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Article Info ABSTRACT 

Article History: 
Circulant and skew circulant matrices play a significant role in various applications, 

especially in cryptography. Their determinants and inverses can be used in the decryption 

process. In classical cryptography, the Hill cipher is known to be susceptible to known-

plaintext attacks and requires matrix-based key transmission. This study introduces a new 

public-key cryptography scheme that combines the Hill cipher with the ElGamal 

technique, utilizing skew circulant matrices with generalized alternating Fibonacci 

numbers. These numbers provide a pattern that simplifies the explicit formulas of the 

determinant and inverse of the matrices. The proposed scheme is the first of its kind to 

use these matrices and numbers for public-key cryptography. Explicit formulas for the 

determinant and inverse of these matrices are derived using elementary row and column 

operations. The proposed scheme is resistant to the discrete logarithm problem, known-

plaintext, and brute-force attacks and requires only the transmission of key parameters. 

The implementation of the scheme has been tested using Wolfram Mathematica. In 

practice, the computational time of the scheme is significantly faster than three other 

related schemes, with up to 500 times faster in encryption and 17 times faster in 

decryption. 
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1. INTRODUCTION 

Circulant and skew circulant matrices are matrices that have a good structure, so that they are easy to 

construct or generate. An 𝑛 × 𝑛 circulant matrix is a matrix in which the entries in the 𝑖-th row is the result 

of a circular shift to the right of the entries in the (𝑖 − 1)-th row for 𝑖 = 2,3,… , 𝑛. A skew circulant matrix is 

similar to a circulant matrix, but all entries below the main diagonal are multiplied by −1 [1]. These matrices 

are widely applied in cryptography [2]-[7], coding theory [8], signal processing [9], differential equation 

[10],[11], and others [12]-[15]. 

Cryptography is a field that studies encryption schemes for securing communication. An encryption 

scheme consists of two main processes: encryption and decryption. Encryption is a process that transforms 

an original message, known as plaintext, into a secret message, referred to as ciphertext. Decryption is the 

reverse process of encryption. Both processes require the use of a key. According to [16], cryptography can 

be classified into two types: symmetric-key and asymmetric-key (or public-key) cryptography. Symmetric-

key cryptography uses the same key for encryption and decryption, while public-key cryptography uses 

different keys. In public-key cryptography, the two different keys are the public key for encryption and the 

private key for decryption. A well-known example of symmetric-key cryptography is the Hill cipher. 

However, the Hill cipher is vulnerable to a known plaintext attack. Some of the new public-key cryptography 

schemes based on Hill and Affine-Hill ciphers have been developed utilizing several types of key matrices 

and are secure against known plaintext attack [17],[18]. In addition, a new public-key cryptography based on 

the Hill cipher can be constructed using other approaches that utilize RSA cryptography [19]. Other new 

public-key cryptography also uses matrices with different approaches [20]-[22]. Furthermore, the ElGamal 

technique can also be integrated into public-key cryptography schemes based on these ciphers. Notable 

examples of key matrices used in these schemes include generalized Fibonacci matrices with the Hill cipher 

[23], generalized Fibonacci matrices with the Affine-Hill cipher [24], 𝑀𝑞 matrices with the Hill cipher [25], 

and others [26],[27]. These schemes that utilize the ElGamal technique derive their security from the hardness 

of the discrete logarithm problem and can reduce the time complexity of key transmission of the Hill cipher. 

The determinant and inverse of circulant and skew circulant matrices have potential applications in the 

decryption process because their determinant and inverse formulas can be derived explicitly, thus allowing 

for fast computation during the decryption process. Based on the well-known formulas for computing the 

determinant and inverse of the matrices in [28], a major challenge lies in the inefficiency of applying these 

formulas when the matrix size 𝑛 becomes very large. However, if the entries of the matrices follow a simple 

pattern, the formulas can be significantly simplified, allowing for better explicit formulas. Such 

simplifications are expected to significantly reduce the computational time of both the determinant and the 

inverse of the matrices. Several studies have explored explicit formulas for the determinant and inverse of 

circulant matrices, including those involving alternating Fibonacci numbers [29] and other numbers [30],[31]. 

Similarly, research on the determinant and inverse of skew circulant matrices has been conducted for various 

numbers [32]-[35]. In this paper, we use skew circulant matrices with generalized alternating Fibonacci 

numbers to develop a novel public-key cryptography scheme over ℤ𝑟 based on the Hill cipher and the 

ElGamal technique, where 𝑟 is a prime number. The scheme proposed in this research is expected to reduce 

the computational time for encryption and decryption than other similar schemes in [23], [24] and [25]. 

The objectives of this research are: (1) to explicitly formulate the determinant and inverse of 𝐴𝑛,𝑝,𝑞 

over ℤ𝑟, where 𝑟 is a prime number; (2) to develop a public-key cryptography scheme based on the Hill 

cipher and the ElGamal technique using these matrices; (3) analyze the security of the proposed scheme 

theoretically involving the discrete logarithm problem, brute force attack, and known plaintext attack; and 

(4) compare the computational time of the proposed scheme by measuring execution time of the encryption 

and decryption of the proposed scheme with three other schemes presented in [23], [24] and [25]. 

2. RESEARCH METHODS 

2.1 Determinant and Inverse Formulations 

In this subsection, we present some mathematical background related to skew circulant matrices and the 

generalized alternating Fibonacci sequence. 
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Definition 1. [1] Let 𝑆 = {𝑠𝑖}𝑖=1
𝑛  be a finite sequence of numbers. A skew circulant matrix is written as follows 

𝐶̃ =

(

 
 

𝑠1 𝑠2 ⋯ 𝑠𝑛−1 𝑠𝑛
−𝑠𝑛 𝑠1 𝑠2 ⋯ 𝑠𝑛−1
−𝑠𝑛−1 ⋱ ⋱ ⋱ ⋮
⋮ ⋯ −𝑠𝑛 𝑠1 𝑠2
−𝑠2 −𝑠3 ⋯ −𝑠𝑛 𝑠1 )

 
 
, 

and is denoted by 𝐶̃ = SCirc(𝑆). 

The eigenvalues of 𝐶̃ defined in Definition 1 are well-known and formulated in the following lemma. 

Lemma 1. [28] Let 𝐶̃ = SCirc(𝑆) and 𝑆 = {𝑠𝑖}𝑖=1
𝑛 . Suppose 𝜆𝑘 are the eigenvalues of 𝐶̃ for 𝑘 = 0,1,… , 𝑛 −

1. Then, 

𝜆𝑘 = ∑𝑠𝑗(𝜓𝜔
𝑘)
𝑗

𝑛−1

𝑗=0

, 

where 𝜔 = 𝑒
2𝜋

𝑛
𝑖 = 𝑐𝑜𝑠 (

2𝜋

𝑛
) + 𝑖 𝑠𝑖𝑛 (

2𝜋

𝑛
) ∈ ℂ and 𝑖 = √−1 ∈ ℂ. 

According to Lemma 1, it is clear that 

det(𝐶̃) =∏∑𝑠𝑗(𝜓𝜔
𝑘)
𝑗

𝑛−1

𝑗−0

𝑛−1

𝑘=0

. (1) 

Moreover, the inverse of 𝐶̃ are also well-known and formulated in the following theorem. 

Theorem 1. [28] Let 𝐶̃ = 𝑆𝐶𝑖𝑟𝑐(𝑆) and 𝑆 = {𝑠𝑖}𝑖=1
𝑛 . Suppose 𝜆𝑘 are the eigenvalues of 𝐶̃ for 𝑘 = 0,1,… , 𝑛 −

1. Then, 

𝐶̃−1 = SCirc(𝑏0, 𝑏1, 𝑏2, … , 𝑏𝑛−1),  

where 𝑏𝑗 =
1

𝑛
∑ 𝜇𝑘(𝜓𝜔

𝑘)
−𝑗𝑛−1

𝑘=0  for 𝑗 = 0,1,2,… , 𝑛 − 1, and 𝜇𝑘 = {
0, 𝜆𝑘 = 0
1

𝜆𝑘
, 𝜆𝑘 ≠ 0

. 

Definition 2. A generalized alternating Fibonacci sequence ℱ𝑝,𝑞 = {𝑎𝑗,𝑝,𝑞}𝑗=0
𝑛

 is defined recursively as 

𝑎𝑗,𝑝,𝑞 = −𝑝𝑎𝑗−1,𝑝,𝑞 + 𝑞𝑎𝑗−2,𝑝,𝑞 , 

where 𝑎0,𝑝,𝑞 = 0, 𝑎1,𝑝,𝑞 = 1, for 𝑗 = 2,3, … , 𝑛. 

The sequence ℱ𝑝,𝑞 defined in Definition 2 is more general than the sequence defined in [29]. We use 

this sequence as entries of the skew circulant matrix defined as follows. 

Definition 3. A skew circulant matrix 𝐴𝑛,𝑝,𝑞 of size 𝑛 × 𝑛 with generalized alternating Fibonacci entries 

ℱ𝑝,𝑞 = {𝑎𝑗,𝑝,𝑞}𝑗=1
𝑛

 is defined as 

𝐴𝑛,𝑝,𝑞 = SCirc(ℱ𝑝,𝑞) = SCirc(𝑎1,𝑝,𝑞 , 𝑎2,𝑝,𝑞 , … , 𝑎𝑛,𝑝,𝑞), 

where 𝑝, 𝑞, 𝑛 ∈ ℕ and 𝑛 ≥ 2. 

The determinant and inverse of a matrix can be computed by simplifying its matrix form using 

elementary row and column operations. Elementary row operations on a matrix 𝐴 are described as [36]: 

1. the entries of the 𝑖-th row are interchanged with the entries of the 𝑗-th row, denoted as 𝐸𝑖𝑗 , 𝑖 ≠ 𝑗; 

2. the entries of the 𝑖-th row are multiplied by a constant 𝑘 ≠ 0, denoted as 𝐸𝑖(𝑘); and 

3. the entries of 𝑖-th row are replaced with the sum of the entries of the 𝑖-th row with 𝑘 times the 

entries of the 𝑗-th row, denoted as 𝐸𝑖𝑗(𝑘), 𝑖 ≠ 𝑗. 

Elementary column operations are described in the same way as elementary row operations, but the 

word “row” is replaced with “column” and denoted as 𝐾𝑖𝑗, 𝐾𝑖(𝑙), and 𝐾𝑖𝑗(𝑙) [36]. If elementary row and 

column operations are applied to a matrix 𝑋 to obtain a matrix 𝑌, then 𝑌 can be expressed as in the following 
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theorem. 

Theorem 2. [36] Let 𝑋 be a matrix and 𝐼 be the identity matrix of the same size. If 𝑌 is a matrix obtained by 

applying a series of elementary row and column operations 𝐸1, 𝐸2, … , 𝐸𝑛 and 𝐾1, 𝐾2, … , 𝐾𝑛 on 𝑋, then there 

exists nonsingular matrix 𝑃 and 𝑄 such that 𝑌 = 𝑃𝑋𝑄, where 𝑃 = 𝐸𝑛𝐸𝑛−1…𝐸1(𝐼) and 𝑃 =
𝐾𝑛𝐾𝑛−1…𝐾1(𝐼). 

The relationship between the determinant of a matrix and the elementary row and column operations can be 

stated in the following theorem. 

Theorem 3. [36] Let 𝑋 be an 𝑛 × 𝑛 matrix and 𝑘 be a constant. Then, the following statements hold: 

1. det (𝐸𝑖(𝑘)(𝑋)) = 𝑘 det(𝑋) , 𝑘 ≠ 0; 

2. det (𝐸𝑖𝑗(𝑋)) = −det(𝑋) , 𝑖 ≠ 𝑗; and 

3. det (𝐸𝑖𝑗(𝑘)(𝑋)) = det(𝑋) , 𝑖 ≠ 𝑗. 

These statements are analogous to elementary column operations. 

We utilize the matrix 𝐴𝑛,𝑝,𝑞 defined in Definition 3 over ℤ𝑟, where 𝑝, 𝑞, 𝑛 ∈ ℕ, 𝑟 is a prime number, 

and 𝑛 ≥ 2. We compute the determinant and inverse of 𝐴𝑛,𝑝,𝑞 over ℤ𝑟 by first transforming it into a diagonal 

matrix using elementary row and column operations, and applying Theorem 2 and Theorem 3, rather than 

computing them using Eq. (1) and Theorem 1. 

2.2 Construction of A New Public-Key Cryptography Scheme 

In this subsection, we present some mathematical background related to the Hill cipher and the ElGamal 

encryption technique. 

Let 𝐾 be an 𝑛 × 𝑛 key matrix, and 𝑀𝑖 ∈ ℤ𝑟
𝑚 and 𝐶𝑖 ∈ ℤ𝑟

𝑚 be the plaintext and ciphertext blocks of size 

1 ×𝑚, respectively. The encryption and decryption transformations of the Hill cipher are given by [23] 

𝐶𝑖 = 𝑀𝑖𝐾 (mod𝑟), 

and 

𝑀𝑖 = 𝐶𝑖𝐾
−1 (mod𝑟), 

respectively, where 𝑟 is a prime number such that gcd(det(𝐾) , 𝑟) = 1. 

The ElGamal technique belongs to public-key cryptography and can be described as follows [16]. 

1. Public Key Generation 

Let party 𝐵 be the message recipient. Party 𝐵 performs the following steps: 

a. generates a safe prime 𝑟; 
b. chooses a generator 𝛼 of ℤ𝑟

∗; 

c. chooses a private key 𝑑 ∈ ℤ, where 1 ≤ 𝑑 < 𝜙(𝑟); 
d. computes 𝛽 = 𝛼𝑑  (mod𝑟); and 

e. sends the public key (𝑟, 𝛼, 𝛽) to the sender of the message. 

2. Encryption 

Let party 𝐴 be the sender of the message and has received the public key (𝑟, 𝛼, 𝛽) from party 𝐵. 

Suppose an original message is represented as 𝑚 ∈ ℤ𝑟. Party 𝐴 performs the following steps: 

a. chooses a secret random number 𝑒 ∈ ℤ, where 1 ≤ 𝑒 < 𝜙(𝑟); 
b. computes 𝛾 = 𝛼𝑒 (mod𝑟) and 𝛿 = 𝑚 ⋅ 𝛽𝑒 (mod 𝑟); and 

c. sends the ciphertext (𝛾 𝛿) ∈ ℤ𝑟
2 to party 𝐵. 

3. Decryption 

Party 𝐵 uses private key 𝑑 to decrypt ciphertext (𝛾 𝛿) by computing 𝑚 = 𝛾−𝑑 ⋅ 𝛿 (mod𝑟). 

In our proposed public-key cryptography scheme, we utilize the matrix 𝐴𝑛,𝑝,⌊𝑛/2⌋ over ℤ𝑟 as the key 

matrix 𝐾 in the Hill cipher, while the encryption technique employs the ElGamal technique, where 𝑝, 𝑛 ∈ ℕ, 

𝑟 is a prime number, 𝑟 > 256, and 𝑛 ≥ 2. The security aspects analyzed in our proposed scheme include the 
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discrete logarithm problem, brute force attack, and known plaintext attack. Then, the computation time is 

compared with the schemes in [23], [24], and [25] using Wolfram Mathematica. 

3. RESULTS AND DISCUSSION 

3.1 Explicit Formulas for Determinant and Inverse of 𝑨𝒏,𝒑,𝒒 

We present the following theorem, which provides explicit formulas for the determinant and inverse 

of the skew circulant matrices 𝐴𝑛,𝑝,𝑞 with generalized alternating Fibonacci numbers as their entries over ℤ𝑟, 

where 𝑟 is a prime number. 

Theorem 4. Let 𝐴𝑛,𝑝,𝑞 = SCirc(ℱ𝑝,𝑞) (𝑚𝑜𝑑 𝑟) be a 𝑛 × 𝑛 skew circulant matrix with generalized alternating 

Fibonacci numbers ℱ𝑝,𝑞 = {𝑎𝑗,𝑝,𝑞}𝑗=1
𝑛
 (𝑚𝑜𝑑 𝑟) as its entries, where 𝑝, 𝑞, 𝑛 ∈ ℕ, 𝑛 ≥ 2 and 𝑟 is a prime 

number. Then, 

𝑑𝑒𝑡(𝐴𝑛,𝑝,𝑞) = 𝑥𝑛,𝑝,𝑞
𝑛−2 − 𝑎𝑛,𝑝,𝑞𝑠2,𝑝,𝑞 (𝑚𝑜𝑑 𝑟), (2) 

and if 𝑔𝑐𝑑(𝑑𝑒𝑡(𝐴𝑛,𝑝,𝑞) , 𝑟) = 1, then 

𝐴𝑛,𝑝,𝑞
−1 = [𝑑𝑒𝑡(𝐴𝑛,𝑝,𝑞)]

−1
SCirc(𝑠1,𝑝,𝑞 , 𝑠2,𝑝,𝑞 , 𝑠3,𝑝,𝑞 , … , 𝑠𝑛,𝑝,𝑞) (𝑚𝑜𝑑 𝑟), (3) 

where 𝑥𝑛,𝑝,𝑞 = −𝑝𝑎𝑛,𝑝,𝑞 + 𝑞𝑎𝑛−1,𝑝,𝑞 + 1, 𝑠1,𝑝,𝑞 =
𝑑𝑒𝑡(𝐴𝑛,𝑝,𝑞)+(−1)

𝑛−2𝑞𝑛−1𝑎𝑛,𝑝,𝑞
𝑛−2

𝑥𝑛,𝑝,𝑞
, 𝑠2,𝑝,𝑞 = 𝑝𝑥𝑛,𝑝,𝑞

𝑛−2 +

𝑞∑ (−1)𝑗𝑎𝑛−1−𝑗,𝑝,𝑞𝑞
𝑗𝑎𝑛,𝑝,𝑞
𝑗−1

𝑥𝑛,𝑝,𝑞
𝑛−2−𝑗𝑛−2

𝑗=1 , and 𝑠𝑗,𝑝,𝑞 = (−1)
𝑗−2𝑞𝑗−2𝑎𝑛,𝑝,𝑞

𝑗−3
𝑥𝑛,𝑝,𝑞
𝑛−𝑗

 for 𝑗 = 3,4,… , 𝑛. 

Proof. Since 

det(𝐴2,𝑝,𝑞) = 𝑎1,𝑝,𝑞
2 − 𝑎2,𝑝,𝑞(−𝑎2,𝑝,𝑞) (mod𝑟) = 1 + 𝑝

2 (mod 𝑟), 

𝐴2,𝑝,𝑞
−1 = [det(𝐴2,𝑝,𝑞)]

−1
(
1 𝑝
−𝑝 1

) (mod𝑟), 

det(𝐴3,𝑝,𝑞) = 𝑎1,𝑝,𝑞(𝑎1,𝑝,𝑞
2 + 𝑎2,𝑝,𝑞𝑎3,𝑝,𝑞) − 𝑎2,𝑝,𝑞(−𝑎1,𝑝,𝑞𝑎3,𝑝,𝑞 + 𝑎2,𝑝,𝑞

2 )

+ 𝑎3,𝑝,𝑞(𝑎3,𝑝,𝑞
2 + 𝑎1,𝑝,𝑞𝑎2,𝑝,𝑞) (mod𝑟) 

⇔ det(𝐴3,𝑝,𝑞) = 𝑝
6 + 3𝑝4𝑞 − 2𝑝3 + 3𝑝2𝑞2 − 3𝑝𝑞 + 𝑞3 + 1 (mod 𝑟), 

and 

𝐴3,𝑝,𝑞
−1  

= [det(𝐴3,𝑝,𝑞)]
−1
(

1 − 𝑝3 − 𝑝𝑞 𝑝 − 𝑝4 − 2𝑝2𝑞 − 𝑞2 −𝑞

𝑞 1 − 𝑝3 − 𝑝𝑞 𝑝 − 𝑝4 − 2𝑝2𝑞 − 𝑞2

−𝑝 + 𝑝4 + 2𝑝2𝑞 + 𝑞2 𝑞 1 − 𝑝3 − 𝑝𝑞

) (mod𝑟), 

then it is clear that Eqs. (2) and (3) hold for 𝑛 = 2 and 𝑛 = 3. However, for the case 𝑛 ≥ 4, the proof is 

carried out through a sequence of elementary row and column operations applied to 𝐴𝑛,𝑝,𝑞 as follows. 

𝐵1 = 𝐸(𝑛−2)𝑛(−𝑞)𝐸(𝑛−2)(𝑛−1)(𝑝)…𝐸46(−𝑞)𝐸45(𝑝)𝐸35(−𝑞)𝐸34(𝑝)𝐸24(−𝑞)𝐸23(𝑝)(𝐴𝑛,𝑝,𝑞) 

=

(

 
 
 
 
 

1 −𝑝 ⋯ 𝑎𝑛−1,𝑝,𝑞 𝑎𝑛,𝑝,𝑞
0 𝑥𝑛,𝑝,𝑞 ⋯ 0 0

0 0 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

−(−𝑝)2 − 𝑞 −𝑎4,𝑝,𝑞 ⋯ 1 −𝑝

𝑝 −(−𝑝)2 − 𝑞 ⋯ −𝑎𝑛,𝑝,𝑞 1 )

 
 
 
 
 

, 

𝐵2 = 𝐸𝑛1(−𝑝)𝐸(𝑛−1)1(𝑞)𝐸(𝑛−1)𝑛(𝑝)(𝐵1) 
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=

(

 
 
 
 
 

1 −𝑝 (−𝑝)2 + 𝑞 ⋯ 𝑎𝑛−1,𝑝,𝑞 𝑎𝑛,𝑝,𝑞
0 𝑥𝑛,𝑝,𝑞 𝑞𝑎𝑛,𝑝,𝑞 ⋯ 0 0

0 0 𝑥𝑛,𝑝,𝑞 ⋯ 0 0

0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑥𝑛,𝑝,𝑞 𝑞𝑎𝑛,𝑝,𝑞
0 −𝑞 −𝑞(−𝑝) ⋯ −𝑞𝑎𝑛−2,𝑝,𝑞 𝑥𝑛,𝑝,𝑞 − 𝑞𝑎𝑛−1,𝑝,𝑞)

 
 
 
 
 

, 

𝐵3 = 𝐾𝑛1(−𝑎𝑛,𝑝,𝑞)…𝐾31(−𝑎3,𝑝,𝑞)𝐾21(−𝑎2,𝑝,𝑞)(𝐵2) 

=

(

 
 
 
 
 

1 0 0 ⋯ 0 0
0 𝑥𝑛,𝑝,𝑞 𝑞𝑎𝑛,𝑝,𝑞 ⋯ 0 0

0 0 𝑥𝑛,𝑝,𝑞 ⋯ 0 0

0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑥𝑛,𝑝,𝑞 𝑞𝑎𝑛,𝑝,𝑞
0 −𝑞 −𝑞(−𝑝) ⋯ −𝑞𝑎𝑛−2,𝑝,𝑞 𝑥𝑛,𝑝,𝑞 − 𝑞𝑎𝑛−1,𝑝,𝑞)

 
 
 
 
 

, 

𝐵4 = 𝐸(𝑛−1)( 1
𝑥𝑛,𝑝,𝑞

)
…𝐸

3(
1

𝑥𝑛,𝑝,𝑞
)
𝐸
2(

1
𝑥𝑛,𝑝,𝑞

)
(𝐵3) 

=

(

 
 
 
 
 

1 0 0 ⋯ 0 0
0 1 𝑦𝑛,𝑝,𝑞 ⋯ 0 0

0 0 1 ⋯ 0 0
0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 𝑦𝑛,𝑝,𝑞
0 −𝑞 −𝑞(−𝑝) ⋯ −𝑞𝑎𝑛−2,𝑝,𝑞 𝑥𝑛,𝑝,𝑞 − 𝑞𝑎𝑛−1,𝑝,𝑞)

 
 
 
 
 

, 

𝐵5 = 𝐾𝑛(𝑛−1)(−𝑦𝑛,𝑝,𝑞)…𝐾43(−𝑦𝑛,𝑝,𝑞)𝐾32(−𝑦𝑛,𝑝,𝑞)(𝐵4) =

(

 
 

1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 0
0 𝑔1,𝑝,𝑞 𝑔2,𝑝,𝑞 ⋯ 𝑔𝑛−2,𝑝,𝑞 𝑑𝑛,𝑝,𝑞)

 
 
, 

where 

𝑑𝑛,𝑝,𝑞 = 1 − 𝑝𝑎𝑛,𝑝,𝑞 − 𝑦𝑛,𝑝,𝑞𝑔𝑛−2,𝑝,𝑞, 𝑦𝑛,𝑝,𝑞 = 𝑞𝑎𝑛,𝑝,𝑞/𝑥𝑛,𝑝,𝑞, 

𝑔1,𝑝,𝑞 = −𝑞 and 𝑔𝑗,𝑝,𝑞 = −𝑞𝑎𝑗,𝑝,𝑞 − 𝑦𝑛,𝑝,𝑞𝑔𝑗−1,𝑝,𝑞 for 𝑗 = 2,3, … , 𝑛 − 2, and 

𝑔𝑛−2,𝑝,𝑞 = 𝑞∑ [−𝑎𝑗,𝑝,𝑞(−𝑦𝑛,𝑝,𝑞)
𝑛−2−𝑗

]

𝑛−2

𝑗=1

. 

Then, by applying Theorem 3, we obtain that 

𝑑𝑛,𝑝,𝑞 = det(𝐵5) =
1

𝑥𝑛,𝑝,𝑞
𝑛−2 det(𝐴𝑛,𝑝,𝑞) ⇔ det(𝐴𝑛,𝑝,𝑞) = 𝑥𝑛,𝑝,𝑞

𝑛−2 𝑑𝑛,𝑝,𝑞 

⇔ det(𝐴𝑛,𝑝,𝑞) = 𝑥𝑛,𝑝,𝑞
𝑛−2 (1 − 𝑝𝑎𝑛,𝑝,𝑞 − 𝑦𝑛,𝑝,𝑞𝑔𝑛−2,𝑝,𝑞) = 𝑥𝑛,𝑝,𝑞

𝑛−1 − 𝑞∑(−1)𝑗𝑎𝑛−1−𝑗,𝑝,𝑞(𝑞𝑎𝑛,𝑝,𝑞)
𝑗
𝑥𝑛,𝑝,𝑞
𝑛−2−𝑗

𝑛−2

𝑗=0

. 

Moreover, we apply a series of elementary row operations on 𝐵5 as follows. 

𝐵 = 𝐸𝑛(𝑛−1)(−𝑔𝑛−2,𝑝,𝑞)…𝐸𝑛3(−𝑔2,𝑝,𝑞)𝐸𝑛2(−𝑔1,𝑝,𝑞)(𝐵5) =

(

 
 
 
 

1 0 0 0 ⋯ 0 0
0 1 0 0 ⋯ 0 0
0 0 1 0 ⋯ 0 0
0 0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ 1 0
0 0 0 0 ⋯ 0 𝑑𝑛,𝑝,𝑞)

 
 
 
 

. 
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Consequently, based on Theorem 2, there exists nonsingular matrices 𝑃 and 𝑄, where 

𝑃 =
1

𝑥𝑛,𝑝,𝑞

(

 
 
 
 
 

𝑥𝑛,𝑝,𝑞 0 0 0 ⋯ 0 0

0 1 1 −1 ⋯ 0 0
0 0 1 1 ⋯ 0 0
0 0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ 1 −1
1 0 0 0 ⋯ 1 1

𝑧1,𝑝,𝑞 𝑧2,𝑝,𝑞 𝑧3,𝑝,𝑞 𝑧4,𝑝,𝑞 ⋯ 𝑧𝑛−1,𝑝,𝑞 𝑧𝑛,𝑝,𝑞)

 
 
 
 
 

, 

and 

𝑄 =

(

 
 
 
 
 
 
 

1 ℎ2,𝑝,𝑞 ℎ3,𝑝,𝑞 ℎ4,𝑝,𝑞 ⋯ ℎ𝑛−1,𝑝,𝑞 ℎ𝑛,𝑝,𝑞

0 1 −𝑦𝑛,𝑝,𝑞 (−𝑦𝑛,𝑝,𝑞)
2
⋯ (−𝑦𝑛,𝑝,𝑞)

𝑛−3
(−𝑦𝑛,𝑝,𝑞)

𝑛−2

0 0 1 −𝑦𝑛,𝑝,𝑞 ⋯ (−𝑦𝑛,𝑝,𝑞)
𝑛−4

(−𝑦𝑛,𝑝,𝑞)
𝑛−3

0 0 0 1 ⋯ (−𝑦𝑛,𝑝,𝑞)
𝑛−5

(−𝑦𝑛,𝑝,𝑞)
𝑛−4

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯ −𝑦𝑛,𝑝,𝑞 (−𝑦𝑛,𝑝,𝑞)
2

0 0 0 0 ⋯ 1 −𝑦𝑛,𝑝,𝑞
0 0 0 0 ⋯ 0 1 )

 
 
 
 
 
 
 

, 

such that 𝐵 = 𝑃𝐴𝑛,𝑝,𝑞𝑄, where 

ℎ2,𝑝,𝑞 = 𝑝 and ℎ𝑗,𝑝,𝑞 = −𝑎𝑗,𝑝,𝑞 − 𝑦𝑛,𝑝,𝑞ℎ𝑗−1,𝑝,𝑞 for 𝑗 = 3,4, … , 𝑛, 

𝑧1,𝑝,𝑞 =
𝑥𝑛,𝑝,𝑞

𝑎𝑛,𝑝,𝑞
(𝑑𝑛,𝑝,𝑞 − 1), 𝑧2,𝑝,𝑞 = 𝑞, and 𝑧𝑗,𝑝,𝑞 = (−𝑦𝑛,𝑝,𝑞)𝑧𝑗−1,𝑝,𝑞 for 𝑗 = 3,4,… , 𝑛 − 1. 

Since 𝐵 = 𝑃𝐴𝑛,𝑝,𝑞𝑄, then 𝐴𝑛,𝑝,𝑞
−1 = 𝑄𝐵−1𝑃. Note that 

𝑄𝐵−1 =

(

 
 
 
 
 

1 ℎ2,𝑝,𝑞 ℎ3,𝑝,𝑞 ⋯ ℎ𝑛−1,𝑝,𝑞 ℎ𝑛,𝑝,𝑞/𝑑𝑛,𝑝,𝑞

0 1 −𝑦𝑛,𝑝,𝑞 ⋯ (−𝑦𝑛,𝑝,𝑞)
𝑛−3

(−𝑦𝑛,𝑝,𝑞)
𝑛−2
/𝑑𝑛,𝑝,𝑞

0 0 1 ⋯ (−𝑦𝑛,𝑝,𝑞)
𝑛−4

(−𝑦𝑛,𝑝,𝑞)
𝑛−3
/𝑑𝑛,𝑝,𝑞

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 −𝑦𝑛,𝑝,𝑞/𝑑𝑛,𝑝,𝑞
0 0 0 ⋯ 0 1/𝑑𝑛,𝑝,𝑞 )

 
 
 
 
 

. 

We know that 𝐴𝑛,𝑝,𝑞
−1  is also a skew circulant matrix based on Theorem 1. Thus, we can construct 𝐴𝑛,𝑝,𝑞

−1  

by simply computing one of the rows of 𝑄𝐵−1𝑃. In this case, we compute only the last row. Consequently, 

𝐴𝑛,𝑝,𝑞
−1 = 𝑄𝐵−1𝑃 = [det(𝐴𝑛,𝑝,𝑞)]

−1
SCirc(𝑠1,𝑝,𝑞 , 𝑠2,𝑝,𝑞 , … , 𝑠𝑛−1,𝑝,𝑞 , 𝑠𝑛,𝑝,𝑞) (mod𝑟). 

and 

det(𝐴𝑛,𝑝,𝑞) = 𝑥𝑛,𝑝,𝑞
𝑛−2 − 𝑎𝑛,𝑝,𝑞𝑠2,𝑝,𝑞 (mod𝑟). 

∎ 

Eqs. (2) and (3) are computationally fast, as the determinant and its inverse leverage the same numbers 

in their computations. In this context, 𝑠2,𝑝,𝑞 is used to compute both the determinant and the inverse. The 

determinant is used to compute 𝑠1,𝑝,𝑞, while 𝑎𝑛,𝑝,𝑞 and 𝑥𝑛,𝑝,𝑞 are used to compute the determinant and 𝑠𝑗,𝑝,𝑞 

for 𝑗 = 1,2,… , 𝑛. Below, we present a simple example of the use of the explicit formulas contained in 

Theorem 4. 

Example 1. Suppose 𝑛 = 4, 𝑝 = 3, 𝑞 = 6, and 𝑟 = 257. Then, 

ℱ𝑝,𝑞 = {𝑎𝑗,𝑝,𝑞}𝑗=1
4
 (mod257) = {1,−3,15,−63} (mod257) = {1,254,15,194}, 

𝑥4,3,6 = −3𝑎4,3,6 + 6𝑎3,3,6 + 1 = −3 ⋅ 194 + 6 ⋅ 15 = −491, 
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𝑠2,3,6 = 3𝑥4,3,6
2 + 6∑(−1)𝑗𝑎3−𝑗,3,66

𝑗𝑎4,3,6
𝑗−1

𝑥4,3,6
2−𝑗

2

𝑗=1

, 

= 3 ⋅ (−491)2 − 6 ⋅ 254 ⋅ 6 ⋅ (−491) + 6 ⋅ 1 ⋅ 62 ⋅ 194 

⇔ 𝑠2,3,6 = 5254851, 

det(𝐴4,3,6) = 𝑥4,3,6
2 − 𝑎4,3,6𝑠2,3,6 = (−491)

2 − 194 ⋅ 5254851 

⇔ det(𝐴4,3,6) = −1019200013, 

𝑠1,3,6 =
det(𝐴4,3,6) + (−1)

263𝑎4,3,6
2

𝑥4,3,6
=
−1019200013 + 63 ⋅ 1942

−491
= 2059207, 

𝑠3,3,6 = −6𝑥4,3,6 = −6 ⋅ (−491) = 2946, 

𝑠4,20,25 = 6
2𝑎4,3,6 = 36 ⋅ 194 = 6984, 

Thus, according to Theorem 4, the determinant of 𝐴4,3,6 over ℤ257 is 

det(𝐴4,3,6) = −1019200013 (mod257) = 50, 

Furthermore, we obtain that 

[det(𝐴4,3,6)]
−1
 (mod257) = 50−1 (mod257) = 36, 

𝐴4,3,6
−1 = [det(𝐴4,3,6)]

−1
SCirc(𝑠1,3,6, 𝑠2,3,6, 𝑠3,3,6, 𝑠4,3,6) (mod257) 

= 36 ⋅ SCirc(2059207,5254851,2946,6984) (mod257) 

= 36(

2059207 5254851 2946 6984
−6984 2059207 5254851 2946
−2946 −6984 2059207 5254851

−5254851 −2946 −6984 2059207

) (mod257). 

So, based on Theorem 4, the inverse of 𝐴4,3,6 over ℤ257 is 

𝐴4,3,6
−1 = (

59 20 172 78
179 59 20 172
85 179 59 20
237 85 179 59

). 

3.2 Public-Key Cryptography Scheme Based on Hill Cipher with 𝑨𝒏,𝒑,𝒒 Matrix and ElGamal Technique 

The novel public-key cryptography scheme proposed in this research can be presented as follows. 

1. Public Key Generation 

Let party 𝐵 be the message recipient. Party 𝐵 performs the following steps: 

a. generates a safe prime 𝑟; 
b. chooses a generator 𝛼 of ℤ𝑟

∗; 

c. chooses a private key 𝑑 ∈ ℤ, where 1 ≤ 𝑑 < 𝜙(𝑟); 
d. computes 𝛽 = 𝛼𝑑  (mod𝑟); and 

e. sends the public key (𝑟, 𝛼, 𝛽) to the sender of the message. 

2. Encryption 

Let party 𝐴 be the sender of the message (or plaintext) and has received the public key (𝑟, 𝛼, 𝛽) 
from party 𝐵. Suppose the plaintext is represented as 𝑀 = (𝑀1 𝑀2 … 𝑀𝑁), where 𝑀𝑖 ∈ ℤ𝑟

𝑛 

is a block matrix of the plaintext of 𝑀. Party 𝐴 performs the following steps: 

a. chooses a secret random number 𝑒 ∈ ℤ, where 1 ≤ 𝑒 < 𝜙(𝑟); 
b. computes 𝑝 = 𝛼𝑒 (mod 𝑟) and 𝑛 = 𝛽𝑒 (mod𝑟); 
c. computes the key matrix 𝐴𝑛,𝑝,⌊𝑛/2⌋ over ℤ𝑟; 

d. encrypts 𝑀 by computing 𝐶𝑖 = 𝑀𝑖𝐴𝑛,𝑝,⌊𝑛/2⌋ (mod𝑟) ∈ ℤ𝑟
𝑛; and 

e. sends (𝑝 𝐶) to party 𝐵. 
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3. Decryption 

Party 𝐵 uses private key 𝑑 and (𝑝 𝐶) to decrypt the ciphertext. Party 𝐵 performs the following 

steps: 

a. computes 𝑛 = 𝑝𝑑  (mod 𝑟); 
b. computes 𝐴𝑛,𝑝,⌊𝑛/2⌋

−1  over ℤ𝑟 using Theorem 4; and 

c. decrypts ciphertext by computing 𝑀𝑖 = 𝐶𝑖𝐴𝑛,𝑝,⌊𝑛/2⌋
−1  (mod𝑟). 

The overall procedure of the public-key cryptography scheme proposed in this study is summarized in the 

flowchart in Fig. 1 below. 

 
Figure 1. Flowchart of the Public-Key Cryptography Scheme Proposed in This Study 

This scheme is based on the ElGamal encryption technique, so only the key parameters are transmitted. 

Unlike conventional ElGamal, which encrypts individual characters, this scheme encrypts entire plaintext 

block matrices as it is based on the Hill cipher. 

3.3 Security and Computational Aspects 

The security and computational aspects of the proposed scheme are presented in this section. We begin 

by discussing the security aspect. 

1. Discrete Logarithm Problem 

The matrix 𝐴𝑛,𝑝,𝑞
−1  is generated by computing the value of 𝑛, which depends on the publicly known 

value of 𝑝 and the private key 𝑑. Consequently, an adversary must determine 𝑑 to obtain 𝐴𝑛,𝑝,𝑞
−1 . The 

value of 𝑑 can be determined by solving the equation 𝛽 = 𝛼𝑑  (mod𝑟), which corresponds to the 

discrete logarithm problem [16]. This problem is regarded as computationally infeasible if 𝑟 is a 

sufficiently very large prime number. To ensure security, the size of 𝑟 must be in the range of 1024 

bits to 4096 bits [37]. 
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2. Brute Force Attack 

An adversary attempts to search through all possible 𝑛 × 𝑛 key matrices over ℤ𝑟. In this case, 

there are 𝑟𝑛
2
 possible 𝑛 × 𝑛 matrices over ℤ𝑟. Moreover, the set of all invertible 𝑛 × 𝑛 matrices over 

ℤ𝑟 with matrix multiplication, forms the general linear group denoted by 𝐺𝐿𝑛(𝑟). The order of 𝐺𝐿𝑛(𝑟) 
is given by |𝐺𝐿𝑛(𝑟)| = ∏ (𝑟𝑛 − 𝑟𝑘)𝑛−1

𝑘=0  [38]. 

Example 2. Let 𝑟 = 257 and 𝑛 = 50. Then, there are 𝑟𝑛
2
= 2572500 ≈ 6.80468973864327 ×

 106024 possible matrices. The number of invertible 50 × 50 matrices over ℤ257 can be computed as 

follows. 

|𝐺𝐿50(257)| =∏(25750 − 257𝑘)

49

𝑘=0

≈ 6.77810932179867 × 106024. 

Therefore, an adversary would need to check approximately 6.77810932179867 × 106024 possible 

invertible matrices to get the key matrix 𝐴50,𝑝,⌊30/2⌋. 

3. Known Plaintext Attack 

Suppose an adversary has access to 𝑛 distinct plaintext and ciphertext pairs, namely 

(𝑀1, 𝐶1), (𝑀2, 𝐶2),… , (𝑀𝑛, 𝐶𝑛), where 𝑀𝑖 = (𝑚𝑖1 𝑚𝑖2 … 𝑚𝑖𝑛) and 𝐶𝑖 = (𝑐𝑖1 𝑐𝑖2 … 𝑐𝑖𝑛) 

for 1 ≤ 𝑖 ≤ 𝑛. Let the matrices 𝑀𝑃 = (𝑚𝑖𝑗) and 𝐶𝑃 = (𝑐𝑖𝑗). If 𝑀𝑃 is invertible, then the adversary can 

get the key matrix 𝐴𝑛,𝑝,⌊𝑛/2⌋ as by compute 

𝐴
𝑛,𝑝,⌊

𝑛
2
⌋
= 𝑀𝑃

−1𝐶𝑃 . 

If 𝑀𝑃 is not invertible, then the adversary must obtain another set of 𝑛 distinct plaintext and 

ciphertext pairs until an invertible 𝑀𝑃 is found. However, the values of 𝑒, 𝑛, and 𝑝 used in the current 

encryption differ from those used in the next encryption. As a result, the entries of the key matrix 

𝐴𝑛,𝑝,⌊𝑛/2⌋ in the current encryption will also differ from those in the next encryption. Therefore, the 

adversary cannot reuse the key matrix from one session to decrypt ciphertexts in subsequent 

communications. 

We present a simple illustration of the proposed public-key cryptography scheme as follows. 

Example 3. Let party 𝐴 be the sender of the message and party 𝐵 be the recipient of the message. 

Below, we present the steps taken by each party. 

1. Public Key Generation by Party 𝐵 

The following are the steps taken by party 𝐵: 

a. generates a safe prime 𝑟 = 2 ⋅ 431 + 1 = 863, where 𝑠 = 431 is a prime; 

b. 𝑟 − 1 = 862 has two prime factors, 2 and 𝑠, so 𝛼 = 145 can be chosen as the generator of 

ℤ863
∗  since 𝛼𝑠 (mod𝑟) = 145431 (mod863) = 862 ≠ 1; 

c. chooses a private key 𝑑 = 494; 

d. computes 𝛽 = 𝛼𝑑  (mod𝑟) = 145494 (mod863) = 601; and 

e. sends the public key (863,145,601) to party 𝐴. 

2. Encryption by Party 𝐴 

Party 𝐴 encrypts and sends the message “Hello!!!” to 𝐵 with the following steps: 

a. chooses a secret random number 𝑒 = 32; 

b. computes 𝑝 = 𝛼𝑒 (mod 𝑟) = 14532 (mod863) = 110; 

c. computes 𝑛 = 𝛽𝑒 (mod𝑟) = 60132 (mod863) = 3; 

d. converts the message “Hello!!!” into ASCII decimal as follows 

𝑀 = (72 101 108 108 111 33 33 33); 
e. partitioning the plaintext 𝑀 into 

𝑀1 = (72 101 108), 𝑀2 = (108 111 33), and 𝑀3 = (33 33 0); 
f. computes the matrix 𝐴3,110,1 over ℤ863, so that we obtain that 

𝐴3,110,1 = SCirc(1,753,19) (mod863); 

g. encrypts 𝑀 by computing 𝐶𝑖 = 𝑀𝑖𝐴3,110,1 (mod863), so that we get that 

𝐶1 = (540 485 722), 𝐶2 = (766 549 231), and 𝐶3 = (269 718 449). 
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Then, 

𝐶 = (540 485 722 766 549 231 269 718 449) 
= (Ȝ ǥ ˒ ˾ ȥ ç č ˎ ǁ) 

h. sends (𝑝 𝐶) to 𝐵. 

3. Decryption by Party 𝐵 

Party 𝐵 uses private key 𝑑 and (𝑝 𝐶) to decrypt the ciphertext, with the following steps: 

a. computes 𝑛 = 𝑝𝑑  (mod 𝑟) = 110494 (mod863) = 3; 

b. computes the matrix 𝐴3,110,1
−1  over ℤ863 using Theorem 4, so that we obtain that 

𝐴3,110,1
−1 = SCirc(655,422,318) (mod863); and 

c. decrypts the ciphertext by computing 𝑀𝑖 = 𝐶𝑖𝐴3,110,1
−1  (mod863), so that we get that 

𝑀1 = (72 101 108), 𝑀2 = (108 111 33), and 𝑀3 = (33 33 0). 

Consequently, 

𝑀 = (72 101 108 108 111 33 33 33 0) = (𝐻 𝑒 𝑙 𝑙 𝑜 ! ! !  ). 

The computation time of the public key cryptographic scheme in this study is compared with that 

proposed in [23], [24] and [25]. Let the public key (𝑟, 𝛼, 𝛽) = (983,398,950) and the plaintext message 𝑀 

of size 1 × 3𝑛 be randomly chosen. The following shows a comparison of the encryption and decryption 

computation time (seconds) in Fig. 2 and Table 1. 

 

(a) 

 

(b) 
Figure 2. Computational Time of the Scheme Proposed in This Study and the Scheme Proposed in [23], [24] 

and [25] for (a) Encryption and (b) Decryption 
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Table 1. Computational Time of the Scheme Proposed in This Study and the Scheme Proposed in [23], [24] and 

[25] for Encryption and Decryption  

Scheme 𝑛 𝑝 Encryption Time (seconds) Decryption Time (seconds) 

Proposed in This Study 380 606 0.0216616 0.3207920 

411 122 0.0311113 0.4348070 

536 685 0.0383450 0.7648180 

823 519 0.0916562 2.3837900 

Panchal et al. (2024) 380 606 7.9686200 0.9513410 

411 122 3.4424300 1.2794100 

536 685 18.3427000 8.0722700 

823 519 36.4818000 40.9020000 

Naseri et al. (2023) 380 606 7.7517200 0.7795170 

411 122 3.6590300 1.0309300 

536 685 19.3314000 7.9729200 

823 519 37.6896000 41.5998000 

Prasad and Mahato (2021) 380 606 7.3933300 0.9437380 

411 122 3.5223600 1.2257400 

536 685 18.9975000 7.9653500 

823 519 36.2777000 40.6545000 

As seen in Fig. 2 and Table 1, the computation time of encryption and decryption across all tested 

schemes tends to increase as the size of the matrix increases. However, the scheme proposed in this study is 

able to perform encryption and decryption significantly faster than the three other schemes. Specifically, the 

proposed scheme achieves encryption approximately 478.36 times faster than the scheme in [23], 495.44 

times faster than that in [24], and 504.14 times faster than that in [25] when 𝑛 = 536 and 𝑝 = 685. For 

decryption, the proposed scheme is approximately 17.16 times faster than the scheme in [23], 17.05 times 

faster than that in [24], and 17.45 times faster than that in [25] when 𝑛 = 823 and 𝑝 = 519. 

The computation time of the scheme proposed in this study is significantly faster than the schemes in 

[23], [24] and [25] for both encryption and decryption. This advantage arises from the structure of the matrix 

𝐴𝑛,𝑝,⌊𝑛/2⌋ over ℤ𝑟, which is easy to construct, as it depends only on the first 𝑛 terms of the second-order 

relation ℱ𝑝,⌊𝑛/2⌋ over ℤ𝑟. Furthermore, the matrix 𝐴𝑛,𝑝,⌊𝑛/2⌋
−1 , used in decryption, can also be computed 

efficiently using Theorem 1, whereas the matrices in the three other schemes are more complex to construct 

and compute. 

4. CONCLUSION 

The main conclusions of this research are as follows: 

1. The determinant and the inverse of the matrix 𝐴𝑛,𝑝,𝑞 (mod𝑟), where 𝑛, 𝑝, 𝑞 ∈ ℕ, 𝑛 ≥ 2, and 𝑟 is 

a prime number, are explicitly formulated in one theorem using elementary row and column 

operations. The explicit formulas allow for highly efficient computation by reusing the same 

numerical information. 

2. The matrix 𝐴𝑛,𝑝,⌊𝑛/2⌋ (mod𝑟), where 𝑛, 𝑝 ∈ ℕ, 𝑛 ≥ 2, and 𝑟 is a prime number, along with its 

determinant and inverse, are used to construct a new public-key cryptography based on the Hill 

cipher and ElGamal technique. The decryption does not require transmitting the complete key 

matrix but only its key parameters, thus significantly reducing the computational complexity. The 

encryption and decryption are performed on blocks of plaintext instead of single plaintext 

characters. 
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3. The primary security of the proposed scheme lies in the hardness of the discrete logarithm 

problem. Specifically, recovering the private key 𝑑 and the matrix size 𝑛 is computationally 

infeasible for an adversary if 𝑟 is chosen to be a very large prime (e.g., 1024 to 4096 bits). The 

scheme is resistant to known plaintext attack, since the values of 𝑒, 𝑛, and 𝑝 always change, 

resulting in distinct key matrices 𝐴𝑛,𝑝,⌊𝑛/2⌋ for each session. Furthermore, the scheme is also 

resistant to brute force attack since an adversary would have to exhaustively try all invertible 

square matrices over ℤ𝑟, which is computationally impractical. 

4. The proposed scheme can perform encryption up to 478.36 times faster than the scheme in [23], 

495.44 times faster than that in [24], and 504.14 times faster than that in [25]. For decryption, the 

proposed scheme can perform up to 17.16 times faster than the scheme in [23], 17.05 times faster 

than that in [24], and 17.45 times faster than that in [25]. This remarkable efficiency is mainly due 

to the simpler construction of the matrix 𝐴𝑛,𝑝,⌊𝑛/2⌋  and the availability of an explicit formula for 

computing its determinant and inverse, which enables rapid operations that surpass the other three 

schemes, and the matrices used in these three schemes are more difficult to construct. 
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