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1. INTRODUCTION 

Regularity and efficiency in maritime transportation schedules, particularly for passenger ships in 

archipelagic nations like Indonesia, play a vital role in supporting inter-regional connectivity and economic 

growth. However, operational realities are often marked by various uncertainties and disturbances (noises) 

that can cause significant deviations from planned schedules. Factors such as adverse weather conditions, 

varying ship docking times, technical constraints, and the availability of resources are inherent challenges in 

maintaining punctuality [1], [2], [3]. Real-world incidents such as the grounding KM. Lambelu in Tarakan 

waters on Saturday, October 22, 2016 in the early morning [4] and the sinking of KM Journey due to a 

collision with KM. Lambelu on April 1, 2014 [5] further emphasizes the importance of safety and reliability 

in passenger ship operations.  

The Max-Plus Linear (MPL) model has been recognized as an effective mathematical framework for 

modeling and analyzing discrete event systems with temporal constraints [6]. MPL has been successfully 

applied in various transportation systems such as railway network systems [7], trains [8], [9], [10], 

transportation networks [11], inland water transport systems [12], which also exhibit characteristics of 

synchronization and timing constraints. Nevertheless, the direct application of conventional MPL models 

often encounters limitations in accommodating the inherent uncertainties within complex maritime 

transportation systems. To address this, the development of models capable of explicitly handling uncertainty, 

such as uncertain Max Plus Linear (uMPL), becomes relevant. uMPL offers the potential to model systems 

by considering the variability of operational parameters [1].  

This research focuses on the problem of passenger ship scheduling, specifically a case study in KM. 

Lambelu on its Parepare-Balikpapan route. The deliberate decision to focus on a single ship, rather than the 

more complex multi-ship collision problem, is a fundamental step in validating our formal verification 

methodology. This approach allows us to manage the exponential state space complexity that would arise 

from including multiple ships, enabling a meticulous analysis of the core model's effectiveness. By first 

verifying a single ship's ability to maintain a safe and punctual schedule, a logical prerequisite for any multi-

ship analysis, we can ensure the integrity of the system's foundational safety properties. Given the importance 

of operational safety and punctuality, as well as incidents highlighting the vulnerability of schedules to 

disruptions, this study aims to answer the question: can the uncertain Max-Plus Linear (uMPL) approach 

analyze the ship schedule safety of KM. Lambelu? Reachability analysis in this context will be used as an 

initial step towards performing a mathematical safety verification of the schedule, with the hope of identifying 

potential unsafe operational conditions. 

Although MPL models have been applied in various transportation scheduling contexts, as mentioned 

earlier, research specifically exploring the application of uMPL for reachability analysis in passenger ship 

scheduling, particularly with real-world case studies like KM. Lambelu, remains very limited. Most research 

using MPL in the maritime field tends to focus on railway traffic management optimization [13] or cargo 

scheduling [14]. Meanwhile, reachability analysis with uMPL has been applied in the context of control 

systems and safety verification of discrete event systems with uncertainty [15], [16]. However, its specific 

application to passenger ship scheduling, considering operational uncertainties and their implications for 

schedule safety, is still a relatively underexplored area.  

The main objective of this research is to construct a dynamical affine representation of the KM. 

Lambelu scheduling system using uMPL. Through this model, forward reachability analysis will be 

conducted to understand the boundaries of the operational conditions that the system can reach and to evaluate 

the potential for undesirable deviations from a safe schedule [17], [18], [19], [20]. The primary contribution 

of this research lies in addressing a significant gap in the literature by applying the uMPL-based dynamical 

affine model to passenger ship scheduling, specifically demonstrated through a real-world case study of KM. 

Lambelu, which remains a relatively underexplored area. This application offers a distinct advantage over 

conventional approaches by explicitly handling the inherent uncertainties in maritime operations, thereby 

providing a more robust framework for mathematical safety verification and operational risk analysis. The 

findings of this study are expected to benefit ship operators in identifying potential risks, regulators in 

developing more effective safety policies, and the scientific community in expanding the application of uMPL 

in the field of maritime transportation.  
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2. RESEARCH METHODS  

This chapter details the research methodology employed in this study to analyze the reachability of the 

KM. Lambelu passenger ship scheduling model. The discussion will cover the theoretical basis underpinning 

the research, including the relevant mathematical concepts. Subsequently, the chosen research design, the 

data sources used, and the development process of the uMPL model will be explained. Finally, the data 

analysis methods for testing reachability and the rationale for selecting KM. Lambelu as the case study will 

be outlined. 

2.1 Theoretical Basis 

This subsection outlines the theoretical foundations of this research. The discussion encompasses the 

concepts of Difference-Bound Matrices (DBM), Max-Plus Algebra, Interval Analysis, uncertain Max-Plus 

Linear Systems, Piecewise Affine (PWA) Representation, and the relevant principles of reachability analysis 

for uMPL systems.  

2.1.1 Difference Bound Matrices (DBM) 

The difference between two variables characterizes Difference-Bound Matrices (DBM). DBM is 

defined as follows [21]: 

Definition 1. A DBM in ℝ𝒏  is a square matrix that represents the intersection of a finite set defined by  𝒚𝒊 −
𝒚𝒋 ⋈𝒊,𝒋 𝜶𝒊,𝒋 where ⋈𝒊,𝒋∈ {<,≤} is the inequality sign and 𝜶𝒊,𝒋 ∈ ℝ ∪ {+∞} is the upper bound, for 𝟏 ≤ 𝒊 ≠

𝒋 ≤ 𝒏.  

The value of 𝒚𝟎 is always 0. This variable represents the set formed by a single variable, such as: 

𝒚𝒊 ⋈𝒊,𝒊 𝜶𝒊,𝒊. A DBM can be represented in matrix form where the entries consist of an upper bound and an 

inequality sign. The writing of DBM uses the column-row rule, that is, the matrix element in row 𝒊 and column 

𝒋 corresponds to 𝒙𝒋−𝟏 − 𝒙𝒊−𝟏.  

Example 2.1: Given a DBM 𝑨 = {𝒙 ∈ ℝ𝟐: −𝟏 ≤ 𝒙𝟏 ≤ 𝟓, 𝟎 ≤ 𝒙𝟐 ≤ 𝟐} in ℝ𝒏. The matrix representation of 

the DBM is obtained: 

𝑨 = [

(𝟎,≤) (𝟓,≤) (𝟐,≤)
(𝟏,≤) (𝟎,≤) (+∞,<)
(𝟎,≤) (+∞,<) (𝟎,≤)

]. 

2.1.2 Max-Plus Algebra 

Max-plus algebra is an idempotent semiring with two binary operations: maximum and addition. Given 

ℝ𝜀 ≔ ℝ ∪ {−∞} is a set equipped with two binary operations defined by [6], [22]: 

𝑎 ⊕ 𝑏 ≔ max{𝑎, 𝑏}, (1) 

𝑎 ⊗ 𝑏 ≔ 𝑎 + 𝑏, (2) 

for any 𝑎, 𝑏 ∈ ℝ𝜀. The semiring (ℝ𝜀,⊕,⊗) is defined with the neutral element 𝜀 ≝ −∞ and the identity 

element 𝑒 ≝ 0. The semiring (ℝ𝜀 ,⊕,⊗) is more compactly written as ℝ𝑚𝑎𝑥. 

The ⊕ and ⊗ operations on matrices are defined as: 

[𝑨 ⊕ 𝑩]𝑖,𝑗 = [𝑨𝑖,𝑗] ⊕ [𝑩𝑖,𝑗],

[𝑎 ⊗ 𝑨]𝑖,𝑗 = 𝑎 ⊗ [𝑨𝑖,𝑗],

[𝑪 ⊗ 𝑫]𝑖,𝑗 =⊕𝑘=1
𝑟 [𝑪]𝑖,𝑘 ⊗ [𝑫]𝑘,𝑗,

(3) 

 

for every matrix 𝑨,𝑩 ∈ ℝ𝜀
𝑚×𝑛, 𝑪 ∈ ℝ𝜀

𝑚×𝑟, and 𝑫 ∈ ℝ𝜀
𝑟×𝑛, respectively.  

The operation rules defined above have identical analogies to the operation rules in conventional 

algebra. The notation [𝑨𝑖,𝑗] is defined as the entry of matrix 𝑨 in the 𝑖-th row and 𝑗-th column. 
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2.1.3 Interval Analysis 

An interval is defined as [21]: 

[𝑥] = [𝑥, 𝑥] = {𝑥 ∈ ℝ𝑚𝑎𝑥: 𝑥 ≤ 𝑥 ≤ 𝑥}. (4) 

The intersection of two intervals [𝑥] and [𝑦] is empty or an interval, defined as: 

[𝑥] ∩ [𝑦] = [max {𝑥, 𝑦} ,min{𝑥, 𝑦}] . (5) 

If the intersection of the intervals is not empty then the union is written as: 

[𝑥] ∪ [𝑦] = [min {𝑥, 𝑦} ,max{𝑥, 𝑦}] . (6) 

The Max-Plus operations can be extended to intervals as follows: 

[𝑥] ⊕ [𝑦] = {𝑥 ⊕ 𝑦: 𝑥 ∈ [𝑥], 𝑦 ∈ [𝑦]} = [𝑥 ⊕ 𝑦, 𝑥 ⊕ 𝑦] , (7) 

[𝑥] ⊗ [𝑦] = {𝑥 ⊗ 𝑦: 𝑥 ∈ [𝑥], 𝑦 ∈ [𝑦]} = [𝑥 ⊗ 𝑦, 𝑥 ⊗ 𝑦] . (8) 

2.1.4 Uncertain Max-Plus Linear (uMPL) Systems 

The uncertain Max-Plus Linear (uMPL) system is an extension of the Max-Plus Linear (MPL) system. 

MPL is defined as follows [23]: 

𝒙(𝒌) = 𝑨 ⊗ 𝒙(𝒌 − 𝟏), (9) 

where 𝑨 ∈ ℝ𝜺
𝒎×𝒏 is a deterministic matrix, the variable 𝑘 represents the event index, the vector 𝒙(𝒌) is the 

event that occurs at time 𝑘. 𝒙𝒊(𝒌) represents the 𝑘-th occurrence time of the 𝑖-th event.  

If a number of matrix entries in Eq. (9) depend on 𝑘 and lie within an interval then the MPL system is 

called an uMPL system. The uMPL system is defined as: 

𝒙(𝒌) = 𝑨(𝒌) ⊗ 𝒙(𝒌 − 𝟏), (10) 

where 𝑨(𝒌) ∈ [𝑨,𝑨] is a non-deterministic matrix. Matrices 𝑨 and 𝑨 represent the lower and upper bound 

matrices, respectively. The interpretation of the state vector 𝒙 in the uMPL system is the same as the 

interpretation in the MPL system. 

2.1.5 Piecewise Affine (PWA) Representation 

Max-Plus Linear (MPL) systems can be expressed as Piecewise Affine (PWA) systems. A PWA 

system is formed by a collection of regions. The dynamics of each region are affine, that is, linear plus a 

constant. Each region is formed by a finite coefficient 𝑔 = (𝑔1, 𝑔2,⋯ , 𝑔𝑛) ∈ {1, 2,⋯ , 𝑛}𝑛 where 𝑛 is the 

dimension of the MPL system. The region corresponding to the coefficient 𝑔 is [19]: 

𝑅𝑔 = ⋂ ⋂ {𝒙 ∈ ℝ𝒏: 𝒙𝒋 − 𝒙𝒈𝒊
≤ [𝑨]𝒊,𝒈𝒊

− [𝑨]𝒊,𝒋}

𝑛

𝑗=1,𝑗≠𝑔𝑖

𝑘

𝑖=1

, (11) 

where the corresponding affine dynamics are 𝒙𝒊(𝒌 + 𝟏) = 𝒙𝒈𝒊
(𝒌) + [𝑨]𝒊,𝒈𝒊

 for 𝑖 = {1,2,⋯ , 𝑛}.  

Uncertain MPL systems can be partitioned using the upper bound matrix 𝑨. In this case, each region 

is formed by a finite coefficient 𝑔 = (𝑔1, 𝑔2, ⋯ , 𝑔𝑛) ∈ {1, 2,⋯ , 𝑛}𝑛. The region corresponding to the finite 

coefficient 𝑔 is: 

𝑅𝑔
𝑢 = ⋂ ⋂ {𝒙 ∈ ℝ𝒏: 𝒙𝒋 − 𝒙𝒈𝒊

≤ [𝑨]
𝒊,𝒈𝒊

− [𝑨]
𝒊,𝒋

}

𝑛

𝑗=1,𝑗≠𝑔𝑖

𝑘

𝑖=1

, (12) 

where the corresponding dynamics are: 

⋂{𝒙𝒊(𝒌) − 𝒙𝒈𝒊
(𝒌 − 𝟏) ≤ [𝑨]

𝒊,𝒈𝒊
}

𝑛

𝑖=1

∩ ⋂⋂{𝒙𝒋(𝒌 − 𝟏) − 𝒙𝒊(𝒌) ≤ −[𝑨]
𝒊,𝒋

}

𝑛

𝑗=1

𝑛

𝑖=1

, (13) 
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the dynamics in Eq. (13) can be represented as a DBM with respect to the state variables at times 𝑘 and 𝑘 −
1. 

2.1.6 Reachability Analysis of uMPL Systems 

Reachability analysis for uncertain Max-Plus Linear (uMPL) systems has been conducted in [19]. 

Reachability analysis in this system can be performed using forward reachability and backward reachability 

methods. Given a DBM 𝑿 ⊆ ℝ𝒏 and 𝑨 ∈ [𝑨,𝑨] is a max-plus interval matrix. The steps to compute the image 

of 𝑿 corresponding to 𝐴 are as follows [21]: 

1. Construct a Piecewise Affine (PWA) system based on the upper bound of the max-plus interval 

matrix 𝑨; 

2. Compute the cross product (𝑿 ∩ 𝑹𝒈
𝒖) × ℝ𝒏, for each finite coefficient 𝑔 such that 𝑿 ∩ 𝑹𝒈

𝒖 Is not 

empty; 

3. Compute the intersection between the cross product result and the corresponding affine dynamics; 

and 

4. Compute the projection of the intersection result onto the corresponding state variables in the 

previous step. 

Given an uMPL system with a non-empty initial state set 𝑋0, the set of reachable states at time 𝑘 can 

be computed recursively: 

𝑿𝒌 = {𝑨𝒌 ⊗ 𝒙:𝑨𝒌 ∈ [𝑨, 𝑨], 𝒙 ∈ 𝑿𝒌−𝟏}, (14) 

where 𝑥𝑘 is the set of states reachable at time 𝑘. Given a DBM 𝑿 ⊆ ℝ𝒏 and 𝑨 ∈ [𝑨,𝑨] is a max-plus interval 

matrix. The steps to compute the inverse image of corresponding to 𝐴 are as follows: 

1. Construct PWA system based on the upper bound of the max-plus interval matrix 𝑨; 

2. Compute the cross product ℝ𝒏 × 𝑿; 

3. Compute the intersection between the corresponding affine dynamics and the result of ℝ𝒏 × 𝑿, 

for each finite coefficient 𝒈 such that the intersection of the affine dynamics and ℝ𝒏 × 𝑿 is not 

empty; and 

4. Compute the projection of the intersection result onto the corresponding state variables in the 

previous step. 

Given an uMPL system with a non-empty final state set 𝑋𝐺, the set of states that can reach 𝑋𝐺 at time 

𝑘 can be computed recursively: 

𝑋−𝑘 = {𝒙 ∈ ℝ𝒏: ∃𝑨𝒌 ∈ [𝑨, 𝑨] ⇒ 𝑨𝒌 ⊗ 𝒙 ∈ 𝑿−𝒌+𝟏}, (15) 

where 𝑋−𝑘 is the set of states that can reach the final state set at time 𝑘. 

2.2 Research Design 

This research employs a case study approach with the aim of analyzing the safety of the KM. Lambelu 

passenger ship schedule through mathematical verification. The research is quantitative, focusing on 

modeling and system analysis using the uncertain Max-Plus Linear (uMPL) approach. The research design 

involves a structured series of steps. First, operational schedule data of KM. Lambelu, historical delay data, 

and other relevant data will be collected from credible sources. Subsequently, an uMPL model will be 

developed to represent the ship scheduling dynamics, considering uncertainties in travel times between ports. 

A Piecewise Affine (PWA) representation of the uMPL model will be constructed to facilitate reachability 

analysis. Reachability analysis, using the methods described in the previous subsection, will then be applied 

to the PWA model to determine the boundaries of safe operational conditions. The results of this analysis 

will be used to verify whether the operational schedule of KM. Lambelu meets the established safety criteria. 

If potential safety violations are found, this research will provide recommendations to management for 

schedule improvements, with the goal of ensuring adherence to the predefined schedule. The scope of this 

research is limited to the operational route of KM. Lambelu, considering the duration of the ship’s journey 

calculated from the difference between the scheduled departure and arrival times at each destination. This 

research also involves mathematical simulations to verify the safety of the schedule. 
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2.3 Data Sources 

The data used in this research is secondary data obtained directly from official sources. The primary 

data includes the operational schedule of KM. Lambelu, which covers the ship’s departure and arrival 

schedules. This data was obtained from the Kantor Kesyahbandaran dan Otoritas Pelabuhan (KSOP) and the 

PT. Pelni Parepare Branch Office. In addition, the shipping route data of KM. Lambelu was also obtained 

from the same sources. The data period used is from January to June 2023. The departure and arrival schedule 

data were then processed to calculate the travel time between ports on a daily basis. Since the data was 

obtained directly from authorized official agencies, namely KSOP and PT. Pelni, the data is considered to 

have a high degree of accuracy and reliability. 

2.4 Model Development 

The uncertain Max-Plus Linear (uMPL) model for KM. Lambelu’s scheduling is constructed by defining the 

state variables as follows: 

𝒙(𝒌) : a matrix describing the departure time of the ship from each port at the 𝑘-th departure 

𝒙(𝒌 − 𝟏) : a matrix describing the departure time of the ship from each port at the (𝑘 − 1)-th departure 

𝑨(𝒌) : a matrix containing intervals representing the travel time of the ship from one port to another at 

the 𝑘-th departure. 

This uMPL model is based on the principle that the ship’s departure time at a certain departure (𝒙(𝒌)) 

is influenced by the departure time at the previous departure (𝒙(𝒌 − 𝟏)) and the travel time between ports 

(𝑨(𝒌)). Mathematically, as explained Subsection 2.1.4 regarding uMPL systems.  

To represent the uncertainty in travel time between ports, each entry in the 𝑨(𝒌) matrix is in the form 

of an interval. This interval reflects the variations that may occur in travel time due to factors such as weather 

conditions, sea currents, or non-constant ship speed. In this study, the lower and upper bounds of the interval 

are determined based on historical travel time data of KM. Lambelu during the period of January-June 2023. 

Specifically, for each route between ports, the lower bound of the interval is taken as the minimum recorded 

travel time value, while the upper bound of the interval is taken as the maximum recorded travel time value 

during that period. Details on the formation of these intervals will be further explained in the section 

discussing the overall uMPL model information.  

Furthermore, this uMPL model is transformed into a Piecewise Affine (PWA) representation using the 

principles described in Eq. (12). This PWA representation allows for partitioning the system’s state space 

into several regions, where the system dynamics in each region can be approximated by an affine function. 

The PWA representation is structured based on the formed uMPL model and the identified ship travel route. 

For each route, the relevant region 𝑔 is determined, resulting in the corresponding affine dynamics. This 

process involves defining the constraints on the state variables that define each region, and then deriving the 

affine equations that describe the system’s evolution within that region. 

2.5 Data Analysis 

Data analysis in this research aims to verify the safety of the KM. Lambelu’s schedule through 

reachability analysis. To achieve this goal, this research will use the forward reachability analysis method. 

This method will be applied to the developed uMPL model to calculate the set of states that can be reached 

by the ship scheduling system from a given initial state.  

Specifically, the reachability analysis will be carried out by calculating successive iterations of the 

system’s state. In each iteration, the set of possible reachable states will be calculated based on the previous 

state and the possible variations in travel time between ports, represented as intervals. This process will be 

repeated until a relevant time horizon is reached.  

In implementing this reachability analysis, this research will utilize the Piecewise Affine (PWA) 

representation of the uMPL model. As explained in the previous subsection, the PWA representation 

partitions the system’s state space into several regions where the system dynamics can be approximated by 

affine functions. Reachability analysis will be performed on each affine region separately, and then the results 

from each region will be combined to obtain an overall picture of the system’s reachability. 

To facilitate the calculation and simulation of reachability analysis, this research will use the Python 

programming language. In particular, the Floyd-Warshall algorithm will be implemented in Python to find 
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the canonical form of Difference-Bound Matrices (DBM), which are used to represent the set of states in 

reachability analysis. This canonical form will then be used to calculate the image of the previous state set. 

The safety of the KM. Lambelu’s schedule will be evaluated by calculating the intersection between 

the set of unsafe states (𝑈𝑠), the initial state set (𝑋0), and the set of states reached at each iteration (𝑋1, 𝑋2, 

and soon). If this intersection is empty, then the scheduling system is considered safe. Conversely, if this 

intersection is not empty, then the scheduling system is considered unsafe, because there is a possibility that 

an unsafe state can be reached. 

In this study, the set of unsafe states is defined as 𝑈𝑠 = 𝒙 ∈ ℝ𝟐: 𝟏𝟕 ≤ 𝒙𝟏 − 𝒙𝟐 ≤ 𝟐𝟒, where 𝑥1 and 𝑥2 

represent the departure times of the ship from ports A and B, respectively. Thus, 𝑈𝑠 includes states where the 

difference in departure times between the ship from ports A and B is in the range of 17 to 24 hours. This 

range is chosen as the 𝑈𝑠 criterion because it reflects the worst conditions that may occur due to unexpected 

delays.  

3. RESULTS AND DISCUSSION 

This section presents the results of the safety analysis of the KM. Lambelu’s schedule using the 

uncertain Max-Plus Linear (uMPL) approach. This analysis involves several stages, from system modeling 

to safety verification. For ease of understanding, this section is divided into several subsections which 

include: uMPL modeling, route identification, Piecewise Affine (PWA) and Difference-Bound Matrices 

Representation, Image 𝑋𝑘 calculation, and system safety verification. 

3.1 Uncertain Max-Plus (uMPL) Model 

This subsection presents the uncertain Max-Plus Linear (uMPL) model developed to represent the 

scheduling dynamics of KM. Lambelu. The model is based on the ship’s sailing route structure, travel times 

between ports, and potential uncertainties. KM. Lambelu serves 9 ports with 16 travel routes. Details of the 

travel routes and estimated travel times between ports are presented in Table 1. 

Table 1. KM. Lambelu Travel Routes 

No. From To Estimated Travel Time (hours) 

1 Parepare Balikpapan 16-17 

2 Balikpapan Parepare 16-18 

3 Makassar Bau-bau 15-16 

4 Bau-bau Makassar 14-15 

5 Makassar Parepare 4-6 

6 Parepare Makassar 5-7 

7 Bau-bau Maumere 12 

8 Maumere Larantuka 5 

9 Larantuka Bau-bau 11-12 

10 Balikpapan Pantoloan 12-17 

11 Pantoloan Balikpapan 17-18 

12 Pantoloan Tarakan 18-21 

13 Tarakan Nunukan 6-7 

14 Nunukan Balikpapan 25-30 

15 Balikpapan Tarakan 21-26 

16 Nunukan Pantoloan 15-22 

Data source: KSOP and the PT. Pelni Parepare Branch Office 

The sailing route of KM. Lambelu can also be visualized in Fig. 1, which shows the sequence of ports 

and the direction of the ship’s travel. In this figure, each letter represents a port, with detail as follows: A 

(Makassar), B (Bau-bau), C (Maumere), D (Parepare), E (Balikpapan), F (Pantoloan), G (Tarakan), H 

(Nunukan), and I (Larantuka). 
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Figure 1. KM. Lambelu Route 

The uMPL model for KM. Lambelu is based on the sailing route shown in Table 1 and Fig.1. This 

model describes the dynamics of the ship’s movement between ports, considering the uncertainty in travel 

times. This model uses the following state variables: 

1. 𝑥𝑘: a vector representing the departure time of the ship from each port at the 𝑘-th departure. 𝑥𝑘 =

(𝑥1(𝑘), 𝑥2(𝑘),⋯ , 𝑥9(𝑘))′, where 𝑥𝑖(𝑘) is the departure time from the 𝑖-th port at the 𝑘-th 

departure; 

2. 𝑎𝑖𝑗: travel time from port 𝑖 to port 𝑗. This value is taken from Table 1 and can be a single value or 

an interval, depending on the recorded travel time variations; and 

3. 𝜀: represents the route 𝑎𝑖𝑗 is not available. 

Using the variable above, the scheduling dynamics of KM. Lambelu is modeled by the following equation: 

𝒙(𝑘) = 𝐴(𝑘) ⊗ 𝒙(𝑘 − 1), (16) 

where 

𝑨(𝒌) =

[
 
 
 
 
 
 
 
 

𝜺 [𝟏𝟒, 𝟏𝟓] 𝜺 [𝟓, 𝟕] 𝜺 𝜺 𝜺 𝜺 𝜺
[𝟏𝟓, 𝟏𝟔] 𝜺 𝜺 𝜺 𝜺 𝜺 𝜺 𝜺 [𝟏𝟏, 𝟏𝟐]

𝜺 𝟏𝟐 𝜺 𝜺 𝜺 𝜺 𝜺 𝜺 𝜺
[𝟒, 𝟔] 𝜺 𝜺 𝜺 [𝟏𝟔, 𝟏𝟖] 𝜺 𝜺 𝜺 𝜺

𝜺 𝜺 𝜺 [𝟏𝟔, 𝟏𝟕] 𝜺 [𝟏𝟕, 𝟏𝟖] 𝜺 [𝟐𝟓, 𝟑𝟎] 𝜺
𝜺 𝜺 𝜺 𝜺 [𝟏𝟐, 𝟏𝟕] 𝜺 𝜺 [𝟏𝟓, 𝟐𝟐] 𝜺
𝜺 𝜺 𝜺 𝜺 [𝟐𝟏, 𝟐𝟔] [𝟏𝟖, 𝟐𝟏] 𝜺 𝜺 𝜺

𝜺 𝜺 𝜺 𝜺 𝜺 𝜺 [𝟔, 𝟕] 𝜺 𝜺
𝜺 𝜺 𝟓 𝜺 𝜺 𝜺 𝜺 𝜺 𝜺 ]

 
 
 
 
 
 
 
 

. 

This equation describes how the ship’s departure time at the 𝑘-th departure is influenced by the 

departure time at the previous departure (𝑘 − 1) and the travel times between ports. The symbol ⊗ denotes 

the max-plus operation. Matrix 𝑨(𝒌) represents the travel times between ports, considering uncertainties. In 

this matrix, each element 𝑎𝑖𝑗 shows the travel time from port 𝑖 to port 𝑗. Interval values, such as [14,16], 

indicate variations in travel time. The symbol 𝜀 indicates that there is no direct route from port 𝑖 to port 𝑗. 

3.2 Route Identification 

This subsection identifies the shipping route of KM. Lambelu, that is the focus of the analysis in this 

study. This study focuses on the Parepare-Balikpapan route. The selection of this route is illustrative for the 

purpose of demonstrating the proposed analysis methodology. The estimated travel time and uncertainty for 

the Parepare-Balikpapan route is 16-17 hours, while for the Balikpapan-Parepare, it is 16-18 hours. This route 

is represented in the uMPL model by the following submatrix of the 𝑨(𝒌) matrix defined in Subsection 3.1: 

𝑨∗(𝒌) = [
𝜺 [𝟏𝟔, 𝟏𝟖]

[𝟏𝟔, 𝟏𝟕] 𝜺
] . (17) 

This matrix shows the travel time from Parepare to Balikpapan and vice versa, taking into account the 

uncertainty. The element 𝜀 indicates that the ship does not return to its origin port. This identified route will 
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be used in the following subsection for further analysis using the Piecewise Affine (PWA) and Difference-

Bound Matrices (DBM) Approach. 

3.3 Piecewise Affine Identification 

Referring to Eqs. (12), (16), and (17), given the region 𝑅𝑔 ∈ 𝑅̅𝑚𝑎𝑥
2  for 𝒈 ∈ {1,2}2. Based on the 

calculation in the previous subsection, for Parepare-Balikpapan route, only the region 𝑅(2,1) is not empty, 

with affine dynamics as follows: 

𝑥(𝑘) = {[
[𝜀 ⊗ 𝑥1(𝑘 − 1) ⊕ 16 ⊗ 𝑥2(𝑘 − 1), 16 ⊗ 𝑥2(𝑘 − 1)]

[16 ⊗ 𝑥1(𝑘 − 1) ⊕ 𝜀 ⊗ 𝑥2(𝑘 − 1), 16 ⊗ 𝑥1(𝑘 − 1)]
] , 𝑥(𝑘 − 1) ∈ 𝑅(2,1)

𝑢 } . (18) 

This equation describes how the departure time from each port at the 𝑘-th departure is influenced by the 

departure time at the previous departure (𝑘 − 1) and the travel time between ports. 

3.4 Difference-Bound Matrices Representation 

Region 𝑅(2,1) and its corresponding dynamics are represented as a Difference-Bound Matrix (DBM). 

The DBM variables consist of the state variables at time 𝑡, the state variables at the next step, and the variable 

𝑥0. The transformation of the dynamics for 𝑅(2,1) in the KM. Lambelu schedulling is as follows: 

𝒙𝟏
′ − 𝒙𝟐 ≤ 𝟏 and 𝟔𝒙𝟐

′ − 𝒙𝟏 ≤ 𝟏𝟔. (19) 

The DBM is generated from the affine dynamics: {[𝑥0, 𝑥1, 𝑥2, 𝑥1
′ , 𝑥2′]

𝑇: 𝑥1
′ − 𝑥2 ≤ 16, 𝑥2

′ − 𝑥1 ≤ 16}. The 

intersection between the DBM from the affine dynamics and 𝑹(𝟐,𝟏) × ℝ𝟐 produces the DBM: 

𝑫(𝟐,𝟏) =

[
 
 
 
 

(𝟎,≤) (+∞,<) (+∞,<) (+∞,<) (+∞,<)
(+∞,<) (𝟎,≤) (+∞,<) (+∞,<) (𝟔,≤)
(+∞,<) (+∞,<) (𝟎,≤) (𝟒. 𝟕𝟓,≤) (+∞,<)
(+∞,<) (+∞,<) (+∞,<) (𝟎,≤) (+∞,<)
(+∞,<) (+∞,<) (+∞,<) (+∞,<) (𝟎,≤) ]

 
 
 
 

. 

3.5 Image 𝑿𝒌 Calculation 

This subsection presents the calculation of the image of the state set 𝑋0 iteratively to determine the set 

of states that can be reached by the system at each time step. The image calculation is done using the forward 

reachability approach. The set 𝑋0 is defined as 𝑋0 = {𝒙 ∈ ℝ𝟐: 𝟎 ≤ 𝒙𝟏 ≤ 𝟔;𝟐 ≤ 𝒙𝟐 ≤ 𝟓} and 𝑈𝑠 =

{𝒙 ∈ ℝ𝟐: 𝟏𝟕 ≤ 𝒙𝟏 − 𝒙𝟐 ≤ 𝟐𝟒} with 𝑁 = 2. The set 𝑋0 in the region 𝑅(2,1) is expressed in DBM as follows: 

𝑫𝑿𝟎 = [

(𝟎,≤) (𝟔,≤) (𝟓,≤)
(𝟎,≤) (𝟎,≤) (+∞,<)

(−𝟐,≤) (+∞,<) (𝟎,≤)
]. 

The cross product of 𝑫𝑿𝟎 and ℝ𝟐 produces: 

𝑫ℝ𝟐×𝑿𝟎 =

[
 
 
 
 

(𝟎,≤) (𝟔,≤) (𝟓,≤) (+∞,<) (+∞,<)
(𝟎,≤) (𝟎,≤) (+∞,<) (+∞,<) (+∞,<)

(−𝟐,≤) (+∞,<) (𝟎,≤) (+∞,<) (+∞,<)
(+∞,<) (+∞,<) (+∞,<) (𝟎,≤) (+∞,<)
(+∞,<) (+∞,<) (+∞,<) (+∞,<) (𝟎,≤) ]

 
 
 
 

. 

The intersection of 𝑫ℝ𝟐×𝑿𝟎 and DBM 𝑫(𝟐, 𝟏) results in 𝑫(𝟐,𝟏)
ℝ𝟐×𝑿𝟎: 

𝑫(𝟐,𝟏)
ℝ𝟐×𝑿𝟎 =

[
 
 
 
 

(𝟎,≤) (𝟔,≤) (𝟓,≤) (+∞,<) (+∞,<)
(𝟎,≤) (𝟎,≤) (+∞,<) (+∞,<) (𝟔,≤)

(−𝟐,≤) (+∞,<) (𝟎,≤) (𝟒. 𝟕𝟓,≤) (+∞,<)
(+∞,<) (+∞,<) (+∞,<) (𝟎,≤) (+∞,<)
(+∞,<) (+∞,<) (+∞,<) (+∞,<) (𝟎,≤) ]

 
 
 
 

. 

The canonical form of 𝑫(𝟐,𝟏)
ℝ𝟐×𝑿𝟎 is obtained using the Floyd-Warshall algorithm [21]: 
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𝒄𝒇 (𝑫(𝟐,𝟏)
ℝ𝟐×𝑿𝟎) =

[
 
 
 
 

(𝟎,≤) (𝟔,≤) (𝟓,≤) (𝟗. 𝟕𝟓,≤) (𝟏𝟐,≤)
(𝟎,≤) (𝟎,≤) (𝟓,≤) (𝟗. 𝟕𝟓,≤) (𝟔,≤)

(−𝟐,≤) (𝟒,≤) (𝟎,≤) (𝟒. 𝟕𝟓,≤) (𝟏𝟎,≤)
(+∞,<) (+∞,<) (+∞,<) (𝟎,≤) (+∞,<)
(+∞,<) (+∞,<) (+∞,<) (+∞,<) (𝟎,≤) ]

 
 
 
 

. 

The projection of DBM 𝑫(𝟐,𝟏)
ℝ𝟐×𝑿𝟎 on the variables {𝑥1

′ , 𝑥2′} is: 

𝑫𝑿𝟏
(𝟐,𝟏)

= [

(𝟎,≤) (𝟗. 𝟕𝟓,≤) (𝟏𝟐,≤)
(+∞,<) (𝟎,≤) (+∞,<)
(+∞,<) (+∞,<) (𝟎,≤)

]. 

The image of 𝑋0 corresponding to the dynamics in the region 𝑅(2,1)
𝑢  is given: 

𝑋1
(2,1)

= {𝒙′𝟏 ≤ 𝟗.𝟕𝟓, 𝒙𝟐
′ ≤ 𝟏𝟐,−∞ < 𝒙′

𝟏 − 𝒙′
𝟐 < +∞}. 

The procedure for calculating the finite set in the second step (𝑁 = 2) is done in the same way as before, i.e. 

finding the image of 𝑋1
(2,1)

 with respect to the dynamics of the region 𝑅(2,1)
𝑢  so we obtain: 

𝑋2
(2,1)

= {𝒙′𝟏 ≤ 𝟏𝟔. 𝟕𝟓, 𝒙𝟐
′ ≤ 𝟏𝟓. 𝟕𝟓,−∞ < 𝒙′

𝟏 − 𝒙′
𝟐 < +∞}. 

Based on the results obtained, the intersection between 𝑈𝑠 and the union of 𝑋0, 𝑋1, and 𝑋2 is non-empty, i.e. 

there are intersection between 𝑋1 and 𝑈𝑠 and intersection between 𝑋2 and 𝑈𝑠. 

3.6 System Safety Verification 

This subsection presents the results of the safety verification of the KM. Lambelu’s scheduling system. 

The safety of the system is evaluated by calculating the intersection between the set of unsafe states (𝑈𝑠), the 

initial state set (𝑋0), and the set of states reached at each iteration (𝑋𝑘). If this intersection is not empty, then 

the scheduling system is considered unsafe because there is a possibility that the ship can reach a state that is 

considered unsafe based on the established criteria. 

Based on the previous analysis, we have found that the intersection between the set of unsafe states 

(𝑈𝑠) and the union of the set of reachable states (𝑋0, 𝑋1, and 𝑋2) is not empty. This non-empty intersection 

indicates that there is a possibility that the scheduling system can reach a state that is included in the “unsafe” 

category (𝑈𝑠). In other words, the scenarios considered unsafe by the definition of 𝑈𝑠 have the possibility of 

occuring in the ship’s operation. The existence of this intersection reveals the presence of a potential risk in 

the scheduling system. Although the system may not always end up in an unsafe state, this possibility means 

that the risk of accidents or incidents cannot be ignored. This result emphasizes the need for action to reduce 

or eliminate these risks. The scheduling system needs to be evaluated and improved to ensure that the ship 

operates within safe limits. In the context of KM. Lambelu, this finding has implication including schedule 

evaluation, risk mitigation, and safety improvement.   

Based on these findings, several recommendations can be made to improve KM. Lambelu’s schedule: 

adding buffer time to the departure and arrival schedules to accommodate variations in travel time, improving 

coordination between ports to ensure smooth ship flow and reduce potential delays, and setting a maximum 

limit on the difference in departure time between ships to mitigate the risk of traffic congestion.  

Despite its limitations, this study contributes to the existing literature by applying the uMPL approach 

to analyze the schedule security of passenger ships in Indonesia, a topic that has not been previously explored. 

This research also offers a methodology for verifying schedule security by considering travel time 

uncertainty, which can be valuable tool for ship operators and port authorities. 

4. CONCLUSION 

This research has successfully demonstrated the application of the uncertain Max-Plus Linear (uMPL) 

approach in analyzing the safety ship scheduling, specifically for the KM. Lambelu passenger ship on the 

Parepare-Balikpapan route. The key finding of this research is that the current scheduling system of KM. 

Lambelu is not safe, because there is an intersection between the set of unsafe states and the set of states that 
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the system can reach. This implies that there is a possibility for the ship to operate under conditions that are 

considered unsafe. 

The analysis highlighted that the variability in travel times between ports is a critical factor influencing 

the safety of the schedule. To improve safety, this research recommends adding buffer time, improving 

coordination between ports, and setting maximum limits on departure time differences. This research 

contributes to the literature by applying the uMPL approach in the context of Indonesian passenger ships and 

offering a methodology for verifying schedule safety by considering travel time uncertainty.  
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