring unit 

variance and rendering them suitable for estimating cross-asset dependence via correlation analysis. These 

standardized innovations preserve the temporal structure of the original series while filtering out the influence 

of conditional volatility, allowing for a cleaner estimation of asset interaction in the next simulation stage. 

To capture cross-asset dependencies, a static correlation matrix was computed from the standardized 

residuals of the three GARCH models. This correlation matrix was then factorized using the lower-triangular 

Cholesky decomposition, which expresses the correlation matrix as the product of a lower-triangular matrix 

and its transpose. The resulting lower-triangular matrix was multiplied by independent standard normal 

innovations to produce correlated standard normal shocks across assets. These shocks were subsequently 

scaled by the modeled conditional volatilities and used to simulate 1,000 return paths over 180- and 360-day 

horizons for each asset using the following formula: 

𝑟𝑖,𝑡+ℎ =  𝜇𝑖 + 𝜎𝑖,𝑡+ℎ𝑧𝑖,𝑡+ℎ. (5) 

where the volatility is recursively generated using the GARCH model, and are correlated shocks introduced 

via Cholesky transformation. 

Simulated return paths were used to optimize portfolio weights based on a return-to-risk ratio objective, 

analogous to the Sharpe ratio but without a risk-free rate. For each simulation, the expected return and 

standard deviation were computed, and the weight vector was chosen to maximize the following: 
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max
𝐸[𝑅𝑝]

Std[𝑅𝑝]
 subject to ∑ 𝑤𝑖 = 1,  𝑤𝑖 ≥ 0. (6) 

Optimization was conducted in Python using the SLSQP algorithm from the scipy.optimize library, a 

gradient-based method for nonlinear problems with constraints. It iteratively approximates the objective with 

a quadratic model and the constraints with linear models, solving the subproblem until convergence. While 

an analytic solution exists for the mean–variance optimization problem without the non-negativity constraint, 

SLSQP was used here to incorporate both full-investment and no–short-selling constraints, ensuring practical 

applicability in the crypto asset management context. 

The optimized weights derived from the simulation process were subsequently applied to real daily 

return data for two distinct out-of-sample periods: from January 1, 2024, to June 30, 2024 (180 days), and 

from January 1, 2024, to December 31, 2024 (360 days). These two horizons were selected to evaluate the 

portfolio’s performance under both medium-term and long-term conditions, allowing for an assessment of 

the model's sensitivity to different holding periods and market regimes. During each period, the optimized 

portfolio’s performance was directly compared to that of a naïve equal-weighted benchmark, which serves 

as a commonly accepted passive allocation strategy in both academic research and industry practice. 

Performance comparison was conducted across three key metrics: cumulative return, portfolio 

volatility, and return-to-risk ratio (analogous to the Sharpe ratio, excluding the risk-free rate). Cumulative 

return measures absolute growth, volatility captures overall risk exposure, and the return-to-risk ratio 

quantifies performance efficiency — all of which are essential for evaluating the robustness and practical 

viability of the optimization framework. This dual-horizon back testing approach provided a grounded 

assessment of the model's predictive effectiveness in real-world conditions, particularly in the highly volatile 

and nonlinear environment of cryptocurrency markets. It further enabled the identification of potential trade-

offs between short-term risk-adjusted gains and longer-term return convergence in periods of synchronized 

asset movement. 

3. RESULTS AND DISCUSSION 

The results of this study are presented in several stages, beginning with an exploration of each assets 

nature from its historical price. Continuing with the volatility dynamics captured by the GARCH (1,1) 

models, followed by the portfolio optimization using simulation. The final part discusses the comparative 

performance between the optimized and equal-weighted portfolios, with emphasis on return distributions and 

risk-adjusted outcomes from its out-of-sample performance. 

Fig. 1 presents the price evolution of Ethereum (ETH) and Solana (SOL) over the in-sample period 

from January 1, 2023, to December 31, 2023, offering a foundational overview of the underlying assets 

analyzed in this study. The visual trajectories reveal notable price swings in both assets, characterized by 

alternating periods of sharp appreciation and subsequent correction. These waving patterns underscore the 

inherently volatile nature of cryptocurrency markets, where prices often respond rapidly to shifts in investor 

sentiment, macroeconomic news, or changes in market liquidity. 

ETH and SOL both exhibit significant fluctuations, but with differing magnitudes and frequencies. 

Ethereum, as a more established asset, displays relatively smoother price trends with occasional spikes, while 

Solana experiences more abrupt rises and drops, likely due to its smaller market capitalization and higher 

speculative activity. This pronounced cyclicality highlights the presence of momentum phases followed by 

reversals, which are not easily captured through static models. As such, the observed dynamics further 

motivate the use of GARCH-based models to better represent the conditional variance over time. In short, 

the patterns in Figure 1 serve as both a descriptive and diagnostic tool, confirming the necessity of time-

varying risk modeling in simulation-based portfolio construction. 

Fig. 2 displays the daily log return series for ETH and SOL during the same in-sample period, offering 

a more detailed view of the underlying price dynamics by isolating the relative changes from day to day. The 

return patterns clearly demonstrate alternating periods of high and low volatility, highlighting the unstable 

and non-linear nature of cryptocurrency returns. Unlike prices, which tend to trend, log returns fluctuate 

around a mean of zero and are more suitable for modeling stochastic behavior. 
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A detailed view reveals distinct volatility clustering, where large movements including both positive 

and negative tend to group together, followed by periods of relative calm. This phenomenon is particularly 

prominent in both ETH and SOL, suggesting that the magnitude of returns is dependent on past volatility, a 

key feature of financial time series that violates the assumption of constant variance in classical models. The 

absence of a clear linear trend and the presence of clustering justify the application of a GARCH (1,1) model, 

which is specifically designed to capture such time-varying volatility structures. By modeling the conditional 

variance based on past squared returns and lagged variance terms, GARCH allows for dynamic risk 

estimation that evolves with market conditions, thereby enhancing the accuracy of forward-looking 

simulations in a highly volatile asset class like cryptocurrency. 

  
(a) (b) 

Figure 1. Assets’ Closing Price  

(a) ETH-USD Closing Price, (b) SOL-USD Closing Price 

(Source: Python, Jupyter Notebook) 

 

  
(a) (b) 

Figure 2. Assets’ Daily Log Return  

(a) ETH-USD Daily Log Return, (b) SOL-USD Daily Log Return 

(Source: Python, Jupyter Notebook) 

Figs. 3 and 4 present the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

plots for the log returns of ETH and SOL, calculated over 30 lags. These diagnostic tools are essential for 

identifying linear dependencies in time series data. Both ACF and PACF plots reveal that the vast majority 

of autocorrelation coefficients lie well within the 95% confidence intervals, indicating an absence of 

statistically significant autocorrelation in the return series. This suggests that past returns have minimal 

predictive power over future returns, consistent with the weak-form efficiency hypothesis, which posits that 

current asset prices fully reflect all available historical price information. 

This statistical independence in mean return behavior does not, however, extend to the return variance. 

Despite the lack of linear serial correlation, the presence of volatility clustering observed in the raw return 

plots suggests a more complex underlying variance structure. In other words, large shocks, whether positive 

or negative, tend to be followed by other large shocks, and small changes by small changes, even though the 

direction of movement is random. This conditional heteroskedasticity phenomenon violates the assumptions 

of constant variance models and supports the application of GARCH-based models. By explicitly modeling 

the time-varying conditional variance, the GARCH (1,1) specification captures these volatility dynamics 

effectively, making it a suitable choice for forecasting risk and simulating realistic return paths in 

cryptocurrency portfolios. Thus, the results from the ACF and PACF analysis, combined with visual 

inspection of the return series, provide robust empirical justification for employing GARCH models in this 

context. 

While the returns themselves exhibit insignificant serial dependence, the volatility clustering observed 

visually in the return series indicates that the variance process may be time-varying rather than constant. 

Although the ACF and PACF of the returns do not signal autocorrelation, this does not hinder the existence 

of conditional heteroskedasticity, which is a common feature in financial return data. Therefore, these results 
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support the application of GARCH models to model the dynamic volatility behavior of ETH and SOL returns 

more appropriately. 

  
(a) (b) 

Figure 3. Assets’ Daily Log Return  

(a)ETH-USD Daily Log Return, (b) SOL-USD Daily Log Return 

(Source: Python, Jupyter Notebook) 

 

  
(a) (b) 

Figure 4. Assets’ Daily Log Return  

(a) ETH-USD Daily Log Return, (b) SOL-USD Daily Log Return 

(Source: Python, Jupyter Notebook) 

The standardized residuals from the GARCH (1,1) models were used to generate a static correlation 

matrix to include interaction between assets in the simulation process.  By standardizing the residuals, time-

varying volatility do not distort the correlation calculation, enabling a more accurate evaluation of the pure 

linear dependency between asset shocks. 

Table 1. Correlation Matrix 
 ETH-USD SOL-USD 

ETH-USD 1 0.627122 

SOL-USD 0.627122 1 

Table 1 presents the static correlation matrix calculated from the standardized residuals of the GARCH 

(1,1) models for ETH and SOL. The correlation value of approximately 0.627 between the two assets 

indicates a moderate to strong positive linear relationship in their standardized innovations. This result is in 

line with empirical patterns observed in the broader cryptocurrency market, where assets frequently exhibit 

joint responses to systemic market drivers, including macroeconomic announcements, global risk sentiment, 

and platform-level technological developments. 

Such a correlation magnitude has important implications for portfolio construction and simulation. A 

correlation coefficient above 0.6 implies that diversification benefits may be partially constrained, 

particularly during synchronized upswings or downturns. Nevertheless, capturing and accounting for this 

relationship remains essential for any realistic forward-looking simulation. By using standardized residuals, 

the correlation matrix reflects pure co-movements between asset-specific shocks, filtered from time-varying 

volatility — making it a more accurate input for Monte Carlo simulation than raw return correlations, which 

are often distorted by heteroskedasticity. 
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This static correlation matrix serves as a foundational component for the Cholesky decomposition step, 

enabling the generation of correlated shocks in the simulation phase. Although more sophisticated alternatives 

such as DCC-GARCH or copula-based dependence structures exist, the use of a static matrix derived from 

filtered residuals offers a robust and computationally efficient approach, particularly in low-dimensional 

portfolio contexts like the ETH-SOL pair. The correlation structure embedded in Table 1, therefore, not only 

captures meaningful asset interdependence but also supports the methodological integrity of the simulation 

framework used to generate optimized portfolio allocations. 

In order to create correlated random shocks in the Monte Carlo simulation, these correlation estimates 

were subsequently split using the Cholesky method.  The simulation methodology may generate return paths 

that represent both asset-specific volatility and joint dynamics by combining GARCH-derived volatility with 

this static correlation structure. 

  
(a) (b) 

Figure 5. Portfolio Simulated Paths Comparison 

(a) 180-Days Simulated Paths, (b) 360-Days Simulated Paths 

(Source: Python, Jupyter Notebook) 

Figs. 5 (a) and (b) depict Monte Carlo–generated cumulative return paths for the optimized and 

equal‑weighted strategies over 180‑day and 360‑day horizons. Each thin line corresponds to a single 

simulated trajectory, illustrating path‑by‑path variability, while the thicker lines summarize the central 

tendency (average/median) for each strategy. The visible spread of the thin lines indicates the range of 

plausible outcomes under the simulated conditions, which widens over the longer horizon. This dispersion 

reflects the stochastic nature of returns and the time‑varying volatility captured by the GARCH‑based 

framework, highlighting both the uncertainty inherent to crypto markets and the comparative behavior of the 

two strategies across scenarios. 

In the 180-day simulations, the optimized portfolio consistently outperforms the equal-weighted 

benchmark in terms of upper-tail outcomes. While most return paths cluster between a growth factor 

(cumulative growth of the portfolio) of 1.0 and 2.0, the optimized portfolio more frequently exceeds the 2.0 

mark. This suggests that the allocation strategy, which leverages forward-looking volatility estimates, is better 

positioned to exploit favorable short- to medium-term return opportunities. The improved performance 

reflects the benefit of weighting assets based on their expected return-to-risk profiles, as captured in the 

simulation process. In this study, growth factors are computed from simulated daily portfolio returns 

produced by the GARCH(1,1)–Cholesky Monte Carlo paths, aggregated multiplicatively over the 180-day 

horizon. 

Extending to the 360-day horizon, the spread of simulated outcomes becomes significantly wider, 

consistent with the compounding effects of volatility and return uncertainty over longer periods. Both 

strategies exhibit scenarios where cumulative returns exceed a factor of 4.0; however, the optimized portfolio 

continues to generate a higher concentration of favorable trajectories in the upper percentiles. This indicates 

that even under long-term compounding risk, volatility-aware optimization retains some degree of 

performance edge. Nevertheless, the increasingly wide range of final values also illustrates a critical insight: 

while GARCH-based simulations improve the expected risk-return balance, they do not eliminate the 

probabilistic nature of market behavior. Thus, the results reinforce the dual role of optimization under 

volatility — to pursue higher returns when conditions are favorable, while remaining structurally attuned to 

uncertainty and downside risks that cannot be fully diversified away in high-volatility markets like crypto. 
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(a) (b) 

Figure 6. Histogram of Simulated Portfolio Daily Return 

(a) 180-Days Simulated Histogram, (b) 360-Days Simulated Histogram 

(Source: Python, Jupyter Notebook) 

Figs. 6 (a) and (b) further reinforce the simulation findings by presenting histograms of the simulated 

daily return distributions for both portfolio strategies over 180-day and 360-day horizons. These distributions 

reveal that both the optimized and equal-weighted portfolios exhibit near-normal, bell-shaped curves, 

suggesting a relatively symmetrical return profile under the assumptions embedded in the Monte Carlo 

process. The use of GARCH-generated volatility in combination with correlated return innovations produces 

a probabilistically consistent structure, which translates into realistic daily return dynamics over the simulated 

paths. 

However, a key distinction emerges in the form of a slight rightward skew in the optimized portfolio’s 

return distribution, especially over the longer 360-day horizon. This skewness, although not extreme, reflects 

a subtle tilt in favor of more frequent positive deviations from the mean, an indication of enhanced upside 

potential. Such asymmetry is particularly appealing for investors seeking convex payoff structures, where the 

likelihood of extreme positive returns is marginally greater than that of large losses. Importantly, this feature 

is achieved without a noticeable increase in volatility or tail risk, as the overall shape and width of the return 

distribution remain comparable across both strategies. 

This alignment between marginal improvements in daily return characteristics and the previously 

observed cumulative growth advantage provides further validation for the simulation-driven optimization 

approach. It suggests that performance gains are not only visible at the aggregate level but are also embedded 

in the daily behavior of the optimized portfolio. From a risk management perspective, maintaining a similar 

day-to-day volatility structure while improving return asymmetry supports the case for adopting GARCH-

based optimization in environments characterized by high-frequency market uncertainty, such as 

cryptocurrency markets. 

  
(a) (b) 

Figure 7. Portfolio Growth Comparison 

(a) 6-Month Out-of-Sample Performance, (b) 1-Year Out-of-Sample Performance 

(Source: Python, Jupyter Notebook) 

Fig. 7 illustrates the out-of-sample growth trajectories for the optimized and equal-weighted portfolios 

across two distinct investment horizons: a six-month period from January to July 2024, and a full-year horizon 

from January 2024 to January 2025. These plots serve as real-market validations of the simulation-based 

optimization approach. During the initial six-month period, both strategies demonstrate a strong upward 

trend, driven by favorable market momentum, with values peaking around a growth factor of 1.45 in early 

April. Although the equal-weighted strategy briefly outperforms the optimized portfolio during the most rapid 

growth phase between March and April, the difference is minimal and short-lived. By the end of June 2024, 
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the optimized portfolio achieves a final growth factor of approximately 1.34, marginally outperforming the 

equal-weighted portfolio at 1.33. 

This narrow gap highlights that during relatively bullish, stable environments, the added value of 

volatility-sensitive optimization may be subtle, especially when the constituent assets are moving in close 

tandem. Nevertheless, the optimized portfolio manages to maintain performance parity while also offering 

structural advantages in volatility control, as reflected in earlier results. 

Over the extended 360-day horizon, the return paths for both strategies continue to exhibit high co-

movement, reaffirming the influence of strong cross-asset correlation in the ETH-SOL pair. Temporary 

deviations are observed during market rallies in March and November, where the optimized strategy briefly 

achieves stronger gains due to its reactivity to conditional volatility shifts. However, by the end of the 

evaluation period, both strategies converge, posting final growth factors of 1.43 for the optimized portfolio 

and 1.45 for the equal-weighted portfolio. This convergence indicates that in prolonged, trend-following 

markets with synchronized asset behavior, the return advantage of GARCH-based optimization becomes less 

pronounced. 

Table 2. Portfolio Out-of-Sample Performance 

 
180-Days 360-Days 

Optimal Equal-Weighted Optimal Equal-Weighted 

Total Return 0.34 0.33 0.43 0.45 

Volatility 0.03 0.04 0.03 0.04 

Return-to-Risk 0.06 0.05 0.03 0.03 

Still, the ability of the optimized portfolio to maintain comparable returns while managing volatility 

more effectively—shown earlier through lower variance and higher return-to-risk ratios—confirms its role 

as a robust, risk-sensitive alternative. Particularly for investors prioritizing risk containment over pure return 

maximization, the optimized strategy offers meaningful practical value, especially during uncertain or rapidly 

changing market conditions. 

Table 2 summarizes the out-of-sample performance metrics of the optimized and equal-weighted 

portfolios over two evaluation periods: a medium-term 180-day horizon and a long-term 360-day horizon. 

Key performance indicators reported include total return, volatility, and return-to-risk ratio, each offering a 

distinct lens through which to assess the comparative strength of the portfolio strategies. Over the 180-day 

period, the optimized portfolio outperformed the equal-weighted benchmark by a small margin, achieving a 

total return of 34% versus 33%. More notably, the optimized portfolio maintained a superior return-to-risk 

ratio of 6% compared to 5%, which indicates that the strategy was able to deliver better returns per unit of 

risk. This suggests that the simulation-driven optimization approach effectively leveraged short-term 

volatility conditions, tilting asset weights toward those with more favorable risk-adjusted profiles. 

Importantly, the volatility observed in the optimized portfolio was lower (3%) compared to that of the 

equal-weighted portfolio (4%), confirming that the allocation method was not only performance-driven but 

also risk-sensitive. This reinforces the idea that the GARCH-based simulation framework enhances the 

quality of portfolio construction by aligning capital allocation with forward-looking volatility expectations. 

In contrast, over the 360-day horizon, the performance differential narrows further. Both portfolios 

delivered the same return-to-risk ratio of 3%, while the equal-weighted strategy achieved a slightly higher 

total return of 45% compared to 43% for the optimized portfolio. Despite this marginal return advantage, the 

optimized portfolio again demonstrated consistently lower volatility. This outcome is especially meaningful 

in the context of long-term portfolio resilience, where downside protection and drawdown control can be as 

valuable as incremental return enhancements. 

Overall, Table 2 highlights a central insight: while the realized return advantage of GARCH-based 

optimization may diminish in extended bull or synchronized markets, its strength lies in superior volatility 

management and maintaining a stable return profile. This is particularly relevant for institutional or risk-

averse investors who seek portfolio strategies that perform well not only in absolute terms, but also under 

probabilistic and stress-tested frameworks. 

The overall findings demonstrate that GARCH-based Monte Carlo optimization can provide 

improvements in cryptocurrency portfolio performance, particularly in terms of volatility management and 

risk-adjusted returns. The simulation results over horizons show that while the optimized portfolio paths 
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exhibit slightly higher cumulative growth factors and better upside capture during volatile periods, the 

realized advantages over simple equal-weighted strategies remain relatively limited when assets are highly 

correlated, and market trends are synchronized. 

Out-of-sample evaluation further support these observations. Over a six-month period, the optimized 

strategy achieved a slightly higher return-to-risk ratio, while over a full year, both strategies delivered similar 

risk-adjusted outcomes, with the equal-weighted portfolio posting higher total returns. The important thing 

is that the optimized portfolio consistently maintained lower volatility across both periods, highlighting its 

ability to stabilize portfolio performance even when excess returns were not significantly superior. These 

results suggest that volatility-sensitive optimization techniques can enhance portfolio resilience, but their 

realized return advantage may depend heavily on occurring market dynamics and asset behavior.  

4. CONCLUSION 

This study examined the construction of an optimal cryptocurrency portfolio by integrating GARCH-

based volatility modeling with Monte Carlo simulation, focusing on two actively traded digital assets ETH 

and SOL. By modeling asset-specific volatility using GARCH (1,1) and capturing asset dependencies through 

a static correlation matrix derived from standardized residuals, the research constructed forward-looking 

return paths to simulate realistic market behavior. These simulated scenarios were then used to optimize 

portfolio weights under a return-to-risk objective, enabling the comparison of the optimized strategy against 

a traditional equal-weighted benchmark. 

Simulation results indicated that the optimized portfolio achieved modestly higher cumulative growth 

and superior upside capture during volatile market phases, particularly over short- to medium-term horizons. 

These improvements were achieved while maintaining lower overall volatility, suggesting that GARCH-

informed optimization offers enhanced control over portfolio risk without materially sacrificing returns. In 

out-of-sample testing over a six-month horizon, the optimized portfolio achieved a slightly higher return-to-

risk ratio of 6% compared to 5% for the equal-weighted portfolio, with a lower volatility profile. Over the 

longer one-year horizon, performance convergence was observed, with the equal-weighted strategy 

marginally outperforming in total return. However, the optimized portfolio continued to exhibit lower risk, 

validating its strength as a volatility-stabilizing allocation mechanism. 

The findings underscore the practical value of incorporating volatility-aware optimization techniques 

in cryptocurrency investment strategies. While the marginal return advantage of the optimized portfolio may 

diminish under long-term trend-following market conditions or during periods of high asset synchronization, 

its consistent reduction in volatility offers meaningful utility to risk-sensitive investors, particularly those 

with capital preservation objectives or institutional constraints. 

Future research can build upon this framework in several directions. First, expanding the portfolio to 

include a broader set of cryptocurrencies, including Layer-2 tokens, or stablecoins, may enhance 

diversification and allow deeper insight into cross-sector dynamics within the crypto ecosystem. Second, 

replacing the static correlation matrix with a time-varying approach, such as Dynamic Conditional 

Correlation (DCC-GARCH) or copula-based dependence structures, could improve accuracy in capturing 

evolving inter-asset relationships. Third, incorporating higher-order moment optimization such as skewness-

aware or tail-risk-sensitive objectives. This would offer a more comprehensive risk profile for investors 

concerned with asymmetric or extreme return outcomes. 

Lastly, this methodology could be extended beyond crypto into hybrid portfolios that combine 

traditional financial assets with digital currencies, allowing analysis of how volatility-aware optimization 

performs in mixed-market conditions. As cryptocurrencies continue to gain institutional adoption, 

frameworks like the one proposed in this study can play an increasingly vital role in bridging quantitative 

finance techniques with the unique challenges of digital asset allocation. 
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