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1. INTRODUCTION

Cryptography is a mathematical method used to ensure information security [ 1|. There are two main
categories in cryptography: symmetric and asymmetric. Asymmetric cryptography emerged as a solution to
the key distribution problem in symmetric cryptography [2]. One of the approaches developed is the key
encapsulation mechanism (KEM), which enables two parties to securely exchange secret keys over a public
channel [3]. The security of KEM generally relies on the computational problems of factorization and discrete
logarithms [4]. These problems are considered computationally hard and form the basis of algorithms such
as RSA, DSA, and ECDSA. Although difficult to solve using classical computation, advancements in
quantum computing have shown that these problems can be solved in polynomial time using Shor’s algorithm
with the assistance of Cryptographically Relevant Quantum Computers (CRQC) [5]. In response to this threat,
NIST launched the Post-Quantum Cryptography competition, known as the NIST Call for Proposals, in 2016
to evaluate and establish standardized post-quantum cryptographic algorithms that are resistant to Shor’s
algorithm when executed on CRQC [6]. One of the evaluated categories was the KEM scheme.

In principle, KEM schemes in the PQC standardization process frequently employ the Fujisaki-
Okamoto (FO) framework to strengthen security from Indistinguishability under Chosen-Plaintext Attack
(IND-CPA) to Indistinguishability under Chosen-Ciphertext Attack (IND-CCA), while adopting several
approaches [4], [6]. One of the earliest and most influential approaches is the code-based paradigm,
originating from the McEliece scheme. This scheme utilizes generator matrices and error vectors for
encryption, offering strong security despite the drawback of very large public key sizes. Niederreiter
subsequently introduced a dual variant of McEliece that employs parity-check matrices, resulting in more
compact keys while preserving equivalent security guarantees [4], [7]. These two schemes have become
fundamental to code-based cryptography and laid the groundwork for the emergence of modern PQC
candidates. The integration of the Niederreiter construction with the FO transformation later gave rise to a
new generation of KEM designs. One of these algorithms is the Bit Flipping Key Encapsulation (BIKE)
scheme [6].

The BIKE scheme was introduced in 2017 as a candidate for post-quantum cryptography, based on
Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) codes [7]. BIKE is constructed upon the
Niederreiter framework and incorporates an implicit-rejection variant of the Fujisaki-Okamoto (FOY)
transformation. The Niederreiter approach is used to perform encryption by generating a ciphertext through
the multiplication of a random error vector with a parity-check matrix [8]. Meanwhile, the
FO¥ transformation is applied to enhance the scheme’s security against IND-CCA on the ciphertext [9]. The
security of BIKE relies on the complexity of the Quasi-Cyclic Codeword Finding (QCCF) and Quasi-Cyclic
Syndrome Decoding (QCSD) problems. These problems are computationally difficult to solve without
knowledge of the private key matrix and the intentionally introduced error [10]. However, the BIKE scheme
faced challenges during the post-quantum cryptography competition, particularly concerning its high
Decoder Failure Rate (DFR) [4]. Following several stages of analysis and evaluation, the BIKE scheme has
continued to evolve, culminating in its latest version in 2024: the BIKE v5.2 scheme [7].

As part of a comprehensive evaluation of KEM candidates, NIST conducted a thorough analysis of
each remaining algorithm in the fourth round. In the NIST Internal Report NIST IR 8545, titled “Status
Report on the Fourth Round of the NIST Post-Quantum Cryptography Standardization Process” released on
March 11, 2025, NIST officially concluded the standardization process initiated by the NIST Call for
Proposals in 2016. The report announced that the BIKE scheme was not selected for standardization. The
primary reason behind NIST’s decision was the instability of its Decoding Failure Rate (DFR) analysis.
Throughout the evaluation process, BIKE’s DFR estimates exhibited uncertainty, raising concerns about the
long-term consistency and robustness of the scheme [11].

Nevertheless, BIKE v5.2 remains an interesting and relevant subject of research in the field of post-
quantum cryptography. The scheme is built upon QC-MDPC codes, which offer computational efficiency in
shared secret generation and produce relatively smaller ciphertext sizes compared to other candidates in the
code-based category [11]. Furthermore, to date, no attack has successfully broken the BIKE scheme, either
theoretically or practically, within the recommended parameters [12]. Despite research that has explored
potential vulnerabilities, such as timing and reaction attacks, the scheme has demonstrated resilience against
various exploit attempts [4]. This resilience indicates that BIKE possesses a strong mathematical foundation
and remains relevant for continued investigation.
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A deeper understanding of the mathematical structure of BIKE v5.2 is essential to clarify the
uncertainties regarding its DFR stability and long-term robustness. This study analyzes the structural
foundations of BIKE v5.2, focusing on its foundational basis, the QC-MDPC code, as well as its underlying
frameworks, namely the Niederreiter construction and the FO¥ transformation, to provide a comprehensive
mathematical assessment. Through this approach, the study aims to establish a solid foundation to support
further evaluations of the effectiveness and robustness of BIKE v5.2, while also contributing to the
development of more stable post-quantum cryptographic designs in the future.

2. RESEARCH METHODS

This study employs a systematic literature review (SLR) combined with theoretical analysis to examine
the structural characteristics of BIKE v5.2. The SLR was carried out by selecting sources from NIST reports,
BIKE specifications, and peer-reviewed journals, with inclusion criteria focusing on the Niederreiter
framework, the FO¥ transformation, and the QCSD and QCCF problems. The scope of the theoretical analysis
covers three dimensions. First, QC-MDPC as the foundational code structure. Second, The Niederreiter
framework functions as a mechanism for parameter efficiency. Third, the FO¥ transformation plays a crucial
role in strengthening security. These findings are then related to the mathematical formulation of QCSD and
QCCEF, providing a clear rationale for the BIKE v5.2 design. The BIKE v5.2 scheme is illustrated in Fig. 1,
adapted from [12].
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Figure 1. Illustration of the BIKE v5.2 Scheme

The BIKE v5.2 scheme consists of three cryptographic procedures: key generation, encapsulation, and
decapsulation, which are respectively described in Algorithm 1, Algorithm 2 and Algorithm 3. Within the
encryption system setup, both parties agree on a set of system parameters, as presented in Table 1.

Table 1. Setup
Setup
Input: Security parameter A € Z*
Output: System parameter
Hash functions
Decoder
System Parameters Hash Functions
I. reP, with ord,(2)=r—1;, 1. H: M XM - &, using the Fisher-Yates for Constant Weight
ensures 2 is a generator mod r. Words (FY-CWW) algorithm with input 2¢.
2. n=2r; defines the code length, 2. K: M XRXM - XK, computed using SHA-384, taking the
where r as circulant block size. 256 least significant bit (LSB) of the output.
3. we?2zZ*, w~+n, w/2 is odd; 3. L:R?- M, computed using SHA-384, taking the 256 LSB
defines private key weight. of the output.
4.  t € 2Z*; defines error weight. Decoder
5. 1€ Z*2* < 2} security level A. 1. Algorithm with DFR < 27* or BIKE-Flip.

The key generation phase in the BIKE scheme produces a private and public key pair that is
subsequently used in the encapsulation and decapsulation procedures. This process ensures that only entities
in possession of the private key are able to access the encrypted information. The key generation procedure
in the BIKE scheme is described in Algorithm 1.



1064 Rosa et al. MATHEMATICAL ANALYSIS OF QC-MDPC STRUCTURES IN BIKE V5.2 ...

Algorithm 1. BIKE Key Generation
Input: -
Output: Parameter private key (hg, hy,0) € H,, X M
Publickey h € R
1:  Generate a private key pair (ho(x), h;(x)) € H,, using FY-CWW algorithm and (hg, h;) denotes the binary
representation of private key pair (hy(x), hy (x)).
Compute h(x) = h;(x) - hy1(x) mod (x™ — 1) and h denotes the binary representation of h(x).
Derive the p = m,(h), where m, denotes a function that extracts the £ most significant bits of its input.
Select ¢ € M uniformly at random using the SHAKE256 hash function.

The encapsulation process is executed by the sender who intends to securely transmit information. This
procedure is formally presented in Algorithm 2.

R

Algorithm 2. BIKE Encapsulation
Input: Publickey h € R
Output: Shared key K € K
Ciphertextc € R X M
l: Choose a random message m € M, generated using SHAKE256.
2:  Define u = m,(h) and compute the error pair (e, e;) = H(m, p).
3. Compute the ¢ = [cglcq], where ¢o(x) = ey(x) + e;(x) - h(x) mod (x" — 1) and ¢, denotes the binary
4

representation of ¢y (x). The second component is computed as ¢; = m @ L(e, e,).
Derive the shared key K = K(m, c).

The auxiliary value u is utilized to prevent multi-target attacks on the public key. A multi-target attack
refers to a scenario in which an adversary reuses a fixed error vector pair (eg, 1) to generate multiple valid
ciphertexts across different public keys h. This vulnerability arises because the error vectors are not
intrinsically bound to the public key. To mitigate this, the BIKE v5.2 scheme binds u to the public key h,
effectively ensuring that each error pattern remains unique to a specific key [13].

The decapsulation process ensures that only the intended recipient, who possesses the corresponding
private key, can recover the information encrypted within the ciphertext. This procedure is formally defined
in Algorithm 3.

Algorithm 3. BIKE Decapsulation

Input: Parameter private key (ho, hy, u, 0) € H,, X M?
Ciphertext ¢ = (cy|c1) ER XM
Output: Shared key K’ € X

1:  Compute the syndrome s(x) = ¢y(x) - ho(x) mod (x™ — 1) and s denotes the binary representation of s(x).
Construct the parity-check matrix H = [Hy|H, ], where Hy and H; are circulant matrix repsentation of hy and h;.
Recover the error vector e’ = BIKE-Flip(s, H).

Recover the candidate message m' = ¢; @ L(e’).

If the error vector passes verification, i.e., if e’ = H(m/, u), then set K’ = K(m/, ¢); otherwise, fall back to K’ «
K(g, ).

wm B~ W N

In the event that message recovery fails, the BIKE scheme replaces the decoded message candidate
with the fallback value. This mechanism is designed to prevent information leakage, preserve system
integrity, and detect tampering or unauthorized modifications to the ciphertext. By enforcing this safeguard,
the system ensures that only valid messages are processed, thereby mitigating the risk of accepting
manipulated data. A detailed description of the encapsulation and decapsulation processes of the BIKE can
be found in [4].

2.1 QC-MDPC Code

QC-MDPC codes combine the concepts of QC and MDPC codes to enhance efficiency in both encoding and
decoding processes, as outlined Definitions 1, 2 and 3.
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Definition 1. A binary QC code with block number ny and block length r is a linear code whose generator
matrix consists of circulant block matrices. A QC code with parameters (ng, k) has index ngy, length n =
ng - r, and dimension k = kg - r [5].

Definition 2. An (n,7, w) LDPC or MDPC code is a linear code with codeword length n and block length 7,
and a parity-check matrix H where each row has a constant weight w [ 14].

Definition 3. A QC-MDPC code (ng, ko, 7, w) is a QC code (ng, ko) with codeword length n = ng - r, code
dimensio k = kg - r, order r, and a parity-check matrix H with constant row weight w = 0(v/n) [4].

2.2 Hard Computational Problems of the BIKE Scheme

The security of the BIKE scheme is based on the computational intractability of certain mathematical
problems. Table 2 presents the formal formulation of the mathematical problems that underpin the security
of the BIKE scheme.

Table 2. Hard Computational Problems in the BIKE Scheme
Problem Detail
Input: g e FS*" and t > 0.
Goal:  Find ¢ € F% such that |c| = tand ¢ - HT = 0.
Input: h(x) € R,;; and w € 2Z*, w/2 odd.
Goal:  Find (hg, hy) € H,, such that hy (x) + hy(x) - h(x) = 0.
Input: g e an_k)xn, s€FY ¥ andt > 0.
Goal:  Find (eg,e;) € F¥ such that |e] < tande- HT =s.
Input:  (h,s) € Roga X Rp(r), and t > 0.
Goal:  Find (eg,e;) € &; such that eq(x) + e1(x) - h(x) = s(x).

Codeword Finding (CF)

QC-Codeword Finding (QCCF)

Syndrome Decoding (SD)

QC-Syndrome Decoding (QCSD)

The CFP and SDP are well-known to be NP-hard in their general form, which means that no
polynomial-time algorithms are known to solve them efficiently. In particular, the SD problem has been
formally proven to be NP-complete, and current best-known algorithms for solving it, such as Information
Set Decoding (ISD) and its variants, still require exponential time in the code length. The quasi-cyclic
variants, namely QCCF and QCSD, inherit these hardness assumptions while enabling more compact
representations that are suitable for cryptographic applications.

The security of QCCFP and QCSDP is determined not only by their mathematical structure but also
by the extent to which an adversary can exploit public information to extract secret information. To evaluate
the resilience of these schemes, two primary attack models are employed One-Way Security (OW) and
Indistinguishability (IND). The One-Way Security model measures the probability of an adversary A
successfully inverting the process, such as reconstructing the secret key (hg, hq) or identifying a valid error
pair (eg, e1), based on the available public information, consisting h and s. If this probability is low, the
scheme is considered secure against One-Way attacks. The adversary’s advantage in attacking the QCCF
scheme is defined as:

$
AQVQCH(4) = Pr[QCCFCAM), 1) | (o, ) < 76 |
The adversary’s advantage in attacking the QCSD scheme is defined as:
$
Advolsp(A) = Pr [QCSD(A(h, eo +e1h), heq + erh) | (h (eg,€1)) < Roaq X gt].

Meanwhile, the Indistinguishability model evaluates the extent to which an adversary can distinguish
elements produced by the scheme from elements drawn from a random distribution. In other words, the
adversary faces the task of classifying whether a given output originates from the scheme’s process or from
a random distribution. If this distinguishing advantage is low, the scheme is regarded as secure against
indistinguishability attacks. The adversary’s advantage in attacking the QCCF scheme is defined as:

$ $
AdvORE(D) = ‘Pr [D (hihg®) | (ho, hy) < }[w] —Pr [D(h) Ih < R"dd”'

The adversary’s advantage in attacking the QCSD scheme is defined as:
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$
AdVBED(D) = [Pr|D (o + eah) | (A (e0,e1)) & Roaa X &

$
—pr [D(h, )1 (hs) & Rygy X R?(t)]

A detailed description of the computational problems underlying the BIKE can be found in [4] and [&].

2.3 Construction of the BIKE Scheme

The Niederreiter framework is a code-based approach derived from the dual of the McEliece scheme
[15]. This approach leverages the linear properties and duality between generator matrices and parity-check
matrices, thereby enabling efficient modeling of code-based systems [8]. Meanwhile, FO ¥ transformation
was developed to enhance the security of schemes that satisfy Indistinguishability under Chosen-Plaintext
Attack (IND-CPA) into KEM that satisfy IND-CCA. This is achieved through an implicit-rejection
mechanism that discards invalid ciphertexts without revealing additional information [9].

3. RESULTS AND DISCUSSION

This study presents a mathematical analysis of the QC-MDPC codes as the foundational basis, as well
as the underlying hard computational problems, within the structural construction of the BIKE scheme. The
interrelation between the mathematical concepts involved in constructing the BIKE is illustrated in Fig. 2.

Parity-Check

Group —> Ring Field ﬁ | Matrix Niederreiter
v [ ¥
Polynomial Binary Vector Moderate QCMDEC N

Ring Finite Field Space Density

Cyelic Binary Finite Binary Block Ousi-Cyeli o
Polynomial Field Code S
8 a
Ring T T

| Circulant

Linear Code Matrix

\4

Figure 2. Conceptual Foundation of the BIKE Scheme

A comprehensive explanation of abstract algebra and coding theory can be found in [16] and [17].

3.1 Construction of QC-MDPC Codes

QC-MDPC codes combine the quasi-cyclic property with moderate-density parity-check matrices,
forming the mathematical foundation of BIKE, as illustrated in the mathematical concept diagram in Fig. 2.
The construction begins with the additive group algebra structure (IF,, +) of binary numbers, which is
extended to the polynomial ring (FF,[x], +,-) with coefficients in [F,. This structure is further developed into
the binary finite field [F,m, serving as the foundation for the binary vector space F%, where all codewords
reside. In the space F}, a binary linear block code is defined as a k-dimensional subspace, denoted as a code
(n, k), representing the set of codewords C S F75. Each codeword ¢ € C is formed as a linear combination of
k basis vectors with the generator matrix G € F5*" using the relation c = m - G for m € FX.

The code employed in BIKE possesses a QC structure, as described in Definition 1. In this definition,
a binary QC code with index ny and order r is a linear code whose generator matrix is composed of circulant
block matrices. This implies that the generator matrix is partitioned into ny blocks, each of size ky X r, where
each block is a circulant matrix. The parameters (ng, k) indicate a code length of n = ng - r and a dimension
of k = kg - r. The key property of QC codes is that a cyclic shift of a codeword by r positions yield another
valid codeword. In polynomial form, if hy(x) represents the first row of a circulant matrix block, then the
cyclic shift ho(x) - x! mod (x” — 1) still generates a valid codeword. The parity-check matrix H is
constructed from two circulant blocks H, and H; of size r X r, represented as H = [Hy | H{], where each
circulant block can be fully described by its first row. In BIKE, the process of verifying codewords explicitly

avoids the use of a generator matrix and instead relies on the parity-check matrix H € Ian_k)xn ensuring
code validity via the condition ¢ - HT = 0. This representation significantly reduces storage complexity.
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Furthermore, the matrix H € ]an_k)xn adheres to moderate density properties, classifying it as an
MDPC matrix. As defined in Definition 2, an (n,r,w) LDPC or MDPC code is a linear code of length n,
codimension r and a parity-check matrix H with constant row weight w. While LDPC codes typically use a
small w with complexity O(1) to facilitate sparse-graph decoding, MDPC codes increase the weight to
0(v/n), which grows with the code length, to enhance resistance to decoding attacks based on solving sparse
systems of equations. This representation allows for efficient algorithmic operations like encoding and
decoding while providing stronger security against structural attacks compared to traditional LDPC codes.

The integration of QC and MDPC concepts leads to the formulation of QC-MDPC codes with
parameters (ng, ko, 7, w), where the code possesses quasi-cyclic structure, length n = ng - r, dimension k =
ko - 1,1, order r, and a parity-check matrix H with constant row weight w = 0(+/n), as previously described
in Definition 3. This hybrid approach enables the BIKE scheme to produce a code-based encryption system
with compact key sizes, high computational efficiency, and strong resilience against decoding attacks and
code structure exploitation.

3.2 Construction Based on Hard Computational Problems

The security of the BIKE scheme is based on two fundamental problems in coding theory: the CF
problem and the SD problem. These problems are further developed into QC-specific variants within the
quasi-cyclic structure, namely the QCCF problem and the QCSD problem. The relationships among these
problems are illustrated in Fig. 3, and their formal definitions are summarized in Table 2.

|—> QC-MDPC

4

QC [ QCCF Problem QCSD Problem [«—| QC
CF Problem SD Problem

Figure 3. Construction of QC-MDPC Codes Based on Hard Computational Problems

In the QCCF Problem, the main challenge lies in finding the private key pair (hg, h;) from the public
key h(x) = hy(x)-hgt(x) mod (x" — 1) € F,[x]/(x" —1). This problem can be viewed as a
generalization of the CF Problem, which involves finding a binary vector ¢ € F} of fixed weight |c| = t that
satisfies the equation ¢ - HT = 0, where H € F,*™" is a parity-check matrix. In the QC-MDPC scheme, the
QC structure ensures that the private key is composed of two cyclic polynomials hy(x) and hq(x), each of
degree r and low weight w/2, such that the relation hy(x) + ho(x) - h(x) = 0 mod (x" — 1) holds.

Meanwhile, the QCSD Problem is an extension of the SD Problem into the domain of cyclic
polynomials. In its general form, the SD Problem seeks an error vector e € F} of limited weight that satisfies
the syndrome equation s = e - HT. Within the context of QC-MDPC, the error is represented as a pair of
polynomials (eg, e;) that satisfy eg(x) + e;(x) - h(x) mod (x" — 1) = s(x), where h(x) is constructed
from sparse polynomials hy(x) and h;(x) with the relation h(x) = hy(x) - hg' (x) mod (x” — 1). This
replaces the role of the matrix H in the QC structure. Consequently, the relationship between SD and QCSD
can be expressed as:

eo(x) + €1 (x) - h(x) = s(x),
= () +e1() - (ha () - hg*(x)) = s(x),
= eo(x) - ho(x) + 1 (x) - hy(x) = s(x) - ho(x). (1)

The Eq. (1) shows the QCSD formulation using the polynomial representation. Equivalently, when expressed
in matrix-vector form, the relation is given in Eq. (2):

eo'H0+el'H1:S'H0, (2)

where e, and e; are binary vectors corresponding to the error polynomials, and Hy, H; are circulant matrices
derived from hy(x) and hq(x).
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This relation is simply the expansion of the vector—matrix multiplication, expressed in block-matrix form as
follows:

e () =5
€0, €1 Hl =S 0"
e‘HT:S'Ho.

the value s - Hy is computed using cq - Hy where ¢o(x) = s(x) = eg(x) + e;(x) - h(x), such thats - Hy =
Co-Hy = e - HT. To demonstrate the equivalence between Eqs. (1) and (2) namely that eq(x) - ho(x) +
e;(x) - hy(x) =ey-Hy+ ey - Hy, let us assume ho(x) = hgg+ hoX + -+ hor—1x"" 1 and ey(x) =
€0 + €0 1% + -+ €g r_1x" "1 both elements of F,[x]/(x" — 1). The circulant matrix H, derived from the
coefficients of the polynomial h is defined as follows:

hoo  hox - hor-1
HO — hO,T—l h(?,o hO,T—Z )
hop  hoz *  hopo
the product eq(x) - ho(x) mod x™ — 1 can be expressed as ey (x) - ho(x) = Xh2b i x* = cox® + cpxt +

Cyx?% + -+ + ¢p_1x" "1, where the coefficients ¢, calculated using Fq. (3):
r-1
Cx = Z €o,i * ho,(k—i) modr — e0,0hO,(k—O) mod r T eo,lho,(k—l)mod rtot eo,r—lho_(k_(r_l))mod ~(3)
i=0
the multiplication eq - Hy yields a vector ¢ = (cg, ¢y, ..., Cy—1), Where each ¢, for k =0,1,..,7r —1is
computed using Eq. (4):
r—1
= Z eo,i - (Ho)ik = €0,0(Ho)ok + €01 (Ho)1k + €02(Ho)zk + -+ + €0r—1(Ho)r-1k 4)
i=0
due to the circulant property of Hy, every element at position (i, k) satisfies (Ho);x = ho,(k—i) mod r» hence
cr = 2iZg €oi(Ho)ik = Xico €0 ho(k-i) mod r- Therefore, from Eqs. (3) and (4) it is evident that ¢, = ¢,
which confirms the equality between Eqs. (1) and (2), i.e., eg(x) - ho(x) + e1(x) - hi(x) = ey -Hy + €1 -
H;.
In the OW-QCCFP scheme, the adversary A is given an instance h € H,,, where h(x) = hy(x)hg1(x).
The adversary then attempts to compute a preimage using only h, i.e., it evaluates A(h) = A(hyhgt) by
searching for polynomials h;'(x) and h;'(x) such that h(x) = h;'(x)hg ~1(x). After producing a candidate,
the QCCEF verification algorithm checks whether the adversary’s output is a valid solution, namely whether
it satisfies hq (x) + ho(x)h(x) = 0.

poly_add(a, b):

ERMINAL

als: 1.0000

= 000 000010
= 0000100010010

= 1010101111110
= 0011101111006

0100010010000
1101010101111
0011101111000

als: 1.0000
8192/8192

= 1.0000
Running QCCF Attack finished in 178.21 seconc

Figure 4. Experimental Evaluation of the OW-QCCF Scheme under Small Parameter Settings
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As an illustration, Fig. 4 reports the outcome of OW-QCCF scheme carried out with the small
parameter 7 = 13 over 213 trials. The experiment yields Advggvcp (A) = 1, indicating that the adversary A
can invert the public-key h = h;hy! and recover (hg, h;y) by brute force. This is attributable to the small
choice of r, which keeps the number of candidate key pairs sufficiently and makes a full search feasible.

For comparison, the simulation in Fig. 4 with 7 = 13 and 213 trials take about 178.21 s to execute. If
we adopt the NIST Level-1 parameter r = 12323, the number of trials scales to 212323, Under the same
exponential time model, the estimated runtime becomes T(12323) = 178.21 x 212310 Converting to base-
10 using log;((212319) = 12310 X log,0(2) ~ 12310 x 0,30103 =~ 3706,6. So, estimate is
T(12323) = 178.21 x 10379665 This estimate is astronomically beyond any realistic computational
budget (the age of the universe is only 4.35 x 10%7s). Hence, with the standard parameter level 1 r = 12323,
BIKE is computationally secure against brute force. An analogous observation holds for the OW-QCSDP

experiment under small parameters, where the simulation also attains AdvggvsD 4) =1

In the IND-QCCDP scheme, D receives a value h, but the source of this value can originate from two
possibilities, namely the value derived from QCCF: h(x) = hy(x)hy1(x), with (hg, hy) <$— H,,, or arandom
value drawn from the distribution: h <$— Roaaq- Subsequently, D analyzes the pattern or structure within h and
attempts to determine whether the value originates from the computation h,hy* with (hg, hy) <$— H,, or from

$
h « Ryqq. After obtaining the result, the IND-QCCF algorithm evaluates how effectively D distinguishes
between the two distributions. The simulation results of the IND-QCCF attack using small parameters,
specifically r = 13, with a total number of 213 trials, are presented in Table 3.

Table 3. Experimental Evaluation of the IND-QCCF Scheme under Small Parameter Settings

Trial Distribution h hg hy hyt h D(h)
1 QCCF 0001000100100 0000100100010 1001110011010 1110111110100 0
2 Random - - - 1011011001000 1
3 QCCF 0100000000101 0001100000001 1111001111001 0100011011011 1
4 Random - - - 1110011001110 0
5 QCCF 0100000100100 0001100010000 1100111001010 0011111111100 0
6 Random - - - 0000100011110 0
7 QCCF 0001000101000 0000001011000 0110011111000 0110010111001 1
8 Random - - - 0010101011111 0
9 QCCF 0000001001100 0110100000000 1001101111000 1110001010101 1
10 Random - - - 0100110100100 0

8192 Random - - - 1100010000100 0

Given the input hg and h; chosen such that each has a Hamming weight of |hy| = |h¢| = 3, the
estimated Hamming weight of h = hyhy! is 7/2 = 13/2, which lies between the values |h| = 6 or || = 7.
This simulation employs a method to check whether the value h generated from the QCCF construction tends
to exhibit a specific structural pattern compared to random polynomials, classified according to the criteria:

1. Ifthe Hamming weight of h lies within the range [%, Tzi] = [6,7], then D outputs the value 1.

2. Ifthe Hamming weight of h lies outside this range, then D outputs the value 0.
The interpretation of the output value D (h) can be described as follows:

1. Value 1: The adversary D infers that h originates from the QCCF construction.
2. Value 0: The adversary D infers that h is a random element from R, ;4.

The adversary’s advantage in distinguishing between the two distributions is calculated using the formula:
[Pr{D(h = hyh5") = 1] = Pr[D(h ~ Roaq) = 1]|
Hence, based on the experimental results in Table 3, we obtain:
Pr[D(h = hyhy!) = 1] = 0.22 and Pr[D(h ~ Rpaq) = 1] = 0.20
thus Advoces(D) = 0.22 — 0.20] = 0.02.
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The value AdVgC%F(D) = 0.02 indicates that adversary D is unable to effectively distinguish between

elements generated from the construction (hg, hy) <$— H,, and elements h <$— R ,qq- This limitation arises from
the distinguishing assumption employed, which relies solely on the Hamming weight, and is proven
insufficient to exploit structural distribution differences in the QCCF scheme. A similar result is observed in
the case of IND-QCSD, where adversary D likewise fails to distinguish effectively between elements derived

$ $
from (h, (eo, el)) « Roaa X & and those sampled from (h, s) < Rygq X Rp(e).-

The QCCF and QCSD problems, as presented in Table 2 and the preceding evaluation, constitute the
primary security assumptions of the BIKE scheme. To date, no classical or quantum algorithms have been
able to solve these problems efficiently. Consequently, the security of BIKE relies on the computational
hardness of QCCF and QCSD, which are implemented through the Niederreiter framework and the FO¥
transformation.

3.3 Construction Based on the BIKE Scheme Framework

The BIKE scheme is constructed based on the Niederreiter framework and the FO¥ transformation, as
illustrated in Fig. 2. These two constructions form the foundational structure for the parameter setup, key
generation, encapsulation, and decapsulation processes employed in the BIKE, as specified in Table 1,
Algorithms 1, 2 and 3.

The Niederreiter framework is an approach that utilizes the dual code of the McEliece cryptosystem
[15]. In the McEliece scheme, a message m is encrypted by multiplying it with a generator matrix G and
adding an error vector e, resulting in the ciphertext c =m - G + e [8], [14]. In contrast, the Niederreiter
scheme performs encryption by multiplying a random binary vector x with a parity-check matrix H,
producing the ciphertext ¢ = H - xT [8]. Both schemes are related through the use of linear codes satisfying
the orthogonality condition G - HT = 0, establishing Niederreiter as the dual of McEliece [17]. This duality
provides a foundation for BIKE’s key and ciphertext construction, which is then adapted to enhance
efficiency and security.

Within the Niederreiter framework, BIKE v5.2 uses sparse polynomials for private keys, compresses
the public key into a single polynomial, and constructs ciphertexts from a syndrome combined with an
obfuscated hash. Decoding is performed using the BIKE-Flip algorithm, which refines bit-flipping with a
dynamic threshold to improve accuracy and reduce predictable failure patterns. The rationale behind the
BIKE parameter design based on The Niederreiter framework is grounded in several critical considerations.
which are further explained below.

The private key consists of two sparse polynomials, (hy(x), h1(x)) generated using the FY-CWW
algorithm with a uniform variant. A detailed explanation of the FY-CWW algorithm can be found in [4]. The
uniform distribution ensures that all possible keys have an equal probability of being selected. In this context,
variable execution time is acceptable, as key generation is performed only once and does not influence the
runtime behavior observable by an attacker. The polynomials hy and h; must possess fixed weight and
random distribution. When h, and h; have fixed weights and are randomly distributed, the resulting public
key h and the codeword ¢ will also be randomly distributed. Consequently, the derived syndrome s follows
a uniform distribution, making it difficult for adversaries to predict. In contrast, if hy and hq lack fixed
weights or exhibit non-random distributions, the resulting h will exhibit certain patterns, leading to patterned
¢, which in turn results in a predictable s. Such predictability opens up the possibility for exploitation attacks
on the underlying structure. Each polynomial has a weight of w/2, so their combined weight satisfies |hq| +
|h1| = w. Equal weighting between h, and h; is crucial for maintaining a balanced syndrome distribution
during the decoding process. In this system, the parity-check matrix is defined as H = [H, | H;]. When a
codeword vector ¢ is multiplied with H, it produces s = ¢ - H. For the bits in s to be uniformly distributed,
the weights of hy and h; must be equal. Any imbalance in weight may lead to a non-uniform syndrome
distribution, potentially degrading the performance of the decoding algorithm and increasing the likelihood
of errors in code correction. Furthermore, hy(x) and h;(x) must have a maximum degree less than r, where
r € P is a prime number satisfying ord,(2) = r — 1, ensuring that 2 is a primitive element modulo r. This
design prevents non-trivial factors in FF,. If r is prime, x” — 1 has only trivial factors, reducing the risk of
algebraic attacks. Additionally, the sparse structure of hy and h; ensures a low density, minimizing the
number of required operations and helping maintain a low DFR.
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The public key h(x) in BIKE is defined as h(x) = hy(x) - hy*(x). Storing only a single polynomial
h(x) instead of the pair (hg, h;) reduces the public key size, optimizing storage and transmission. Since
ho(x) is a binary cyclic polynomial over F,, computing hg*(x) without knowing hy(x) is computationally
infeasible, making it difficult for an attacker to recover hy(x) or hy(x) from h(x) independently.

The ciphertext in BIKE consists of two components: ¢cy(x) = eg(x) + e1(x) - h(x) and ¢, =m P
L(eg, e1). The computation of ey (x) + e;(x) - h(x) forms a syndrome as described in Table 2, directly used
as the ciphertext component ¢y, which the BIKE-Flip decoder processes without reconstructing the error
vector. This contrasts with the McEliece scheme, where the ciphertext c = m - G + z explicitly stores the
error vector z, increasing the ciphertext size by the codeword length n. McEliece decryption also involves
computing the permutation matrix inverse P~1, multiplying it with ¢, and then passing it to the decoder,
adding complexity. In contrast, BIKE only requires multiplication with hy before decoding, avoiding matrix
inversion and large matrix multiplications. By storing only the syndrome in the ciphertext, BIKE achieves
smaller ciphertext size and faster decapsulation compared to McEliece. The second ciphertext component,
c1, is obtained by XORing the plaintext m with the hash of L(ey, e;), adding an additional layer of masking
to m. This prevents adversaries from directly extracting m from the ciphertext without recovering e, and eq,
enhancing message security.

The decoder in BIKE, known as BIKE-Flip, employs a bit-flipping method that is more efficient for
QC-MDPC codes than list-decoding or information set decoding (ISD). Bit-flipping exploits the sparsity of
the code structure, whereas ISD relies on brute-force guessing of error-free bit subsets, which scales
exponentially with the number of errors t as 2¢. List-decoding, which seeks all codewords within a certain
distance, is also inefficient for sparse codes. Since QC-MDPC codes have a sparse parity-check matrix with
only w = v/n elements set to one, each bit-flipping iteration requires roughly O (v/n) time, making it a faster
and more practical approach for large QC-MDPC codes.

This bit-flipping strategy is further refined in BIKE-Flip, the decoder BIKE-Flip is used in BIKE v5.2,
which is superior to the decoder used in BIKEvS5.1, namely Black-Gray-Flip (BGF). BIKE-Flip has
advantages over BGF in terms of structure and operational mechanism. BIKE-Flip uses 7 iterations, whereas
BGF uses 5 iterations. BGF utilizes the BFMaskedlIter and BFIter procedures with masking, while BIKE-Flip
only employs BFIter without masking. In addition, BGF uses a fixed threshold, whereas BIKE-Flip applies
a dynamic threshold. Computationally, BGF is more complex due to its two procedures and masking, while
BIKE-Flip is simpler. As shown in Fig. 4, experimental results indicate that BIKE-Flip achieves faster
execution time despite requiring more iterations. This improvement is attributed to the elimination of the
BFMaskedlter procedure and the masking mechanism in BIKE-Flip, thereby relying only on BFIter, which
has proven to be more efficient in terms of execution time. Furthermore, as illustrated in Fig. 5, BIKE-Flip
demonstrates lower memory consumption compared to BGF. This is because BIKE-Flip does not require the
masking mechanism nor the storage of masking values. Instead, BIKE-Flip leverages a more efficient
threshold computation.

e BGF-Time
A BIKE-Flip - Time

Execution Time (s)

80
Triaj 100 BGF

Figure 5. Execution Time Comparison of BIKE-Flip and BGF
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Figure 6. Memory Usage Comparison of BIKE-Flip and BGF

A dynamic threshold is used to improve decoding success. BGF applies a constant threshold at each
iteration, which may lead to errors due to propagation from previous iterations, making decoding failure
patterns more predictable. As a solution, BIKE-Flip applies a dynamic threshold dependent on the initial
syndrome weight S, the current syndrome weight S, and the iteration i. The dynamic threshold is updated in
each iteration to reduce the probability of unnecessary flipping.

In the first iteration, the threshold is defined as T (Sy) = f;(Sg) + &, where the threshold is set higher

to allow for the correction of more errors. In the second iteration, the threshold becomes T, (Sy) = %(2 .

ft (So) + %) + 6, decreasing gradually to balance bit flipping and decoding stability. In the third iteration,

the threshold is expressed as T5(Sg) = é( fe(So) + 2+ %) + &, approaching the minimum value to adjust to

. . . . . d .
the remaining syndrome. For iterations i = 4, the threshold stabilizes at T;(Sy) = %1 + 4§, corresponding to

the average syndrome weight since most errors have been corrected.

A higher threshold in the first iteration allows for the correction of more errors. As the threshold value
increases in the following iterations, the decoding failure pattern becomes smaller, reducing the possibility
of exploitation by an attacker. Further explanation of BIKE-Flip can be found in [4], and the previous decoder
is discussed in [15].

The application of the Niederreiter framework in BIKE v5.2 enables the construction of a
mathematically structured and efficient code-based cryptographic system. The private key consists of a pair
of sparse polynomials with fixed weight and random distribution, ensuring a well-balanced and unpredictable
syndrome distribution. The public key is compressed into a single polynomial via inversion, reducing storage
requirements while concealing the internal structure. The ciphertext comprises a syndrome resulting from a
linear combination of the error vector and the public key, along with an obfuscated hash value, effectively
protecting the message from direct ciphertext attacks. The BIKE-Flip decoder employed in this version adopts
a dynamic threshold to control the bit-flipping process at each iteration, leading to improved error correction
accuracy and reducing the risk of error-pattern exploitation. Through a combination of secure key design,
compact ciphertext, and adaptive decoding, BIKE v5.2 demonstrates reliable efficiency, making it a relevant
candidate for post-quantum, code-based cryptographic solutions.

Despite leveraging QC-MDPC codes, BIKE exhibits limitations in resisting IND-CCA attacks. The
Niederreiter framework lacks intrinsic mechanisms to protect the ciphertext from tampering by adversaries
[18]. In such attacks, an adversary may alter the ciphertext and glean information about the private key. To
address this vulnerability, BIKE incorporates the FO¥ transformation, which serves to strengthen security
and provide additional protection.

The FO¥ transformation, developed by Fujisaki and Okamoto, is designed to enhance the security of
public-key encryption schemes by converting an IND-CPA-secure encryption scheme into a KEM resistant
to IND-CCA attacks [9]. With FO¥, even if an adversary is able to submit modified ciphertexts and observe
the decryption outputs, they are unable to derive any information about the private key or the plaintext. The
integration of FOY into BIKE ensures that the scheme is not only efficient in terms of key generation,
encapsulation, and decapsulation but also more resilient against IND-CCA attacks, reaction attacks, and
multi-target key attacks [4].
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This enhancement is further reinforced in the BIKE scheme with FOY, the error vector (eg,e;) is
computed using the formula (e, e;) = H(m, 1), where u = m;(h) is the portion of the public key h used for
binding. Specifically, the function m; (h) refers to taking the first 256 bits of the public key h. Without binding
to h, such that (ey, e;) = H(m), the hash function output depends solely on m. In this case, an attacker could
precompute a list of (eg, e;) for various values of m, making a multi-target key attack possible, as the same
set of (eg, 1) could be used for different values of h. A detailed explanation of the multi-target key attack is
available in [19]. Conversely, when binding to h by computing (eg, e;) = H(m, i), the hash result becomes
unique for each h, as ;(h) # m;(h") when h # h'. As aresult, attackers cannot reuse the same set of (ey, e;)
across different values of h. The error vector (e, e;) is generated using the FY-CWW algorithm with a fixed-
time variant to eliminate the possibility of timing attacks. In contrast, the private key polynomials (hg, h{)
are generated using a uniform variant. A detailed explanation of timing attacks can be found in [20].

The output of the BIKE scheme is a shared key that will be used as the secret key between the sender
and the receiver. This shared key K plays a crucial role in ensuring the security of the key exchange process.
The value of K is determined based on the result of the decryption process of the received ciphertext c. If
decoding succeeds, KKK is derived from m'm'm’ and c ; if decoding fails, K is derived from the fallback
value ¢ and c. The rule is defined as follows:

K = {K(m’, c), ifdecoding succeeds,
“ |K(o,¢), ifdecoding fails.

where o is a fallback value, random and independent of the ciphertext, ensuring the shared key output is
always produced and attackers cannot distinguish whether the shared key originates from a valid decoded
m' or from the . Without a fallback mechanism, the hash function output K could be observed by attackers,
potentially revealing information about the private key and enabling reaction attacks. Explanation of reaction
attacks can be found in [20].

The hash function H in BIKE uses FY-CWW with SHAKE256 to produce constant-weight vectors.
SHAKE256 is based on Keccak, which has been verified by NIST as a secure hash function [21]. SHAKE256
offers the advantage of producing variable-length outputs as needed, avoiding the repeated hashing required
in SHA-256 or SHA-384. FY-CWW ensures that exactly w bits in the vector are always set to “1”, which is
necessary to maintain a fixed distribution and prevent decoding errors during error recovery. Without FY -
CWW, the distribution of “1” bits in the vector becomes unpredictable, leading to more frequent decoding
failures.

In addition, the hash function K uses SHA-384 to generate the shared key in communication sessions.
The explanation is as follows: SHA-384 has been verified by NIST and meets the criteria for secure hash
functions, ensuring that the shared key cannot be predicted and attackers cannot reconstruct the input from
the hash output. Explanation of SHA-384 can be found in [21]. SHA-384 is chosen because it offers a balance
between security and efficiency in modern cryptographic schemes. With a 384-bit output size, it provides a
higher security level than SHA-256 but with less overhead than SHA-512. The hash function K is used to
generate the final shared key to be used in communication. If the pre-image resistance of K is weak, attackers
could attempt to reverse the hashing process to obtain the plaintext m or ciphertext ¢, which could lead to
attacks on the KEM scheme.

Complementing this, the hash function L also uses SHA-384 but serves a different purpose than K.
While K is used to generate the final shared key in a communication session, L functions in the key derivation
process to produce intermediate values that support the overall security of the scheme. The key difference
between L and K lies in the type of input processed and their respective roles in the scheme. The hash function
L does not directly produce the shared key, but rather ensures the integrity and security of intermediate values
during key derivation. Therefore, besides pre-image resistance, L must also have strong second pre-image
resistance to prevent other inputs from producing the same hash. If second pre-image resistance is weak, there
is a risk that intermediate values can be forged or predicted, potentially compromising the security of the
scheme. With its security properties verified by NIST, SHA-384 ensures that K and L are strongly protected
against cryptographic attacks, making it a suitable choice for the BIKE scheme. Explanation of the security
properties of hash functions: pre-image resistance, second pre-image resistance, and collision resistance, can
be found in [1].

The BIKE scheme is designed based on the Niederreiter construction and the FO¥ transformation to
establish an efficient and attack-resistant KEM. By leveraging QC-MDPC codes within the Niederreiter
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framework characterized by sparse structure and fixed weight BIKE enables the efficient generation of public
and private keys, reduces ciphertext size, and accelerates decoding through the BIKE-Flip algorithm with a
dynamic threshold. The FO¥ transformation enhances security against IND-CCA, reaction attacks, and multi-
target key attacks through the use of binding and fallback mechanisms, as well as the integration of secure
hash algorithms such as SHAKE256 and SHA-384.

4. CONCLUSION

This study demonstrates that BIKE v5.2, constructed through the integration of QC-MDPC code
structures, the Niederreiter framework, and the FO¥ transformation, successfully forms an efficient, secure,
and relevant KEM for post-quantum cryptography. Through mathematical analysis, this research confirms its
strong security foundation and resilience against both classical and quantum attacks. The findings of this
study can be summarized as follows:

1. The BIKE-Flip decoder with dynamic threshold enhances stability, reduces predictable failure
patterns, and improves efficiency.

2. NIST-recommended parameters make brute-force attacks computationally infeasible, confirming
BIKE’s mathematical validity.

3. Efficient key and ciphertext design, along with fallback and secure hash functions, mitigates
multi-target and reaction attacks.

4. Despite DFR instability, BIKE remains efficient and secure; this risk can be managed through
parameter tuning and fallback mechanisms.

Although BIKE was not selected for NIST standardization, it continues to stand as a strong and relevant
candidate for post-quantum cryptography. Future research should focus on improving decoder stability,
refining parameter strategies, and exploring integration into hybrid PQC frameworks to ensure practical
deployment.
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