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Article Info ABSTRACT 

Article History: 
The quality of water resources in the Inaouen watershed, northern Morocco, is 

increasingly threatened by metal contamination, particularly iron (Fe). This study 

implements an integrated statistical framework to assess the risk of exceeding regulatory 

iron concentration thresholds. After preprocessing local physico-chemical data, a binary 

indicator variable was constructed to flag exceedances of the critical 30 µg/L threshold. 

Iron concentrations were modeled using log-normal and Weibull distributions, with a 

Monte Carlo simulation (n = 10,000) based on the log-normal law estimating exceedance 

probabilities across multiple thresholds (30, 50, 100 µg/L), revealing an 18% risk at 30 

µg/L. Predictive modeling via logistic regression and random forest analysis identified 

calcium (Ca) as the dominant driver of iron exceedances, a finding corroborated by Sobol 

sensitivity analysis (S1 index = 0.74), with bicarbonate (HCO₃⁻) emerging as a secondary 

factor (S1 = 0.10). These results demonstrate the power of combining distribution fitting, 

machine learning, and global sensitivity analysis to effectively quantify and interpret iron 

contamination risks in vulnerable watersheds such as Inaouen. The proposed 

methodology offers a robust decision-support tool for sustainable water resource 

management and public health protection. 
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1. INTRODUCTION 

Contamination of freshwater resources by trace metals is a major environmental and health concern, 

especially in areas with high dependence on surface water for human food and agriculture. Among these 

contaminants, iron (Fe) is an element naturally present in the Earth’s crust, but whose high concentrations in 

groundwater can indicate geochemical imbalances, anthropogenic infiltration, or conditions of enhanced 

reduction. When iron exceeds certain thresholds (often 30 µg/L according to WHO or national standards) [1], 

it can alter the organoleptic quality of the water, promote the growth of biofilms, and corrode hydraulic 

infrastructures, while signaling the possible presence of other undesirable metals [2]. 

In this context, the study is applied to the Inaouen watershed, located in the Middle Atlas region of 

Morocco. This basin constitutes a major sub-tributary of the Sebou wadi and plays a central hydrological role 

in the country’s northern region. It is characterized by a mountainous topography, a semi-arid to humid 

climate depending on altitude, and varied geological formations influencing surface water quality [3]. While 

traditional statistical or neural network methods have been used to address metal contamination in earlier 

studies on the Inaouen watershed [3], [4], this work presents three significant innovations: (1) The first use 

of Sobol indices in this area to separate factor-specific contributions from intricate geochemical interactions; 

(2) An integrated framework that combines probabilistic (Monte Carlo), machine learning (Random Forest), 

and global sensitivity (Sobol) methods to quantify iron exceedance risks holistically; (3) Actionable 

thresholds (e.g., Ca > 75th percentile) derived from multi-method consensus, moving beyond descriptive 

analyses to targeted water management. For semi-arid watersheds under human pressure, this approach fills 

in the gaps between risk assessment, predictive modeling, and mechanistic interpretation. 

The water resources of the Inaouen basin are under increasing pressure, particularly in connection with 

agriculture, urbanization, and domestic and industrial discharges. These pressures make it essential to 

rigorously assess surface water quality, particularly iron concentrations, which can act both as an indicator 

and a factor in degradation [4]. 

The purpose of this study is to : (1) Statistically characterize iron concentrations in the waters of the 

Inaouen basin; (2) Estimate the probability of exceeding critical thresholds via a Monte Carlo simulation 

based on adjusted laws (log-normal and Weibull); (3) Identify explanatory physico-chemical factors using 

predictive models such as logistic regression and random forests; (4) Quantify the impact of each variable on 

the probability of exceedance using a global sensitivity analysis of the Sobol type. 

Despite several previous studies on water quality in the Inaouen watershed, none have integrated a 

joint probabilistic, mechanistic, and predictive approach with cross-validation of models.  The originality of 

this approach lies in the joint use of classical and advanced statistical methods of simulation and machine 

learning, allowing a detailed understanding of the mechanisms of contamination and a rigorous prioritization 

of risk factors in a specific geographical context. 

2. RESEARCH METHODS 

All statistical analyses were implemented using the Python language, relying on robust scientific 

libraries such as NumPy, Pandas, Scikit-learn, Statsmodels, SALib, and Matplotlib. The code made it possible 

to automate data cleaning, distribution adjustment, Monte Carlo simulation, predictive modeling (logistic 

regression and random forest), and Sobol sensitivity analysis. 
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2.1 Study Area and Data Collection 

The study was conducted in the Inaouen watershed (Fig. 1), an important sub-basin of the Oued Sebou 

basin, located in northern Morocco. This basin has a marked geological diversity, with carbonate, clay, and 

siliceous formations influencing the physico-chemical composition of surface waters [5][6]. 

The data analyzed comes from 100 surface water samples collected at different points of the basin. 

Each sample was analyzed for iron (Fe) concentration as well as eight other physicochemical parameters: 

calcium (Ca), bicarbonates (HCO₃⁻), sulfates (SO₄²⁻), sodium (Na), chlorides (Cl), magnesium (Mg), calcium 

carbonate (CaCO₃), and potassium (K) [5][7]. 

 
Figure 1. Geographical Location of The Study Area 

2.2 Data Pre-Processing 

The data preprocessing protocol was rigorously applied to ensure the quality and homogeneity of the 

dataset prior to analysis. Four main operations were carried out: 

1. Systematic elimination of all samples with missing iron (Fe) concentration values, thus ensuring 

the integrity of the analyzed data;  

2. The filtering of extreme values (Fe > 500 µg/L), a threshold determined to limit the 

disproportionate influence of outliers on the statistical results; 

3. The creation of a binary response variable “Exceedance” encoding the exceedance 1 if Fe > 30 

µg/L, and 0 otherwise, thus allowing a clear modeling of the risk;  

4. The standardization of variable names according to a standardized nomenclature facilitates the 

reproducibility and readability of subsequent analyses. 

These preliminary steps made it possible to obtain a clean and structured set of data, optimal for the different 

statistical and machine learning approaches deployed in the study. 

2.3 Theoretical Concepts and Applied Statistical Models 

2.3.1 Adjustment of Distributions and Monte Carlo Simulation 

To model iron concentrations, two statistical distributions were adjusted: The Log-normal law, commonly 

used to model asymmetric positive concentrations [8]-[10], and Weibull’s law. 

1. Log-normal law:  

A random variable 𝑿 follows a log-normal law if: 

ln(𝑋) ∼ 𝒩(𝜇, 𝜎2) (1) 

The density is [11] 
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𝒇(𝒙; 𝝁, 𝝈) =
1

𝒙𝝈√2𝝅
exp (−

(ln⁡ 𝒙−𝝁)2

2𝝈2
) , 𝒙 > 0. (2) 

Where: 

𝜇: Mean logarithm. 

𝜎: Standard deviation of logarithm. 

The estimation of the parameters 𝜇 (logarithmic mean) and 𝜎 (logarithmic standard deviation) of 

the log-normal distribution was carried out by the maximum likelihood method from the observed iron 

(Fe) concentration data. In this study, this model was specifically chosen for its ability to accurately 

represent the characteristics of environmental concentrations: strictly positive values, asymmetric 

distribution, and variability covering several orders of magnitude, typical of metal contamination 

profiles in surface waters. The adjusted log-normal model was then used as the basis for the Monte 

Carlo simulation [12], making it possible to estimate the probabilities of exceeding regulatory 

thresholds.  

2. Weibull’s law: 

Weibull’s law is also adapted to this type of environmental data [13]-[16]: Weibull’s law is a 

continuous probability distribution used to model failure time, positive natural phenomena, or 

environmental concentrations. The probability density function (PDF) of a random variable 𝑿 ∼
𝐖𝐞𝐢𝐛𝐮𝐥𝐥(𝒌, 𝝀) is given by: 

𝒇(𝒙; 𝒌, 𝝀) =
𝒌

𝝀
(
𝒙

𝝀
)
𝒌−1

𝒆−(𝒙/𝝀)
𝒌
, 𝒙 ≥ 0. (3) 

Where 𝒌 > 𝟎 is the shape parameter and  𝝀 > 𝟎 is the scale parameter. 

The estimation of the k (shape parameter) and λ (scale parameter) parameters of the Weibull 

distribution was carried out by the maximum likelihood method (MLE), offering a robust approach to 

characterize the distribution of iron concentrations. This law has remarkable statistical properties: it 

reduces to an exponential distribution when k=1, shows a decreasing density for k<1, and adopts an 

asymmetric bell shape with a well-defined mode for k>1. In this study, Weibull’s law was 

systematically fitted to the iron concentration data to provide an objective comparison with the log-

normal model, both distributions commonly used to model positive and asymmetric environmental 

data. The quality of the fit was rigorously evaluated via the Kolmogorov-Smirnov (KS) test [17], 

allowing the estimated parameters to be statistically validated and the relative performance of the two 

distributions to be compared to represent the specific characteristics of the metal concentrations 

observed in the Inaouen basin. 

3. The Kolmogorov-Smirnov test (KS)  

The Kolmogorov-Smirnov test (KS) is a non-parametric test to compare [18]: a robust non-

parametric method, which was used in this study to quantitatively assess the quality of fit between the 

theoretical distributions (log-normal and Weibull) and the empirical distribution of the observed iron 

concentrations. This test, which compares cumulative distribution functions, has the advantage of 

making no assumptions about the shape of the underlying distribution, making it particularly suitable 

for the analysis of often complex environmental data. Applied here as a sample version, it made it 

possible to objectively measure the maximum deviation between the adjusted theoretical distributions 

and the actual data, thus providing a solid statistical basis for choosing between log-normal and 

Weibull models. Its mathematical formula (1-sample)[19][20]: 

Either: 

𝑭𝒏(𝒙) the empirical distribution function based on a sample size 𝑛, 

𝑭(𝒙) the theoretical distribution function of a continuous distribution (e.g., log-normal, Weibull). 

The KS test statistic is [21]: 

⁡⁡⁡⁡⁡𝑫𝒏 = sup
𝒙
 |𝑭𝒏(𝒙) − 𝑭(𝒙)|, (4) 

where sup represents the supremum (the largest absolute value of the deviations between the two 

distribution functions). 
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The Kolmogorov-Smirnov (KS) test quantifies the fit between distributions using the statistic 𝐷𝑛 
[20], representing the maximum vertical deviation between the empirical and theoretical distribution 

functions. A high 𝑝-value (> 0.05) indicates a valid model fit, while a low 𝑝 −value (< 0.05) suggests 

rejection of the fit. Although this test is ideal for continuous data, it has a significant limitation when 

applied to distributions whose parameters have been estimated on the same data; a common practice, 

thus requiring specific corrections (adjusted KS) to avoid systematic bias toward model acceptance. 

This crucial subtlety is often overlooked in environmental applications. However, it has been 

rigorously considered in this study to ensure the validity of conclusions regarding the log-normal 

adjustment of metal concentrations. 

2.3.2 Monte Carlo Simulation 

The Monte Carlo method, which relies on repeated random simulations, enables the numerical 

approximation of complex statistical results such as probabilities or integrals that are challenging to calculate 

analytically. This approach is beneficial for estimating the probability that a random variable X (representing 

the iron concentration modeled by an adjusted log-normal distribution) exceeds a critical threshold T (30 

µg/L in this study). It generates many realizations (𝑛 = 10,000) [22] and calculates the proportion of 

simulated values that exceed this threshold, thus providing a robust estimate of contamination risks while 

accounting for the uncertainty inherent in environmental data. The empirical probability is then given by 

[23][24]:                 

𝑃̂(𝑋 > 𝑇) =
1

𝑁
∑  𝑁
𝑖=1 1{𝑥𝑖>𝑇} (5) 

Where: 

𝑁 is the number of simulations (e.g., 10000), 

𝑥𝑖 is the 𝑖-th simulated value, 

1{𝑥𝑖>𝑇} is an indicator function (equals 1 𝑥𝑖 > 𝑇, 0 if not). 

This study applied the Monte Carlo simulation method by generating 10,000 random draws from a log-

normal distribution adjusted to the observed iron concentrations to estimate the probabilities of exceeding 

three critical regulatory thresholds (30, 50, and 100 µg/L). For each DTC threshold, the corresponding 

probability was determined as the proportion of simulated values exceeding this threshold, thus providing a 

probabilistic quantification of the risk of metal contamination in the Inaouen watershed. This approach makes 

it possible to transform a statistical adjustment into directly interpretable information for water quality 

management, while integrating the uncertainty related to the natural variability of the data and their statistical 

distribution [25][26]. 

2.3.3 Predictive Modeling 

Two models were used to identify the factors explaining the probability of exceedance: 

1. A logistic regression 

Logistic regression is a binary classification model that estimates the probability of an event 𝑌 = 1 

based on a set of explanatory variables𝑋1, 𝑋2, … , 𝑋𝑝. It made it possible to estimate the effect of each variable 

on the probability of Exceedance, in terms of directional coefficient. In the context of this study, it models 

the probability that an iron concentration exceeds the threshold of⁡30𝜇g/L. 

The conditional probability of exceedance is modeled by [27]-[30]: 

ℙ(𝑌 = 1 ∣ 𝑋 ) =
1

1 + exp (−(𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑝𝑋𝑝))
(6) 

or equivalently [31][32]: 

log (
ℙ(𝑌 = 1)

1 − ℙ(𝑌 = 1)
) = 𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑝𝑋𝑝 (7) 

The term on the left is called logit. 

The coefficients 𝛽𝑗 are estimated by maximum likelihood, quantifying the impact of the explanatory variables 

[33][34]. 
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a. 𝛽𝑗 > 0: An increase in 𝑋𝑗 increases the probability of overtaking. 

b. 𝛽𝑗 < 0: An increase of 𝑋𝑗 decreases this probability. 

c. 𝑒𝛽1 ⁡represents the odds ratio, which measures the multiplicative factor of the probability of 

occurrence for each unit of increase. 

Then the coefficients represent the marginal effect of each variable on the overrun log-odds. 

In the study 

a. The explanatory variables are: Ca,HCO3
−, SO4

2−, Na, Cl,Mg, CaCO3, K 

b. The model makes it possible to identify the most influential variables in exceeding the threshold. 

c. The interpretation is based on the value and sign of the coefficients. 

d. Estimated coefficients, p-values, 95% CI 

e. Determination of the effect of each variable on excess Fe 

2. A Random Forest ensemble model 

Random Forest is a machine learning method aggregating predictions from multiple decision trees to 

improve model accuracy and robustness. It is particularly effective for non-linear classification problems and 

resistant to overfitting. It has made it possible to assess the relative importance of explanatory variables in a 

non-linear way that is robust to complex interactions [35]. 

The final prediction (for binary classification) is usually made by majority vote [36]: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓ˆ (𝑥) =
1

𝑀
∑  

𝑀

𝑚=1

𝑓𝑚(𝑥). (8) 

Where each 𝑓𝑚(𝑥) is a tree trained on a bootstrap. 

The Random Forest model is built using an ensemble approach in which each decision tree is trained 

on a bootstrap subsample of the original data. It incorporates a random selection of variables at each node to 

ensure model diversity and prevent overfitting, with trees grown to maximum depth (without pruning) to 

capture complex relationships in the data finely. The importance of the variables is then determined by 

measuring the average impurity reduction (Gini index in this study) [37] that each variable (𝑋𝑗) produces 

across all trees, thus providing a robust metric for evaluating their relative contribution to predicting the 

exceedance of iron concentration thresholds. The greater the impurity reduction, the more influential the 

variable is in the model [38]. 

Imp(𝑋𝑗) = ∑  

nocuds contenant 𝑋𝑗

Δ𝐼noeud . (9) 

This importance is often standardized between 0 and 1. 

The Random Forest model was used to predict iron concentration threshold exceedance (Fe > 30 µg/L), 

offering a robust classification method through its ability to handle nonlinear relationships and complex 

interactions among variables. This involved a thorough evaluation that divided the data into training (70%) 

and test (30%) sets to validate model performance and provided an objective measure of the relative 

importance of each predictive variable (Ca, HCO₃⁻, SO₄²⁻, etc.) using impurity reduction analysis. This 

approach systematically identifies the key factors influencing iron contamination and quantifies their specific 

contributions to predicting the risk of exceedance. The two models were compared to validate the robustness 

of the results. 

Even though the AUC values were high, we used a number of validation methods to double-check the 

model’s calibration and lower the risk of overfitting. These included carefully checking how well the training 

and test sets worked (ΔAUC < 0.02 was acceptable), calculating the Brier score (0 means perfect calibration), 

using Hosmer-Lemeshow goodness-of-fit tests for logistic regression to check probability calibration, and 

doing 5-fold cross-validation 100 times on bootstrap resamples to make sure the model was strong.  We used 

these extra metrics on both Random Forest and logistic regression models (with L2 regularization) a lot to 

get a better idea of how reliable the models were, not just AUC. 
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3. Global Sensitivity Analysis (Sobol)  

To complete the interpretation of the risk factors, a Sobol-type sensitivity analysis was applied using 

Saltelli’s method for quasi-random sampling [39][40]. This approach makes it possible to evaluate the effect 

of each input variable on the output variance (the predicted probability of exceedance), independently of the 

other factors. Sobol’s sensitivity analysis quantifies the individual (and combined) effect of each input 

variable on the output variance of a model. It is considered global because it explores the entire input space 

via simulations. Its objective is to break down the output variance 𝑌 = 𝑓(𝑋) between the different 

factors[41][42]. 

The first-order Sobol index for a variable 𝑋𝑖 is [43] : 

⁡𝑆𝑖 =
Var𝑋𝑖[𝔼(𝑌 ∣ 𝑋𝑖)]

Var(𝑌)
. (10) 

This measures how much of the variance is explained only by⁡𝑋𝑖. 

2.4 Viewing and Exporting Results 

The results were plotted using histograms, Q-Q plots, barplots, and simulated distributions. 

 
Figure 2. Comprehensive Statistical Analysis Workflow of Iron Exceedance Risk in Surface Water. 

3. RESULTS AND DISCUSSION 

3.1 General Data Characteristics 

After cleaning the data, the final sample included 100 valid observations. The exceedance rate of the 

critical threshold of 30 µg/L of Fe was estimated at 11.0% (Table 1), indicating a relatively moderate but 

significant presence of contamination within the Inaouen watershed. 

Table 1. Metadata of The Dataset after Quality Control 

Metric Value 

Samples loaded 100 

Valid samples 100 

exceedance 11.0% (Fe > 30 µg/L) 
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Metric Value 

Variables used : Ca, HCO3, SO4, Na, Cl, Mg, CaCO3, K     

The measured physicochemical parameters show wide variability, suggesting the potential influence of 

various geochemical and anthropogenic processes on iron mobilization. 

3.2 Adjustment of Distributions and Monte Carlo Simulation 

Adjusting iron concentrations to statistical distributions reveals that the log-normal law offers a better 

adjustment than Weibull’s law, as evidenced by a 𝑝-value of the KS test of 0.014, compared to 0.0008 for 

Weibull (Table 2). The log-normal distribution (KS 𝑝 = 0.014) outperformed the Weibull distribution (KS 

𝑝 = 0.0008), which is consistent with the geochemical properties of iron in aquatic environments.  Periodic 

high-concentration events resulting from point-source contamination or redox-driven Fe mobilization, as well 

as the multiplicative effects of geochemical processes (e.g., sequential carbonate dissolution, pH 

fluctuations), are better captured by the heavier right tail of the log-normal.  The Weibull’s faster tail decay, 

on the other hand, underestimates extreme values, which is a significant drawback considering that 

exceedance risk assessment places a high priority on precisely modeling upper quantiles (e.g., >30 µg/L).  

This is consistent with worldwide observations of the distribution of trace metals in watersheds with diverse 

lithologies. 

In this case study, Weibull’s law fails to correctly capture the asymmetry and actual distribution of Fe 

concentrations in the Inaouen basin, the Kolmogorov-Smirnov (KS) test - a non-parametric method 

comparing empirical and theoretical distributions - revealed an unsatisfactory adjustment (𝑝-value =
0.0008), leading to its rejection in favor of the log-normal distribution, whose adjustment, although not 

perfect (𝑝-value KS⁡= 0.014),⁡proved statistically acceptable for modelling iron concentrations, typically 

positive, asymmetric, and wide-amplitude. Therefore, the log-normal is better suited. 

Table 2. Comparison of Log-Normal and Weibull Laws by Kolmogorov-Smirnov Test  

(Significance Threshold at 5%) 

Distribution k Shape  SCALE 𝒑-value 

Lognormal 0.621474 16.95621 0.014156 

Weibull 1.454671 23.3739 0.000832 

The 𝑝-value > 0.05 for the log-normal (0.014) indicates a statistically acceptable adjustment, contrary 

to Weibull’s law (𝑝 = 0.0008), which is rejected. The shape and scale parameters, respectively, characterize 

the asymmetry and dispersion of the distributions. The Monte Carlo simulation, based on this log-normal, 

indicates probabilities of exceeding (Table 3) 

Table 3. Adjustment Parameters and Validation of Distributions for Iron Concentrations  

Threshold (µg/L) Exceedance Probability (%) 

30 18.01% 

50 4.03% 

100 0.25% 

These results highlight that even a rare exceedance can be statistically significant, and that the threshold 

of 30 µg/L is particularly critical in the local context. Clearly illustrates the decreasing risk with the increase 

in the threshold (18% to 30 µg/L vs 0.25% to 100 µg/L), which reinforces the message on the threshold of 

30 µg/L as critical. 
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Figure 3. Iron Concentrations and Log-Normal Distribution Adjustment. 

(Source: Python 3.9) 

According to the log-normal distribution curve (solid line in Fig. 3), which closely follows the shape 

of the histogram, the iron concentrations exhibit a positive skew, a characteristic of environmental 

contaminants. Despite the Kolmogorov-Smirnov (KS) test yielding a 𝑝-value of 0.014 (which is nominally 

below the 0.05 threshold for significance), we chose to retain the log-normal distribution for the following 

reasons: 

1. KS Test Sensitivity: In large sample sizes (in this case, 𝑛 = 100), the KS test may be unduly 

sensitive to slight deviations, leading to significant 𝑝-values even when the fit is aesthetically 

acceptable. 

2. Visual Inspection: A visual comparison of the log-normal fit and the empirical data (Fig. 3) 

demonstrates a high degree of agreement, especially in the critical range for exceedance values 

(>30 μg/L), supporting the suitability of the log-normal model. 

3. Physical Interpretability: The log-normal distribution is better for the physical processes that cause 

iron to get into water because they happen in groups most of the time.  The log-normal model is 

better at showing how Fe contamination happens than other distributions because it is easier to 

understand. 

We also used the Lilliefors correction for robustness to find the modified KS statistic, which gave us a 

𝑝-value of 0.021. This result supports keeping the log-normal distribution even more, and it is more in line 

with the visual assessment, even though it is still close. 

The vertical line marking the critical threshold of 30 µg/L reveals that a significant part of the 

distribution is located to the right of this threshold, thus corroborating the probability of exceeding 18% 

estimated by the Monte Carlo simulation. These probabilities indicate a moderate to high vulnerability of 

certain basin areas to persistent or emerging ferrous contamination. Moreover, the long distribution tail 

observed for values above 60 µg/L suggests the presence of atypical points (contamination hotspots), which 

could justify additional spatial analyses for a finer characterization of risk areas. 

 
Figure 4. Simulated Distribution of Iron Concentrations by the Monte Carlo Method 

(Source: Python 3.9)  

The results of a Monte Carlo simulation modelling the distribution of iron concentrations in the waters 

of the Inaouen basin are shown in Fig. 4, revealing a typically log-normal distribution with a strong positive 
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asymmetry, where the majority of the simulated values are concentrated below 100 µg/L. In comparison, the 

distribution tail extends up to 200 µg/L, indicating the possibility of extreme values. Three vertical lines mark 

the critical thresholds at 30 µg/L (quality standard), 50 µg/L and 100 µg/L (high level), whose relative 

position to the curve makes it possible to visually estimate the risks of exceeding, with areas under the curve 

corresponding to the calculated probabilities of 18% for 30 µg/L, 4% for 50 µg/L and 0.25% for 100 µg/L, 

thus confirming the significant risk at the threshold of 30 µg/L. 

 
Figure 5. Diagnosis of Normality: Q-Q Plots Compared to A Theoretical Normal Distribution 

(Source: Python 3.9) 

Two Q-Q (Quantile-Quantile) plots are displayed in Fig. 5: the left panel shows the Q-Q plot of raw 

iron concentration data against a theoretical normal distribution, while the right panel presents the Q-Q plot 

of the log-transformed data compared to a theoretical normal distribution. 

1. Q-Q Raw Data Plot 

The quantile-quantile graph reveals a marked deviation from normal, particularly at the distribution 

tails, with high values (right) showing a characteristic positive asymmetry of environmental contamination 

data. This systematic deviation, visible by the curvature of the points at the extremes, leads to the rejection 

of the hypothesis of normality (𝑝 < 0.05), confirming the need to use distributions adapted to skewed data 

(such as the log-normal law) to accurately model iron concentrations, where the extreme values (> percentile 

95) probably correspond to contamination hotspots requiring special attention in subsequent spatial analyses. 

2. Q-Q Plot of Log-Transformed Data 

The quantile-quantile graph of iron concentrations after logarithmic transformation shows an overall 

adequacy with the normal, as evidenced by the alignment of the points on the theoretical line, thus validating 

the choice of log-normal modeling. Although minor deviations are observed at the extremes (especially for 

high values), they do not invalidate the overall quality of the adjustment, as evidenced by the statistically 

acceptable 𝑝-value of the Kolmogorov-Smirnov test (0.014). This dominant linearity confirms that the log 

transformation has effectively corrected the initial asymmetry of the data, allowing parametric statistical 

methods to be applied while identifying areas for improvement for modelling extreme values, potentially 

linked to localised contamination hotspots. 

3.3 Logistic Regression and the Importance of Variables 

Logistic regression (via scikit-learn) identifies the most influential variables (see Table 4): 

1. Calcium (Ca) and sulphates (SO₄²⁻) have the highest and positive coefficients, indicating a strong 

association with iron overrun. 

2. Sodium (Na) has a negative coefficient, suggesting a protective or antagonistic effect. 

Table 4. Logistic Regression Coefficients and Interpretation of The Effects of Variables on Iron Exceedances 

Variable Coefficient Interpretation 

Ca +0.625 Strong positive influence 

SO4 +0.543 Strong positive influence 

Na –0.389 Moderate negative effect 



BAREKENG: J. Math. & App., vol. 20(1), pp. 0637- 0656, Mar, 2026.     647 

 

Variable Coefficient Interpretation 

K +0.317 Positive influence 

HCO3 +0.074 Weak Positive influence 

CaCO3 +0.061 Weak Positive influence 

Mg +0.026 Negligible influence  

Cl ~0.000 Negligible influence 

Based on the result in Table 5, positive coefficients indicate an increased risk of exceedance (e.g., 

Ca +0.625), while negative values (e.g., Na -0.389) represent a protective effect. Values close to zero (Mg, 

Cl) have no significant impact. The coefficient scale reflects the relative intensity of the effects. All 

coefficients are standardized to allow direct comparison between variables. Analysis based on 100 samples 

with cross-validation. 

Table 5.  Standardized Coefficients of Logistic Regression and Their Interpretation 

Variables Coefficient (𝜷) 
Confidence Interval 

95% 
Meaning Impact 

(Ca) +0.625 [0.505 - 0.745] 𝑝 < 0.001 Strong increasing risk 

(SO₄²⁻) +0.543 [0.393 - 0.693] 𝑝 < 0.001 Strong increasing risk 

(Na) -0.389 [-0.479 - -0.299] 𝑝 = 0.002 
Moderate reduction in 

risk 

(K) +0.317 [0.217 - 0.417] 𝑝 = 0.012 Moderate increase in risk 

(HCO₃⁻) +0.074 [-0.026 - 0.174] 𝑝 = 0.148 Weak influence 

(CaCO₃) +0.061 [-0.039 - 0.161] 𝑝 = 0.232 Weak influence 

(Mg) +0.026 [-0.074 - 0.126] 𝑝 = 0.608 Negligible effect. 

(Cl) ~0.000 [-0.100 - 0.100] 𝑝 = 0.996 No effect.  

The model is adjusted on 100 observations with cross-validation (split 70/30). All variables were 

standardized before analysis to allow direct comparison of coefficients. 

 
Figure 6. Coefficients of Regression 

(Source: Python 3.9) 

As shown in Fig. 6, the standardized coefficients of a logistic regression model, displayed in a 

horizontal bar graph, indicate that calcium (Ca) shows the highest positive coefficient (≈ 0.5), confirming 

its major role in increasing the probability of exceeding the iron threshold (30 µg/L), while bicarbonates 

(HCO₃⁻) and carbonates (CaCO₃) show more moderate positive contributions. Sodium (Na) appears as the 
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only significant negative effect variable, suggesting a potentially protective role, while magnesium (Mg) and 

chlorides (Cl) show a marginal influence with coefficients close to zero. These results perfectly corroborate 

the conclusions of the other methods (Random Forest and Sobol analysis), and the direction of the effects 

(positive/negative) is particularly informative for understanding the underlying geochemical interactions in 

the Inaouen basin. 

3.4 The Random Forest and the Importance of Variables 

Random forest and logistic regression analysis converge to identify calcium (Ca) as the predominant 

factor (34% RF importance, 𝛽 = +0.625 in logit), confirming its key role in iron mobilization via carbonate 

dissolution, while bicarbonates (HCO₃⁻; 15.8% RF) and carbonates (CaCO₃; 13.8% RF) act as secondary risk 

modulators. This apparent discrepancy is likely due to its nonlinear, threshold-dependent role in iron 

mobilization, which is marginally important in Random Forest (0.07) and Sobol (𝑆1 = ⁡0.003) but strongly 

influential in logistic regression (𝛽 = +0.543).  Logistic regression finds its global linear relationship (e.g., 

sulfate-enhanced Fe oxidation at concentrations >50 mg/L), whereas Random Forest and Sobol account for 

context-dependent effects (e.g., SO₄²⁻ is only important in Ca-rich samples where redox conditions favor Fe-

SO₄ coupling).  This disparity demonstrates how, while linear models may overestimate the impact of sulfate 

alone, ensemble approaches reveal its conditional importance in relation to other parameters (Ca, pH).  These 

discoveries lend credence to the idea of using several models in order to capture both broad trends and 

complex mechanisms. 

Logistic regression specifies these relationships: each increase of 1 standard deviation of Ca increases 

the risk by 87% (OR = 1.87), and although sodium (Na; 7% RF) shows a moderate importance in RF, its 

significant protective effect in logit (𝛽 = -0.389, OR=0.68) reveals a distinct mechanism of ionic competition. 

Sulphates (SO₄²⁻), although marginally important in RF (0.07), can be seen in Table 6, have a strong linear 

impact (+72% risk), suggesting threshold or redox effects not captured by the random forest. This 

complementarity of methods validates the robustness of the conclusions while emphasizing the need to 

consider both linear effects (logit) and complex interactions (RF) for integrated risk management, centered 

on the control of Ca, HCO₃⁻ , and Na system parameters seen in. 

The predominance of calcium (Ca) in all models, confirmed by its high Sobol index (S1=0.73) and its 

significant logistic coefficient (+0.625), reveals its central role in the mobilization of iron via two key 

mechanisms:  the dissolution of carbonate rocks releasing adsorbed iron, and the geochemical interactions 

within the HCO₃⁻/CaCO₃/Na system that modulate its solubility. These results argue for an optimized 

monitoring strategy focusing on areas with high Ca (> percentile 75) and HCO₃⁻ content, while monitoring 

Na/Ca ratios as a protective indicator, in order to anticipate the risks of exceeding the critical threshold of 30 

µg/L, with particular attention to carbonate geological interfaces where these processes are amplified. This 

approach would allow efforts to be focused on contamination hotspots while integrating the modulatory 

effects of other ions. 

The observed discrepancy for sulfates (SO₄²⁻) suggests context-dependent behavior, with a moderately 

significant correlation in Random Forest (0.07) and Sobol (0.003), but a significant positive correlation in 

logistic regression (𝛽 = +0.543, 𝑝 < 0.001). The following are the causes of this:  

1. Nonlinear threshold effects, which happen when SO₄²⁻ only influences iron mobilization above 

critical concentrations (e.g., >150 mg/L, based on exploratory analysis);  

2. Redox interactions, since the role of SO₄²⁻ in iron solubility (e.g., via sulfide oxidation or sulfate 

reduction) might be hidden in the larger feature space of tree-based models.  

This illustrates the necessity of hybrid interpretation: logistic regression displays conditional linear 

risks, while Random Forest identifies the primary system-level drivers (Ca, HCO₃⁻). Future studies should 

include experimental testing of SO₄²⁻ thresholds. 

Table 6. Importance of Variables and Mechanistic Interpretation 

Variable RF 

Importance 

Coef. 

Logit 

Odds 

Ratio 
Likely Mechanism Model 

concordance 

Ca 0.35 +0.625 +87% Dissolution of carbonates Excellent 

HCO₃⁻ 0.16 +0.074 +8% PH/carbonate balance Moderate 
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Variable RF 

Importance 

Coef. 

Logit 

Odds 

Ratio 
Likely Mechanism Model 

concordance 

CaCO₃ 0.14 +0.061 +6% Alteration of carbonate rocks Moderate 

Mg 0.11 +0.026 +3% Co-dissolution with Ca Low 

SO₄²⁻ 0.07 +0.543 +72% Oxidation of sulfides Discordant 

Na 0.07 -0.389 -32% Ionic competition Partial 

Cl 0.06 ~0.000 0% No proven effect Concordant 

K 0.06 +0.317 +37% cation exchange Discordant 

The combined Random Forest analysis and logistic regression reveals that calcium (Ca) is the primary 

determinant of iron exceedances (RF importance = 0.35, 𝛽 = +0.625, +87% risk), confirming the central role 

of carbonate dissolution, while bicarbonates (HCO₃⁻) and carbonates (CaCO₃) show a secondary but 

consistent influence between the two models. Sodium (Na) has a significant protective effect in logit (𝛽 = -

0.389, -32% risk) despite its low importance in RF, suggesting a linear mechanism of ionic competition. At 

the same time, sulphates (SO₄²⁻) and potassium (K) show discrepancies (high impact in logit but low in RF), 

which could reveal non-linear relationships or threshold effects. 

These results guide priority monitoring of carbonate system parameters (Ca, HCO₃⁻, and CaCO₃) and 

critical ionic ratios (Na/Ca), while identifying additional avenues of research on sulfate interactions and iron 

behavior in different geochemical contexts. This cross-analysis validates the robustness of the conclusions 

while providing a complementary reading of linear vs. non-linear effects.  The Ca, HCO₃⁻, and CaCO₃ system 

dominates iron dynamics by explaining 65% of the variability (sum of RF importance), where carbonate 

dissolution and acid-base equilibria promote metal mobilization. In contrast, the paradoxical effect 

of SO₄²⁻ (high logit coefficient [+0.543] but low RF importance [0.07]) suggests either: a threshold 

effect with a non-linear relationship (activation beyond a critical concentration), or complex redox 

interactions with ferrous/ferric forms of iron, potentially related to sulphide oxidation in an anaerobic 

medium, mechanisms that the linear model partially captures but that the Random Forest integrates differently 

via its decision trees. This confirms the hypothesis of a geochemical role of limestone and carbonate 

dissolution in iron mobilization. 

 
Figure 7. Relative Importance of Predictive Variables in the Random Forest Model for Exceeding Iron. 

(Source: Python 3.9) 

As illustrated in Fig. 7, the importance of variables in the Random Forest model reveals a clear 

hierarchy of factors influencing iron threshold exceedance, with calcium (Ca, ≈0.35) as the dominant variable, 

confirming its central role in iron mobilization, followed by bicarbonates (HCO₃⁻) and carbonates (CaCO₃), 

which emphasize the importance of geochemical equilibria. At the same time, magnesium (Mg) and sulphates 

(SO₄²⁻) show a secondary influence, and sodium (Na) appears less influential than in logistic regression, 

probably due to nonlinear interactions better captured by this method. At the same time, chlorides (Cl) and 
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potassium (K) are found to be marginal with an importance of less than 0.05, thus playing a negligible role 

in predicting exceedance. 

The 5-ply cross-validation confirms the excellent robustness of both models, 

with optimal performance (AUC = 0.99) and perfect stability (SD = 0.01) for logistic regression. At the same 

time, the Random Forest shows slight variability (mean AUC = 0.99, SD = 0.021) while maintaining near-

perfect scores in all plies. These results indicate that: 

1. Both approaches effectively capture the determinants of iron threshold exceedance, 

2. The Random Forest has a better balance between performance and flexibility (less risk of 

overfitting), 

3. Inter-ply consistency validates the reliability of the analytical pipeline. However, AUCs = 0.99 

potentially suggest a marked binary threshold effect in the data or perfect linear separation of 

classes, warranting further investigation of conditional distributions. 

To validate the reliability of the logistic regression model and ensure that the high AUC (0.99) was not 

a result of overfitting, we applied multiple calibration diagnostics. The Brier score was 0.051, indicating a 

low mean squared difference between predicted probabilities and actual outcomes. The Hosmer–Lemeshow 

goodness-of-fit test yielded a statistically nonsignificant result (𝜒² = 1.08, 𝑝 = 0.998), confirming excellent 

agreement between predicted and observed event frequencies across risk deciles. Furthermore, the calibration 

plot (Fig. 8) visually demonstrates the model’s ability to assign accurate risk probabilities, with minimal 

deviation from the perfect calibration line. These indicators collectively demonstrate that the logistic 

regression model is well-calibrated, robust, and not overfitting the training data.  

 
Figure 8. Calibration Plot of the Logistic Regression Model for Iron Exceedance Risk  

(Source: Python 3.9) 

This calibration number (Fig. 8) shows how close the logistic regression model’s predicted probability 

is to the actual number of times iron levels go over 30 µg/L. The curve is very close to the diagonal reference 

line, which means that the expected risks and actual outcomes are very similar in all probability bins. This 

means that the model isn’t overfitting and that the probabilistic calibration is correct. With 10 bins, you can 

be sure that all the forecasts are accurate. 

3.5 Global Sensitivity Analysis (Sobol) 

The Sobol indices confirm the dominance of calcium (S1 = 0.74) as a key sensitivity factor affecting 

the probability of exceeding the Fe threshold. Bicarbonate (S1 = 0.13) is identified as a secondary factor. This 

strong influence of calcium can be linked to geochemical conditions favourable to releasing iron from 

carbonate formations, in connection with dissolution/acidification processes. 
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Sobol’s sensitivity analysis confirms the overwhelming dominance of calcium (Ca) with an S1 index 

of 0.73 (73% of the explained variance), followed far behind by bicarbonates (HCO₃⁻, 9.9%) and carbonates 

(CaCO₃, 7.3%), can be seen in Table 7. The other parameters (Mg, Cl, K, SO₄²⁻, Na) show marginal 

contributions (<6% each), revealing that carbonate chemistry mainly controls the variability of iron contents. 

This hierarchy corroborates the results of the RF and logistics models, clearly identifying calcium as the 

priority lever for action for risk management. 

Table 7. Sobol Sensitivity Indices: Contribution of Variables to The Variability of Iron Concentrations 

 
Figure 9. Sobol Sensitivity Analysis for The Contribution of Physicochemical Variables to The Variability of 

Iron Concentrations  
(Source: Python 3.9) 

In similar semi-arid basins, hydrogeochemical studies that link Fe mobility to carbonate dissolution 

(Sobol S1 = 0.74) are consistent with the dominance of calcium, where Ca2+ release encourages Fe 

desorption from mineral surfaces. In contrast to certain Mediterranean catchments, where bicarbonate 

complexes were the main carriers of iron, HCO₃⁻ (S1 = 0.10) plays a secondary role. This disparity might be 

a result of the particular redox conditions in the alkaline waters of Inaouen (pH ~7.8), which favor Ca-Fe 

competition over Fe-HCO₃⁻ complexation. The necessity of localized sensitivity analyses, like the one used 

here, is highlighted by this context-specificity. 

As shown in Fig. 9, the Sobol sensitivity indices (S1) quantify the proportional contribution of each 

variable to the total variance of iron concentrations in the Inaouen Basin. Calcium (Ca) dominates with an S1 

index of 0.7, explaining 70% of the variability in concentrations, which confirms its preponderant role in the 

geochemical processes of iron mobilization. Bicarbonates (HCO₃⁻) and carbonates (CaCO₃) appear as 

secondary but significant factors (S1 ≈ 0.1-0.15), reflecting the influence of acid-base balances. The other 

parameters (Mg, K, SO₄²⁻, Na) show marginal contributions (S1 < 0.05), suggesting that their impact on the 

variability of iron concentrations is negligible in this particular geochemical context. This analysis 

complements and confirms the results obtained by the logistic regression and Random Forest approaches, 

quantifying the relative importance of different environmental factors. The predominance of calcium suggests 

Variable S1 Index 

Ca 0.730926 

HCO3 0.099448 

CaCO3 0.072617 

Mg 0.052744 

Cl 0.017686 

K 0.004936 

SO4 0.003195 

Na 0.002868 
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that carbonate rock dissolution processes are the primary mechanism controlling the presence of iron in the 

basin’s waters. 

This integrative study reveals a clear hierarchy of factors influencing iron contamination in the Inaouen 

Basin. Calcium (Ca) emerges systematically as the dominant parameter, explaining 73% of the 

variability (Sobol S1 = 0.73), with a substantial linear impact (𝛽 =⁡+0.625 in logit) and a significant 

importance in Random Forest (0.35). Bicarbonates (HCO₃⁻) and carbonates (CaCO₃) play a secondary but 

consistent role across all methods, highlighting the importance of carbonate geochemical balances can be 

seen in Table 8. The discrepancies observed for sulphates (SO₄²⁻) and sodium (Na), the latter showing a 

protective effect in logit but a marginal influence in global analyses, point to contextual or non-linear 

mechanisms requiring further investigation. 

Table 8. Summary of Multimethod Results 

Variable Logistic Regression Random Forest Sobol (S1) Global Interpretation 

Ca + Strong coefficient Most important 0.74 (dominant) Key variable, powerful influence on iron 

HCO₃⁻ + Weak 
2nd most 

important 
0.13 

Indirect influence via buffering and 

dissolution 

SO₄²⁻ + Strong coefficient Medium ~0.06 (moderate) Possible redox linkage – to monitor 

Na – Negative coefficient Weak Very weak May play a dilutive or antagonistic role 

K + Medium Weak Very weak Possible influence, but not decisive 

Cl⁻ ~0 Very weak Negligible No direct role observed 

Mg ~0 Very weak Negligible Negligible influence 

CaCO₃ + Weak Medium-weak Weak 
Potentially linked to pH buffering and 

secondary precipitations 

3.6 Discussion of Mechanisms 

The predominance of the Ca, HCO₃⁻ , and CaCO₃ system strongly suggests that carbonate rock 

dissolution is the principal mechanism driving iron mobility, likely through two pathways: the release of 

adsorbed iron during calcite dissolution, and the alteration of ferrous minerals under neutro-alkaline 

conditions favored by elevated bicarbonate levels. The seemingly paradoxical behavior of sulphates, showing 

a strong effect in logistic regression but a weak one in Sobol and Random Forest analyses, may be attributed 

to their dual role in redox processes: under anaerobic conditions, sulphate reduction could lead to the 

precipitation of iron as sulfides, whereas under oxic conditions, sulphates could promote the oxidation of 

ferrous iron (Fe²⁺) into less mobile forms. Regarding sodium (Na), its apparent protective effect could reflect 

competition for adsorption sites or influence the solubility dynamics of iron-carbonate complexes, 

modulating iron mobility indirectly.  

This study’s Sobol sensitivity analysis was based on a comparatively small sample size (𝑛 = 100), 

which raises legitimate methodological concerns. Even with small-to-medium datasets, global sensitivity 

techniques like Sobol can produce reliable estimates, especially when paired with Latin Hypercube or quasi-

random sampling. However, one should exercise caution when interpreting first-order indices (e.g., Ca: 0.74 

and HCO₃⁻: 0.10). For lower-order interactions or context-dependent effects, like redox-driven iron 

mobilization, which might not be sufficiently captured with limited data, this is particularly pertinent. Where 

possible, bootstrap resampling and repeated cross-validation were used to address this problem and improve 

the results’ dependability. In order to evaluate the generalizability of the model, future research is urged to 

investigate surrogate modeling techniques and validate these sensitivity patterns using larger, spatially 

stratified datasets. These restrictions emphasize the significance of taking site-specific hydrogeochemical 

dynamics into account and repeating sensitivity diagnostics in a variety of environmental settings, even 

though they do not negate the main findings. 

3.7 Risk Management  

The results underscore the need for targeted risk management strategies, emphasizing prioritizing areas 

characterized by high calcium concentrations (above the 75th percentile) and low sodium-to-calcium ratios. 
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It is recommended to closely monitor redox-sensitive parameters, such as oxidation-reduction potential and 

sulphate levels, to better anticipate shifts in iron speciation. Hybrid modeling approaches that combine linear 

(logistic regression) and non-linear (Random Forest) methods should be integrated to enhance predictive 

capabilities. Addressing current limitations, including sample size and the lack of temporal data, could be 

achieved through seasonal monitoring campaigns and detailed mineralogical analyses of aquifers. This 

methodological framework is highly transferable to other carbonate sedimentary basins, particularly in semi-

arid climates. Notably, the consistency observed across the statistical tools employed, distribution fitting, 

regression, non-linear modeling, and sensitivity analysis, provides a robust foundation. This multi-level 

approach effectively quantifies probabilistic risks, identifies dominant explanatory parameters, and offers a 

transferable predictive tool adaptable to similar watersheds, strengthening the basis for water risk 

management, monitoring prioritization, and designing targeted remediation strategies. 

4. CONCLUSION  

This study made it possible to apply an integrated and robust statistical approach to the iron 

contamination analysis in the Inaouen watershed’s surface waters. This highlighted the dynamics underlying 

excess iron in this hydrological system by relying on complementary methods – adjustment of probability 

laws, Monte Carlo simulation, predictive modelling (logistic regression, random forest), and global 

sensitivity analysis. At the end of our in-depth statistical study, which focused on the surface waters of the 

Inaouen watershed, several key elements were highlighted regarding water quality and the risk of iron (Fe) 

contamination. Although most samples analysed currently have iron concentrations below the regulatory 

threshold of 30 µg/L, our distribution analyses, probabilistic simulation (Monte Carlo), and predictive 

modelling (logistic regression, Random Forest) reveal a significant risk of exceedance under certain 

environmental conditions. The results of the Monte Carlo simulation indicate an 18% probability of 

exceeding the threshold of 30 µg/L. At the same time, the sensitivity analysis of Sobol (0.74) identifies 

calcium (Ca) and bicarbonate (HCO₃⁻) as the main factors influencing the mobilization of iron in surface 

waters. They emerge as the main factors explaining contamination, suggesting a significant geochemical 

influence related to the dissolution of carbonate rocks. These observations indicate that, even in a context 

where current quality seems to be under control, the water system is vulnerable to future contamination, 

especially in hydrogeochemical changes (carbonate dissolution, pH changes) or intensification of human 

activities. Our approach thus makes it possible to anticipate potential degradation scenarios, to target the key 

parameters to be monitored, and to propose a preventive management strategy, especially in areas rich in Ca 

and HCO₃⁻. The results reveal that iron concentrations are accurately modeled by a log-normal distribution, 

confirming the statistical robustness of the approach. The probability of exceeding the critical threshold of 

30 µg/L is estimated at 18%, a significant level within the local environmental context. Among the 

explanatory variables, calcium (Ca) and bicarbonate (HCO₃⁻) emerge as the primary drivers of iron 

contamination, highlighting the role of water-rock interactions. This interpretation is reinforced by the Sobol 

sensitivity analysis, where the first-order index (S1) for calcium reaches a value of 0.74, underscoring its 

dominant geochemical influence likely linked to the dissolution of carbonate rocks. 

Based on the results obtained, several practical and scientific recommendations are proposed to support 

environmental management strategies. It is advisable to establish a monitoring network specifically targeted 

at areas with high calcium and bicarbonate concentrations and to use the findings as a foundation for 

predictive water quality modeling, particularly under water stress scenarios. Extending the study to include 

other trace metals such as manganese (Mn) and lead (Pb) would enrich the understanding of metal coexistence 

patterns. Additionally, incorporating temporal or seasonal variability, if time series data are available, would 

enhance the robustness of the analysis. Further investigations should explore relationships between iron 

contamination, soil physical characteristics, land use patterns, and precipitation dynamics. For a finer 

modeling of uncertainties, Bayesian statistical approaches are recommended. Moreover, scaling up the 

analysis to regional or national levels through spatial modeling could provide broader insights. Overall, the 

methodological framework developed herein offers a reproducible basis for similar studies across other 

watersheds and can significantly contribute to the sustainable management of water resources in the context 

of climate change and escalating anthropogenic pressures. 
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