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1. INTRODUCTION

Circulant and skew circulant matrices are matrices that have a good structure, so that they are easy to
construct or generate. An n X n circulant matrix is a matrix in which the entries in the i-th row is the result
of a circular shift to the right of the entries in the (i — 1)-th row for i = 2,3, ..., n. A skew circulant matrix is
similar to a circulant matrix, but all entries below the main diagonal are multiplied by —1 [1]. These matrices
are widely applied in cryptography [2]-[7], coding theory [8], signal processing [9], differential equation
[10],[11], and others [12]-[15].

Cryptography is a field that studies encryption schemes for securing communication. An encryption
scheme consists of two main processes: encryption and decryption. Encryption is a process that transforms
an original message, known as plaintext, into a secret message, referred to as ciphertext. Decryption is the
reverse process of encryption. Both processes require the use of a key. According to [16], cryptography can
be classified into two types: symmetric-key and asymmetric-key (or public-key) cryptography. Symmetric-
key cryptography uses the same key for encryption and decryption, while public-key cryptography uses
different keys. In public-key cryptography, the two different keys are the public key for encryption and the
private key for decryption. A well-known example of symmetric-key cryptography is the Hill cipher.
However, the Hill cipher is vulnerable to a known plaintext attack. Some of the new public-key cryptography
schemes based on Hill and Affine-Hill ciphers have been developed utilizing several types of key matrices
and are secure against known plaintext attack [17],[18]. In addition, a new public-key cryptography based on
the Hill cipher can be constructed using other approaches that utilize RSA cryptography [19]. Other new
public-key cryptography also uses matrices with different approaches [20]-[22]. Furthermore, the EIGamal
technique can also be integrated into public-key cryptography schemes based on these ciphers. Notable
examples of key matrices used in these schemes include generalized Fibonacci matrices with the Hill cipher
[23], generalized Fibonacci matrices with the Affine-Hill cipher [24], M, matrices with the Hill cipher [25],
and others [26],[27]. These schemes that utilize the EIGamal technique derive their security from the hardness
of the discrete logarithm problem and can reduce the time complexity of key transmission of the Hill cipher.

The determinant and inverse of circulant and skew circulant matrices have potential applications in the
decryption process because their determinant and inverse formulas can be derived explicitly, thus allowing
for fast computation during the decryption process. Based on the well-known formulas for computing the
determinant and inverse of the matrices in [28], a major challenge lies in the inefficiency of applying these
formulas when the matrix size n becomes very large. However, if the entries of the matrices follow a simple
pattern, the formulas can be significantly simplified, allowing for better explicit formulas. Such
simplifications are expected to significantly reduce the computational time of both the determinant and the
inverse of the matrices. Several studies have explored explicit formulas for the determinant and inverse of
circulant matrices, including those involving alternating Fibonacci numbers [29] and other numbers [30],[31].
Similarly, research on the determinant and inverse of skew circulant matrices has been conducted for various
numbers [32]-[35]. In this paper, we use skew circulant matrices with generalized alternating Fibonacci
numbers to develop a novel public-key cryptography scheme over Z, based on the Hill cipher and the
ElGamal technique, where r is a prime number. The scheme proposed in this research is expected to reduce
the computational time for encryption and decryption than other similar schemes in [23], [24] and [25].

The objectives of this research are: (1) to explicitly formulate the determinant and inverse of 4, ,
over Z,, where r is a prime number; (2) to develop a public-key cryptography scheme based on the Hill
cipher and the ElGamal technique using these matrices; (3) analyze the security of the proposed scheme
theoretically involving the discrete logarithm problem, brute force attack, and known plaintext attack; and
(4) compare the computational time of the proposed scheme by measuring execution time of the encryption
and decryption of the proposed scheme with three other schemes presented in [23], [24] and [25].

2. RESEARCH METHODS
2.1 Determinant and Inverse Formulations

In this subsection, we present some mathematical background related to skew circulant matrices and the
generalized alternating Fibonacci sequence.
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Definition 1. [1] Let S = {s;}]=, be a finite sequence of numbers. A skew circulant matrix is written as follows

S1 Sz Sn-1 Sn
(_Sn S1 S2 5n—1w
C=|=Snq =~ =~ = 1|
: —Sn S1 Sy
—S2 TSz v TS 5 /

The eigenvalues of C defined in Definition 1 are well-known and formulated in the following lemma.

and is denoted by € = SCirc(S).

Lemma 1. [28] Let € = SCirc(S) and S = {s;}-.,. Suppose 1, are the eigenvalues of € for k = 0,1,...,n —
1. Then,

n-1

e = Z 5 (),

j=0
2—”i 2T .. 2T .
where w = en =cos(7)+lsm(7) eCandi=+v—-1€C.

According to Lemma 1, it is clear that

n-1n-1
det(C) =] [ si(we®). (1)
k=0 j—0

Moreover, the inverse of € are also well-known and formulated in the following theorem.

Theorem 1. [28] Let € = SCirc(S) and S = {s;}I-,. Suppose 4, are the eigenvalues of € fork = 0,1, ...,n —
1. Then,

C~_1 = SCirC(bo, bl’ bz, ey bn—l):
0, A’k =0

_lyn- kI P _ —
where b; = - k=0,uk(1/;w ) forj=10,1,2,..,n—1,and y, = {%k'/lk £ 0

Definition 2. A generalized alternating Fibonacci sequence %, ; = {aj'p'q}j;o is defined recursively as

ajrp'q = _pa]_l'prq + qaj—Z,p,q'
where agp,, =0, a1,4 = 1,forj=23,..,n
The sequence F, , defined in Definition 2 is more general than the sequence defined in [29]. We use
this sequence as entries of the skew circulant matrix defined as follows.

Definition 3. A skew circulant matrix A4,,, 4 of size n X n with generalized alternating Fibonacci entries
Fpq = {af'P'q};lﬂ is defined as

Anpg = SCirc(?p,q) = SCirc(aLplq, A2p,qr - an,plq),
where p,q,n € Nandn > 2.

The determinant and inverse of a matrix can be computed by simplifying its matrix form using
elementary row and column operations. Elementary row operations on a matrix A are described as [36]:

1. the entries of the i-th row are interchanged with the entries of the j-th row, denoted as E;;, i # j;
2. the entries of the i-th row are multiplied by a constant k # 0, denoted as E;y); and

3. the entries of i-th row are replaced with the sum of the entries of the i-th row with k times the
entries of the j-th row, denoted as E;j), i # J.

Elementary column operations are described in the same way as elementary row operations, but the
word “row” is replaced with “column” and denoted as K;;, K;(;), and K;;y [36]. If elementary row and
column operations are applied to a matrix X to obtain a matrix Y, then Y can be expressed as in the following
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theorem.

Theorem 2. [36] Let X be a matrix and I be the identity matrix of the same size. If Y is a matrix obtained by
applying a series of elementary row and column operations E;, E,, ..., E, and Ky, K5, ..., K, on X, then there
exists nonsingular matrix P and Q such that Y =PXQ, where P=E,E, ..E;(I) and P =
K,Kp—1 .. K (D).

The relationship between the determinant of a matrix and the elementary row and column operations can be
stated in the following theorem.

Theorem 3. [36] Let X be an n X n matrix and k be a constant. Then, the following statements hold:
L det(Eyy (X)) = kdet(X)  k #0;
2. det(E;(X)) = — det(X), i # J; and
3. det (Eij(k)(X)) = det(X),i # J.

These statements are analogous to elementary column operations.

We utilize the matrix A, , , defined in Definition 3 over Z,, where p,q,n € N, r is a prime number,
and n = 2. We compute the determinant and inverse of A, ,, ; over Z, by first transforming it into a diagonal
matrix using elementary row and column operations, and applying Theorem 2 and Theorem 3, rather than
computing them using Eq. (1) and Theorem 1.

2.2 Construction of A New Public-Key Cryptography Scheme

In this subsection, we present some mathematical background related to the Hill cipher and the EIGamal
encryption technique.

Let K be ann x n key matrix, and M; € Z* and C; € Z;* be the plaintext and ciphertext blocks of size
1 x m, respectively. The encryption and decryption transformations of the Hill cipher are given by [23]

C;i = M;K (modr),

and
Mi = CiK_l (mOdr),

respectively, where r is a prime number such that gcd(det(K),r) = 1.
The EIGamal technique belongs to public-key cryptography and can be described as follows [16].

1. Public Key Generation
Let party B be the message recipient. Party B performs the following steps:
a. generates a safe prime r;
b. chooses a generator a of Zy;
c. chooses aprivate key d € Z, where 1 < d < ¢(r);
d. computes 8 = a (modr); and
e. sends the public key (r, @, B) to the sender of the message.

2. Encryption
Let party A be the sender of the message and has received the public key (r, «, 8) from party B.
Suppose an original message is represented as m € Z,.. Party A performs the following steps:
a. chooses a secret random number e € Z, where 1 < e < ¢(1);
b. computesy = a® (modr)and § = m - B¢ (modr); and
c. sends the ciphertext (y &) € Z2 to party B.
3. Decryption
Party B uses private key d to decrypt ciphertext (y  §) by computingm =y =% - § (mod ).

In our proposed public-key cryptography scheme, we utilize the matrix Ay, |n/2) OVer Z, as the key

matrix K in the Hill cipher, while the encryption technique employs the EIGamal technique, where p,n € N,
r is a prime number, r > 256, and n > 2. The security aspects analyzed in our proposed scheme include the
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discrete logarithm problem, brute force attack, and known plaintext attack. Then, the computation time is
compared with the schemes in [23], [24], and [25] using Wolfram Mathematica.

3. RESULTS AND DISCUSSION

3.1 Explicit Formulas for Determinant and Inverse of A, ,, 4

We present the following theorem, which provides explicit formulas for the determinant and inverse
of the skew circulant matrices A, ,, , with generalized alternating Fibonacci numbers as their entries over Z,.,

where r is a prime number.

Theorem 4. Let A, , = SCirc(F, ;) (modr) bean x n skew circulant matrix with generalized alternating
Fibonacci numbers 7, , = {af'p'q}?ﬂ (modr) as its entries, where p,q,n € N, n > 2 and r is a prime
number. Then,

det(Anp,q) = X1p% — AnpqSzpq (ModT), (2)

and if gcd(det(An’p‘q),r) =1, then

Anba = [det(An,p,q)]_1 SCirc(S1p,q- S2.p.q0 S3.p,qr - Sup,g) (modr), (3)

det(Anp,q)+(-D"2q" tanzy n—2
where Xnpq = —PAnpgq + qan-1pq +1, Sipq = na ) S2.p,g = PXnpyq +

n-2 j j =1, n=2-j — j-2j—2,J=3 ,.n—]j P
qYici (=D an_1-jpqd’ AnpgXnpq aANASjpq = (=1)7°¢ " “ap p g Xnpq fOr j = 3,4, ..., 0.

Proof. Since

det(Aypq) = a2 g — Azpq(—a2p4) (modr) =14 p? (modr),

11
Az}, = [det(4zp,4)] 1(_p ’i) (modr),

det(As,p,q) =A1pq (a%,p,q tazpq ag,p,q) - a2,p,q(_a1,p,q a3 pq + a%,p,q)
+ @3,4(@p.q + A1pqazpq) (ModT)

& det(4s,,4) = p°® + 3p*q — 2p® + 3p?q* — 3pq + q° + 1 (mod ),

and
Ag’;’q
. 1-p°—pq p—p*—-2p*q-q* —q
= [det(43,,4)] q 1-p3—pq p —p* —2p?q — q* | (modr),
—p+p*+2p%q+q* q 1-p®—pq

then it is clear that Eqs. (2) and (3) hold for n = 2 and n = 3. However, for the case n > 4, the proof is
carried out through a sequence of elementary row and column operations applied to 4,, ,, , as follows.

By = Em-2n(-9)E(n-2)(n-1)p)  Ea6(—q) Eas@) E35(-) E3aw)E24(-) E230) (Anp.q)

1 —-p “t Qn-1pq 9npgq
0 Xnpq 0 0
0 0 0 0
= 0 0 0 o |,
\_(_p)z —q ~Q4pq 1 P /
p —(-p)?*—-q -~ “Anpq 1

B; = Eni(-p)E-11(9) E(n-1)n(p) (B1)



662 Handoyo, etal. A NOVEL PUBLIC-KEY CRYPTOGRAPHY SCHEME UTILIZING SKEW CIRCULANT ...

1 -p (_p)z +q - An-1,p,q Anp.q
0 Xnpg 9%pq 0 0
0 0 Xnpq 0 0
=|0 0 0 0 0 ,
\0 0 0 Xn,p.q 4Qn,p,q /
0 —-q _Q(_p) T qAn_2pq Xnpq — 99n-1pq
B; = Knl(‘“n.p.q) K31(‘a3.p.q)K21(‘a2.p.q) (B)
1 0 0 0 0
0 Xppg Q9%pg 0 0
0 0  Xnpg 0 0
=10 0 0 0 0 ,
0 0 0 e Xn,p.q qQn,p,q
0 —q _Q(_p) T qAn-2pq Xnpq ~ 9An-1pq
B4_ =F 1 W E 1 E 1 (B3)
(n_l)(xn,p,q) B(xn.p.q) Z(Xn,l?-q)
1 0 0 0 0
0 1 Ynp.q 0 0
0 0 1 0 0
=10 o 0 0 0 ,
0 0 0 1 Ynp.aq
0 —q _Q(_p) T qAn_2pq9 Xnpqg — 9An-1pq
1 0 0 0 0
0 1 0 = 0 0 \
Bs = K"(Tl—l)(‘J’n,p,q) K43(—Yn.p.q)K32(‘Yn.p.q)(B4) - \0 0 0 1 0 )’
0 I1pq Y92pq9 = YIn-2pq dn,p,q

where

dupg =1 =DPanpq = Ynpq9n-2pq Ynpq = 9%npq/Xnpq:

Jipq=—q9and g0 = —q4Aipq — Ynpqdj-1p4q TOrj =23,..,n—2,and

n-2
_ n—-2—j
In-2pq = 4 [_aj.p,q(_yn,p,q) ]
=1

Then, by applying Theorem 3, we obtain that

1
_ _ _ on-2
dnpq = det(Bs) = ) det(An,p.q) = det(An,p,q) = Xnp.qdnpq
np.q

n-2
— yn _ on- ; J n-2-j
= det(An.p.q) = xrrll.p,zq(l —Plnpq — yn,p,qgn—Z,p,q) = Xnpq —4q Z(_l)]an—l—j,p.q (qan.p,q) Xnpq
j=0

Moreover, we apply a series of elementary row operations on Bc as follows.

100 0 0 0
0100 0 0
0010 0 0

B = Enn-1)(-gn-2pa) " En3(~02.4) En2(~g1,0) (B5) = 0 0 0 1 ) 0 .
\0 0 0 0 1 0 /
0000 0 dnpg
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Consequently, based on Theorem 2, there exists nonsingular matrices P and Q, where

Xnpg O 0 0 - 0 0
0 1 1 -1 0 0
0 0 1 1 “ee 0 0
1 .
P == 9 0 9 ? . q 0 1]
Xnp,q : : : . : :
0 0 0 1 -1
\ 1 0 0 0 1 1 /
Z1pq9 “Z2pq Z3pq Zapq T Zn-1pq Znpgq
and
1 hz,p,q h3ﬁp'q h4’ﬁp'q o hn_ l,p,q thplq
2 n-3 n—2
0 1 “Ynpa (_Yn,p,q) o (_Yn.p.q) (_Yn,p,q)
n—4 n-3
0 0 1 “Ynpg T (_Yn.p.q) (_Yn,p,q)
n->5 n—4
Q=|0 0 0 1 (_Yn,p.q) (_Yn,p,q) ,
H H H H ‘. . H 5
0 0 0 0 “Ynpa (_Yn,p.q)
0 0 0 0 1 ~Ynp.q
0 0 0 0 ‘oo 0 1

such that B = PA,, , ,Q, where

hZ,p,q =p and hj,p,q = —aj,p,q — Yn,p,th—l,p,q for] =34,..,n,

= _xn'p'q — = . = (— . | — —
“1pa T g, o (dnpg = 1) Z2pq = @ 8Nd Zjp g = (=Vnpq)Zj-1p,q fOrj =34, .., n— 1.

Since B = PA,,,4Q, then A7}, ; = QB P. Note that

1 hZ.p.q h3.p.q hn—l,p,q hn,p,q/ dn,p.q
n-3 n-2
0 1 “Ynpqg (_Yn,p,q) (_yn,p,q) /dnpq
n—4 n-3
QB 1=]0 0 1 (_yn,p,q) (_yn.p,q) /Anp,q
0 o0 0 1 ~Ynpa! np.q
0 0 0 - 0 1/dnpq

We know that A5}, , is also a skew circulant matrix based on Theorem 1. Thus, we can construct A; 3, 5
by simply computing one of the rows of QB~1P. In this case, we compute only the last row. Consequently,
_ _ -1
Anb g =QB7'P =[det(Anpq)]  SCirc(sipg Szpqr - Sn-1pq Snpq) (modr).
and
det(Anpq) = Xnps — AnpqSzpq (modr).
]

Eqgs. (2) and (3) are computationally fast, as the determinant and its inverse leverage the same numbers
in their computations. In this context, s, ,, , is used to compute both the determinant and the inverse. The

determinant is used to compute s; ,, ,, while a,, , , and x,, ,, , are used to compute the determinant and s; , ,

for j =1,2,...,n. Below, we present a simple example of the use of the explicit formulas contained in
Theorem 4.

Example 1. Suppose n = 4,p = 3, q = 6,and r = 257. Then,
Foa = {404}, (M0d257) = {1,-3,15,-63} (mod 257) = {1,254,15,194)},

x4'3’6 = _3a4,3,6 + 6a3'3,6 +1=-3-194+6" 15 = _4'91,
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2

_ 2 j j o Jj-1_2-j
S236 = 3Xi36 T 6Z(_l)]a3—1',3,66ja4,3,6x4,3,6r

j=1
=3-(—491)2 - 6-254-6-(—491) +6-1-6%-194
© 5536 = 5254851,
det(Ay36) = X336 — Qg 365236 = (—491)? — 194 - 5254851
& det(Ay34) = —1019200013,

det(Ayz6) + (—1)26%aZ ;6 _ 1019200013 + 63 - 1942
X436 —491

S336 = —6X436 = —6 - (—491) = 2946,
S4,20,25 = 62a4,3'6 = 36194 = 6984,

S$1,36 = = 2059207,

Thus, according to Theorem 4, the determinant of A, 3 c Over Z,s; is
det(A436) = —1019200013 (mod 257) = 50,
Furthermore, we obtain that

[det(A436)] " (mod257) = 50~ (mod 257) = 36,

_ -1 .
A4,§_6 = [det(A4,'3,6)] SC1rc(sL3'6, 523,60 53,3,6) 54,3,6) (mod 257)
= 36 - SCirc(2059207,5254851,2946,6984) (mod 257)

2059207 5254851 2946 6984
—6984 2059207 5254851 2946
—2946 —6984 2059207 5254851

—5254851 —2946 —6984 2059207

So, based on Theorem 4, the inverse of A, 3 c Over Z,s; is

59 20 172 78
179 59 20 172
85 179 59 20
237 85 179 59

=36 (mod 257).

-1 _
A4-,3,6 -

3.2 Public-Key Cryptography Scheme Based on Hill Cipher with A4,, ,, , Matrix and EIGamal Technique

The novel public-key cryptography scheme proposed in this research can be presented as follows.

1. Public Key Generation
Let party B be the message recipient. Party B performs the following steps:
generates a safe prime r;
chooses a generator « of Zy,;
chooses a private key d € Z, where 1 < d < ¢(r);
computes f = a% (modr); and
e. sends the public key (r, @, B) to the sender of the message.

oo

2. Encryption
Let party A be the sender of the message (or plaintext) and has received the public key (r, a, B)
from party B. Suppose the plaintext is represented as M = (M; M, .. My), where M; € Z}
is a block matrix of the plaintext of M. Party A performs the following steps:

chooses a secret random number e € Z, where 1 < e < ¢(r);

computes p = a® (modr) and n = f¢ (modr);

computes the key matrix Ay, 5, /2| OVer Z,;

encrypts M by computing C; = M;A; ; n/2) (mod 1) € Z7; and

sends (p C) to party B.

® o o0ow
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3. Decryption
Party B uses private key d and (p  C) to decrypt the ciphertext. Party B performs the following
steps:
a. computesn = p? (modr);

b. computes A;},,WZJ over Z, using Theorem 4; and
c. decrypts ciphertext by computing M; = CiA;L,}o,[n/ZJ (modr).

The overall procedure of the public-key cryptography scheme proposed in this study is summarized in the
flowchart in Fig. 1 below.

Encryption Public Key Generation

ety R N L L L L Ly
Choose a secret number e € ! , !
Z,where 1 < e < ¢(1) ! N
I :
I
o tmodr) =T+
p = a® (modr) N

Choose a safe
prime 1

|

I

I

1

I

|

I

|

/ Choose a generatora of [
Zy I
I

|

I

I

|

I

|

I

|

I

i i
! !

Compute block of plaintext

Compute block of ciphertext Ciohertext C o
Ci = MiAy pn2) (modT) ’-—‘FJ T Mi=cA] i (modr)

Y

1
|
1
y I
! Ch ivate ki
Compute : jﬁ Co?pute ogsg aﬂp\:\;’]iree ey
n =3¢ (modr B =a® (modr) ’
f* (mod7) | ! 1<d<¢@)
: L EnEE -:::::::::::l::::::::::
! i
: : - Compute
> _d
Compute the key | ! n=p® (modr)
. 1
matrix Ay, , 12| , ! ¢
Z., ! el _
over Z, ! 2 Compute An; 2
8 Pl
: E: over Z,
! Q|
1 DI
! 1
! |
! 1
|

1
. | P
r 3 1 |
1 1 ‘
1 |
| 1
! 1

/ Plaintext M /

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
! Y
| y
|
I
I
|
I
I
I
I
I
I
I
I
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I
I
I
I
|
I
I
|
I

Figure 1. Flowchart of the Public-Key Cryptography Scheme Proposed in This Study

This scheme is based on the EIGamal encryption technique, so only the key parameters are transmitted.
Unlike conventional EIGamal, which encrypts individual characters, this scheme encrypts entire plaintext
block matrices as it is based on the Hill cipher.

3.3 Security and Computational Aspects

The security and computational aspects of the proposed scheme are presented in this section. We begin
by discussing the security aspect.

1. Discrete Logarithm Problem

The matrix A;},,q is generated by computing the value of n, which depends on the publicly known
value of p and the private key d. Consequently, an adversary must determine d to obtain A3}, ;. The
value of d can be determined by solving the equation § = a® (modr), which corresponds to the
discrete logarithm problem [16]. This problem is regarded as computationally infeasible if r is a
sufficiently very large prime number. To ensure security, the size of » must be in the range of 1024
bits to 4096 bits [37].
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2. Brute Force Attack

An adversary attempts to search through all possible n x n key matrices over Z,.. In this case,
there are ™" possible n X n matrices over Z,. Moreover, the set of all invertible n x n matrices over
Z, with matrix multiplication, forms the general linear group denoted by GL,,(r). The order of GL,,(r)
is given by |GL, (r)| = [TR=5(r™ — r¥) [38].

Example 2. Let r = 257 and n = 50. Then, there are r™ = 257259 ~ 6.80468973864327 X
106924 possible matrices. The number of invertible 50 x 50 matrices over Z,s, can be computed as
follows.

49
|GL5o(257)| = 1_[(25750 —257%) ~ 6.77810932179867 x 10502,
k=0
Therefore, an adversary would need to check approximately 6.77810932179867 x 10924 possible
invertible matrices to get the key matrix Asg , 30/2)-

3.  Known Plaintext Attack

Suppose an adversary has access to n distinct plaintext and ciphertext pairs, namely
(My,Cy), (M,, Cy), ..., My, Cp), Where M; = (My1 Mz ... Myp) and C; = (Ci1 Ciz - Cin)
for 1 < i < n. Letthe matrices Mp = (m;;) and Cp = (c;;). If Mp is invertible, then the adversary can
get the key matrix A, ;, /2| as by compute

An,p,ng = M;lcp.

If Mp is not invertible, then the adversary must obtain another set of n distinct plaintext and
ciphertext pairs until an invertible M, is found. However, the values of e, n, and p used in the current
encryption differ from those used in the next encryption. As a result, the entries of the key matrix
Anpn/2) In the current encryption will also differ from those in the next encryption. Therefore, the
adversary cannot reuse the key matrix from one session to decrypt ciphertexts in subsequent
communications.

We present a simple illustration of the proposed public-key cryptography scheme as follows.

Example 3. Let party A be the sender of the message and party B be the recipient of the message.
Below, we present the steps taken by each party.

1. Public Key Generation by Party B
The following are the steps taken by party B:
a. generates a safe primer = 2-431 + 1 = 863, where s = 431 is a prime;
b. r—1 =862 has two prime factors, 2 and s, so @ = 145 can be chosen as the generator of
Zge3 since a® (modr) = 145%31 (mod 863) = 862 # 1;
chooses a private key d = 494;
. computes B = a® (modr) = 145*°* (mod 863) = 601; and
e. sends the public key (863,145,601) to party A.

2. Encryption by Party A
Party A encrypts and sends the message “Hello!!!” to B with the following steps:
chooses a secret random number e = 32;
computes p = a® (modr) = 14532 (mod 863) = 110;
computes n = ¢ (modr) = 60132 (mod 863) = 3;
converts the message “Hello!!!” into ASCII decimal as follows
M= (72 101 108 108 111 33 33 33);
e. partitioning the plaintext M into
M, =(72 101 108), M, =(108 111 33),and M3 = (33 33 0);
f.  computes the matrix Az 1101 OVer Zgg3, SO that we obtain that
A3 1101 = SCirc(1,753,19) (mod 863),
g. encrypts M by computing C; = M;A3 1101 (mod 863), so that we get that

C; = (540 485 722),C,= (766 549 231),andC3; = (269 718 449).

o o

o0 o
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Then,

C = (540 485 722 766 549 231 269 718 449)
=B g > _z ¢ ¢,
h. sends(p C)toB.
3. Decryption by Party B
Party B uses private key d and (p  C) to decrypt the ciphertext, with the following steps:
a. computesn = p¢ (modr) = 110*°* (mod 863) = 3;
b. computes the matrix A371¢1 OVer Zggz Using Theorem 4, so that we obtain that
A3%101 = SCirc(655,422,318) (mod 863); and
c. decrypts the ciphertext by computing M; = C;A3}10, (mod 863), so that we get that
M;=(72 101 108),M, =(108 111 33),and M3 = (33 33 0).
Consequently,
M=(72 101 108 108 111 33 33 33 0)=(H e L Il o ! ! 1 )

The computation time of the public key cryptographic scheme in this study is compared with that
proposed in [23], [24] and [25]. Let the public key (r, a, 8) = (983,398,950) and the plaintext message M

of size 1 x 3n be randomly chosen. The following shows a comparison of the encryption and decryption
computation time (seconds) in Fig. 2 and Table 1.

30
10 | |

Time(seconds)

(380,606) (411,122) (536,685) (823,519)
(np)
(a)
m Proposed Scheme
40
30
i mPanchal etal.
°
c (2024)
8
S 20
&
E
[T Naseri et al.
(2023)
0 — - - p— | | —
(380,606 (411,122) (536,685) (823,519) wPrasad dan
(n,p) Mahato (2021)
(b)

Figure 2. Computational Time of the Scheme Proposed in This Study and the Scheme Proposed in [23], [24]
and [25] for (a) Encryption and (b) Decryption
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Table 1. Computational Time of the Scheme Proposed in This Study and the Scheme Proposed in [23], [24] and
[25] for Encryption and Decryption

Scheme n p  Encryption Time (seconds) Decryption Time (seconds)
Proposed in This Study 380 606 0.0216616 0.3207920
411 122 0.0311113 0.4348070
536 685 0.0383450 0.7648180
823 519 0.0916562 2.3837900
Panchal et al. (2024) 380 606 7.9686200 0.9513410
411 122 3.4424300 1.2794100
536 685 18.3427000 8.0722700
823 519 36.4818000 40.9020000
Naseri et al. (2023) 380 606 7.7517200 0.7795170
411 122 3.6590300 1.0309300
536 685 19.3314000 7.9729200
823 519 37.6896000 41.5998000
Prasad and Mahato (2021) 380 606 7.3933300 0.9437380
411 122 3.5223600 1.2257400
536 685 18.9975000 7.9653500
823 519 36.2777000 40.6545000

As seen in Fig. 2 and Table 1, the computation time of encryption and decryption across all tested
schemes tends to increase as the size of the matrix increases. However, the scheme proposed in this study is
able to perform encryption and decryption significantly faster than the three other schemes. Specifically, the
proposed scheme achieves encryption approximately 478.36 times faster than the scheme in [23], 495.44
times faster than that in [24], and 504.14 times faster than that in [25] when n = 536 and p = 685. For
decryption, the proposed scheme is approximately 17.16 times faster than the scheme in [23], 17.05 times
faster than that in [24], and 17.45 times faster than that in [25] when n = 823 and p = 519.

The computation time of the scheme proposed in this study is significantly faster than the schemes in
[23], [24] and [25] for both encryption and decryption. This advantage arises from the structure of the matrix
Appnj2) OVEr Z,, which is easy to construct, as it depends only on the first n terms of the second-order
relation F, |,/ Over Z.. Furthermore, the matrix A,‘l},,ln/zj, used in decryption, can also be computed
efficiently using Theorem 1, whereas the matrices in the three other schemes are more complex to construct
and compulte.

4. CONCLUSION

The main conclusions of this research are as follows:

1. The determinant and the inverse of the matrix 4, , 4 (modr), wheren,p,q € N,n > 2,and r is
a prime number, are explicitly formulated in one theorem using elementary row and column
operations. The explicit formulas allow for highly efficient computation by reusing the same
numerical information.

2. The matrix Ay, |n/2) (mod7), where n,p € N, n = 2, and r is a prime number, along with its
determinant and inverse, are used to construct a new public-key cryptography based on the Hill
cipher and ElGamal technique. The decryption does not require transmitting the complete key
matrix but only its key parameters, thus significantly reducing the computational complexity. The
encryption and decryption are performed on blocks of plaintext instead of single plaintext
characters.
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3. The primary security of the proposed scheme lies in the hardness of the discrete logarithm
problem. Specifically, recovering the private key d and the matrix size n is computationally
infeasible for an adversary if r is chosen to be a very large prime (e.g., 1024 to 4096 bits). The
scheme is resistant to known plaintext attack, since the values of e, n, and p always change,
resulting in distinct key matrices Ay, /2] for each session. Furthermore, the scheme is also
resistant to brute force attack since an adversary would have to exhaustively try all invertible
square matrices over Z,., which is computationally impractical.

4.  The proposed scheme can perform encryption up to 478.36 times faster than the scheme in [23],
495.44 times faster than that in [24], and 504.14 times faster than that in [25]. For decryption, the
proposed scheme can perform up to 17.16 times faster than the scheme in [23], 17.05 times faster
than that in [24], and 17.45 times faster than that in [25]. This remarkable efficiency is mainly due
to the simpler construction of the matrix A, ;, /2 and the availability of an explicit formula for

computing its determinant and inverse, which enables rapid operations that surpass the other three
schemes, and the matrices used in these three schemes are more difficult to construct.
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