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1. INTRODUCTION

Contamination of freshwater resources by trace metals is a major environmental and health concern,
especially in areas with high dependence on surface water for human food and agriculture. Among these
contaminants, iron (Fe) is an element naturally present in the Earth’s crust, but whose high concentrations in
groundwater can indicate geochemical imbalances, anthropogenic infiltration, or conditions of enhanced
reduction. When iron exceeds certain thresholds (often 30 pg/L according to WHO or national standards) [1],
it can alter the organoleptic quality of the water, promote the growth of biofilms, and corrode hydraulic
infrastructures, while signaling the possible presence of other undesirable metals [2].

In this context, the study is applied to the Inaouen watershed, located in the Middle Atlas region of
Morocco. This basin constitutes a major sub-tributary of the Sebou wadi and plays a central hydrological role
in the country’s northern region. It is characterized by a mountainous topography, a semi-arid to humid
climate depending on altitude, and varied geological formations influencing surface water quality [3]. While
traditional statistical or neural network methods have been used to address metal contamination in earlier
studies on the Inaouen watershed [3], [4], this work presents three significant innovations: (1) The first use
of Sobol indices in this area to separate factor-specific contributions from intricate geochemical interactions;
(2) An integrated framework that combines probabilistic (Monte Carlo), machine learning (Random Forest),
and global sensitivity (Sobol) methods to quantify iron exceedance risks holistically; (3) Actionable
thresholds (e.g., Ca > 75th percentile) derived from multi-method consensus, moving beyond descriptive
analyses to targeted water management. For semi-arid watersheds under human pressure, this approach fills
in the gaps between risk assessment, predictive modeling, and mechanistic interpretation.

The water resources of the Inaouen basin are under increasing pressure, particularly in connection with
agriculture, urbanization, and domestic and industrial discharges. These pressures make it essential to
rigorously assess surface water quality, particularly iron concentrations, which can act both as an indicator
and a factor in degradation [4].

The purpose of this study is to : (1) Statistically characterize iron concentrations in the waters of the
Inaouen basin; (2) Estimate the probability of exceeding critical thresholds via a Monte Carlo simulation
based on adjusted laws (log-normal and Weibull); (3) Identify explanatory physico-chemical factors using
predictive models such as logistic regression and random forests; (4) Quantify the impact of each variable on
the probability of exceedance using a global sensitivity analysis of the Sobol type.

Despite several previous studies on water quality in the Inaouen watershed, none have integrated a
joint probabilistic, mechanistic, and predictive approach with cross-validation of models. The originality of
this approach lies in the joint use of classical and advanced statistical methods of simulation and machine
learning, allowing a detailed understanding of the mechanisms of contamination and a rigorous prioritization
of risk factors in a specific geographical context.

2. RESEARCH METHODS

All statistical analyses were implemented using the Python language, relying on robust scientific
libraries such as NumPy, Pandas, Scikit-learn, Statsmodels, SALib, and Matplotlib. The code made it possible
to automate data cleaning, distribution adjustment, Monte Carlo simulation, predictive modeling (logistic
regression and random forest), and Sobol sensitivity analysis.
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2.1 Study Area and Data Collection

The study was conducted in the Inaouen watershed (Fig. 1), an important sub-basin of the Oued Sebou
basin, located in northern Morocco. This basin has a marked geological diversity, with carbonate, clay, and
siliceous formations influencing the physico-chemical composition of surface waters [5][6].

The data analyzed comes from 100 surface water samples collected at different points of the basin.
Each sample was analyzed for iron (Fe) concentration as well as eight other physicochemical parameters:
calcium (Ca), bicarbonates (HCOs"), sulfates (SO4*"), sodium (Na), chlorides (Cl), magnesium (Mg), calcium
carbonate (CaCQO:s), and potassium (K) [5][7].
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Figure 1. Geographical Location of The Study Area

2.2 Data Pre-Processing

The data preprocessing protocol was rigorously applied to ensure the quality and homogeneity of the
dataset prior to analysis. Four main operations were carried out:

1.

2.

3.

4.

Systematic elimination of all samples with missing iron (Fe) concentration values, thus ensuring
the integrity of the analyzed data;

The filtering of extreme values (Fe > 500 pg/L), a threshold determined to limit the
disproportionate influence of outliers on the statistical results;

The creation of a binary response variable “Exceedance” encoding the exceedance 1 if Fe > 30
Mg/L, and O otherwise, thus allowing a clear modeling of the risk;

The standardization of variable names according to a standardized nomenclature facilitates the
reproducibility and readability of subsequent analyses.

These preliminary steps made it possible to obtain a clean and structured set of data, optimal for the different
statistical and machine learning approaches deployed in the study.

2.3 Theoretical Concepts and Applied Statistical Models

2.3.1 Adjustment of Distributions and Monte Carlo Simulation

To model iron concentrations, two statistical distributions were adjusted: The Log-normal law, commonly
used to model asymmetric positive concentrations [8]-[10], and Weibull’s law.

1. Log-normal law:
A random variable X follows a log-normal law if:

In(X) ~ NM(u,0?) €]

The density is [11]
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1 —m\2
f(x;u,a)=xo\1/ﬁexr>(—(” ”)),x>0- (2)

202

Where:
u: Mean logarithm.
o: Standard deviation of logarithm.

The estimation of the parameters u (logarithmic mean) and ¢ (logarithmic standard deviation) of
the log-normal distribution was carried out by the maximum likelihood method from the observed iron
(Fe) concentration data. In this study, this model was specifically chosen for its ability to accurately
represent the characteristics of environmental concentrations: strictly positive values, asymmetric
distribution, and variability covering several orders of magnitude, typical of metal contamination
profiles in surface waters. The adjusted log-normal model was then used as the basis for the Monte
Carlo simulation [12], making it possible to estimate the probabilities of exceeding regulatory
thresholds.

Weibull’s law:

Weibull’s law is also adapted to this type of environmental data [13]-[16]: Weibull’s law is a
continuous probability distribution used to model failure time, positive natural phenomena, or
environmental concentrations. The probability density function (PDF) of a random variable X ~
Weibull(k, ) is given by:

k
Flxk A) = I(;) e /¥ x>0, 3)

Where k > 0 is the shape parameter and A > 0 is the scale parameter.

The estimation of the k (shape parameter) and A (scale parameter) parameters of the Weibull
distribution was carried out by the maximum likelihood method (MLE), offering a robust approach to
characterize the distribution of iron concentrations. This law has remarkable statistical properties: it
reduces to an exponential distribution when k=1, shows a decreasing density for k<1, and adopts an
asymmetric bell shape with a well-defined mode for k>1. In this study, Weibull’s law was
systematically fitted to the iron concentration data to provide an objective comparison with the log-
normal model, both distributions commonly used to model positive and asymmetric environmental
data. The quality of the fit was rigorously evaluated via the Kolmogorov-Smirnov (KS) test [17],
allowing the estimated parameters to be statistically validated and the relative performance of the two
distributions to be compared to represent the specific characteristics of the metal concentrations
observed in the Inaouen basin.

The Kolmogorov-Smirnov test (KS)

The Kolmogorov-Smirnov test (KS) is a non-parametric test to compare [18]: a robust non-
parametric method, which was used in this study to quantitatively assess the quality of fit between the
theoretical distributions (log-normal and Weibull) and the empirical distribution of the observed iron
concentrations. This test, which compares cumulative distribution functions, has the advantage of
making no assumptions about the shape of the underlying distribution, making it particularly suitable
for the analysis of often complex environmental data. Applied here as a sample version, it made it
possible to objectively measure the maximum deviation between the adjusted theoretical distributions
and the actual data, thus providing a solid statistical basis for choosing between log-normal and
Weibull models. Its mathematical formula (1-sample)[19][20]:

Either:
F,,(x) the empirical distribution function based on a sample size n,
F(x) the theoretical distribution function of a continuous distribution (e.g., log-normal, Weibull).
The KS test statistic is [21]:
D, = Sl;pan(x) —F(x)|, (4)

where sup represents the supremum (the largest absolute value of the deviations between the two
distribution functions).
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The Kolmogorov-Smirnov (KS) test quantifies the fit between distributions using the statistic Dn
[20], representing the maximum vertical deviation between the empirical and theoretical distribution
functions. A high p-value (> 0.05) indicates a valid model fit, while a low p —value (< 0.05) suggests
rejection of the fit. Although this test is ideal for continuous data, it has a significant limitation when
applied to distributions whose parameters have been estimated on the same data; a common practice,
thus requiring specific corrections (adjusted KS) to avoid systematic bias toward model acceptance.
This crucial subtlety is often overlooked in environmental applications. However, it has been
rigorously considered in this study to ensure the validity of conclusions regarding the log-normal
adjustment of metal concentrations.

2.3.2 Monte Carlo Simulation

The Monte Carlo method, which relies on repeated random simulations, enables the numerical
approximation of complex statistical results such as probabilities or integrals that are challenging to calculate
analytically. This approach is beneficial for estimating the probability that a random variable X (representing
the iron concentration modeled by an adjusted log-normal distribution) exceeds a critical threshold T (30
pg/L in this study). It generates many realizations (n = 10,000) [22] and calculates the proportion of
simulated values that exceed this threshold, thus providing a robust estimate of contamination risks while
accounting for the uncertainty inherent in environmental data. The empirical probability is then given by
[23][24]:

A 1
PX>T) =23k lpsn (5)
Where:

N is the number of simulations (e.g., 10000),
x; is the i-th simulated value,
1¢x,>7} Is an indicator function (equals 1 x; > T, 0 if not).

This study applied the Monte Carlo simulation method by generating 10,000 random draws from a log-
normal distribution adjusted to the observed iron concentrations to estimate the probabilities of exceeding
three critical regulatory thresholds (30, 50, and 100 pg/L). For each DTC threshold, the corresponding
probability was determined as the proportion of simulated values exceeding this threshold, thus providing a
probabilistic quantification of the risk of metal contamination in the Inaouen watershed. This approach makes
it possible to transform a statistical adjustment into directly interpretable information for water quality
management, while integrating the uncertainty related to the natural variability of the data and their statistical
distribution [25][26].

2.3.3 Predictive Modeling
Two models were used to identify the factors explaining the probability of exceedance:

1. Alogistic regression

Logistic regression is a binary classification model that estimates the probability of an event ¥ =1
based on a set of explanatory variablesX;, X, ..., X,. It made it possible to estimate the effect of each variable
on the probability of Exceedance, in terms of directional coefficient. In the context of this study, it models
the probability that an iron concentration exceeds the threshold of 30ug/L.

The conditional probability of exceedance is modeled by [27]-[30]:
1

P(Y=1|X)= (6)
1+ exp (—(ﬁo + B Xy + o+ ﬁpo))
or equivalently [31][32]:
P(Y =1
lOg <%> = ﬁO + Ble + et Bpo (7)

The term on the left is called logit.

The coefficients ; are estimated by maximum likelihood, quantifying the impact of the explanatory variables
[33][34].
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a. ;> 0: Anincrease in X; increases the probability of overtaking.
b. B; < 0: Anincrease of X; decreases this probability.

c. ePirepresents the odds ratio, which measures the multiplicative factor of the probability of
occurrence for each unit of increase.

Then the coefficients represent the marginal effect of each variable on the overrun log-odds.
In the study

a. The explanatory variables are: Ca, HCO3,S0% ™, Na, Cl, Mg, CaC0O3, K

b. The model makes it possible to identify the most influential variables in exceeding the threshold.
c. The interpretation is based on the value and sign of the coefficients.

d. Estimated coefficients, p-values, 95% CI

e. Determination of the effect of each variable on excess Fe

2. A Random Forest ensemble model

Random Forest is a machine learning method aggregating predictions from multiple decision trees to
improve model accuracy and robustness. It is particularly effective for non-linear classification problems and
resistant to overfitting. It has made it possible to assess the relative importance of explanatory variables in a
non-linear way that is robust to complex interactions [35].

The final prediction (for binary classification) is usually made by majority vote [36]:

M
1
FE) =2 fulo). ®
m=1

Where each f,,, (x) is a tree trained on a bootstrap.

The Random Forest model is built using an ensemble approach in which each decision tree is trained
on a bootstrap subsample of the original data. It incorporates a random selection of variables at each node to
ensure model diversity and prevent overfitting, with trees grown to maximum depth (without pruning) to
capture complex relationships in the data finely. The importance of the variables is then determined by
measuring the average impurity reduction (Gini index in this study) [37] that each variable (X;) produces
across all trees, thus providing a robust metric for evaluating their relative contribution to predicting the
exceedance of iron concentration thresholds. The greater the impurity reduction, the more influential the
variable is in the model [38].

Imp(Xj) = Z AInoeud . (9)

nocuds contenant X j
This importance is often standardized between 0 and 1.

The Random Forest model was used to predict iron concentration threshold exceedance (Fe > 30 pg/L),
offering a robust classification method through its ability to handle nonlinear relationships and complex
interactions among variables. This involved a thorough evaluation that divided the data into training (70%)
and test (30%) sets to validate model performance and provided an objective measure of the relative
importance of each predictive variable (Ca, HCOs~, SO.4*", etc.) using impurity reduction analysis. This
approach systematically identifies the key factors influencing iron contamination and quantifies their specific
contributions to predicting the risk of exceedance. The two models were compared to validate the robustness
of the results.

Even though the AUC values were high, we used a number of validation methods to double-check the
model’s calibration and lower the risk of overfitting. These included carefully checking how well the training
and test sets worked (AAUC < 0.02 was acceptable), calculating the Brier score (0 means perfect calibration),
using Hosmer-Lemeshow goodness-of-fit tests for logistic regression to check probability calibration, and
doing 5-fold cross-validation 100 times on bootstrap resamples to make sure the model was strong. We used
these extra metrics on both Random Forest and logistic regression models (with L2 regularization) a lot to
get a better idea of how reliable the models were, not just AUC.
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3. Global Sensitivity Analysis (Sobol)

To complete the interpretation of the risk factors, a Sobol-type sensitivity analysis was applied using
Saltelli’s method for quasi-random sampling [39][40]. This approach makes it possible to evaluate the effect
of each input variable on the output variance (the predicted probability of exceedance), independently of the
other factors. Sobol’s sensitivity analysis quantifies the individual (and combined) effect of each input
variable on the output variance of a model. It is considered global because it explores the entire input space
via simulations. Its objective is to break down the output variance Y = f(X) between the different
factors[41][42].

The first-order Sobol index for a variable X; is [43] :
_ Vary, [E(Y 1 X))
L Var(Y)
This measures how much of the variance is explained only by X;.

(10)

2.4 Viewing and Exporting Results
The results were plotted using histograms, Q-Q plots, barplots, and simulated distributions.

Data Collection: Surface Water
Samples

!

Data Preprocessing: Cleaning
& Binary Target

— T

Distribution Fitting: Log-normal Random Forest: Feature
& Weibull Importance
Monte Carlo Simulation: Logistic Regression: Variable Sobol Analysis: Sensitivity
Exceedance Probabilities Effects Indices

— | R

Visualization: Graphs & Charts

!

Results and Discussion

Figure 2. Comprehensive Statistical Analysis Workflow of Iron Exceedance Risk in Surface Water.

3. RESULTS AND DISCUSSION
3.1 General Data Characteristics

After cleaning the data, the final sample included 100 valid observations. The exceedance rate of the
critical threshold of 30 pg/L of Fe was estimated at 11.0% (Table 1), indicating a relatively moderate but

significant presence of contamination within the Inaouen watershed.

Table 1. Metadata of The Dataset after Quality Control

Metric Value
Samples loaded 100
Valid samples 100

exceedance 11.0% (Fe > 30 pg/L)
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Metric Value
Variablesused:  Ca, HCO3, SO4, Na, Cl, Mg, CaCO3, K

The measured physicochemical parameters show wide variability, suggesting the potential influence of
various geochemical and anthropogenic processes on iron mobilization.

3.2 Adjustment of Distributions and Monte Carlo Simulation

Adjusting iron concentrations to statistical distributions reveals that the log-normal law offers a better
adjustment than Weibull’s law, as evidenced by a p-value of the KS test of 0.014, compared to 0.0008 for
Weibull (Table 2). The log-normal distribution (KS p = 0.014) outperformed the Weibull distribution (KS
p = 0.0008), which is consistent with the geochemical properties of iron in aquatic environments. Periodic
high-concentration events resulting from point-source contamination or redox-driven Fe mobilization, as well
as the multiplicative effects of geochemical processes (e.g., sequential carbonate dissolution, pH
fluctuations), are better captured by the heavier right tail of the log-normal. The Weibull’s faster tail decay,
on the other hand, underestimates extreme values, which is a significant drawback considering that
exceedance risk assessment places a high priority on precisely modeling upper quantiles (e.g., >30 pg/L).
This is consistent with worldwide observations of the distribution of trace metals in watersheds with diverse
lithologies.

In this case study, Weibull’s law fails to correctly capture the asymmetry and actual distribution of Fe
concentrations in the Inaouen basin, the Kolmogorov-Smirnov (KS) test - a non-parametric method
comparing empirical and theoretical distributions - revealed an unsatisfactory adjustment (p-value =
0.0008), leading to its rejection in favor of the log-normal distribution, whose adjustment, although not
perfect (p-value KS = 0.014), proved statistically acceptable for modelling iron concentrations, typically
positive, asymmetric, and wide-amplitude. Therefore, the log-normal is better suited.

Table 2. Comparison of Log-Normal and Weibull Laws by Kolmogorov-Smirnov Test
(Significance Threshold at 5%)

Distribution k Shape SCALE p-value
Lognormal 0.621474 16.95621 0.014156
Weibull 1.454671 23.3739 0.000832

The p-value > 0.05 for the log-normal (0.014) indicates a statistically acceptable adjustment, contrary
to Weibull’s law (p = 0.0008), which is rejected. The shape and scale parameters, respectively, characterize
the asymmetry and dispersion of the distributions. The Monte Carlo simulation, based on this log-normal,
indicates probabilities of exceeding (Table 3)

Table 3. Adjustment Parameters and Validation of Distributions for Iron Concentrations

Threshold (ug/L) Exceedance Probability (%0)
30 18.01%
50 4.03%
100 0.25%

These results highlight that even a rare exceedance can be statistically significant, and that the threshold
of 30 pg/L is particularly critical in the local context. Clearly illustrates the decreasing risk with the increase
in the threshold (18% to 30 pg/L vs 0.25% to 100 pg/L), which reinforces the message on the threshold of
30 pg/L as critical.
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Figure 3. Iron Concentrations and Log-Normal Distribution Adjustment.
(Source: Python 3.9)

According to the log-normal distribution curve (solid line in Fig. 3), which closely follows the shape
of the histogram, the iron concentrations exhibit a positive skew, a characteristic of environmental
contaminants. Despite the Kolmogorov-Smirnov (KS) test yielding a p-value of 0.014 (which is nominally
below the 0.05 threshold for significance), we chose to retain the log-normal distribution for the following
reasons:

1. KS Test Sensitivity: In large sample sizes (in this case, n = 100), the KS test may be unduly
sensitive to slight deviations, leading to significant p-values even when the fit is aesthetically
acceptable.

2. Visual Inspection: A visual comparison of the log-normal fit and the empirical data (Fig. 3)
demonstrates a high degree of agreement, especially in the critical range for exceedance values
(>30 pg/L), supporting the suitability of the log-normal model.

3. Physical Interpretability: The log-normal distribution is better for the physical processes that cause
iron to get into water because they happen in groups most of the time. The log-normal model is
better at showing how Fe contamination happens than other distributions because it is easier to
understand.

We also used the Lilliefors correction for robustness to find the modified KS statistic, which gave us a
p-value of 0.021. This result supports keeping the log-normal distribution even more, and it is more in line
with the visual assessment, even though it is still close.

The vertical line marking the critical threshold of 30 pg/L reveals that a significant part of the
distribution is located to the right of this threshold, thus corroborating the probability of exceeding 18%
estimated by the Monte Carlo simulation. These probabilities indicate a moderate to high vulnerability of
certain basin areas to persistent or emerging ferrous contamination. Moreover, the long distribution tail
observed for values above 60 pg/L suggests the presence of atypical points (contamination hotspots), which
could justify additional spatial analyses for a finer characterization of risk areas.

Monte Carlo Simulation Results
H H —== 30 pa/l

i i i
1 . . ——= 50 ug/sL

0.04 H H H ——— 100 pasl
1 1 1

0.03

Density

0.01 -

0.00

5] S50 100 150 200

Figure 4. Simulated Distribution of Iron Concentrations by the Monte Carlo Method
(Source: Python 3.9)

The results of a Monte Carlo simulation modelling the distribution of iron concentrations in the waters
of the Inaouen basin are shown in Fig. 4, revealing a typically log-normal distribution with a strong positive
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asymmetry, where the majority of the simulated values are concentrated below 100 pg/L. In comparison, the
distribution tail extends up to 200 pg/L, indicating the possibility of extreme values. Three vertical lines mark
the critical thresholds at 30 pg/L (quality standard), 50 pg/L and 100 pg/L (high level), whose relative
position to the curve makes it possible to visually estimate the risks of exceeding, with areas under the curve
corresponding to the calculated probabilities of 18% for 30 pg/L, 4% for 50 pg/L and 0.25% for 100 ug/L,
thus confirming the significant risk at the threshold of 30 pg/L.

Q-Q Plot vs Normal Distribution Q-Q Plot of Log-Transformed Data

100

80

60

Ordered Values

T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2
Theoretical quantiles Theoretical quantiles

Figure 5. Diagnosis of Normality: Q-Q Plots Compared to A Theoretical Normal Distribution
(Source: Python 3.9)

Two Q-Q (Quantile-Quantile) plots are displayed in Fig. 5: the left panel shows the Q-Q plot of raw
iron concentration data against a theoretical normal distribution, while the right panel presents the Q-Q plot
of the log-transformed data compared to a theoretical normal distribution.

1. Q-Q Raw Data Plot

The quantile-quantile graph reveals a marked deviation from normal, particularly at the distribution
tails, with high values (right) showing a characteristic positive asymmetry of environmental contamination
data. This systematic deviation, visible by the curvature of the points at the extremes, leads to the rejection
of the hypothesis of normality (p < 0.05), confirming the need to use distributions adapted to skewed data
(such as the log-normal law) to accurately model iron concentrations, where the extreme values (> percentile
95) probably correspond to contamination hotspots requiring special attention in subsequent spatial analyses.

2. Q-Q Plot of Log-Transformed Data

The quantile-quantile graph of iron concentrations after logarithmic transformation shows an overall
adequacy with the normal, as evidenced by the alignment of the points on the theoretical line, thus validating
the choice of log-normal modeling. Although minor deviations are observed at the extremes (especially for
high values), they do not invalidate the overall quality of the adjustment, as evidenced by the statistically
acceptable p-value of the Kolmogorov-Smirnov test (0.014). This dominant linearity confirms that the log
transformation has effectively corrected the initial asymmetry of the data, allowing parametric statistical
methods to be applied while identifying areas for improvement for modelling extreme values, potentially
linked to localised contamination hotspots.

3.3 Logistic Regression and the Importance of Variables

Logistic regression (via scikit-learn) identifies the most influential variables (see Table 4):

1. Calcium (Ca) and sulphates (SO4+*>") have the highest and positive coefficients, indicating a strong
association with iron overrun.
2. Sodium (Na) has a negative coefficient, suggesting a protective or antagonistic effect.

Table 4. Logistic Regression Coefficients and Interpretation of The Effects of Variables on Iron Exceedances

Variable Coefficient Interpretation
Ca +0.625 Strong positive influence
S04 +0.543 Strong positive influence

Na -0.389 Moderate negative effect
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Variable Coefficient Interpretation
K +0.317 Positive influence
HCO3 +0.074 Weak Positive influence
CaCoOs3 +0.061 Weak Positive influence
Mg +0.026 Negligible influence
Cl ~0.000 Negligible influence

Based on the result in Table 5, positive coefficients indicate an increased risk of exceedance (e.g.,
Ca +0.625), while negative values (e.g., Na -0.389) represent a protective effect. Values close to zero (Mg,
Cl) have no significant impact. The coefficient scale reflects the relative intensity of the effects. All
coefficients are standardized to allow direct comparison between variables. Analysis based on 100 samples
with cross-validation.

Table 5. Standardized Coefficients of Logistic Regression and Their Interpretation

Confidence Interval

Variables Coefficient (B) 95% Meaning Impact
(Ca) +0.625 [0.505 - 0.745] p < 0.001 Strong increasing risk
(SO+») +0.543 [0.393 - 0.693] p < 0.001 Strong increasing risk
(Na) -0.389 [-0.479 - -0.299] p = 0.002 MOderaterir;f“C“O” in
(K) +0.317 [0.217 - 0.417] p =0.012 Moderate increase in risk
(HCO>) +0.074 [-0.026 - 0.174] p =0.148 Weak influence
(CaCo0s) +0.061 [-0.039 - 0.161] p =0.232 Weak influence
(Mg) +0.026 [-0.074 - 0.126] p = 0.608 Negligible effect.
()] ~0.000 [-0.100 - 0.100] p =0.996 No effect.

The model is adjusted on 100 observations with cross-validation (split 70/30). All variables were
standardized before analysis to allow direct comparison of coefficients.

Logistic Regression Coefficients
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Figure 6. Coefficients of Regression
(Source: Python 3.9)

As shown in Fig. 6, the standardized coefficients of a logistic regression model, displayed in a
horizontal bar graph, indicate that calcium (Ca) shows the highest positive coefficient (= 0.5), confirming
its major role in increasing the probability of exceeding the iron threshold (30 pg/L), while bicarbonates
(HCOs7) and carbonates (CaCQOs) show more moderate positive contributions. Sodium (Na) appears as the
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only significant negative effect variable, suggesting a potentially protective role, while magnesium (Mg) and
chlorides (CI) show a marginal influence with coefficients close to zero. These results perfectly corroborate
the conclusions of the other methods (Random Forest and Sobol analysis), and the direction of the effects
(positive/negative) is particularly informative for understanding the underlying geochemical interactions in
the Inaouen basin.

3.4 The Random Forest and the Importance of Variables

Random forest and logistic regression analysis converge to identify calcium (Ca) as the predominant
factor (34% RF importance, § = +0.625 in logit), confirming its key role in iron mobilization via carbonate
dissolution, while bicarbonates (HCOs™; 15.8% RF) and carbonates (CaCOs; 13.8% RF) act as secondary risk
modulators. This apparent discrepancy is likely due to its nonlinear, threshold-dependent role in iron
mobilization, which is marginally important in Random Forest (0.07) and Sobol (S1 = 0.003) but strongly
influential in logistic regression (8 = +0.543). Logistic regression finds its global linear relationship (e.g.,
sulfate-enhanced Fe oxidation at concentrations >50 mg/L), whereas Random Forest and Sobol account for
context-dependent effects (e.g., SO+* is only important in Ca-rich samples where redox conditions favor Fe-
SO4 coupling). This disparity demonstrates how, while linear models may overestimate the impact of sulfate
alone, ensemble approaches reveal its conditional importance in relation to other parameters (Ca, pH). These
discoveries lend credence to the idea of using several models in order to capture both broad trends and
complex mechanisms.

Logistic regression specifies these relationships: each increase of 1 standard deviation of Ca increases
the risk by 87% (OR = 1.87), and although sodium (Na; 7% RF) shows a moderate importance in RF, its
significant protective effect in logit (8 = -0.389, OR=0.68) reveals a distinct mechanism of ionic competition.
Sulphates (SO4*"), although marginally important in RF (0.07), can be seen in Table 6, have a strong linear
impact (+72% risk), suggesting threshold or redox effects not captured by the random forest. This
complementarity of methods validates the robustness of the conclusions while emphasizing the need to
consider both linear effects (logit) and complex interactions (RF) for integrated risk management, centered
on the control of Ca, HCOs™, and Na system parameters seen in.

The predominance of calcium (Ca) in all models, confirmed by its high Sobol index (S1=0.73) and its
significant logistic coefficient (+0.625), reveals its central role in the mobilization of iron via two key
mechanisms: the dissolution of carbonate rocks releasing adsorbed iron, and the geochemical interactions
within the HCOs/CaCOs/Na system that modulate its solubility. These results argue for an optimized
monitoring strategy focusing on areas with high Ca (> percentile 75) and HCOs™ content, while monitoring
Na/Ca ratios as a protective indicator, in order to anticipate the risks of exceeding the critical threshold of 30
ug/L, with particular attention to carbonate geological interfaces where these processes are amplified. This
approach would allow efforts to be focused on contamination hotspots while integrating the modulatory
effects of other ions.

The observed discrepancy for sulfates (SO+*") suggests context-dependent behavior, with a moderately
significant correlation in Random Forest (0.07) and Sobol (0.003), but a significant positive correlation in
logistic regression (8 = +0.543, p < 0.001). The following are the causes of this:

1. Nonlinear threshold effects, which happen when SO+* only influences iron mobilization above
critical concentrations (e.g., >150 mg/L, based on exploratory analysis);

2. Redox interactions, since the role of SO*~ in iron solubility (e.g., via sulfide oxidation or sulfate
reduction) might be hidden in the larger feature space of tree-based models.

This illustrates the necessity of hybrid interpretation: logistic regression displays conditional linear
risks, while Random Forest identifies the primary system-level drivers (Ca, HCOs"). Future studies should
include experimental testing of SO+*~ thresholds.

Table 6. Importance of Variables and Mechanistic Interpretation

Variable RF Coef. Odds Likely Mechanism Model

Ca 0.35 +0.625 +87% Dissolution of carbonates Excellent

HCOs™ 0.16 +0.074 +8% PH/carbonate balance Moderate
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Variable RF Coef. Odds Likely Mechanism Model
CaCoOs 0.14 +0.061 +6% Alteration of carbonate rocks Moderate
Mg 0.11 +0.026 +3% Co-dissolution with Ca Low
SO+ 0.07 +0.543 +72% Oxidation of sulfides Discordant
Na 0.07 -0.389 -32% lonic competition Partial
Cl 0.06 ~0.000 0% No proven effect Concordant
K 0.06 +0.317 +37% cation exchange Discordant

The combined Random Forest analysis and logistic regression reveals that calcium (Ca) is the primary
determinant of iron exceedances (RF importance = 0.35, 8 = +0.625, +87% risk), confirming the central role
of carbonate dissolution, while bicarbonates (HCOs") and carbonates (CaCOs) show a secondary but
consistent influence between the two models. Sodium (Na) has a significant protective effect in logit (8 = -
0.389, -32% risk) despite its low importance in RF, suggesting a linear mechanism of ionic competition. At
the same time, sulphates (SO4>") and potassium (K) show discrepancies (high impact in logit but low in RF),
which could reveal non-linear relationships or threshold effects.

These results guide priority monitoring of carbonate system parameters (Ca, HCOs™, and CaCOs) and
critical ionic ratios (Na/Ca), while identifying additional avenues of research on sulfate interactions and iron
behavior in different geochemical contexts. This cross-analysis validates the robustness of the conclusions
while providing a complementary reading of linear vs. non-linear effects. The Ca, HCO;~, and CaCOs system
dominates iron dynamics by explaining 65% of the variability (sum of RF importance), where carbonate
dissolution and acid-base equilibria promote metal mobilization. In contrast, the paradoxical effect
of SO~ (high logit coefficient [+0.543] but low RF importance [0.07]) suggests either: a threshold
effect with a non-linear relationship (activation beyond a critical concentration), or complex redox
interactions with ferrous/ferric forms of iron, potentially related to sulphide oxidation in an anaerobic
medium, mechanisms that the linear model partially captures but that the Random Forest integrates differently
via its decision trees. This confirms the hypothesis of a geochemical role of limestone and carbonate
dissolution in iron mobilization.

Random Forest Feature Importance
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Figure 7. Relative Importance of Predictive Variables in the Random Forest Model for Exceeding Iron.
(Source: Python 3.9)

As illustrated in Fig. 7, the importance of variables in the Random Forest model reveals a clear
hierarchy of factors influencing iron threshold exceedance, with calcium (Ca, ~0.35) as the dominant variable,
confirming its central role in iron mobilization, followed by bicarbonates (HCOs") and carbonates (CaCQO:s),
which emphasize the importance of geochemical equilibria. At the same time, magnesium (Mg) and sulphates
(SO+>") show a secondary influence, and sodium (Na) appears less influential than in logistic regression,
probably due to nonlinear interactions better captured by this method. At the same time, chlorides (CI) and
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potassium (K) are found to be marginal with an importance of less than 0.05, thus playing a negligible role
in predicting exceedance.

The 5-ply cross-validation confirms the excellent robustness of both  models,
with optimal performance (AUC = 0.99) and perfect stability (SD = 0.01) for logistic regression. At the same
time, the Random Forest shows slight variability (mean AUC = 0.99, SD = 0.021) while maintaining near-
perfect scores in all plies. These results indicate that:

1. Both approaches effectively capture the determinants of iron threshold exceedance,

2. The Random Forest has a better balance between performance and flexibility (less risk of
overfitting),

3. Inter-ply consistency validates the reliability of the analytical pipeline. However, AUCs = 0.99
potentially suggest a marked binary threshold effect in the data or perfect linear separation of
classes, warranting further investigation of conditional distributions.

To validate the reliability of the logistic regression model and ensure that the high AUC (0.99) was not
a result of overfitting, we applied multiple calibration diagnostics. The Brier score was 0.051, indicating a
low mean squared difference between predicted probabilities and actual outcomes. The Hosmer—Lemeshow
goodness-of-fit test yielded a statistically nonsignificant result (y* = 1.08, p = 0.998), confirming excellent
agreement between predicted and observed event frequencies across risk deciles. Furthermore, the calibration
plot (Fig. 8) visually demonstrates the model’s ability to assign accurate risk probabilities, with minimal
deviation from the perfect calibration line. These indicators collectively demonstrate that the logistic
regression model is well-calibrated, robust, and not overfitting the training data.
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Figure 8. Calibration Plot of the Logistic Regression Model for Iron Exceedance Risk
(Source: Python 3.9)

This calibration number (Fig. 8) shows how close the logistic regression model’s predicted probability
is to the actual number of times iron levels go over 30 pug/L. The curve is very close to the diagonal reference
line, which means that the expected risks and actual outcomes are very similar in all probability bins. This
means that the model isn’t overfitting and that the probabilistic calibration is correct. With 10 bins, you can
be sure that all the forecasts are accurate.

3.5 Global Sensitivity Analysis (Sobol)

The Sobol indices confirm the dominance of calcium (S1 = 0.74) as a key sensitivity factor affecting
the probability of exceeding the Fe threshold. Bicarbonate (S1 = 0.13) is identified as a secondary factor. This
strong influence of calcium can be linked to geochemical conditions favourable to releasing iron from
carbonate formations, in connection with dissolution/acidification processes.
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Sobol’s sensitivity analysis confirms the overwhelming dominance of calcium (Ca) with an S1 index
of 0.73 (73% of the explained variance), followed far behind by bicarbonates (HCOs™, 9.9%) and carbonates
(CaCOs, 7.3%), can be seen in Table 7. The other parameters (Mg, Cl, K, SO+, Na) show marginal
contributions (<6% each), revealing that carbonate chemistry mainly controls the variability of iron contents.
This hierarchy corroborates the results of the RF and logistics models, clearly identifying calcium as the
priority lever for action for risk management.

Table 7. Sobol Sensitivity Indices: Contribution of Variables to The Variability of Iron Concentrations

Variable S1 Index
Ca 0.730926
HCO3 0.099448
CaCO3 0.072617
Mg 0.052744
Cl 0.017686
K 0.004936
SO4 0.003195
Na 0.002868
Sobol Sensitivity Indices
Ca
HCO3
CaCO3
Mg
Cl
K
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Na
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Figure 9. Sobol Sensitivity Analysis for The Contribution of Physicochemical Variables to The Variability of
Iron Concentrations
(Source: Python 3.9)

In similar semi-arid basins, hydrogeochemical studies that link Fe mobility to carbonate dissolution
(Sobol S1 = 0.74) are consistent with the dominance of calcium, where Ca2+ release encourages Fe
desorption from mineral surfaces. In contrast to certain Mediterranean catchments, where bicarbonate
complexes were the main carriers of iron, HCOs™ (S1 = 0.10) plays a secondary role. This disparity might be
a result of the particular redox conditions in the alkaline waters of Inaouen (pH ~7.8), which favor Ca-Fe
competition over Fe-HCOs~ complexation. The necessity of localized sensitivity analyses, like the one used
here, is highlighted by this context-specificity.

As shown in Fig. 9, the Sobol sensitivity indices (S1) quantify the proportional contribution of each
variable to the total variance of iron concentrations in the Inaouen Basin. Calcium (Ca) dominates with an S1
index of 0.7, explaining 70% of the variability in concentrations, which confirms its preponderant role in the
geochemical processes of iron mobilization. Bicarbonates (HCOs™) and carbonates (CaCOs) appear as
secondary but significant factors (S1 = 0.1-0.15), reflecting the influence of acid-base balances. The other
parameters (Mg, K, SO+>, Na) show marginal contributions (S1 < 0.05), suggesting that their impact on the
variability of iron concentrations is negligible in this particular geochemical context. This analysis
complements and confirms the results obtained by the logistic regression and Random Forest approaches,
quantifying the relative importance of different environmental factors. The predominance of calcium suggests
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that carbonate rock dissolution processes are the primary mechanism controlling the presence of iron in the
basin’s waters.

This integrative study reveals a clear hierarchy of factors influencing iron contamination in the Inaouen
Basin. Calcium (Ca) emerges systematically as the dominant parameter, explaining 73% of the
variability (Sobol S1 = 0.73), with a substantial linear impact (8 = +0.625 in logit) and a significant
importance in Random Forest (0.35). Bicarbonates (HCOs") and carbonates (CaCOs) play a secondary but
consistent role across all methods, highlighting the importance of carbonate geochemical balances can be
seen in Table 8. The discrepancies observed for sulphates (SO+*") and sodium (Na), the latter showing a
protective effect in logit but a marginal influence in global analyses, point to contextual or non-linear
mechanisms requiring further investigation.

Table 8. Summary of Multimethod Results

Variable Logistic Regression Random Forest Sobol (S1) Global Interpretation
Ca + Strong coefficient Most important 0.74 (dominant) Key variable, powerful influence on iron
HCOx- + Weak izrggorggitt 013 Indirect infllﬁgsc‘:slxti%guffering and
SO + Strong coefficient Medium ~0.06 (moderate) Possible redox linkage — to monitor
Na — Negative coefficient Weak Very weak May play a dilutive or antagonistic role
K + Medium Weak Very weak Possible influence, but not decisive
Cr ~0 Very weak Negligible No direct role observed
Mg ~0 Very weak Negligible Negligible influence
CaCO; + Weak Medium-weak Weak Potentially linked to pH buffering and

secondary precipitations

3.6 Discussion of Mechanisms

The predominance of the Ca, HCOs~ , and CaCOs system strongly suggests that carbonate rock
dissolution is the principal mechanism driving iron mobility, likely through two pathways: the release of
adsorbed iron during calcite dissolution, and the alteration of ferrous minerals under neutro-alkaline
conditions favored by elevated bicarbonate levels. The seemingly paradoxical behavior of sulphates, showing
a strong effect in logistic regression but a weak one in Sobol and Random Forest analyses, may be attributed
to their dual role in redox processes: under anaerobic conditions, sulphate reduction could lead to the
precipitation of iron as sulfides, whereas under oxic conditions, sulphates could promote the oxidation of
ferrous iron (Fe?") into less mobile forms. Regarding sodium (Na), its apparent protective effect could reflect
competition for adsorption sites or influence the solubility dynamics of iron-carbonate complexes,
modulating iron mobility indirectly.

This study’s Sobol sensitivity analysis was based on a comparatively small sample size (n = 100),
which raises legitimate methodological concerns. Even with small-to-medium datasets, global sensitivity
techniques like Sobol can produce reliable estimates, especially when paired with Latin Hypercube or quasi-
random sampling. However, one should exercise caution when interpreting first-order indices (e.g., Ca: 0.74
and HCOs™: 0.10). For lower-order interactions or context-dependent effects, like redox-driven iron
mobilization, which might not be sufficiently captured with limited data, this is particularly pertinent. Where
possible, bootstrap resampling and repeated cross-validation were used to address this problem and improve
the results’ dependability. In order to evaluate the generalizability of the model, future research is urged to
investigate surrogate modeling techniques and validate these sensitivity patterns using larger, spatially
stratified datasets. These restrictions emphasize the significance of taking site-specific hydrogeochemical
dynamics into account and repeating sensitivity diagnostics in a variety of environmental settings, even
though they do not negate the main findings.

3.7 Risk Management

The results underscore the need for targeted risk management strategies, emphasizing prioritizing areas
characterized by high calcium concentrations (above the 75th percentile) and low sodium-to-calcium ratios.
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It is recommended to closely monitor redox-sensitive parameters, such as oxidation-reduction potential and
sulphate levels, to better anticipate shifts in iron speciation. Hybrid modeling approaches that combine linear
(logistic regression) and non-linear (Random Forest) methods should be integrated to enhance predictive
capabilities. Addressing current limitations, including sample size and the lack of temporal data, could be
achieved through seasonal monitoring campaigns and detailed mineralogical analyses of aquifers. This
methodological framework is highly transferable to other carbonate sedimentary basins, particularly in semi-
arid climates. Notably, the consistency observed across the statistical tools employed, distribution fitting,
regression, non-linear modeling, and sensitivity analysis, provides a robust foundation. This multi-level
approach effectively quantifies probabilistic risks, identifies dominant explanatory parameters, and offers a
transferable predictive tool adaptable to similar watersheds, strengthening the basis for water risk
management, monitoring prioritization, and designing targeted remediation strategies.

4. CONCLUSION

This study made it possible to apply an integrated and robust statistical approach to the iron
contamination analysis in the Inaouen watershed’s surface waters. This highlighted the dynamics underlying
excess iron in this hydrological system by relying on complementary methods — adjustment of probability
laws, Monte Carlo simulation, predictive modelling (logistic regression, random forest), and global
sensitivity analysis. At the end of our in-depth statistical study, which focused on the surface waters of the
Inaouen watershed, several key elements were highlighted regarding water quality and the risk of iron (Fe)
contamination. Although most samples analysed currently have iron concentrations below the regulatory
threshold of 30 pg/L, our distribution analyses, probabilistic simulation (Monte Carlo), and predictive
modelling (logistic regression, Random Forest) reveal a significant risk of exceedance under certain
environmental conditions. The results of the Monte Carlo simulation indicate an 18% probability of
exceeding the threshold of 30 pg/L. At the same time, the sensitivity analysis of Sobol (0.74) identifies
calcium (Ca) and bicarbonate (HCOs") as the main factors influencing the mobilization of iron in surface
waters. They emerge as the main factors explaining contamination, suggesting a significant geochemical
influence related to the dissolution of carbonate rocks. These observations indicate that, even in a context
where current quality seems to be under control, the water system is vulnerable to future contamination,
especially in hydrogeochemical changes (carbonate dissolution, pH changes) or intensification of human
activities. Our approach thus makes it possible to anticipate potential degradation scenarios, to target the key
parameters to be monitored, and to propose a preventive management strategy, especially in areas rich in Ca
and HCOs™. The results reveal that iron concentrations are accurately modeled by a log-normal distribution,
confirming the statistical robustness of the approach. The probability of exceeding the critical threshold of
30 ug/L is estimated at 18%, a significant level within the local environmental context. Among the
explanatory variables, calcium (Ca) and bicarbonate (HCOs") emerge as the primary drivers of iron
contamination, highlighting the role of water-rock interactions. This interpretation is reinforced by the Sobol
sensitivity analysis, where the first-order index (S1) for calcium reaches a value of 0.74, underscoring its
dominant geochemical influence likely linked to the dissolution of carbonate rocks.

Based on the results obtained, several practical and scientific recommendations are proposed to support
environmental management strategies. It is advisable to establish a monitoring network specifically targeted
at areas with high calcium and bicarbonate concentrations and to use the findings as a foundation for
predictive water quality modeling, particularly under water stress scenarios. Extending the study to include
other trace metals such as manganese (Mn) and lead (Pb) would enrich the understanding of metal coexistence
patterns. Additionally, incorporating temporal or seasonal variability, if time series data are available, would
enhance the robustness of the analysis. Further investigations should explore relationships between iron
contamination, soil physical characteristics, land use patterns, and precipitation dynamics. For a finer
modeling of uncertainties, Bayesian statistical approaches are recommended. Moreover, scaling up the
analysis to regional or national levels through spatial modeling could provide broader insights. Overall, the
methodological framework developed herein offers a reproducible basis for similar studies across other
watersheds and can significantly contribute to the sustainable management of water resources in the context
of climate change and escalating anthropogenic pressures.
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