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Article History: 
The security of the BIKE scheme depends on a complex mathematical structure built upon 

QC-MDPC codes. This scheme is constructed using the Niederreiter framework and the 

application of 𝐹𝑂⊥̸ transformation. Its security is based on the complexity of two main 

mathematical problems: the QCSD Problem and the QCCF Problem. The BIKE v5.2 

scheme is the latest version of this scheme. This study aims to mathematically analyze the 

characteristics forming the BIKE v5.2, focusing on QC-MDPC codes, the Niederreiter 

framework, and the 𝐹𝑂⊥̸ transformation, as well as the QCSD and QCCF problems. The 
method used in this study is a systematic literature review combined with theoretical 

analysis. The study highlights how the interplay of these three components forms a rational 

and resilient design. Although the BIKE v5.2 scheme was not selected for standardization 

by NIST, it is still capable of producing an efficient, secure, and relevant KEM for post-
quantum cryptography. Through mathematical analysis of the QC-MDPC construction, the 

formulation of the complex computational problems QCCF and QCSD, and the rational 

design of the Niederreiter framework with the 𝐹𝑂⊥̸ transformation, this study demonstrates 

that BIKE has a strong security foundation and resistance to both classical and quantum 

attacks. 
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1. INTRODUCTION 

Cryptography is a mathematical method used to ensure information security [1]. There are two main 

categories in cryptography: symmetric and asymmetric. Asymmetric cryptography emerged as a solution to 

the key distribution problem in symmetric cryptography [2]. One of the approaches developed is the key 

encapsulation mechanism (KEM), which enables two parties to securely exchange secret keys over a public 

channel [3]. The security of KEM generally relies on the computational problems of factorization and discrete 

logarithms [4]. These problems are considered computationally hard and form the basis of algorithms such 

as RSA, DSA, and ECDSA. Although difficult to solve using classical computation, advancements in 

quantum computing have shown that these problems can be solved in polynomial time using Shor’s algorithm 

with the assistance of Cryptographically Relevant Quantum Computers (CRQC) [5]. In response to this threat, 

NIST launched the Post-Quantum Cryptography competition, known as the NIST Call for Proposals, in 2016 

to evaluate and establish standardized post-quantum cryptographic algorithms that are resistant to Shor’s 

algorithm when executed on CRQC [6]. One of the evaluated categories was the KEM scheme. 

In principle, KEM schemes in the PQC standardization process frequently employ the Fujisaki-

Okamoto (FO) framework to strengthen security from Indistinguishability under Chosen-Plaintext Attack 

(IND-CPA) to Indistinguishability under Chosen-Ciphertext Attack (IND-CCA), while adopting several 

approaches [4], [6]. One of the earliest and most influential approaches is the code-based paradigm, 

originating from the McEliece scheme. This scheme utilizes generator matrices and error vectors for 

encryption, offering strong security despite the drawback of very large public key sizes. Niederreiter 

subsequently introduced a dual variant of McEliece that employs parity-check matrices, resulting in more 

compact keys while preserving equivalent security guarantees [4], [7]. These two schemes have become 

fundamental to code-based cryptography and laid the groundwork for the emergence of modern PQC 

candidates. The integration of the Niederreiter construction with the FO transformation later gave rise to a 

new generation of KEM designs. One of these algorithms is the Bit Flipping Key Encapsulation (BIKE) 

scheme [6]. 

The BIKE scheme was introduced in 2017 as a candidate for post-quantum cryptography, based on 

Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) codes [7]. BIKE is constructed upon the 

Niederreiter framework and incorporates an implicit-rejection variant of the Fujisaki-Okamoto (FO⊥̸) 

transformation. The Niederreiter approach is used to perform encryption by generating a ciphertext through 

the multiplication of a random error vector with a parity-check matrix [8]. Meanwhile, the 

FO⊥̸  transformation is applied to enhance the scheme’s security against IND-CCA on the ciphertext [9]. The 

security of BIKE relies on the complexity of the Quasi-Cyclic Codeword Finding (QCCF) and Quasi-Cyclic 

Syndrome Decoding (QCSD) problems. These problems are computationally difficult to solve without 

knowledge of the private key matrix and the intentionally introduced error [10]. However, the BIKE scheme 

faced challenges during the post-quantum cryptography competition, particularly concerning its high 

Decoder Failure Rate (DFR) [4]. Following several stages of analysis and evaluation, the BIKE scheme has 

continued to evolve, culminating in its latest version in 2024: the BIKE v5.2 scheme [7]. 

As part of a comprehensive evaluation of KEM candidates, NIST conducted a thorough analysis of 

each remaining algorithm in the fourth round. In the NIST Internal Report NIST IR 8545, titled “Status 

Report on the Fourth Round of the NIST Post-Quantum Cryptography Standardization Process” released on 

March 11, 2025, NIST officially concluded the standardization process initiated by the NIST Call for 

Proposals in 2016. The report announced that the BIKE scheme was not selected for standardization. The 

primary reason behind NIST’s decision was the instability of its Decoding Failure Rate (DFR) analysis. 

Throughout the evaluation process, BIKE’s DFR estimates exhibited uncertainty, raising concerns about the 

long-term consistency and robustness of the scheme [11]. 

Nevertheless, BIKE v5.2 remains an interesting and relevant subject of research in the field of post-

quantum cryptography. The scheme is built upon QC-MDPC codes, which offer computational efficiency in 

shared secret generation and produce relatively smaller ciphertext sizes compared to other candidates in the 

code-based category [11]. Furthermore, to date, no attack has successfully broken the BIKE scheme, either 

theoretically or practically, within the recommended parameters [12]. Despite research that has explored 

potential vulnerabilities, such as timing and reaction attacks, the scheme has demonstrated resilience against 

various exploit attempts [4]. This resilience indicates that BIKE possesses a strong mathematical foundation 

and remains relevant for continued investigation.  
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A deeper understanding of the mathematical structure of BIKE v5.2 is essential to clarify the 

uncertainties regarding its DFR stability and long-term robustness. This study analyzes the structural 

foundations of BIKE v5.2, focusing on its foundational basis, the QC-MDPC code, as well as its underlying 

frameworks, namely the Niederreiter construction and the FO⊥̸  transformation, to provide a comprehensive 

mathematical assessment. Through this approach, the study aims to establish a solid foundation to support 

further evaluations of the effectiveness and robustness of BIKE v5.2, while also contributing to the 

development of more stable post-quantum cryptographic designs in the future. 

2. RESEARCH METHODS 

This study employs a systematic literature review (SLR) combined with theoretical analysis to examine 

the structural characteristics of BIKE v5.2. The SLR was carried out by selecting sources from NIST reports, 

BIKE specifications, and peer-reviewed journals, with inclusion criteria focusing on the Niederreiter 

framework, the FO⊥̸ transformation, and the QCSD and QCCF problems. The scope of the theoretical analysis 

covers three dimensions. First, QC-MDPC as the foundational code structure. Second, The Niederreiter 

framework functions as a mechanism for parameter efficiency. Third, the FO⊥̸  transformation plays a crucial 

role in strengthening security. These findings are then related to the mathematical formulation of QCSD and 

QCCF, providing a clear rationale for the BIKE v5.2 design. The BIKE v5.2 scheme is illustrated in Fig. 1, 

adapted from [12]. 

 

 
Figure 1. Illustration of the BIKE v5.2 Scheme 

The BIKE v5.2 scheme consists of three cryptographic procedures: key generation, encapsulation, and 

decapsulation, which are respectively described in Algorithm 1, Algorithm 2 and Algorithm 3. Within the 

encryption system setup, both parties agree on a set of system parameters, as presented in Table 1. 

Table 1. Setup 

Setup 

Input: Security parameter 𝜆 ∈ ℤ+ 

Output: System parameter 

Output: Hash functions 

Output: Decoder 

System Parameters Hash Functions 

1. 𝑟 ∈ ℙ, with ord𝑟(2) = 𝑟 − 1; 

ensures 2 is a generator mod 𝑟. 

1. H ∶  ℳ × ℳ → ℰ𝑡, using the Fisher-Yates for Constant Weight 

Words (FY-CWW) algorithm with input 2ℓ. 

2. 𝑛 = 2𝑟; defines the code length, 

where 𝑟 as circulant block size. 

2. K ∶   ℳ × ℛ × ℳ → 𝒦, computed using SHA-384, taking the 

256 least significant bit (LSB) of the output. 

3. 𝑤 ∈ 2ℤ+, 𝑤 ≈ √𝑛 , 𝑤/2 is odd; 

defines private key weight. 

3. L ∶  ℛ2 → ℳ, computed using SHA-384, taking the 256 LSB 

of the output. 

4. 𝑡 ∈ 2ℤ+; defines error weight. Decoder 

5. 𝑙 ∈ ℤ+, 2𝜆 ≤ 2𝑙; security level 𝜆. 1. Algorithm with DFR ≤ 2−𝜆 or BIKE-Flip. 

The key generation phase in the BIKE scheme produces a private and public key pair that is 

subsequently used in the encapsulation and decapsulation procedures. This process ensures that only entities 

in possession of the private key are able to access the encrypted information. The key generation procedure 

in the BIKE scheme is described in Algorithm 1.  
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Algorithm 1. BIKE Key Generation 

Input: - 

Output: Parameter private key (ℎ0, ℎ1, 𝜎) ∈ ℋ𝑤 × ℳ 

Output: Public key ℎ ∈ ℛ 

1: Generate a private key pair (ℎ0(𝑥), ℎ1(𝑥)) ∈ ℋ𝑤 using FY-CWW algorithm and (ℎ0, ℎ1) denotes the binary 

representation of private key pair (ℎ0(𝑥), ℎ1(𝑥)). 

2: Compute ℎ(𝑥) = ℎ1(𝑥) ⋅ ℎ0
−1(𝑥) mod (𝑥𝑟 − 1) and ℎ denotes the binary representation of ℎ(𝑥). 

3: Derive the 𝜇 = 𝜋ℓ(ℎ), where 𝜋ℓ denotes a function that extracts the ℓ most significant bits of its input. 

4: Select 𝜎 ∈ ℳ uniformly at random using the SHAKE256 hash function. 

The encapsulation process is executed by the sender who intends to securely transmit information. This 

procedure is formally presented in Algorithm 2. 

 
Algorithm 2. BIKE Encapsulation 

Input: Public key ℎ ∈ ℛ 

Output: Shared key 𝐾 ∈ 𝒦 

Output: Ciphertext 𝑐 ∈ ℛ × ℳ 

1: Choose a random message  𝑚 ∈ ℳ, generated using SHAKE256. 

2: Define 𝜇 = 𝜋ℓ(ℎ) and compute the error pair (𝑒0, 𝑒1) =  H(𝑚, 𝜇). 

3: 
Compute the 𝑐 = [𝑐0|𝑐1], where 𝑐0(𝑥) =  𝑒0(𝑥) + 𝑒1(𝑥) ⋅ ℎ(𝑥) mod (𝑥𝑟 − 1) and 𝑐0  denotes the binary 

representation of 𝑐0(𝑥). The second component is computed as 𝑐1 = 𝑚 ⊕ L(𝑒0, 𝑒1). 

4: Derive the shared key 𝐾 = K(𝑚, 𝑐). 

The auxiliary value 𝜇 is utilized to prevent multi-target attacks on the public key. A multi-target attack 

refers to a scenario in which an adversary reuses a fixed error vector pair (𝑒0, 𝑒1) to generate multiple valid 

ciphertexts across different public keys ℎ. This vulnerability arises because the error vectors are not 

intrinsically bound to the public key. To mitigate this, the BIKE v5.2 scheme binds 𝜇 to the public key ℎ, 

effectively ensuring that each error pattern remains unique to a specific key [13]. 

The decapsulation process ensures that only the intended recipient, who possesses the corresponding 

private key, can recover the information encrypted within the ciphertext. This procedure is formally defined 

in Algorithm 3. 

 
Algorithm 3. BIKE Decapsulation 

Input: Parameter private key (ℎ0, ℎ1, 𝜇, 𝜎) ∈ ℋ𝑤 × ℳ2 

Input: Ciphertext 𝑐 = (𝑐0|𝑐1) ∈ ℛ × ℳ 

Output: Shared key 𝐾′ ∈ 𝒦 

1: Compute the syndrome 𝑠(𝑥) = 𝑐0(𝑥) ⋅ ℎ0(𝑥) mod (𝑥𝑟 − 1) and 𝑠 denotes the binary representation of 𝑠(𝑥). 

2: Construct the parity-check matrix 𝐻 = [𝐻0|𝐻1], where 𝐻0 and 𝐻1 are circulant matrix repsentation of ℎ0 and ℎ1. 

3: Recover the error vector 𝑒′ = BIKE-Flip(𝑠, 𝐻). 

4: Recover the candidate message 𝑚′ = 𝑐1 ⊕ L(𝑒′). 

5: If the error vector passes verification, i.e., if 𝑒′ = H(𝑚′, 𝜇), then set 𝐾′ = 𝐾(𝑚′, 𝑐); otherwise, fall back to 𝐾′ ←
K(𝜎, 𝑐). 

In the event that message recovery fails, the BIKE scheme replaces the decoded message candidate 

with the fallback value. This mechanism is designed to prevent information leakage, preserve system 

integrity, and detect tampering or unauthorized modifications to the ciphertext. By enforcing this safeguard, 

the system ensures that only valid messages are processed, thereby mitigating the risk of accepting 

manipulated data. A detailed description of the encapsulation and decapsulation processes of the BIKE can 

be found in [4]. 

2.1 QC-MDPC Code 

QC-MDPC codes combine the concepts of QC and MDPC codes to enhance efficiency in both encoding and 

decoding processes, as outlined Definitions 1, 2 and 3. 
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Definition 1. A binary QC code with block number 𝑛0 and block length 𝑟 is a linear code whose generator 

matrix consists of circulant block matrices. A QC code with parameters (𝑛0, 𝑘0) has index  𝑛0, length 𝑛 =
𝑛0 ⋅ 𝑟, and dimension 𝑘 = 𝑘0 ⋅ 𝑟 [5].  

Definition 2. An (𝑛, 𝑟, 𝑤) LDPC or MDPC code is a linear code with codeword length 𝑛 and block length 𝑟, 

and a parity-check matrix 𝐻 where each row has a constant weight 𝑤 [14]. 

Definition 3. A QC-MDPC code (𝑛0, 𝑘0, 𝑟, 𝑤) is a QC code  (𝑛0, 𝑘0) with codeword length 𝑛 = 𝑛0 ⋅ 𝑟, code 

dimensio 𝑘 = 𝑘0 ⋅ 𝑟, order 𝑟, and a parity-check matrix 𝐻 with constant row weight 𝑤 = 𝑂(√𝑛) [4]. 

2.2 Hard Computational Problems of the BIKE Scheme 

The security of the BIKE scheme is based on the computational intractability of certain mathematical 

problems. Table 2 presents the formal formulation of the mathematical problems that underpin the security 

of the BIKE scheme. 

Table 2. Hard Computational Problems in the BIKE Scheme 

Problem Detail 

Codeword Finding (CF) 
Input: 𝐻 ∈ 𝔽2

(𝑛−𝑘)×𝑛
, and 𝑡 > 0. 

Goal: Find 𝑐 ∈ 𝔽2
𝑛 such that |𝑐| = 𝑡 and 𝑐 ⋅ 𝐻𝚃 = 0. 

QC-Codeword Finding (QCCF) 
Input: ℎ(𝑥) ∈ ℛodd  and 𝑤 ∈ 2ℤ+, 𝑤/2 odd. 

Goal: Find (ℎ0, ℎ1) ∈ ℋ𝑤 such that ℎ1(𝑥) + ℎ0(𝑥) ⋅ ℎ(𝑥) = 0. 

Syndrome Decoding (SD) 
Input: 𝐻 ∈ 𝔽2

(𝑛−𝑘)×𝑛
, 𝑠 ∈ 𝔽2

𝑛−𝑘 , and 𝑡 > 0. 

Goal: Find (𝑒0, 𝑒1) ∈ 𝔽2
𝑛 such that |𝑒| ≤ 𝑡 and 𝑒 ⋅ 𝐻𝚃 = 𝑠. 

QC-Syndrome Decoding (QCSD) 
Input: (ℎ, 𝑠) ∈ ℛ𝑜𝑑𝑑 × ℛ𝑝(𝑡), and  𝑡 > 0. 

Goal: Find (𝑒0, 𝑒1) ∈ ℰ𝑡 such that  𝑒0(𝑥) + 𝑒1(𝑥) ⋅ ℎ(𝑥) = 𝑠(𝑥). 

The CFP and SDP are well-known to be NP-hard in their general form, which means that no 

polynomial-time algorithms are known to solve them efficiently. In particular, the SD problem has been 

formally proven to be NP-complete, and current best-known algorithms for solving it, such as Information 

Set Decoding (ISD) and its variants, still require exponential time in the code length. The quasi-cyclic 

variants, namely QCCF and QCSD, inherit these hardness assumptions while enabling more compact 

representations that are suitable for cryptographic applications. 

The security of QCCFP and QCSDP is determined not only by their mathematical structure but also 

by the extent to which an adversary can exploit public information to extract secret information. To evaluate 

the resilience of these schemes, two primary attack models are employed One-Way Security (OW) and 

Indistinguishability (IND). The One-Way Security model measures the probability of an adversary 𝐴 

successfully inverting the process, such as reconstructing the secret key (ℎ0, ℎ1) or identifying a valid error 

pair (𝑒0, 𝑒1), based on the available public information, consisting ℎ and 𝑠. If this probability is low, the 

scheme is considered secure against One-Way attacks. The adversary’s advantage in attacking the QCCF 

scheme is defined as: 

AdvQCCF
OW (𝐴) = Pr [QCCF(𝐴(ℎ), ℎ) ∣ (ℎ0, ℎ1) ←

$
ℋ𝑤]. 

The adversary’s advantage in attacking the QCSD scheme is defined as: 

AdvQCSD
OW (𝐴) = Pr [QCSD(𝐴(ℎ, 𝑒0 + 𝑒1ℎ), ℎ, 𝑒0 + 𝑒1ℎ) ∣ (ℎ, (𝑒0, 𝑒1)) ←

$
ℛ𝑜𝑑𝑑 × ℰ𝑡]. 

Meanwhile, the Indistinguishability model evaluates the extent to which an adversary can distinguish 

elements produced by the scheme from elements drawn from a random distribution. In other words, the 

adversary faces the task of classifying whether a given output originates from the scheme’s process or from 

a random distribution. If this distinguishing advantage is low, the scheme is regarded as secure against 

indistinguishability attacks. The adversary’s advantage in attacking the QCCF scheme is defined as: 

AdvQCCF
IND (𝐷) = |Pr [𝐷(ℎ1ℎ0

−1) ∣ (ℎ0, ℎ1) ←
$ 

ℋ𝑤] − Pr [𝐷(ℎ) ∣ ℎ ←
$ 

ℛ𝑜𝑑𝑑]|. 

The adversary’s advantage in attacking the QCSD scheme is defined as: 
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AdvQCSD
IND (𝐷) = |Pr [𝐷(ℎ, 𝑒0 + 𝑒1ℎ) ∣ (ℎ, (𝑒0, 𝑒1)) ←

$
ℛ𝑜𝑑𝑑 × ℰ𝑡]

− Pr [𝐷(ℎ, 𝑠) ∣ (ℎ, 𝑠) ←
$

ℛ𝑜𝑑𝑑 × ℛ𝒫(𝑡)]|. 

A detailed description of the computational problems underlying the BIKE can be found in [4] and [8]. 

2.3 Construction of the BIKE Scheme 

 The Niederreiter framework is a code-based approach derived from the dual of the McEliece scheme 

[15]. This approach leverages the linear properties and duality between generator matrices and parity-check 

matrices, thereby enabling efficient modeling of code-based systems [8]. Meanwhile, FO ⊥̸ transformation 

was developed to enhance the security of schemes that satisfy Indistinguishability under Chosen-Plaintext 

Attack (IND-CPA) into KEM that satisfy IND-CCA. This is achieved through an implicit-rejection 

mechanism that discards invalid ciphertexts without revealing additional information [9]. 

3. RESULTS AND DISCUSSION 

This study presents a mathematical analysis of the QC-MDPC codes as the foundational basis, as well 

as the underlying hard computational problems, within the structural construction of the BIKE scheme. The 

interrelation between the mathematical concepts involved in constructing the BIKE is illustrated in Fig. 2.  

 

 

 

 

 

 

 

 

 

A comprehensive explanation of abstract algebra and coding theory can be found in [16] and [17]. 

3.1 Construction of QC-MDPC Codes 

QC-MDPC codes combine the quasi-cyclic property with moderate-density parity-check matrices, 

forming the mathematical foundation of BIKE, as illustrated in the mathematical concept diagram in Fig. 2. 

The construction begins with the additive group algebra structure (𝔽2, +) of binary numbers, which is 

extended to the polynomial ring (𝔽2[𝑥], +,⋅) with coefficients in 𝔽2. This structure is further developed into 

the binary finite field 𝔽2𝑚, serving as the foundation for the binary vector space 𝔽2
𝑛, where all codewords 

reside. In the space 𝔽2
𝑛, a binary linear block code is defined as a 𝑘-dimensional subspace, denoted as a code 

(𝑛, 𝑘), representing the set of codewords 𝐶 ⊆ 𝔽2
𝑛. Each codeword 𝑐 ∈ 𝐶 is formed as a linear combination of 

𝑘 basis vectors with the generator matrix 𝐺 ∈ 𝔽2
𝑘×𝑛 using the relation 𝑐 = 𝑚 ⋅ 𝐺 for 𝑚 ∈ 𝔽2

𝑘. 

The code employed in BIKE possesses a QC structure, as described in Definition 1. In this definition, 

a binary QC code with index 𝑛0 and order 𝑟 is a linear code whose generator matrix is composed of circulant 

block matrices. This implies that the generator matrix is partitioned into 𝑛0 blocks, each of size 𝑘0 × 𝑟, where 

each block is a circulant matrix. The parameters (𝑛0, 𝑘0) indicate a code length of 𝑛 = 𝑛0 ⋅ 𝑟 and a dimension 

of 𝑘 = 𝑘0 ⋅ 𝑟. The key property of QC codes is that a cyclic shift of a codeword by 𝑟 positions yield another 

valid codeword. In polynomial form, if ℎ0(𝑥) represents the first row of a circulant matrix block, then the 

cyclic shift ℎ0(𝑥) ⋅ 𝑥𝑖  mod (𝑥𝑟 − 1) still generates a valid codeword. The parity-check matrix 𝐻 is 

constructed from two circulant blocks 𝐻0 and 𝐻1 of size 𝑟 × 𝑟, represented as 𝐻 = [𝐻0 ∣ 𝐻1], where each 

circulant block can be fully described by its first row. In BIKE, the process of verifying codewords explicitly 

avoids the use of a generator matrix and instead relies on the parity-check matrix 𝐻 ∈ 𝔽2
(𝑛−𝑘)×𝑛

 ensuring 

code validity via the condition 𝑐 ⋅ 𝐻𝚃 = 0. This representation significantly reduces storage complexity. 
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Figure 2. Conceptual Foundation of the BIKE Scheme 
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Furthermore, the matrix 𝐻 ∈ 𝔽2
(𝑛−𝑘)×𝑛

 adheres to moderate density properties, classifying it as an 

MDPC matrix. As defined in Definition 2, an (𝑛, 𝑟, 𝑤) LDPC or MDPC code is a linear code of length 𝑛, 

codimension 𝑟 and a parity-check matrix 𝐻 with constant row weight 𝑤. While LDPC codes typically use a 

small 𝑤 with complexity 𝑂(1) to facilitate sparse-graph decoding, MDPC codes increase the weight to 

𝑂(√𝑛), which grows with the code length, to enhance resistance to decoding attacks based on solving sparse 

systems of equations. This representation allows for efficient algorithmic operations like encoding and 

decoding while providing stronger security against structural attacks compared to traditional LDPC codes. 

The integration of QC and MDPC concepts leads to the formulation of QC-MDPC codes with 

parameters (𝑛0, 𝑘0, 𝑟, 𝑤), where the code possesses quasi-cyclic structure, length 𝑛 = 𝑛0 ⋅ 𝑟, dimension 𝑘 =

𝑘0 ⋅ 𝑟, 𝑛0, order 𝑟, and a parity-check matrix 𝐻 with constant row weight 𝑤 = 𝑂(√𝑛), as previously described 

in Definition 3. This hybrid approach enables the BIKE scheme to produce a code-based encryption system 

with compact key sizes, high computational efficiency, and strong resilience against decoding attacks and 

code structure exploitation. 

3.2 Construction Based on Hard Computational Problems 

The security of the BIKE scheme is based on two fundamental problems in coding theory: the CF 

problem and the SD problem. These problems are further developed into QC-specific variants within the 

quasi-cyclic structure, namely the QCCF problem and the QCSD problem. The relationships among these 

problems are illustrated in Fig. 3, and their formal definitions are summarized in Table 2. 

 

 

 

 

 

 

 

In the QCCF Problem, the main challenge lies in finding the private key pair (ℎ0, ℎ1) from the public 

key ℎ(𝑥) = ℎ1(𝑥) ⋅ ℎ0
−1(𝑥) mod (𝑥𝑟 − 1)  ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1). This problem can be viewed as a 

generalization of the CF Problem, which involves finding a binary vector 𝑐 ∈ 𝔽2
𝑛 of fixed weight |𝑐| = 𝑡 that 

satisfies the equation 𝑐 ⋅ 𝐻𝚃 = 0, where 𝐻 ∈ 𝔽2
𝑟×𝑛 is a parity-check matrix. In the QC-MDPC scheme, the 

QC structure ensures that the private key is composed of two cyclic polynomials ℎ0(𝑥) and ℎ1(𝑥), each of 

degree 𝑟 and low weight 𝑤/2, such that the relation ℎ1(𝑥) + ℎ0(𝑥) ⋅ ℎ(𝑥) = 0 mod (𝑥𝑟 − 1) holds. 

Meanwhile, the QCSD Problem is an extension of the SD Problem into the domain of cyclic 

polynomials. In its general form, the SD Problem seeks an error vector 𝑒 ∈ 𝔽2
𝑛 of limited weight that satisfies 

the syndrome equation 𝑠 = 𝑒 ⋅ 𝐻𝚃. Within the context of QC-MDPC, the error is represented as a pair of 

polynomials (𝑒0, 𝑒1) that satisfy 𝑒0(𝑥) + 𝑒1(𝑥) ⋅ ℎ(𝑥) mod (𝑥𝑟 − 1)  = 𝑠(𝑥), where ℎ(𝑥) is constructed 

from sparse polynomials ℎ0(𝑥) and ℎ1(𝑥) with the relation ℎ(𝑥) = ℎ1(𝑥) ⋅ ℎ0
−1 (𝑥) mod (𝑥𝑟 − 1). This 

replaces the role of the matrix 𝐻 in the QC structure. Consequently, the relationship between SD and QCSD 

can be expressed as: 

𝑒0(𝑥) + 𝑒1(𝑥) ⋅ ℎ(𝑥) = 𝑠(𝑥), 

⟹  𝑒0(𝑥) + 𝑒1(𝑥) ⋅ (ℎ1(𝑥) ⋅ ℎ0
−1(𝑥)) = 𝑠(𝑥), 

                                                ⟹ 𝑒0(𝑥) ⋅ ℎ0(𝑥) + 𝑒1(𝑥) ⋅ ℎ1(𝑥) = 𝑠(𝑥) ⋅ ℎ0(𝑥).                                             (1) 

The Eq. (1) shows the QCSD formulation using the polynomial representation. Equivalently, when expressed 

in matrix-vector form, the relation is given in Eq. (2): 

                                                                           𝑒0 ⋅ 𝐻0 + 𝑒1 ⋅ 𝐻1 = 𝑠 ⋅ 𝐻0,                                                                  (2) 

where 𝑒0 and 𝑒1 are binary vectors corresponding to the error polynomials, and 𝐻0, 𝐻1 are circulant matrices 

derived from ℎ0(𝑥) and ℎ1(𝑥).  

QC-MDPC 

QCSD Problem QCCF Problem 

SD Problem 

QC QC 

CF Problem 

Figure 3. Construction of QC-MDPC Codes Based on Hard Computational Problems 
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This relation is simply the expansion of the vector–matrix multiplication, expressed in block-matrix form as 

follows: 

(𝑒0, 𝑒1) (
𝐻0

𝐻1
) = 𝑠 ⋅ 𝐻0. 

𝑒 ⋅ 𝐻𝚃 = 𝑠 ⋅ 𝐻0. 

the value 𝑠 ⋅ 𝐻0 is computed using 𝑐0 ⋅ 𝐻0 where 𝑐0(𝑥) = 𝑠(𝑥) = 𝑒0(𝑥) + 𝑒1(𝑥) ⋅ ℎ(𝑥), such that 𝑠 ⋅ 𝐻0 =
 𝑐0 ⋅ 𝐻0 = 𝑒 ⋅ 𝐻𝚃. To demonstrate the equivalence between Eqs. (1) and (2) namely that 𝑒0(𝑥) ⋅ ℎ0(𝑥) +
𝑒1(𝑥) ⋅ ℎ1(𝑥) = 𝑒0 ⋅ 𝐻0 + 𝑒1 ⋅ 𝐻1, let us assume ℎ0(𝑥) = ℎ0,0 + ℎ0,1𝑥 + ⋯ + ℎ0,𝑟−1𝑥𝑟−1 and 𝑒0(𝑥) =

𝑒0,0 + 𝑒0,1𝑥 + ⋯ + 𝑒0,𝑟−1𝑥𝑟−1 both elements of 𝔽2[𝑥]/(𝑥𝑟 − 1). The circulant matrix 𝐻0, derived from the 

coefficients of the polynomial ℎ0 is defined as follows: 

𝐻0 = (

ℎ0,0 ℎ0,1 ⋯ ℎ0,𝑟−1

ℎ0,𝑟−1 ℎ0,0 ⋯ ℎ0,𝑟−2

⋮ ⋮ ⋱ ⋮
ℎ0,1 ℎ0,2 ⋯ ℎ0,0

), 

the product 𝑒0(𝑥) ⋅ ℎ0(𝑥) mod 𝑥𝑟 − 1 can be expressed as 𝑒0(𝑥) ⋅ ℎ0(𝑥) ≡ ∑  𝑟−1
𝑘=0 𝑐𝑘 𝑥𝑘  ≡ 𝑐0𝑥0 + 𝑐1𝑥1 +

𝑐2𝑥2 + ⋯ + 𝑐𝑟−1𝑥𝑟−1, where the coefficients 𝑐𝑘 calculated using Eq. (3): 

 𝑐𝑘 = ∑  

𝑟−1

𝑖=0

𝑒0,𝑖 ⋅ ℎ0,(𝑘−𝑖) mod 𝑟 =  𝑒0,0ℎ0,(𝑘−0) mod  𝑟 + 𝑒0,1ℎ0,(𝑘−1)mod  𝑟 + ⋯ + 𝑒0,𝑟−1ℎ0,(𝑘−(𝑟−1))mod  𝑟, (3) 

the multiplication 𝑒0 ⋅ 𝐻0 yields a vector 𝑐 = (𝑐0
′ , 𝑐1

′ , … , 𝑐𝑟−1
′ ), where each  𝑐𝑘

′  for 𝑘 = 0, 1, … , 𝑟 − 1 is 

computed using Eq. (4): 

                𝑐𝑘
′ = ∑  

𝑟−1

𝑖=0

𝑒0,𝑖 ⋅ (𝐻0)𝑖,𝑘 = 𝑒0,0(𝐻0)0,𝑘 + 𝑒0,1(𝐻0)1,𝑘 + 𝑒0,2(𝐻0)2,𝑘 + ⋯ + 𝑒0,𝑟−1(𝐻0)𝑟−1,𝑘            (4) 

due to the circulant property of 𝐻0, every element at position (𝑖, 𝑘) satisfies (𝐻0)𝑖,𝑘 = ℎ0,(𝑘−𝑖) mod 𝑟, hence 

 𝑐𝑘
′ = ∑  𝑟−1

𝑖=0 𝑒0,𝑖(𝐻0)𝑖,𝑘 = ∑  𝑟−1
𝑖=0 𝑒0,𝑖  ℎ0,(𝑘−𝑖) mod 𝑟. Therefore, from Eqs. (3) and (4) it is evident that 𝑐𝑘

′ = 𝑐𝑘, 

which confirms the equality between Eqs. (1) and (2), i.e.,  𝑒0(𝑥) ⋅ ℎ0(𝑥) + 𝑒1(𝑥) ⋅ ℎ1(𝑥) = 𝑒0 ⋅ 𝐻0 + 𝑒1 ⋅
𝐻1.  

 In the OW-QCCFP scheme, the adversary 𝐴 is given an instance ℎ ∈ ℋ𝑤, where ℎ(𝑥) = ℎ1(𝑥)ℎ0
−1(𝑥). 

The adversary then attempts to compute a preimage using only ℎ, i.e., it evaluates 𝐴(ℎ) = 𝐴(ℎ1ℎ0
−1) by 

searching for polynomials ℎ1′(𝑥) and ℎ1′(𝑥) such that ℎ(𝑥) =  ℎ1′(𝑥)ℎ0
 ′ −1(𝑥). After producing a candidate, 

the QCCF verification algorithm checks whether the adversary’s output is a valid solution, namely whether 

it satisfies ℎ1(𝑥) + ℎ0(𝑥)ℎ(𝑥) = 0.  

 
Figure 4. Experimental Evaluation of the OW-QCCF Scheme under Small Parameter Settings 
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 As an illustration, Fig. 4 reports the outcome of OW-QCCF scheme carried out with the small 

parameter 𝑟 = 13 over 213 trials. The experiment yields AdvQCCF
OW (𝐴) = 1, indicating that the adversary 𝐴 

can invert the public-key ℎ = ℎ1ℎ0
−1 and recover (ℎ0, ℎ1) by brute force. This is attributable to the small 

choice of 𝑟, which keeps the number of candidate key pairs sufficiently and makes a full search feasible. 

 For comparison, the simulation in Fig. 4 with 𝑟 = 13 and 213 trials take about 178.21 s to execute. If 

we adopt the NIST Level-1 parameter 𝑟 = 12323, the number of trials scales to 212323. Under the same 

exponential time model, the estimated runtime becomes 𝑇(12323) = 178.21 × 212310. Converting to base-

10 using log10(212310) = 12310 × log10(2) ≈ 12310 × 0,30103 ≈ 3706,6. So, estimate is  

𝑇(12323) = 178.21 × 103706.6 s. This estimate is astronomically beyond any realistic computational 

budget (the age of the universe is only 4.35 × 1017s). Hence, with the standard parameter level 1 𝑟 = 12323, 

BIKE is computationally secure against brute force. An analogous observation holds for the OW-QCSDP 

experiment under small parameters, where the simulation also attains AdvQCSD
OW (𝐴) = 1. 

 In the IND-QCCDP scheme, 𝐷 receives a value ℎ, but the source of this value can originate from two 

possibilities, namely the value derived from QCCF: ℎ(𝑥) = ℎ1(𝑥)ℎ0
−1(𝑥), with (ℎ0, ℎ1) ←

$ 
ℋ𝑤, or a random 

value drawn from the distribution: ℎ ←
$ 

ℛ𝑜𝑑𝑑. Subsequently, 𝐷 analyzes the pattern or structure within ℎ and 

attempts to determine whether the value originates from the computation ℎ1ℎ0
−1 with (ℎ0, ℎ1) ←

$ 
ℋ𝑤 or from 

ℎ ←
$ 

ℛ𝑜𝑑𝑑. After obtaining the result, the IND-QCCF algorithm evaluates how effectively 𝐷 distinguishes 

between the two distributions. The simulation results of the IND-QCCF attack using small parameters, 

specifically 𝑟 = 13, with a total number of 213 trials, are presented in Table 3. 

Table 3. Experimental Evaluation of the IND-QCCF Scheme under Small Parameter Settings 

Trial Distribution ℎ ℎ0 ℎ1 ℎ0
−1 ℎ 𝐷(ℎ) 

1 QCCF 0001000100100 0000100100010 1001110011010 1110111110100 0 

2 Random - - - 1011011001000 1 

3 QCCF 0100000000101 0001100000001 1111001111001 0100011011011 1 

4 Random - - - 1110011001110 0 

5 QCCF 0100000100100 0001100010000 1100111001010 0011111111100 0 

6 Random - - - 0000100011110 0 

7 QCCF 0001000101000 0000001011000 0110011111000 0110010111001 1 

8 Random - - - 0010101011111 0 

9 QCCF 0000001001100 0110100000000 1001101111000 1110001010101 1 

10 Random - - - 0100110100100 0 

... ... ... ... ... ... ... 

8192 Random - - - 1100010000100 0 

 Given the input ℎ0 and ℎ1 chosen such that each has a Hamming weight of |ℎ0| = |ℎ1| = 3, the 

estimated Hamming weight of ℎ = ℎ1ℎ0
−1 is 𝑟/2 = 13/2, which lies between the values |ℎ| = 6 or |ℎ| = 7. 

This simulation employs a method to check whether the value ℎ generated from the QCCF construction tends 

to exhibit a specific structural pattern compared to random polynomials, classified according to the criteria: 

1. If the Hamming weight of ℎ lies within the range [
𝑟−1

2
,

𝑟+1

2
] = [6,7], then 𝐷 outputs the value 1. 

2. If the Hamming weight of ℎ lies outside this range, then 𝐷 outputs the value 0. 

The interpretation of the output value 𝐷(ℎ) can be described as follows: 

1. Value 1: The adversary 𝐷 infers that ℎ originates from the QCCF construction. 

2. Value 0: The adversary 𝐷 infers that ℎ is a random element from ℛ𝑜𝑑𝑑. 

The adversary’s advantage in distinguishing between the two distributions is calculated using the formula: 

|Pr[𝐷(ℎ = ℎ1ℎ0
−1) = 1] − Pr[𝐷(ℎ ∼ ℛ𝑜𝑑𝑑) = 1]| 

Hence, based on the experimental results in Table 3, we obtain: 

Pr[𝐷(ℎ = ℎ1ℎ0
−1) = 1] = 0.22 and Pr[𝐷(ℎ ∼ ℛ𝑜𝑑𝑑) = 1] = 0.20 

thus  AdvQCCF
IND (𝐷) = |0.22 − 0.20| = 0.02. 
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The value AdvQCCF
IND (𝐷) = 0.02 indicates that adversary 𝐷 is unable to effectively distinguish between 

elements generated from the construction (ℎ0, ℎ1) ←
$ 

ℋ𝑤 and elements ℎ ←
$ 

ℛ𝑜𝑑𝑑. This limitation arises from 

the distinguishing assumption employed, which relies solely on the Hamming weight, and is proven 

insufficient to exploit structural distribution differences in the QCCF scheme. A similar result is observed in 

the case of IND-QCSD, where adversary 𝐷 likewise fails to distinguish effectively between elements derived 

from (ℎ, (𝑒0, 𝑒1)) ←
$

ℛ𝑜𝑑𝑑 × ℰ𝑡 and those sampled from (ℎ, 𝑠) ←
$

ℛ𝑜𝑑𝑑 × ℛ𝒫(𝑡). 

The QCCF and QCSD problems, as presented in Table 2 and the preceding evaluation, constitute the 

primary security assumptions of the BIKE scheme. To date, no classical or quantum algorithms have been 

able to solve these problems efficiently. Consequently, the security of BIKE relies on the computational 

hardness of QCCF and QCSD, which are implemented through the Niederreiter framework and the FO⊥̸ 

transformation. 

3.3 Construction Based on the BIKE Scheme Framework 

The BIKE scheme is constructed based on the Niederreiter framework and the FO⊥̸ transformation, as 

illustrated in Fig. 2. These two constructions form the foundational structure for the parameter setup, key 

generation, encapsulation, and decapsulation processes employed in the BIKE, as specified in Table 1, 

Algorithms 1, 2 and 3.  

The Niederreiter framework is an approach that utilizes the dual code of the McEliece cryptosystem 

[15]. In the McEliece scheme, a message 𝑚 is encrypted by multiplying it with a generator matrix 𝐺 and 

adding an error vector 𝑒, resulting in the ciphertext 𝑐 = 𝑚 ⋅ 𝐺 + 𝑒 [8], [14]. In contrast, the Niederreiter 

scheme performs encryption by multiplying a random binary vector 𝑥 with a parity-check matrix 𝐻, 

producing the ciphertext 𝑐 = 𝐻 ⋅ 𝑥𝚃 [8]. Both schemes are related through the use of linear codes satisfying 

the orthogonality condition 𝐺 ⋅ 𝐻𝚃 = 0, establishing Niederreiter as the dual of McEliece [17]. This duality 

provides a foundation for BIKE’s key and ciphertext construction, which is then adapted to enhance 

efficiency and security. 

 Within the Niederreiter framework, BIKE v5.2 uses sparse polynomials for private keys, compresses 

the public key into a single polynomial, and constructs ciphertexts from a syndrome combined with an 

obfuscated hash. Decoding is performed using the BIKE-Flip algorithm, which refines bit-flipping with a 

dynamic threshold to improve accuracy and reduce predictable failure patterns. The rationale behind the 

BIKE parameter design based on The Niederreiter framework is grounded in several critical considerations. 

which are further explained below. 

 The private key consists of two sparse polynomials, (ℎ0(𝑥), ℎ1(𝑥)) generated using the FY-CWW 

algorithm with a uniform variant. A detailed explanation of the FY-CWW algorithm can be found in [4]. The 

uniform distribution ensures that all possible keys have an equal probability of being selected. In this context, 

variable execution time is acceptable, as key generation is performed only once and does not influence the 

runtime behavior observable by an attacker. The polynomials ℎ0 and ℎ1 must possess fixed weight and 

random distribution. When ℎ0 and ℎ1 have fixed weights and are randomly distributed, the resulting public 

key ℎ and the codeword 𝑐 will also be randomly distributed. Consequently, the derived syndrome 𝑠 follows 

a uniform distribution, making it difficult for adversaries to predict. In contrast, if ℎ0 and ℎ1 lack fixed 

weights or exhibit non-random distributions, the resulting ℎ will exhibit certain patterns, leading to patterned 

𝑐, which in turn results in a predictable 𝑠. Such predictability opens up the possibility for exploitation attacks 

on the underlying structure. Each polynomial has a weight of 𝑤/2, so their combined weight satisfies |ℎ0| +
|ℎ1| = 𝑤. Equal weighting between ℎ0 and ℎ1 is crucial for maintaining a balanced syndrome distribution 

during the decoding process. In this system, the parity-check matrix is defined as 𝐻 = [𝐻0 | 𝐻1]. When a 

codeword vector 𝑐 is multiplied with 𝐻, it produces 𝑠 = 𝑐 ⋅ 𝐻. For the bits in 𝑠 to be uniformly distributed, 

the weights of ℎ0 and ℎ1 must be equal. Any imbalance in weight may lead to a non-uniform syndrome 

distribution, potentially degrading the performance of the decoding algorithm and increasing the likelihood 

of errors in code correction. Furthermore, ℎ0(𝑥) and ℎ1(𝑥) must have a maximum degree less than 𝑟, where 

𝑟 ∈ 𝑃 is a prime number satisfying ord𝑟(2) = 𝑟 − 1, ensuring that 2 is a primitive element modulo 𝑟. This 

design prevents non-trivial factors in 𝔽2. If 𝑟 is prime, 𝑥𝑟 − 1 has only trivial factors, reducing the risk of 

algebraic attacks. Additionally, the sparse structure of ℎ0 and ℎ1 ensures a low density, minimizing the 

number of required operations and helping maintain a low DFR. 
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 The public key ℎ(𝑥) in BIKE is defined as ℎ(𝑥) = ℎ1(𝑥) ⋅ ℎ0
−1(𝑥). Storing only a single polynomial 

ℎ(𝑥) instead of the pair (ℎ0, ℎ1) reduces the public key size, optimizing storage and transmission. Since 

ℎ0(𝑥) is a binary cyclic polynomial over 𝔽2, computing ℎ0
−1(𝑥) without knowing ℎ0(𝑥) is computationally 

infeasible, making it difficult for an attacker to recover ℎ0(𝑥) or ℎ1(𝑥) from ℎ(𝑥) independently. 

 The ciphertext in BIKE consists of two components: 𝑐0(𝑥) = 𝑒0(𝑥) + 𝑒1(𝑥) ⋅ ℎ(𝑥) and 𝑐1 = 𝑚 ⊕
𝐿(𝑒0, 𝑒1). The computation of 𝑒0(𝑥) + 𝑒1(𝑥) ⋅ ℎ(𝑥) forms a syndrome as described in Table 2, directly used 

as the ciphertext component 𝑐0, which the BIKE-Flip decoder processes without reconstructing the error 

vector. This contrasts with the McEliece scheme, where the ciphertext 𝑐 = 𝑚 ⋅ 𝐺 + 𝑧 explicitly stores the 

error vector 𝑧, increasing the ciphertext size by the codeword length 𝑛. McEliece decryption also involves 

computing the permutation matrix inverse 𝑃−1, multiplying it with 𝑐, and then passing it to the decoder, 

adding complexity. In contrast, BIKE only requires multiplication with ℎ0 before decoding, avoiding matrix 

inversion and large matrix multiplications. By storing only the syndrome in the ciphertext, BIKE achieves 

smaller ciphertext size and faster decapsulation compared to McEliece. The second ciphertext component, 

𝑐1, is obtained by XORing the plaintext 𝑚 with the hash of 𝐿(𝑒0, 𝑒1), adding an additional layer of masking 

to 𝑚. This prevents adversaries from directly extracting 𝑚 from the ciphertext without recovering 𝑒0 and 𝑒1, 

enhancing message security. 

 The decoder in BIKE, known as BIKE-Flip, employs a bit-flipping method that is more efficient for 

QC-MDPC codes than list-decoding or information set decoding (ISD). Bit-flipping exploits the sparsity of 

the code structure, whereas ISD relies on brute-force guessing of error-free bit subsets, which scales 

exponentially with the number of errors 𝑡 as 2𝑡. List-decoding, which seeks all codewords within a certain 

distance, is also inefficient for sparse codes. Since QC-MDPC codes have a sparse parity-check matrix with 

only 𝑤 = √𝑛 elements set to one, each bit-flipping iteration requires roughly 𝑂(√𝑛) time, making it a faster 

and more practical approach for large QC-MDPC codes. 

 This bit-flipping strategy is further refined in BIKE-Flip, the decoder BIKE-Flip is used in BIKE v5.2, 

which is superior to the decoder used in BIKEv5.1, namely Black-Gray-Flip (BGF). BIKE-Flip has 

advantages over BGF in terms of structure and operational mechanism. BIKE-Flip uses 7 iterations, whereas 

BGF uses 5 iterations. BGF utilizes the BFMaskedIter and BFIter procedures with masking, while BIKE-Flip 

only employs BFIter without masking. In addition, BGF uses a fixed threshold, whereas BIKE-Flip applies 

a dynamic threshold. Computationally, BGF is more complex due to its two procedures and masking, while 

BIKE-Flip is simpler. As shown in Fig. 4, experimental results indicate that BIKE-Flip achieves faster 

execution time despite requiring more iterations. This improvement is attributed to the elimination of the 

BFMaskedIter procedure and the masking mechanism in BIKE-Flip, thereby relying only on BFIter, which 

has proven to be more efficient in terms of execution time. Furthermore, as illustrated in Fig. 5, BIKE-Flip 

demonstrates lower memory consumption compared to BGF. This is because BIKE-Flip does not require the 

masking mechanism nor the storage of masking values. Instead, BIKE-Flip leverages a more efficient 

threshold computation. 

 
Figure 5. Execution Time Comparison of BIKE-Flip and BGF 
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Figure 6. Memory Usage Comparison of BIKE-Flip and BGF 

 A dynamic threshold is used to improve decoding success. BGF applies a constant threshold at each 

iteration, which may lead to errors due to propagation from previous iterations, making decoding failure 

patterns more predictable. As a solution, BIKE-Flip applies a dynamic threshold dependent on the initial 

syndrome weight 𝑆0, the current syndrome weight 𝑆, and the iteration 𝑖. The dynamic threshold is updated in 

each iteration to reduce the probability of unnecessary flipping.  

 In the first iteration, the threshold is defined as 𝑇1(𝑆0) = 𝑓𝑡(𝑆0) + 𝛿, where the threshold is set higher 

to allow for the correction of more errors. In the second iteration, the threshold becomes 𝑇2(𝑆0) =
1

3
(2 ⋅

𝑓𝑡(𝑆0) +
𝑑+1

2
) + 𝛿, decreasing gradually to balance bit flipping and decoding stability. In the third iteration, 

the threshold is expressed as 𝑇3(𝑆0) =
1

3
(𝑓𝑡(𝑆0) + 2 ⋅

𝑑+1

2
) + 𝛿, approaching the minimum value to adjust to 

the remaining syndrome. For iterations 𝑖 ≥ 4, the threshold stabilizes at 𝑇𝑖(𝑆0) =
𝑑+1

2
+ 𝛿, corresponding to 

the average syndrome weight since most errors have been corrected. 

 A higher threshold in the first iteration allows for the correction of more errors. As the threshold value 

increases in the following iterations, the decoding failure pattern becomes smaller, reducing the possibility 

of exploitation by an attacker. Further explanation of BIKE-Flip can be found in [4], and the previous decoder 

is discussed in [15]. 

The application of the Niederreiter framework in BIKE v5.2 enables the construction of a 

mathematically structured and efficient code-based cryptographic system. The private key consists of a pair 

of sparse polynomials with fixed weight and random distribution, ensuring a well-balanced and unpredictable 

syndrome distribution. The public key is compressed into a single polynomial via inversion, reducing storage 

requirements while concealing the internal structure. The ciphertext comprises a syndrome resulting from a 

linear combination of the error vector and the public key, along with an obfuscated hash value, effectively 

protecting the message from direct ciphertext attacks. The BIKE-Flip decoder employed in this version adopts 

a dynamic threshold to control the bit-flipping process at each iteration, leading to improved error correction 

accuracy and reducing the risk of error-pattern exploitation. Through a combination of secure key design, 

compact ciphertext, and adaptive decoding, BIKE v5.2 demonstrates reliable efficiency, making it a relevant 

candidate for post-quantum, code-based cryptographic solutions. 

Despite leveraging QC-MDPC codes, BIKE exhibits limitations in resisting IND-CCA attacks. The 

Niederreiter framework lacks intrinsic mechanisms to protect the ciphertext from tampering by adversaries 

[18]. In such attacks, an adversary may alter the ciphertext and glean information about the private key. To 

address this vulnerability, BIKE incorporates the FO⊥̸ transformation, which serves to strengthen security 

and provide additional protection. 

The FO⊥̸ transformation, developed by Fujisaki and Okamoto, is designed to enhance the security of 

public-key encryption schemes by converting an IND-CPA-secure encryption scheme into a KEM resistant 

to IND-CCA attacks [9]. With FO⊥̸, even if an adversary is able to submit modified ciphertexts and observe 

the decryption outputs, they are unable to derive any information about the private key or the plaintext. The 

integration of FO⊥̸ into BIKE ensures that the scheme is not only efficient in terms of key generation, 

encapsulation, and decapsulation but also more resilient against IND-CCA attacks, reaction attacks, and 

multi-target key attacks [4].  
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This enhancement is further reinforced in the BIKE scheme with FO⊥̸, the error vector (𝑒0, 𝑒1) is 

computed using the formula (𝑒0, 𝑒1) = 𝐻(𝑚, 𝜇), where 𝜇 = 𝜋𝑙(ℎ) is the portion of the public key ℎ used for 

binding. Specifically, the function 𝜋𝑙(ℎ) refers to taking the first 256 bits of the public key ℎ. Without binding 

to ℎ, such that (𝑒0, 𝑒1) = 𝐻(𝑚), the hash function output depends solely on 𝑚. In this case, an attacker could 

precompute a list of (𝑒0, 𝑒1) for various values of 𝑚, making a multi-target key attack possible, as the same 

set of (𝑒0, 𝑒1) could be used for different values of ℎ. A detailed explanation of the multi-target key attack is 

available in [19]. Conversely, when binding to ℎ by computing (𝑒0, 𝑒1) = 𝐻(𝑚, 𝜇), the hash result becomes 

unique for each ℎ, as 𝜋𝑙(ℎ) ≠ 𝜋𝑙(ℎ′) when ℎ ≠ ℎ′. As a result, attackers cannot reuse the same set of (𝑒0, 𝑒1) 

across different values of ℎ. The error vector (𝑒0, 𝑒1) is generated using the FY-CWW algorithm with a fixed-

time variant to eliminate the possibility of timing attacks. In contrast, the private key polynomials (ℎ0, ℎ1) 

are generated using a uniform variant. A detailed explanation of timing attacks can be found in [20]. 

The output of the BIKE scheme is a shared key that will be used as the secret key between the sender 

and the receiver. This shared key 𝐾 plays a crucial role in ensuring the security of the key exchange process. 

The value of 𝐾 is determined based on the result of the decryption process of the received ciphertext 𝑐. If 

decoding succeeds, KKK is derived from m′m'm′ and 𝑐 ; if decoding fails, K is derived from the fallback 

value 𝜎 and 𝑐. The rule is defined as follows: 

𝐾 = {
K(𝑚′, 𝑐), if decoding succeeds,

K(𝜎, 𝑐), if decoding fails.
 

where 𝜎 is a fallback value, random and independent of the ciphertext, ensuring the shared key output is 

always produced and attackers cannot distinguish whether the shared key originates from a valid decoded 

𝑚′ or from the 𝜎. Without a fallback mechanism, the hash function output K could be observed by attackers, 

potentially revealing information about the private key and enabling reaction attacks. Explanation of reaction 

attacks can be found in [20]. 

The hash function H in BIKE uses FY-CWW with SHAKE256 to produce constant-weight vectors. 

SHAKE256 is based on Keccak, which has been verified by NIST as a secure hash function [21]. SHAKE256 

offers the advantage of producing variable-length outputs as needed, avoiding the repeated hashing required 

in SHA-256 or SHA-384. FY-CWW ensures that exactly 𝑤 bits in the vector are always set to “1”, which is 

necessary to maintain a fixed distribution and prevent decoding errors during error recovery. Without FY-

CWW, the distribution of “1” bits in the vector becomes unpredictable, leading to more frequent decoding 

failures. 

In addition, the hash function K uses SHA-384 to generate the shared key in communication sessions. 

The explanation is as follows: SHA-384 has been verified by NIST and meets the criteria for secure hash 

functions, ensuring that the shared key cannot be predicted and attackers cannot reconstruct the input from 

the hash output. Explanation of SHA-384 can be found in [21]. SHA-384 is chosen because it offers a balance 

between security and efficiency in modern cryptographic schemes. With a 384-bit output size, it provides a 

higher security level than SHA-256 but with less overhead than SHA-512. The hash function K is used to 

generate the final shared key to be used in communication. If the pre-image resistance of K is weak, attackers 

could attempt to reverse the hashing process to obtain the plaintext 𝑚 or ciphertext 𝑐, which could lead to 

attacks on the KEM scheme. 

Complementing this, the hash function L also uses SHA-384 but serves a different purpose than K. 

While K is used to generate the final shared key in a communication session, L functions in the key derivation 

process to produce intermediate values that support the overall security of the scheme. The key difference 

between L and K lies in the type of input processed and their respective roles in the scheme. The hash function 

L does not directly produce the shared key, but rather ensures the integrity and security of intermediate values 

during key derivation. Therefore, besides pre-image resistance, L must also have strong second pre-image 

resistance to prevent other inputs from producing the same hash. If second pre-image resistance is weak, there 

is a risk that intermediate values can be forged or predicted, potentially compromising the security of the 

scheme. With its security properties verified by NIST, SHA-384 ensures that K and L are strongly protected 

against cryptographic attacks, making it a suitable choice for the BIKE scheme. Explanation of the security 

properties of hash functions: pre-image resistance, second pre-image resistance, and collision resistance, can 

be found in [1]. 

The BIKE scheme is designed based on the Niederreiter construction and the FO⊥̸ transformation to 

establish an efficient and attack-resistant KEM. By leveraging QC-MDPC codes within the Niederreiter 
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framework characterized by sparse structure and fixed weight BIKE enables the efficient generation of public 

and private keys, reduces ciphertext size, and accelerates decoding through the BIKE-Flip algorithm with a 

dynamic threshold. The FO⊥̸ transformation enhances security against IND-CCA, reaction attacks, and multi-

target key attacks through the use of binding and fallback mechanisms, as well as the integration of secure 

hash algorithms such as SHAKE256 and SHA-384. 

4. CONCLUSION 

This study demonstrates that BIKE v5.2, constructed through the integration of QC-MDPC code 

structures, the Niederreiter framework, and the FO⊥̸ transformation, successfully forms an efficient, secure, 

and relevant KEM for post-quantum cryptography. Through mathematical analysis, this research confirms its 

strong security foundation and resilience against both classical and quantum attacks. The findings of this 

study can be summarized as follows: 

1. The BIKE-Flip decoder with dynamic threshold enhances stability, reduces predictable failure 

patterns, and improves efficiency. 

2. NIST-recommended parameters make brute-force attacks computationally infeasible, confirming 

BIKE’s mathematical validity. 

3. Efficient key and ciphertext design, along with fallback and secure hash functions, mitigates 

multi-target and reaction attacks. 

4. Despite DFR instability, BIKE remains efficient and secure; this risk can be managed through 

parameter tuning and fallback mechanisms. 

Although BIKE was not selected for NIST standardization, it continues to stand as a strong and relevant 

candidate for post-quantum cryptography. Future research should focus on improving decoder stability, 

refining parameter strategies, and exploring integration into hybrid PQC frameworks to ensure practical 

deployment. 
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