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1. INTRODUCTION

Inflation in economics refers to the increase in the overall price level of goods and services during a
certain period [1], [2]. Each country aims to achieve sustainable economic growth, and inflation is viewed as
a key factor in shaping future economic situations [3]. If the price level of goods and services increases, then
each unit of currency purchases fewer goods and services. In other words, inflation continuously raises the
overall price level. The overall price level represents the total price level for goods and services in an economy
at a specific moment [4]. In the context of ASEAN, inflation management is especially vital due to region’s
diverse economic structures and varying monetary policies. For example, member countries like Indonesia,
Thailand, and the Philippines often face inflationary pressures stemming from energy prices, food supply
issues, and exchange rate volatility. A high inflation rate will boost the daily expenses and affect the living
standards of people in a given country.

The inflation rate is known as a crucial component in evaluating the performance of a central bank [5].
Inflation forecasting is a necessary unit in the set of variables used for strategic thinking in the monetary
policy [6]. This study considers inflation trends for the group of five ASEAN member states consisting of
Indonesia, Malaysia, the Philippines, Singapore, and Thailand. According to Robiyanto et al. [7], the
emerging market economies of ASEAN-5 countries share similarities in various financial aspects, the real
sector, and are exposed to common regional shocks. For instance, Indonesia and the Philippines have
historically experienced higher inflation volatility due to external shocks and supply-side constraints.
Malaysia maintains a relatively moderate inflation rate under a managed float exchange rate system.
Singapore, with its unique exchange rate-based monetary policy framework, has one of the lowest inflation
volatilities in the region. Thailand operates under an inflation-targeting regime, balancing domestic demand
and external factors. The five ASEAN countries have undergone substantial financial and industrial
expansion over the last four decades at different times.

According to [8], [9], [10], [11], forecasting future events is necessary for effective planning and
decision-making. Financial forecasting stands as one of the most extensively explored subjects within the
field of time series analysis [12], [13]. Forecasting is highly beneficial for investors, stockholders, and
individuals with a strong interest in finance, as they can apply the forecasting results when making policy
decisions for the future [12], [14]. Based on [15], [16], technical analysis in economic forecasting has a
positive impact on tracking transformations in the global market. Moreover, time series data consist of
observations systematically recorded at consecutive points in time within a specified period [17], [18]. Time
series methods are fundamental in statistical analysis, enabling the identification of data patterns and
facilitating forecasting future values by analyzing past trends [9], [18], [19]. As central banks strive to
implement forecast-based monetary policies, it goes without saying that inflation forecasting is crucial for
designing effective monetary strategies.

In addition, forecasting inflation has been approached in many different methods. Researchers strive
to improve the model’s performance. The wide implementation of models has been proposed in order to
enhance the improvement in the financial time series forecasting. A study combines feature selection and
Shapley values to explain inflation predictions. Tests in volatile Turkey show that tree-based ensemble
models improve both accuracy and interpretability [20]. Furthermore, Long Short-Term Memory (LSTM)
performs similarly to Seasonal Autoregressive Integrated Moving Average (SARIMA); it surpasses
Autoregressive (AR), Neural Network (NN), and Markov-switching models by a little margin. A unique
layer-wise relevance propagation technique is used to provide a qualitative interpretation of network learning,
and hyperparameter sensitivity analysis is performed to forecast nonlinear inflation [21]. Using a large US
Consumer Price Index (CPI)-U dataset, the evaluation shows that the Hierarchical Recurrent Neural Network
(HRNN) model outperforms various established inflation prediction baselines and offers new forecasting
tools for policymakers and market participants focused on sectoral and component-specific price changes
[22]. A study offers an extensive review of research that compares Autoregressive Integrated Moving
Average (ARIMA) combined with machine learning techniques for forecasting time series data. It also
explores their integration into hybrid statistical-Al models, applied across various fields including finance,
healthcare, weather, utilities, and network traffic [23].

Although various advanced forecasting models have been applied globally, including ensemble trees,
LSTM, and hybrid ARIMA-ML models [20], [21], [22], [23], such approaches remain limited in the ASEAN
context. Most studies in the region focus on single models or individual countries without comparing multiple
forecasting approaches. This lack of comparative studies across both statistical and fuzzy models reduces the
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insight available for regional inflation forecasting. Therefore, this study fills the gap by evaluating and
comparing ARIMA, Exponential Smoothing, and Chen-Singh fuzzy models for inflation forecasting across
multiple ASEAN countries. The fuzzy time series approach has been adopted as a notable technique within
the fields of artificial intelligence and soft computing [24]. The novelty of this research lies in the comparative
evaluation of fuzzy time series models, specifically the Chen and Singh methods, against classical statistical
models (ARIMA and Exponential Smoothing) for inflation forecasting across multiple ASEAN countries.
Furthermore, ARIMA, Exponential Smoothing, and the Chen and Singh fuzzy time series models were
selected in this research due to their widespread use, interpretability, and suitability for economic forecasting,
such as inflation. ARIMA is a well-established statistical model effective for non-stationary data with
autocorrelation, while Exponential Smoothing is known for its simplicity and robustness, particularly in
short-term forecasting. The Chen fuzzy model serves as a foundational approach in fuzzy time series analysis,
offering a structured method for handling uncertainty in economic data. Singh’s model enhances Chen’s by
refining the fuzzification and forecasting process, improving accuracy while maintaining transparency.
Moreover, Chen’s is used as a foundational approach due to its simplicity, efficiency, and ability to handle
uncertain or imprecise data, such as inflation rates. Singh improved Chen’s model by refining the
defuzzification process and logical relationship construction, making it more accurate and suitable for volatile
data, such as inflation in emerging economies. Such comparisons are rarely found in the existing literature.
Furthermore, this study highlights the model-specific performance differences by country, offering practical
insights into the suitability of each forecasting method in diverse economic settings.

2. RESEARCH METHODS
2.1 Data Management

The data source is www.investing.com, collected from 1961 to 2017. In total, there are 57 observation
data points. The data is the annual percentage of inflation. Fig.1 shows a conceptual framework of this
research. The data were separated into train and test groups in order to obtain the best predicted outcome.
Based on [25], [26], 75%-25% is selected as the best ratio for tuning the train and test data frames.

| Data sources is www.investing.com (1961

) _‘ Data collection ‘_
to 2017)

k4

Data —
management

- . ) ' Stationary data 1s required to get better result
Stationary data | —| ° . . . . .
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to get stationary data.

k4

Model and testing)

‘ Constructing ‘ ‘ Data 1s separated into two groups (training

I S )

‘ Fuzzy-Chen | | Fuzzy-Singh ‘ ‘ ARIMA ‘ ‘ Exponential Smoothing ‘

Evaluation and
comparison

Figure 1. Conceptual Framework
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Furthermore, in this study, stationary data will be implemented by differencing transformation. A
stationary process is a fundamental requirement for constructing traditional forecasting approaches such as
ARIMA, moving average, exponential smoothing, and others. A time series is classified as stationary when
its statistical attributes, such as the mean, variance, and autocorrelation, do not vary over time. Therefore, a
stationary data set can be forecasted precisely. Furthermore, the Autocorrelation Function (ACF) plot in the
stationary data keeps decreasing to zero significantly. However, the exact stationary data does not exist. The
researchers can only try to approach it. It can be seen in Fig. 2, the ACF plot for Indonesia, Malaysia,
Philippines, Singapore, and Thailand illustrates the stationary time series data after differencing
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transformation. The ACF showed lean passing through the blue horizontal line.
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Figure 2. Plot of ACF after Differencing for (a) Indonesia, (b) Malaysia, (c) the Philippines, (d) Singapore,
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2.2 Chen’s Model of Fuzzy Time Series

The implementation of fuzzy time series Chen’s technique [27] is represented as follows:

1.

Partition.

In this approach, the universal set is grouped into 7 same range intervals (v4, vy, ..., ;). In the
fuzzy time series models (Chen and Singh), the universe of discourse was partitioned into seven
equal-length intervals. Seven intervals were selected as a balance between granularity and
generalization; finer partitioning (more intervals) increases model complexity and sensitivity to

noise, while coarser partitioning may overlook significant variation.

Set the fuzzy sets, which are linguistic variables.

Let A4,A4,, ...,A; be fuzzy sets of intervals v,,v,, ..., v;. The definitions of fuzzy sets are

represented as follows:
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The membership function in Chen’s method is the way to represent fuzzy set A,, A,, ..., A. If the
data belongs to intervals v, then the maximum degree is in the fuzzy set A,. Otherwise, in case of
data fit to intervals v, then the maximum degree is in the fuzzy set A,. Once, in Chen’s model, it
is considered the degree of membership function within {0, 0.5, 1}. If the maximum degree of the
membership function is in a fuzzy set Ay, then the fuzzified result is Ay.

3. Divide the fuzzy rules into groups.
The fuzzy rules have been grouped by combining the right-hand sides that are identical to the left-
hand side, aligning them with the right-hand side of the fuzzy logic group.

4. Compute the forecasting output
The established rules to compute the forecast are written as follows:

a.

If the fuzzification results in a time step i are fuzzy sets A; and appropriate with the Fuzzy
Logical Relationship (FLR) as written:

Al - @I
which means that there is no right-hand side of FLRs satisfying the data in time i, then the

forecasting result for the time step i is in fuzzy set A; which the midpoint of v; is m;. And
the defuzzified result is equal to m;.

If the fuzzification results in a time step i are fuzzy sets A; and appropriate with the FLRs as
written:

Ai - Ak'
the forecasted result for the given time step i is in fuzzy set A, which the midpoint of u, is
m. And the defuzzified result is equal to my,.

If the fuzzification results in a time step i are fuzzy sets A; and appropriate with the FLRs as
written:

A; - AL Ay, . A
The forecasting result for the subsequent time step i is then obtained in A4, 4,, ... , A, which
the midpoint of vy,v,, ... ,v, IS my,m,,... ,m,. And the defuzzified result is equal to

(my+my+-+ my)

n

2.3 Singh’s Model of Fuzzy Time Series

The forecasting procedure for inflation using the fuzzy time series method, as proposed by Singh [28] outlined

as follows:

1. Dividing the universal set into equal intervals.

Division of the universal set U is into the same length intervals. The intervals are similar to the
previous model, which is the fuzzy time series Chen’s model.
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2. Establishing a fuzzy set defined by the triangular membership function
Fuzzy sets are formed using the triangular membership function, which defines the degree of
membership for each data point.

3. Fuzzification
The process of fuzzification involves converting numerical data into fuzzy values according to the
defined fuzzy sets and membership functions.

4. Forecasting
Fuzzy time series Singh’s method, applying order three, as G(t + 1) is obtained by
G(t —2),G(t — 1) and G(t). The third-order fuzzy time series model was adopted following the
original method proposed by Singh [28]. Furthermore, G(t+ 1) is calculated by using the
following Eq. (1):

Gt+1)=G6{t—-1)*=L(t,t—1,t—2), (D

where G (t + 1) is defined as the fuzzy output (or fuzzy set) associated with the time point t + 1,
The max-min composition operator is notated by using " * " and L is a value representing the gap
between successive points of time t with t — 1 and the value of t — 1 with ¢t — 2. The change
between the previous 3-time step t data can be measured as written in the following Eq. (2):

L(t,t —1,t —2) = ||4; — Ai_q| — |Ai=g — Ai,l], )

here A;,A;_4,and A;_, are the original data of time i,i — 1,and i — 2.

2.4 Autoregressive Integrated Moving Average (ARIMA)

Box and Jenkins were the inventors of ARIMA in 1970. Based to Siami et al. in 2018 [29], one of the
most well-known linear forecasting models during the past three decades is the ARIMA model. Furthermore,
the future value is thought to be a linear mix of the error and the previous value. The formula of the ARIMA
model can be presented in the following Eq. (3):

Ve =00+ P1Vee1 F Ve o+ F PpVep t & — 0161 — 0265 — - — 046 3)

Where . is called the actual data, &, is called the random bias at the time step t, ¢; and 8 are called the

coefficient, p and q are referred to as integers, these represent the model order and are designated as
polynomials for autoregression and moving averages, respectively.

Some researchers [30], [31] have presented the basic steps of the ARIMA approach as follows:

1. Identification
Autocorrelation Function (ACF) and Autocorrelation Function (PACF) are identified in this part
to determine the order of the ARIMA model. Satisfying stationarity is mandatory in the ARIMA
model; therefore, data transformation is needed. A stationary time series that has constant variance
and mean is advantageous for forecasting techniques.

2. Estimate the parameter
To minimize the error, a nonlinear estimation procedure will deal with the model parameter. The
R program version 4.5.0 with the package Forecast has been used to estimate the ARIMA
parameters for each time series data set.

3. Diagnostic checking

Error assumptions will be examined to see if they are satisfied. The residual plot is employed to
evaluate the adequacy of the model. After parameter estimation, the ACF plot and the Ljung-Box
test will be utilized to assess if the forecast errors exhibit correlation. Additionally, the histogram
of the forecast errors will be examined to verify if they follow a normal distribution with a mean
of zero and constant variance. Moreover, 14 forecasted values from the testing data were evaluated
and found to satisfy the diagnostic checking criteria, indicating that the model’s assumptions were
reasonably met.

The ACF plot in Fig. 3 indicates little evidence that the sample autocorrelation at lag 20 exceeds the
significance threshold for the 14 forecasted values in Indonesia. The plot also suggests that the variance
remains approximately constant over the time period. Furthermore, 0.9369 is the p-value in the Ljung-Box
test, indicating non-zero autocorrelations for lags 1-20 in the forecasting inaccuracies. The histogram of the
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time series for the 14 predicted values illustrates that the residuals are close to a normal distribution with zero
mean and constant variance, as depicted in Fig. 4. Therefore, it gives the conclusion that the forecasting
inaccuracies for the 14 predicted values of Indonesia can be satisfying a normal distribution with zero mean
and constant variance.
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Figure 3. The ACF plot of the ARIMA Forecast Error for Indonesia

The ACF plot of the forecast residuals up to lag 20 is illustrated in Fig. 3. The autocorrelations mostly
lie within the 95% confidence bounds (blue dashed lines), indicating that the residuals are largely uncorrelated
over time. This suggests that the forecasting model has adequately captured the time-dependent structure of
the inflation series. A slight spike at lag 2 and lag 11 is observed, but these are within acceptable bounds and
do not imply significant model inadequacy.
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Figure 4, Histogram of the ARIMA Forecast Error for Indonesia

As seen in Fig. 5, the ACF plot illustrates that the sample autocorrelation at lag 20 exceeds the
significance thresholds for the 14 predicted values of Malaysia. The plot also indicates that the variance
remains approximately constant over time. Furthermore, the p-value for the Ljung-Box test is 0.2695,
suggesting that there is small evidence for non-zero autocorrelations for lags 1-20 in the forecasting
inaccuracies. The histogram of the time series for the 14 predicted values of Malaysia illustrates that the
forecasting inaccuracies are close to a normal distribution and the mean is 0.2975, as shown in Fig. 6.
Therefore, it can be concluded that the forecasting inaccuracies for the 14 predicted values of Malaysia follow
a normal distribution with constant variance and a mean of zero.
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-04 -02 00 02 04 06 08 10
|
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Figure 5. The ACF plot of the ARIMA Forecast Error for Malaysia
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The ACF plot of the inflation time series up to lag 20 is displayed in Fig. 5. A strong positive
autocorrelation at lag 1 suggests persistence in the data. Most other lags fall within the 95% confidence
bounds, except for minor spikes at lags 10 and 14, possibly indicating weak cyclical effects. This pattern
implies that the series is likely stationary or nearly stationary, guiding the selection of appropriate forecasting
models such as ARIMA.

Density
| 1 | 1 ]

000 002 004 006 008 010 012 014

I T T 1
40 -20 0 20

Forecast errors

Figure 6. Histogram of the ARIMA Forecast Error for Malaysia

The histogram of forecast errors, overlaid with a kernel density curve, is presented in Fig. 6. The errors
are approximately centered around zero, indicating that the forecasts are unbiased. The shape of the
distribution is roughly symmetric and resembles a normal distribution, which supports the assumption of
normally distributed residuals. This is important for validating the adequacy of statistical models like ARIMA
or fuzzy models that assume error normality for optimal performance.

The ACF plot in Fig. 7 reveals that the sample autocorrelation at lag 20 surpasses the significance
thresholds for the 14 forecasted values of the Philippines. The plot also indicates that the variance remains
approximately constant over time. Furthermore, the p-value for the Ljung-Box test is 0.3312, indicating that
there is small evidence for non-zero autocorrelations for lags 1-20 in the forecasting inaccuracies. Moreover,
the histogram of the time series for the 14 predicted values of the Philippines represents that the forecasting
inaccuracies are close to a normal distribution, and the mean is 0.2693, as shown in Fig. 8.
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Figure 7. The ACF plot of the ARIMA Forecast Error for the Philippines

The ACF plot in Fig. 8 depicts a histogram of forecast errors (red bars) with a density curve (blue line)
to evaluate the distribution of errors. Most forecast errors are centered around zero, indicating that the model
performs reasonably well. However, the distribution shows a right skew, suggesting that the model tends to
underestimate actual values (resulting in positive forecast errors). A few large outliers also appear in the
positive range, which may reflect occasional poor predictions or model limitations. Overall, while the model
is generally accurate, there is room for improvement in reducing over-predictions and outliers. Therefore, it
can be concluded that the forecasting inaccuracies for the 14 predicted values of the Philippines follow a
normal distribution with constant variance and a mean of zero.
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Figure 8. Histogram of the ARIMA Forecast Error for the Philippines

The ACF plot presented in Fig. 9 indicates that the sample autocorrelation at lag 20 crosses the
significance thresholds for the 14 forecasted values of Singapore. The plot also indicates that the variance
remains approximately constant over time. Furthermore, 0.5509 is the p-value for the Ljung-Box test,
indicating that there is small evidence for non-zero autocorrelations for lags 1-20 in the forecasting
inaccuracies. Moreover, the time series histogram for the 14 forecasted values depicts that the forecasting
inaccuracies are close to a normal distribution and the mean seems to be close to zero, as shown in Fig. 10.
Therefore, it provides evidence that the forecasting inaccuracies for the 14 forecasted values of Singapore
follow a normal distribution with mean zero and constant variance.
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Figure 9. The ACF plot of the ARIMA Forecast Error for Singapore
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Figure 10. Histogram of the ARIMA Forecast Error for Singapore

The ACF plot, in which the sample autocorrelation at lag 20 crosses the significance lines for 14
forecasted values of Thailand, is presented in Fig. 11. The plot also indicates that the variance remains
approximately constant over time. Furthermore, the p-value for the Ljung-Box test is 0.7775, indicating weak
evidence for non-zero autocorrelations for lags 1-20 in the forecasting inaccuracies. Moreover, the histogram
of the time series for 14 forecasted values of Thailand represents that the forecasting inaccuracies are close
to a normal distribution with zero mean, as shown in Fig. 12. Therefore, it is evident that the forecast errors
for 14 forecasted values of Thailand are a normal distribution with mean zero and constant variance.
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Figure 11. The ACF plot of the ARIMA Forecast Errors for Thailand

A histogram of forecast errors (in red) with an overlaid density curve (in blue) is presented in Fig.12.
The distribution of errors is sharply centered around zero, indicating that the forecasting model performs well
and is relatively unbiased. The shape of the density curve is approximately symmetric, with shorter and more
balanced tails compared to the previous plot. This suggests that the forecast errors are closer to being normally
distributed, and there are fewer extreme outliers. Overall, the ARIMA model for Thailand shows better
forecasting consistency and accuracy, with reduced bias and variance in the prediction errors.
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Figure 12. Histogram of the ARIMA Forecast Error for Thailand

As the successive forecasting errors do not appear to be correlated and the forecasting inaccuracies exhibit a
distribution close to normal with a mean of zero and constant variance, the prediction model for all anticipated
values is supported by the constructed ARIMA model.

2.5 Exponential Smoothing

Based on studies [10], [32], signal and noise are the components of the data set. The signal refers to
the underlying pattern or trend that the model aims to estimate, while noise represents random fluctuations
or irregularities that obscure the true structure of the data. Exponential Smoothing operates by applying
exponentially decreasing weights to past observations, allowing recent data to contribute more heavily to the
forecast. This process effectively smooths out the noise and produces a clearer estimate of the signal, making
it particularly suitable for datasets with short-term fluctuations but stable underlying trends. Exponential
smoothing can be defined as a separation process between the signal (data set) and noise in order to gain
signal estimation smoothly. Obtaining the smoother separation of the simple exponential smoothing method
can be done by calculating the discount factor 6. It can be presented in the following Eq. (4).

yr = = 8)yr + 0971 (4)
Where ;- is called the forecasted value of y;,d is called the discount factor, y; is called the actual value.

The equations for simple exponential smoothing can also be expressed in an alternative form by definingy =
1 — & in the following Eqg. (5),

Jr=vyr+A—¥)¥r_1 (5)
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where @ symbolizes the weight assigned to the last actual data and (1 — y) represents the weight assigned to
the smoothed value of the previous actual data (0 <y < 1). A parameter (y) needs to be estimated for 75%
training data. The smoothing parameter (y) in the Exponential Smoothing method was estimated
automatically using the built-in optimization function in R, which minimizes the sum of squared errors (SSE).
The model was applied separately for each ASEAN country to capture the unique characteristics of their
respective inflation time series.

The model’s error assumptions will be evaluated to ensure they are adequately met. A residual plot
will be used to assess the model’s overall adequacy. Following parameter estimation, both the ACF plot and
the Ljung—Box test will be applied to determine whether the residuals exhibit any significant autocorrelation.
Furthermore, a histogram of the residuals will be analyzed to check for normality, specifically whether they
have a mean of zero and constant variance. In addition, 14 forecasted values from the testing dataset were
examined and found to meet the diagnostic criteria, suggesting that the model assumptions were reasonably
satisfied.
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Figure 13. Residual Plots for Indonesia using Exponential Smoothing (a) ACF (b), Histogram

The ACF plot in Fig. 13 shows little evidence that the sample autocorrelation at lag 20 exceeds the
significance threshold for the 14 forecasted values in Indonesia, indicating that the variance remains stable
over time. Additionally, the Ljung—Box test yields a p-value of 0.9863, suggesting weak evidence of
significant autocorrelation across lags 1 to 20 in the residuals. The histogram of the residuals from the 14
predicted values, shown in Fig. 13, indicates that they are approximately normally distributed with a mean
close to zero and constant variance. These results collectively support the conclusion that the residuals from
the 14 forecasted values in Indonesia satisfy the assumptions of normality, zero mean, and homoscedasticity.
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Figure 14. Residual Plots for Malaysia using exponential smoothing (a) ACF, (b) Histogram

The ACF plot in Fig. 14 indicates no significant evidence that the sample autocorrelation at lag 20
exceeds the significance threshold for the 14 forecasted values in Malaysia. The plot also indicates that the
variance remains approximately constant over time. Furthermore, the p-value in the Ljung-Box test is 0.3019,
indicating weak evidence of non-zero autocorrelations for lags 1-20 in the forecasting inaccuracies. The
histogram of the time series for 14 predicted values illustrates that the forecasting errors residuals are close
to a normal distribution with zero mean and constant variance, as depicted in Fig. 14. Therefore, it gives the
conclusion that the forecasting inaccuracies for 14 predicted values of Indonesia can be satisfying a normal
distribution with zero mean and constant variance.
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Figure 15. Residual Plots for the Philippines using Exponential Smoothing (a) ACF, (b) Histogram

The ACF plot in Figure 15 shows no significant evidence that the sample autocorrelation at lag 20
exceeds the significance threshold for the 14 forecasted values in the Philippines, indicating that the variance
remains stable over the observed period. Additionally, the Ljung—Box test yields a p-value of 0.3202,
providing weak evidence of autocorrelation in the residuals across lags 1 to 20. The histogram of the residuals
for the 14 predicted values, also shown in Fig. 15, indicates an approximately normal distribution with a mean
close to zero and constant variance. These findings support the conclusion that the residuals from the 14
forecasted values for the Philippines satisfy the assumptions of normality, zero mean, and homoscedasticity.
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Figure 16. Residual Plots for Singapore using Exponential Smoothing (a) ACF, (b) Histogram

Based on Fig. 16, which illustrates the ACF plot for the 14 forecasted values in Singapore, there is no
indication that the sample autocorrelation at lag 20 exceeds the critical significance level, suggesting that the
variance remains stable throughout the period. Moreover, the Ljung—Box test yields a p-value of 0.5595,
indicating minimal evidence of residual autocorrelation across lags 1 to 20. The corresponding histogram,
also presented in Fig. 16, reveals that the residuals are approximately normally distributed, centered near
zero, and exhibit constant variance. These results confirm that the residuals for the Philippines meet the key
assumptions of normality, zero mean, and homoscedasticity.
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Figure 17. Residual Plots for Thailand using Exponential Smoothing (a) ACF, (b) Histogram

The ACF plot for the 14 forecasted values in Thailand is presented in Fig.17, which shows no
significant autocorrelation at lag 20, suggesting that the variance remains stable over time. In addition, the
Ljung—Box test yields a p-value of 0.7777, providing weak evidence of autocorrelation in the residuals across
lags 1 to 20. The histogram of residuals, also shown in Fig. 17, demonstrates an approximately normal
distribution, with values centered around zero and displaying constant variance. These findings indicate that
the residuals for Singapore satisfy the assumptions of normality, zero mean, and homoscedasticity.
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The R program version 4.5.0 has been used to examine all models with the goal of obtaining the least
MSE and RMSE, and the equation is written below in the following Eqs. (6) and (7) [33]:

1 m
MSE = — Zizl(xi —y,)? (6)
RMSE = \MSE (7)

Where:
x; :the forecasted i value.
y; :theactual it" value.
m : the number of data points.

3. RESULTS AND DISCUSSION

A time series plot of Indonesian inflation rates, along with the forecast results from four models:
Exponential Smoothing (ES), ARIMA, Fuzzy Time Series (FTS) Chen, and FTS Singh is presented in Fig.
18 . The black line represents the actual inflation data, which shows high volatility in the early years and
stabilizes in the later period, where forecasting is applied. Each colored line corresponds to a model’s
prediction, with associated RMSE values shown in the legend. Among the models, FTS Singh (cyan line)
achieves the lowest RMSE (5.00), indicating the most accurate forecast, followed by Exponential Smoothing
(5.68), FTS Chen (7.08), and ARIMA (8.51). The plot highlights that fuzzy logic-based models, particularly
FTS Singh, offer superior performance in forecasting inflation during stable periods in Indonesia.

200
— Actual 0
— ES 568

ARMA 851
—— FTSChen 708
FTS Singh 5
50 v

0 10 20 30 40 50

o
S
I

]
]
I

o
S

Indonesian Inflation (Percentage)

)

Year

Figure 18. The Plot of Forecasting Results for Indonesia

The 14 forecasted values for Malaysia are presented in Fig. 19, which displays the time series plot of
Malaysian inflation data along with forecasts from four models: Exponential Smoothing (ES), ARIMA,
Fuzzy Time Series (FTS) Chen, and FTS Singh. The black line represents the actual inflation values, which
remain relatively stable over time. Forecasting is applied in the latter part of the series, where the predicted
lines from each model are shown. The RMSE values displayed in the legend indicate that Exponential
Smoothing and FTS Chen achieved the lowest error (4.84), followed closely by FTS Singh (4.87) and
ARIMA (4.97). Overall, the results suggest that all models performed comparably well on Malaysia’s
relatively stable inflation data, with slight differences in forecasting accuracy.
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Figure 19. The Plot of Forecasting Results for Malaysia
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A time series plot of inflation in the Philippines, along with forecast results from four models:
Exponential Smoothing (ES), ARIMA, Fuzzy Time Series (FTS) Chen, and FTS Singh, is presented in Fig.
20. The black line represents the actual inflation data, which shows moderate fluctuations over time. Forecasts
begin in the later part of the series, where the colored lines represent model predictions. Based on the RMSE
values shown in the legend, Exponential Smoothing achieved the best forecasting performance (4.75), closely
followed by ARIMA (4.78), FTS Singh (4.86), and FTS Chen (5.18). These results suggest that traditional
statistical models slightly outperform fuzzy models in forecasting inflation in the Philippines, although all
models perform reasonably well on the relatively stable data.
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Figure 20. The Plot of Forecasting Results for the Philippines

A time series plot of Singapore’s inflation rates along with forecasts from four models: Exponential
Smoothing (ES), ARIMA, Fuzzy Time Series (FTS) Chen, and FTS Singh, is presented in Fig. 21. The black
line represents the actual inflation data, which shows minimal fluctuations and remains highly stable
throughout the observed period. Forecasting is conducted in the latter portion of the series, where predicted
values from each model are illustrated. Based on the RMSE values presented in the legend, ARIMA and FTS
Singh yield the most accurate forecasts (both 4.83), followed closely by Exponential Smoothing (4.85) and
FTS Chen (4.92). These results indicate that all models perform similarly in forecasting Singapore’s stable
inflation pattern, with ARIMA and FTS Singh providing slightly better accuracy.

200
— Actual 0
— ES 485

% 150 - ARMA 483
g —— FTSChen 492
§ FTS Singh 483
g 100

c

S

®

= 50

o

g il T

% 0 _MW
»

Year

Figure 21. The Plot of Forecasting Results for Singapore

A time series plot of Thailand’s inflation data alongside forecast outputs from four models: Exponential
Smoothing (ES), ARIMA, Fuzzy Time Series (FTS) Chen, and FTS Singh is presented in Fig. 22 . The actual
inflation trend, depicted by the black line, appears relatively stable throughout the time period with modest
fluctuations. Forecasting is applied in the latter portion of the data, where the predictions from each model
are compared. According to the RMSE values shown in the legend, both ES and ARIMA produced the most
accurate forecasts (RMSE = 4.83), followed closely by FTS Singh (4.84) and FTS Chen (4.91). These results
indicate that all models performed similarly well for Thailand’s stable inflation trend, with traditional
statistical methods slightly outperforming fuzzy models.
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Figure 22. The Plot of Forecasting Results for Thailand

Regarding model performance as presented in Table 1, for Indonesia, the Fuzzy Singh model achieved
the lowest error, with a root mean square error (RMSE) of 4.995. For Malaysia, the exponential smoothing
model produced the smallest error, with an RMSE of 4.835. Similarly, exponential smoothing also
demonstrated the best performance for forecasting inflation in the Philippines, with an RMSE of 4.753. In
the case of Singapore, the ARIMA model recorded the lowest error, with an RMSE of 4.832, and the same
model also yielded the smallest error for Thailand, with an RMSE of 4.832. Notably, the RMSE values for
inflation forecasts in Malaysia, Singapore, and Thailand were relatively similar.

The results show variations in model performance across countries, which can be attributed to
differences in inflation volatility. In Indonesia, where inflation data is relatively volatile, the Fuzzy Singh
model demonstrates the best performance (lowest RMSE), suggesting that its higher-order fuzzy logic
structure is better suited for capturing nonlinear and uncertain patterns in complex time series. In contrast,
Exponential Smoothing performs best in Malaysia and the Philippines, where inflation trends are more stable
and linear, making simpler models more effective. In Singapore and Thailand, all models show comparable
accuracy due to the consistently stable inflation patterns. These findings imply that model selection for
inflation forecasting should consider the nature of the data—particularly volatility—when guiding economic
policy. For policymakers, using models like Fuzzy Singh in volatile economies can improve the accuracy of
inflation projections, which are critical for setting interest rates, controlling money supply, and ensuring
economic stability.

Table 1. The Evaluation for All Models

Country Method RMSE MSE
Indonesia
Exponential smoothing 5.676 32.216
ARIMA 8.513 72.470
Fuzzy Chen 7.080 50.121
Fuzzy Singh 4.995 24.951
Malaysia
Exponential smoothing 4.835 23.380
ARIMA 4.967 24.675
Fuzzy Chen 4.842 23.445
Fuzzy Singh 4.865 23.672
The Philippines
Exponential smoothing 4.753 22.594
ARIMA 4779 22.838
Fuzzy Chen 5.175 26.785
Fuzzy Singh 4.857 23.593
Singapore

Exponential smoothing 4.850 23.521
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Country Method RMSE MSE
ARIMA 4.832 23.346
Fuzzy Chen 4,918 24.188
Fuzzy Singh 4.833 23.358

Thailand
Exponential smoothing 4.833 23.355
ARIMA 4.832 23.347
Fuzzy Chen 4.910 24.110
Fuzzy Singh 4.836 23.387

The study provides a comprehensive comparison between traditional statistical models (ARIMA,
Exponential Smoothing) and fuzzy logic-based approaches (Chen and Singh FTS), which is valuable given
the complexity of inflation forecasting. However, modern methods cannot guarantee to perform better than
the classical method. And the classical method also cannot guarantee to perform better than the modern
method. Thus, it is necessary to manage and examine the dataset to get a forecasting method properly. The
use of RMSE and MSE ensures an objective evaluation of model performance. The train-test split (75%-
25%) helps assess generalization capability, reducing overfitting risks. The results indicate that no single
approach consistently outperforms others across the five ASEAN countries. These findings are consistent
with recent studies such as Makridakis et al. in 2018 [34] and Jiang et al. in 2019 [35], which emphasize the
importance of context in model performance for forecasting tasks, and that fuzzy time series models can
outperform traditional ones in cases of uncertainty and nonlinear patterns. In addition, the competitive
performance of fuzzy time series and hybridization, particularly [36], reinforces the study’s conclusion that
no universal best model exists for some time series data. This suggests that hybrid or context-sensitive model
selection may be more effective than relying solely on a single forecasting paradigm.

4. CONCLUSION

Statistical models often outperformed fuzzy models in four ASEAN countries, except Indonesia, where
Fuzzy Singh excelled (RMSE 4.995 vs. ARIMA 8.513) when applied to the ASEAN inflation dataset. The
fuzzy time series model outperformed others only in the case of Indonesia’s inflation data, while the statistical
models generally achieved better accuracy in the remaining countries. However, each time series dataset
exhibits unique characteristics that require careful examination. It is important to note that the findings of this
study are based on a 75%-25% training-testing data split, which may limit the generalizability of the results
and affect model robustness. Future research could investigate the impact of different training and testing
data splits—such as 80%—-20% or 60%—40% —on forecasting accuracy. Alternative data splits, such as 80%-
20%, help evaluate model robustness across different sample sizes. Testing models on varying splits ensures
that performance is not overly dependent on a specific data partition. In this study, such variations support
the reliability of findings, especially given the differences in model accuracy across countries. Additionally,
the development of novel fuzzy time series models incorporating alternative optimization techniques, such
as genetic algorithms or simulated annealing, could be a promising direction. In recent years, various machine
learning-based forecasting approaches, including decision trees and neural networks, have gained
prominence. Therefore, machine learning models may serve as valuable benchmarks for comparison with
fuzzy time series models in future studies.

Author Contributions

Tri Wijayanti Septiarini: Data Curation, Literature Review, Methodology, Resources Conceptualization,
Writing — Original Draft. Selly Anastassia Amellia Kharis: Formal Analysis, Investigation, Writing - Review
and Editing. Anuraga Jayanegara: Supervision, Validation, Writing- Review and Editing. Sahidan
Abdulmana: Project Administration, Software, Visualization. All authors discussed the results and
contributed to the final manuscript.



BAREKENG: J. Math. & App., vol. 20(1), pp. 0619- 0636, Mar, 2026. 635

Funding Statement

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit
sectors.

Acknowledgment

The authors would like to express their sincere gratitude to the anonymous reviewers for their valuable
insights and constructive feedback, which have significantly improved the quality of this manuscript. The
authors are also grateful to all colleagues and institutions that supported this research directly or indirectly.

DECLARATIONS

The authors declare no competing interests.

REFERENCES

(1]
(2]
(3]
[4]

[5]

(6]

[7]

(8]

(9]

[10]
[11]
[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

0. Coibion, Y. Gorodnichenko, S. Kumar, and M. Pedemonte, “INFLATION EXPECTATIONS AS A POLICY TOOL?”
J. Int. Econ., vol. 124, May 2020. doi: https://doi.org/10.1016/j.jinteco.2020.103297

R. Islam, A. Bashawir, A. Ghani, E. Mahyudin, and N. Manickam, “DETERMINANTS OF FACTORS THAT AFFECT
INFLATION IN MALAYSIA,” vol. 7, no. 2, pp. 355-364, 2017.

M. A. Musarat, W. S. Alaloul, and M. S. Liew, “IMPACT OF INFLATION RATE ON CONSTRUCTION PROJECTS
BUDGET: A REVIEW,” Mar. 01, 2021, Ain Shams University. doi: https://doi.org/10.1016/j.asej.2020.04.009

M. Azam and S. Khan, “THRESHOLD EFFECTS IN THE RELATIONSHIP BETWEEN INFLATION AND ECONOMIC
GROWTH: FURTHER EMPIRICAL EVIDENCE FROM THE DEVELOPED AND DEVELOPING WORLD,” Int. J.
Financ. Econ., vol. 27, no. 4, 2022. doi: https://doi.org/10.1002/ijfe.2368

L. Zomchak and A. Lapinkova, “KEY INTEREST RATE AS A CENTRAL BANKS TOOL OF THE MONETARY
POLICY INFLUENCE ON INFLATION: THE CASE OF UKRAINE,” in Lecture Notes on Data Engineering and
Communications Technologies, vol. 158, 2023. doi: https://doi.org/10.1007/978-3-031-24475-9 32

S. Girdzijauskas, D. Streimikiene, I. Griesiene, A. Mikalauskiene, and G. L. Kyriakopoulos, “NEW APPROACH TO
INFLATION PHENOMENA TO ENSURE SUSTAINABLE ECONOMIC GROWTH,” Sustain., vol. 14, no. 1, 2022. doi:
https://doi.org/10.3390/su14010518

R. Robiyanto, B. A. Nugroho, E. Handriani, and B. Frensidy, “MEASURING THE EFFECTIVENESS OF ASEAN-5
INITIATIVES FROM EMERGING MARKET PORTFOLIO’S PERSPECTIVE,” Cogent Bus. Manag., vol. 10, no. 1, 2023,
doi: https://doi.org/10.1080/23311975.2023.2167292

M. Karl, F. Kock, B. W. Ritchie, and J. Gauss, “AFFECTIVE FORECASTING AND TRAVEL DECISION-MAKING: AN
INVESTIGATION IN TIMES OF A PANDEMIC,” Ann. Tour. Res, wvol. 87, 2021, doi:
https://doi.org/10.1016/j.annals.2021.103139

B. Lim and S. Zohren, “TIME-SERIES FORECASTING WITH DEEP LEARNING: A SURVEY,” 2021. doi:
https://doi.org/10.1098/rsta.2020.0209

D. C. Montgomery, C. L. Jennings, and M. Kulahci, INTRODUCTION TO TIME SERIES ANALYSIS AND FORECASTING.
Canada: John Wiley & Sons. Inc .. Hoboken. New Jersey., 2015.

1. H. Sarker, “DATA SCIENCE AND ANALYTICS: AN OVERVIEW FROM DATA-DRIVEN SMART COMPUTING,
DECISION-MAKING AND APPLICATIONS PERSPECTIVE,” 2021. doi: https://doi.org/10.1007/s42979-021-00765-8
S. Aziz, M. Dowling, H. Hammami, and A. Piepenbrink, “MACHINE LEARNING IN FINANCE: A TOPIC MODELING
APPROACH,” Eur. Financ. Manag., vol. 28, no. 3, 2022, doi: https://doi.org/10.1111/eufm.12326

A. Kurani, P. Doshi, A. Vakharia, and M. Shah, “A COMPREHENSIVE COMPARATIVE STUDY OF ARTIFICIAL
NEURAL NETWORK (ANN) AND SUPPORT VECTOR MACHINES (SVM) ON STOCK FORECASTING,” 2023. doi:
https://doi.org/10.1007/s40745-021-00344-x

F. Petropoulos et al, “FORECASTING: THEORY AND PRACTICE,” Jul. 01, 2022, Elsevier B.V. doi:
https://doi.org/10.1016/j.ijforecast.2021.11.001.

H. GRIGORYAN, “STOCK MARKET PREDICTION USING ARTIFICIAL NEURAL NETWORKS. CASE STUDY OF
TAL1T, NASDAQ OMX BALTIC STOCK,” pp. 14-23, 2015.

V. Matyushok, V. Krasavina, A. Berezin, and J. S. Garcia, “THE GLOBAL ECONOMY IN TECHNOLOGICAL
TRANSFORMATION CONDITIONS: A REVIEW OF MODERN TRENDS,” Econ. Res. Istraz. , vol. 34, no. 1, 2021. doi:
https://doi.org/10.1080/1331677X.2020.1844030

G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, TIME SERIES ANALYSIS: FORECASTING AND CONTROL.
John Wiley & Sons, 2015.

H. Teichgraeber and A. R. Brandt, “TIME-SERIES AGGREGATION FOR THE OPTIMIZATION OF ENERGY
SYSTEMS: GOALS, CHALLENGES, APPROACHES, AND OPPORTUNITIES,” 2022. doi:
https://doi.org/10.1016/j.rser.2021.111984

P. B. Weerakody, K. W. Wong, G. Wang, and W. Ela, “A REVIEW OF IRREGULAR TIME SERIES DATA HANDLING
WITH GATED RECURRENT NEURAL NETWORKS,” Neurocomputing, vol. 441, 2021. doi:
https://doi.org/10.1016/j.neucom.2021.02.046

S. Aras and P. J. G. Lisboa, “EXPLAINABLE INFLATION FORECASTS BY MACHINE LEARNING MODELS,” Expert



https://doi.org/10.1016/j.jinteco.2020.103297
https://doi.org/10.1016/j.asej.2020.04.009
https://doi.org/10.1002/ijfe.2368
https://doi.org/10.1007/978-3-031-24475-9_32
https://doi.org/10.3390/su14010518
https://doi.org/10.1080/23311975.2023.2167292
https://doi.org/10.1016/j.annals.2021.103139
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1007/s42979-021-00765-8
https://doi.org/10.1111/eufm.12326
https://doi.org/10.1007/s40745-021-00344-x
https://doi.org/10.1016/j.ijforecast.2021.11.001
https://doi.org/10.1080/1331677X.2020.1844030
https://doi.org/10.1016/j.rser.2021.111984
https://doi.org/10.1016/j.neucom.2021.02.046

636

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

Septiarini, etal.  COMPARISON OF ARIMA, EXPONENTIAL SMOOTHING, AND CHEN-SINGH FUZZY ...

Syst. Appl., vol. 207, 2022. doi: https://doi.org/10.1016/j.eswa.2022.117982

A. Almosova and N. Andresen, “NONLINEAR INFLATION FORECASTING WITH RECURRENT NEURAL
NETWORKS,” J. Forecast., vol. 42, no. 2, 2023. doi: https://doi.org/10.1002/for.2901

O. Barkan, J. Benchimol, I. Caspi, E. Cohen, A. Hammer, and N. Koenigstein, “FORECASTING CPl INFLATION
COMPONENTS WITH HIERARCHICAL RECURRENT NEURAL NETWORKS,” Int. J. Forecast., vol. 39, no. 3, 2023.
doi: https://doi.org/10.1016/].ijforecast.2022.04.009

V. 1. Kontopoulou, A. D. Panagopoulos, I. Kakkos, and G. K. Matsopoulos, “A REVIEW OF ARIMA VS. MACHINE
LEARNING APPROACHES FOR TIME SERIES FORECASTING IN DATA DRIVEN NETWORKS,” 2023. doi:
https://doi.org/10.3390/fi15080255

D. Hendrawati, B. W. Dionova, M. 1. Abdullah, and D. A. Munawwaroh, “THERMAL COMFORT QUALITY
MONITORING AND CONTROLLING USING FUZZY INFERENCE SYSTEM BASED ON IOT TECHNOLOGY.,” Int.
J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 1, 2025. doi: https://doi.org/10.18517/ijaseit.15.1.20334

T. W. Septiarini, M. R. Taufik, and T. A. E. Prasetya, “A COMPARATIVE FORECASTING MODEL OF COVID-19
CASE IN INDONESIA,” in Journal of Physics: Conference Series, I0P Publishing Ltd, Jun. 2021. doi:
https://doi.org/10.1088/1742-6596/1918/4/042020

T. W. Septiarini and S. Musikasuwan, “INVESTIGATING THE PERFORMANCE OF ANFIS MODEL TO PREDICT
THE HOURLY TEMPERATURE IN PATTANI, THAILAND,” in Journal of Physics: Conference Series, Institute of
Physics Publishing, Oct. 2018. doi: https://doi.org/10.1088/1742-6596/1097/1/012085

N. Kumar and S. Susan, “PARTICLE SWARM OPTIMIZATION OF PARTITIONS AND FUZZY ORDER FOR FUZZY
TIME SERIES FORECASTING OF COVID-19,” Appl. Soft Comput, vol. 110, 2021. doi:
https://doi.org/10.1016/j.as0¢.2021.107611

P. Singh, “FQTSFM: A FUZZY-QUANTUM TIME SERIES FORECASTING MODEL,” Inf. Sci. (Ny)., vol. 566, 2021.
doi: https://doi.org/10.1016/}.ins.2021.02.024

S. Siami-Namini, N. Tavakoli, and A. Siami Namin, “A COMPARISON OF ARIMA AND LSTM IN FORECASTING
TIME SERIES,” in Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA
2018, 2018. doi: https://doi.org/10.1109/ICMLA.2018.00227

J. Kaur, K. S. Parmar, and S. Singh, “AUTOREGRESSIVE MODELS IN ENVIRONMENTAL FORECASTING TIME
SERIES: A THEORETICAL AND APPLICATION REVIEW,” Feb. 01, 2023, Springer Science and Business Media
Deutschland GmbH. doi: https://doi.org/10.1007/s11356-023-25148-9

T. W. Septiarini, M. R. Taufik, M. Afif, and A. Rukminastiti Masyrifah, “A COMPARATIVE STUDY FOR BITCOIN
CRYPTOCURRENCY FORECASTING IN PERIOD 2017-2019,” in Journal of Physics: Conference Series, Institute of
Physics Publishing, Jun. 2020. doi: https://doi.org/10.1088/1742-6596/1511/1/012056

E. Kahraman and O. Akay, “COMPARISON OF EXPONENTIAL SMOOTHING METHODS IN FORECASTING
GLOBAL PRICES OF MAIN METALS,” Miner. Econ., vol. 36, no. 3, 2023. doi: https://doi.org/10.1007/s13563-022-
00354-y

D. Chicco, M. J. Warrens, and G. Jurman, “THE COEFFICIENT OF DETERMINATION R-SQUARED IS MORE
INFORMATIVE THAN SMAPE, MAE, MAPE, MSE AND RMSE IN REGRESSION ANALYSIS EVALUATION,”
PeerJ Comput. Sci., vol. 7, 2021. doi: https://doi.org/10.7717/peerj-cs.623

S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “STATISTICAL AND MACHINE LEARNING FORECASTING
METHODS: CONCERNS AND WAYS FORWARD,” PL0oS One, vol. 13, no. 3, Mar. 2018. doi:
https://doi.org/10.1371/journal.pone.0194889

P. Jiang, H. Yang, and J. Heng, “A HYBRID FORECASTING SYSTEM BASED ON FUZZY TIME SERIES AND
MULTI-OBJECTIVE OPTIMIZATION FOR WIND SPEED FORECASTING,” Appl. Energy, vol. 235, 2019. doi:
https://doi.org/10.1016/j.apenergy.2018.11.012

B. Sarica, E. Egrioglu, and B. Asikgil, “A NEW HYBRID METHOD FOR TIME SERIES FORECASTING: AR-ANFIS,”
Neural Comput. Appl., vol. 29, no. 3, pp. 749-760, Feb. 2018. doi: https://doi.org/10.1007/s00521-016-2475-5



https://doi.org/10.1016/j.eswa.2022.117982
https://doi.org/10.1002/for.2901
https://doi.org/10.1016/j.ijforecast.2022.04.009
https://doi.org/10.3390/fi15080255
https://doi.org/10.18517/ijaseit.15.1.20334
https://doi.org/10.1088/1742-6596/1918/4/042020
https://doi.org/10.1088/1742-6596/1097/1/012085
https://doi.org/10.1016/j.asoc.2021.107611
https://doi.org/10.1016/j.ins.2021.02.024
https://doi.org/10.1109/ICMLA.2018.00227
https://doi.org/10.1007/s11356-023-25148-9
https://doi.org/10.1088/1742-6596/1511/1/012056
https://doi.org/10.1007/s13563-022-00354-y
https://doi.org/10.1007/s13563-022-00354-y
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.1371/journal.pone.0194889
https://doi.org/10.1016/j.apenergy.2018.11.012
https://doi.org/10.1007/s00521-016-2475-5

	COMPARISON OF ARIMA, EXPONENTIAL SMOOTHING, AND CHEN-SINGH FUZZY MODELS FOR INFLATION FORECASTING IN ASEAN COUNTRIES
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Data Management
	2.2 Chen’s Model of Fuzzy Time Series
	2.3 Singh’s Model of Fuzzy Time Series
	2.4 Autoregressive Integrated Moving Average (ARIMA)
	2.5 Exponential Smoothing

	3. RESULTS AND DISCUSSION
	4. CONCLUSION
	Author Contributions
	Funding Statement
	Acknowledgment
	DECLARATIONS
	REFERENCES

